forked from adafruit/Adafruit_nRF52_Bootloader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboards.c
779 lines (628 loc) · 22.7 KB
/
boards.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
/*
* The MIT License (MIT)
*
* Copyright (c) 2018 Ha Thach for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "boards.h"
#include "nrf_pwm.h"
#include "app_scheduler.h"
#include "app_timer.h"
#ifdef LED_APA102_CLK
#include "nrf_spim.h"
#endif
#define SCHED_MAX_EVENT_DATA_SIZE sizeof(app_timer_event_t) /**< Maximum size of scheduler events. */
#define SCHED_QUEUE_SIZE 30 /**< Maximum number of events in the scheduler queue. */
#if defined(LED_NEOPIXEL) || defined(LED_RGB_RED_PIN) || defined(LED_APA102_CLK)
void neopixel_init(void);
void neopixel_write(uint8_t* pixels);
void neopixel_teardown(void);
#endif
//--------------------------------------------------------------------+
// IMPLEMENTATION
//--------------------------------------------------------------------+
static uint32_t _systick_count = 0;
void SysTick_Handler(void) {
_systick_count++;
led_tick();
}
void button_init(uint32_t pin) {
if (BUTTON_PULL == NRF_GPIO_PIN_PULLDOWN) {
nrf_gpio_cfg_sense_input(pin, BUTTON_PULL, NRF_GPIO_PIN_SENSE_HIGH);
} else {
nrf_gpio_cfg_sense_input(pin, BUTTON_PULL, NRF_GPIO_PIN_SENSE_LOW);
}
}
bool button_pressed(uint32_t pin) {
uint32_t const active_state = (BUTTON_PULL == NRF_GPIO_PIN_PULLDOWN ? 1 : 0);
return nrf_gpio_pin_read(pin) == active_state;
}
// This is declared so that a board specific init can be called from here.
void __attribute__((weak)) board_init2(void) {}
void board_init(void) {
// stop LF clock just in case we jump from application without reset
NRF_CLOCK->TASKS_LFCLKSTOP = 1UL;
// Use Internal OSC to compatible with all boards
NRF_CLOCK->LFCLKSRC = CLOCK_LFCLKSRC_SRC_RC;
NRF_CLOCK->TASKS_LFCLKSTART = 1UL;
button_init(BUTTON_DFU);
button_init(BUTTON_FRESET);
NRFX_DELAY_US(100); // wait for the pin state is stable
#if LEDS_NUMBER > 0
// use PMW0 for LED RED
led_pwm_init(LED_PRIMARY, LED_PRIMARY_PIN);
#if LEDS_NUMBER > 1
led_pwm_init(LED_SECONDARY, LED_SECONDARY_PIN);
#endif
#endif
#if defined(LED_NEOPIXEL) || defined(LED_RGB_RED_PIN) || defined(LED_APA102_CLK)
// use neopixel for use enumeration
#ifdef NEOPIXEL_POWER_PIN
nrf_gpio_cfg_output(NEOPIXEL_POWER_PIN);
nrf_gpio_pin_write(NEOPIXEL_POWER_PIN, 1);
#endif
neopixel_init();
#endif
#if ENABLE_DCDC_0 == 1
NRF_POWER->DCDCEN0 = 1;
#endif
#if ENABLE_DCDC_1 == 1
NRF_POWER->DCDCEN = 1;
#endif
// Make sure any custom inits are performed
board_init2();
// When board is supplied on VDDH (and not VDD), this specifies what voltage the GPIO should run at
// and what voltage is output at VDD. The default (0xffffffff) is 1.8V; typically you'll want
// #define UICR_REGOUT0_VALUE UICR_REGOUT0_VOUT_3V3
// in board.h when using that power configuration.
#ifdef UICR_REGOUT0_VALUE
if ((NRF_UICR->REGOUT0 & UICR_REGOUT0_VOUT_Msk) != (UICR_REGOUT0_VALUE << UICR_REGOUT0_VOUT_Pos)){
NRF_NVMC->CONFIG = NVMC_CONFIG_WEN_Wen << NVMC_CONFIG_WEN_Pos;
while (NRF_NVMC->READY == NVMC_READY_READY_Busy){}
NRF_UICR->REGOUT0 = (NRF_UICR->REGOUT0 & ~((uint32_t)UICR_REGOUT0_VOUT_Msk)) |
(UICR_REGOUT0_VALUE << UICR_REGOUT0_VOUT_Pos);
NRF_NVMC->CONFIG = NVMC_CONFIG_WEN_Ren << NVMC_CONFIG_WEN_Pos;
while (NRF_NVMC->READY == NVMC_READY_READY_Busy){}
NVIC_SystemReset();
}
#endif
// Init scheduler
APP_SCHED_INIT(SCHED_MAX_EVENT_DATA_SIZE, SCHED_QUEUE_SIZE);
// Init app timer (use RTC1)
app_timer_init();
// Configure Systick for led blinky
NVIC_SetPriority(SysTick_IRQn, 7);
SysTick_Config(SystemCoreClock / 1000);
}
// Actions at the end of board_teardown.
void __attribute__((weak)) board_teardown2(void) {}
void board_teardown(void) {
// Disable systick, turn off LEDs
SysTick->CTRL = 0;
// Disable and reset PWM for LEDs
#if LEDS_NUMBER > 0
led_pwm_teardown();
#endif
#if defined(LED_NEOPIXEL) || defined(LED_RGB_RED_PIN) || defined(LED_APA102_CLK)
neopixel_teardown();
#endif
#ifdef DISPLAY_PIN_SCK
board_display_teardown();
#endif
// Stop RTC1 used by app_timer
NVIC_DisableIRQ(RTC1_IRQn);
NRF_RTC1->EVTENCLR = RTC_EVTEN_COMPARE0_Msk;
NRF_RTC1->INTENCLR = RTC_INTENSET_COMPARE0_Msk;
NRF_RTC1->TASKS_STOP = 1;
NRF_RTC1->TASKS_CLEAR = 1;
// Stop LF clock
NRF_CLOCK->TASKS_LFCLKSTOP = 1UL;
// make sure all pins are back in reset state
// NUMBER_OF_PINS is defined in nrf_gpio.h
for (int i = 0; i < NUMBER_OF_PINS; ++i) {
nrf_gpio_cfg_default(i);
}
// board specific teardown actions
board_teardown2();
}
//--------------------------------------------------------------------+
// Display
//--------------------------------------------------------------------+
#ifdef DISPLAY_PIN_SCK
#include "nrf_spim.h"
#define TFT_MADCTL_MY 0x80 ///< Page addr order: Bottom to top
#define TFT_MADCTL_MX 0x40 ///< Column addr order: Right to left
#define TFT_MADCTL_MV 0x20 ///< Page/Column order: Reverse Mode ( X <-> Y )
#define TFT_MADCTL_ML 0x10 ///< LCD refresh Bottom to top
#define TFT_MADCTL_MH 0x04 ///< LCD refresh right to left
#define TFT_MADCTL_RGB 0x00 ///< Red-Green-Blue pixel order
#define TFT_MADCTL_BGR 0x08 ///< Blue-Green-Red pixel order
// Note don't use SPIM3 since it has lots of errata
NRF_SPIM_Type* _spim = NRF_SPIM0;
static void spi_write(NRF_SPIM_Type *p_spim, uint8_t const *tx_buf, size_t tx_len) {
nrf_spim_tx_buffer_set(p_spim, tx_buf, tx_len);
nrf_spim_rx_buffer_set(p_spim, NULL, 0);
nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_ENDTX);
nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END);
nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_START);
// blocking wait until xfer complete
while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END)){}
}
static void tft_controller_init(void);
static inline void tft_cs(bool state) {
nrf_gpio_pin_write(DISPLAY_PIN_CS, state);
}
static inline void tft_dc(bool state) {
nrf_gpio_pin_write(DISPLAY_PIN_DC, state);
}
static void tft_cmd(uint8_t cmd, uint8_t const* data, size_t narg) {
tft_cs(false);
// send command
tft_dc(false);
spi_write(_spim, &cmd, 1);
// send data
if (narg > 0) {
tft_dc(true);
spi_write(_spim, data, narg);
}
tft_cs(true);
}
void board_display_init(void) {
//------------- SPI init -------------//
// highspeed SPIM should set SCK and MOSI to high drive
nrf_gpio_cfg(DISPLAY_PIN_SCK, NRF_GPIO_PIN_DIR_OUTPUT, NRF_GPIO_PIN_INPUT_CONNECT,
NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_H0H1, NRF_GPIO_PIN_NOSENSE);
nrf_gpio_cfg(DISPLAY_PIN_MOSI, NRF_GPIO_PIN_DIR_OUTPUT, NRF_GPIO_PIN_INPUT_DISCONNECT,
NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_H0H1, NRF_GPIO_PIN_NOSENSE);
nrf_gpio_cfg_output(DISPLAY_PIN_CS);
nrf_gpio_pin_set(DISPLAY_PIN_CS);
nrf_spim_pins_set(_spim, DISPLAY_PIN_SCK, DISPLAY_PIN_MOSI, NRF_SPIM_PIN_NOT_CONNECTED);
nrf_spim_frequency_set(_spim, NRF_SPIM_FREQ_4M);
nrf_spim_configure(_spim, NRF_SPIM_MODE_0, NRF_SPIM_BIT_ORDER_MSB_FIRST);
nrf_spim_orc_set(_spim, 0xFF);
nrf_spim_enable(_spim);
//------------- Display Init -------------//
nrf_gpio_cfg_output(DISPLAY_PIN_DC);
#if defined(DISPLAY_VSENSOR_PIN) && DISPLAY_VSENSOR_PIN >= 0
nrf_gpio_cfg_output(DISPLAY_VSENSOR_PIN);
nrf_gpio_pin_write(DISPLAY_VSENSOR_PIN, DISPLAY_VSENSOR_ON);
#endif
#if defined(DISPLAY_PIN_RST) && DISPLAY_PIN_RST >= 0
nrf_gpio_cfg_output(DISPLAY_PIN_RST);
nrf_gpio_pin_clear(DISPLAY_PIN_RST);
NRFX_DELAY_MS(10);
nrf_gpio_pin_set(DISPLAY_PIN_RST);
NRFX_DELAY_MS(20);
#endif
#if defined(DISPLAY_PIN_BL) && DISPLAY_PIN_BL >= 0
nrf_gpio_cfg_output(DISPLAY_PIN_BL);
nrf_gpio_pin_write(DISPLAY_PIN_BL, DISPLAY_BL_ON);
#endif
tft_controller_init();
}
void board_display_teardown(void) {
nrf_spim_disable(_spim);
}
void board_display_draw_line(uint16_t y, uint8_t const* buf, size_t nbytes) {
// column and row address set
uint32_t xa32 = DISPLAY_COL_OFFSET << 16 | DISPLAY_WIDTH;
xa32 = __builtin_bswap32(xa32);
y += DISPLAY_ROW_OFFSET;
uint32_t ya32 = (y << 16) | (y + 1);
ya32 = __builtin_bswap32(ya32);
tft_cmd(0x2A, (uint8_t*) &xa32, 4);
tft_cmd(0x2B, (uint8_t*) &ya32, 4);
// command: memory write
tft_cmd(0x2C, buf, nbytes);
}
#endif
//--------------------------------------------------------------------+
// LED Indicator
//--------------------------------------------------------------------+
void pwm_teardown(NRF_PWM_Type* pwm) {
pwm->TASKS_SEQSTART[0] = 0;
pwm->ENABLE = 0;
pwm->PSEL.OUT[0] = 0xFFFFFFFF;
pwm->PSEL.OUT[1] = 0xFFFFFFFF;
pwm->PSEL.OUT[2] = 0xFFFFFFFF;
pwm->PSEL.OUT[3] = 0xFFFFFFFF;
pwm->MODE = 0;
pwm->COUNTERTOP = 0x3FF;
pwm->PRESCALER = 0;
pwm->DECODER = 0;
pwm->LOOP = 0;
pwm->SEQ[0].PTR = 0;
pwm->SEQ[0].CNT = 0;
}
static uint16_t led_duty_cycles[PWM0_CH_NUM] = {0};
#if LEDS_NUMBER > PWM0_CH_NUM
#error "Only " PWM0_CH_NUM " concurrent status LEDs are supported."
#endif
void led_pwm_init(uint32_t led_index, uint32_t led_pin) {
NRF_PWM_Type* pwm = NRF_PWM0;
pwm->ENABLE = 0;
nrf_gpio_cfg_output(led_pin);
nrf_gpio_pin_write(led_pin, 1 - LED_STATE_ON);
pwm->PSEL.OUT[led_index] = led_pin;
pwm->MODE = PWM_MODE_UPDOWN_Up;
pwm->COUNTERTOP = 0xff;
pwm->PRESCALER = PWM_PRESCALER_PRESCALER_DIV_16;
pwm->DECODER = PWM_DECODER_LOAD_Individual;
pwm->LOOP = 0;
pwm->SEQ[0].PTR = (uint32_t) (led_duty_cycles);
pwm->SEQ[0].CNT = 4; // default mode is Individual --> count must be 4
pwm->SEQ[0].REFRESH = 0;
pwm->SEQ[0].ENDDELAY = 0;
pwm->ENABLE = 1;
pwm->EVENTS_SEQEND[0] = 0;
// pwm->TASKS_SEQSTART[0] = 1;
}
void led_pwm_teardown(void) {
pwm_teardown(NRF_PWM0);
}
void led_pwm_duty_cycle(uint32_t led_index, uint16_t duty_cycle) {
led_duty_cycles[led_index] = duty_cycle;
nrf_pwm_event_clear(NRF_PWM0, NRF_PWM_EVENT_SEQEND0);
nrf_pwm_task_trigger(NRF_PWM0, NRF_PWM_TASK_SEQSTART0);
}
static uint32_t primary_cycle_length;
#ifdef LED_SECONDARY_PIN
static uint32_t secondary_cycle_length;
#endif
void led_tick(void) {
uint32_t millis = _systick_count;
uint32_t cycle = millis % primary_cycle_length;
uint32_t half_cycle = primary_cycle_length / 2;
if (cycle > half_cycle) {
cycle = primary_cycle_length - cycle;
}
uint16_t duty_cycle = 0x4f * cycle / half_cycle;
#if LED_STATE_ON == 1
duty_cycle = 0xff - duty_cycle;
#endif
led_pwm_duty_cycle(LED_PRIMARY, duty_cycle);
#ifdef LED_SECONDARY_PIN
cycle = millis % secondary_cycle_length;
half_cycle = secondary_cycle_length / 2;
if (cycle > half_cycle) {
cycle = secondary_cycle_length - cycle;
}
duty_cycle = 0x8f * cycle / half_cycle;
#if LED_STATE_ON == 1
duty_cycle = 0xff - duty_cycle;
#endif
led_pwm_duty_cycle(LED_SECONDARY, duty_cycle);
#endif
}
static uint32_t rgb_color;
static bool temp_color_active = false;
void led_state(uint32_t state) {
uint32_t new_rgb_color = rgb_color;
uint32_t temp_color = 0;
switch (state) {
case STATE_USB_MOUNTED:
new_rgb_color = 0x00ff00;
primary_cycle_length = 3000;
break;
case STATE_BOOTLOADER_STARTED:
case STATE_USB_UNMOUNTED:
new_rgb_color = 0xff0000;
primary_cycle_length = 300;
break;
case STATE_WRITING_STARTED:
temp_color = 0xff0000;
primary_cycle_length = 100;
break;
case STATE_WRITING_FINISHED:
// Empty means to unset any temp colors.
primary_cycle_length = 3000;
break;
case STATE_BLE_CONNECTED:
new_rgb_color = 0x0000ff;
#ifdef LED_SECONDARY_PIN
secondary_cycle_length = 3000;
#else
primary_cycle_length = 3000;
#endif
break;
case STATE_BLE_DISCONNECTED:
new_rgb_color = 0xff00ff;
#ifdef LED_SECONDARY_PIN
secondary_cycle_length = 300;
#else
primary_cycle_length = 300;
#endif
break;
default:
break;
}
uint8_t* final_color = NULL;
new_rgb_color &= BOARD_RGB_BRIGHTNESS;
if (temp_color != 0) {
temp_color &= BOARD_RGB_BRIGHTNESS;
final_color = (uint8_t*) &temp_color;
temp_color_active = true;
} else if (new_rgb_color != rgb_color) {
final_color = (uint8_t*) &new_rgb_color;
rgb_color = new_rgb_color;
} else if (temp_color_active) {
final_color = (uint8_t*) &rgb_color;
}
#if defined(LED_NEOPIXEL) || defined(LED_RGB_RED_PIN) || defined(LED_APA102_CLK)
if (final_color != NULL) {
neopixel_write(final_color);
}
#else
(void) final_color;
#endif
}
#ifdef LED_NEOPIXEL
// WS2812B (rev B) timing is 0.4 and 0.8 us
#define MAGIC_T0H 6UL | (0x8000) // 0.375us
#define MAGIC_T1H 13UL | (0x8000) // 0.8125us
#define CTOPVAL 20UL // 1.25us
#define BYTE_PER_PIXEL 3
static uint16_t pixels_pattern[NEOPIXELS_NUMBER * BYTE_PER_PIXEL * 8 + 2];
// use PWM1 for neopixel
void neopixel_init(void) {
// To support both the SoftDevice + Neopixels we use the EasyDMA
// feature from the NRF25. However this technique implies to
// generate a pattern and store it on the memory. The actual
// memory used in bytes corresponds to the following formula:
// totalMem = numBytes*8*2+(2*2)
// The two additional bytes at the end are needed to reset the
// sequence.
NRF_PWM_Type* pwm = NRF_PWM1;
// Set the wave mode to count UP
// Set the PWM to use the 16MHz clock
// Setting of the maximum count
// but keeping it on 16Mhz allows for more granularity just
// in case someone wants to do more fine-tuning of the timing.
nrf_pwm_configure(pwm, NRF_PWM_CLK_16MHz, NRF_PWM_MODE_UP, CTOPVAL);
// Disable loops, we want the sequence to repeat only once
nrf_pwm_loop_set(pwm, 0);
// On the "Common" setting the PWM uses the same pattern for the
// for supported sequences. The pattern is stored on half-word of 16bits
nrf_pwm_decoder_set(pwm, PWM_DECODER_LOAD_Common, PWM_DECODER_MODE_RefreshCount);
// The following settings are ignored with the current config.
nrf_pwm_seq_refresh_set(pwm, 0, 0);
nrf_pwm_seq_end_delay_set(pwm, 0, 0);
// The Neopixel implementation is a blocking algorithm. DMA
// allows for non-blocking operation. To "simulate" a blocking
// operation we enable the interruption for the end of sequence
// and block the execution thread until the event flag is set by
// the peripheral.
// pwm->INTEN |= (PWM_INTEN_SEQEND0_Enabled<<PWM_INTEN_SEQEND0_Pos);
// PSEL must be configured before enabling PWM
nrf_pwm_pins_set(pwm, (uint32_t[]) {LED_NEOPIXEL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL});
// Enable the PWM
nrf_pwm_enable(pwm);
}
void neopixel_teardown(void) {
uint8_t rgb[3] = {0, 0, 0};
NRFX_DELAY_US(50); // wait for previous write is complete
neopixel_write(rgb);
NRFX_DELAY_US(50); // wait for this write
pwm_teardown(NRF_PWM1);
}
// write 3 bytes color RGB to built-in neopixel
void neopixel_write(uint8_t* pixels) {
// convert RGB to GRB
uint8_t grb[BYTE_PER_PIXEL] = {pixels[1], pixels[2], pixels[0]};
uint16_t pos = 0; // bit position
// Set all neopixel to same value
for (uint16_t n = 0; n < NEOPIXELS_NUMBER; n++) {
for (uint8_t c = 0; c < BYTE_PER_PIXEL; c++) {
uint8_t const pix = grb[c];
for (uint8_t mask = 0x80; mask > 0; mask >>= 1) {
pixels_pattern[pos] = (pix & mask) ? MAGIC_T1H : MAGIC_T0H;
pos++;
}
}
}
// Zero padding to indicate the end of sequence
pixels_pattern[pos++] = 0 | (0x8000); // Seq end
pixels_pattern[pos++] = 0 | (0x8000); // Seq end
NRF_PWM_Type* pwm = NRF_PWM1;
nrf_pwm_seq_ptr_set(pwm, 0, pixels_pattern);
nrf_pwm_seq_cnt_set(pwm, 0, sizeof(pixels_pattern) / 2);
nrf_pwm_event_clear(pwm, NRF_PWM_EVENT_SEQEND0);
nrf_pwm_task_trigger(pwm, NRF_PWM_TASK_SEQSTART0);
// blocking wait for sequence complete
while (!nrf_pwm_event_check(pwm, NRF_PWM_EVENT_SEQEND0)) {}
nrf_pwm_event_clear(pwm, NRF_PWM_EVENT_SEQEND0);
}
#endif
#ifdef LED_APA102_CLK
#define BYTE_PER_PIXEL 4
// 4 zero bytes are required to initiate update
#define PATTERN_SIZE() ((APA102_NUMBER*BYTE_PER_PIXEL) + 4)
// N/2 * 1 bits are required at the end
static uint8_t pixels_pattern[PATTERN_SIZE() + 4];
// use SPIM1 for dotstar
void neopixel_init(void) {
NRF_SPIM_Type* spi = NRF_SPIM1;
nrf_spim_disable(spi);
nrf_gpio_pin_set(LED_APA102_CLK);
nrf_gpio_cfg(LED_APA102_CLK,
NRF_GPIO_PIN_DIR_OUTPUT,
NRF_GPIO_PIN_INPUT_CONNECT,
NRF_GPIO_PIN_NOPULL,
NRF_GPIO_PIN_S0S1,
NRF_GPIO_PIN_NOSENSE);
nrf_gpio_pin_clear(LED_APA102_DATA);
nrf_gpio_cfg_output(LED_APA102_DATA);
nrf_spim_pins_set(spi, LED_APA102_CLK, LED_APA102_DATA, 0xFFFFFFFF);
nrf_spim_frequency_set(spi, NRF_SPIM_FREQ_4M);
nrf_spim_configure(spi, NRF_SPIM_MODE_3, NRF_SPIM_BIT_ORDER_MSB_FIRST);
nrf_spim_orc_set(spi, 0);
nrf_spim_tx_list_disable(spi);
// Enable the spi
nrf_spim_enable(spi);
uint8_t rgb[3] = {0, 0, 0 };
neopixel_write(rgb);
}
void neopixel_teardown(void) {
uint8_t rgb[3] = {0, 0, 0 };
neopixel_write(rgb);
NRF_SPIM_Type* spi = NRF_SPIM1;
nrf_spim_disable(spi);
}
// write 3 bytes color RGB to built-in neopixel
void neopixel_write (uint8_t *pixels) {
NRF_SPIM_Type* spi = NRF_SPIM1;
//brightness, blue, green, red
uint8_t bbgr[BYTE_PER_PIXEL] = {0xE0 | LED_APA102_BRIGHTNESS, pixels[0], pixels[1], pixels[2]};
pixels_pattern[0] = 0;
pixels_pattern[1] = 0;
pixels_pattern[2] = 0;
pixels_pattern[3] = 0;
for (uint8_t i = 4; i < PATTERN_SIZE(); i+=4) {
pixels_pattern[i] = bbgr[0];
pixels_pattern[i+1] = bbgr[1];
pixels_pattern[i+2] = bbgr[2];
pixels_pattern[i+3] = bbgr[3];
}
pixels_pattern[PATTERN_SIZE()] = 0xff;
pixels_pattern[PATTERN_SIZE()+1] = 0xff;
pixels_pattern[PATTERN_SIZE()+2] = 0xff;
pixels_pattern[PATTERN_SIZE()+3] = 0xff;
nrf_spim_tx_buffer_set(spi, pixels_pattern, PATTERN_SIZE() + 4);
nrf_spim_event_clear(spi, NRF_SPIM_EVENT_ENDTX);
nrf_spim_task_trigger(spi, NRF_SPIM_TASK_START);
while(!nrf_spim_event_check(spi, NRF_SPIM_EVENT_ENDTX));
}
#endif
#if defined(LED_RGB_RED_PIN) && defined(LED_RGB_GREEN_PIN) && defined(LED_RGB_BLUE_PIN)
#ifdef LED_SECONDARY_PIN
#error "Cannot use secondary LED at the same time as an RGB status LED."
#endif
#define LED_RGB_RED 1
#define LED_RGB_BLUE 2
#define LED_RGB_GREEN 3
void neopixel_init(void) {
led_pwm_init(LED_RGB_RED, LED_RGB_RED_PIN);
led_pwm_init(LED_RGB_GREEN, LED_RGB_GREEN_PIN);
led_pwm_init(LED_RGB_BLUE, LED_RGB_BLUE_PIN);
}
void neopixel_teardown(void) {
uint8_t rgb[3] = { 0, 0, 0 };
neopixel_write(rgb);
nrf_gpio_cfg_default(LED_RGB_RED_PIN);
nrf_gpio_cfg_default(LED_RGB_GREEN_PIN);
nrf_gpio_cfg_default(LED_RGB_BLUE_PIN);
}
// write 3 bytes color to a built-in neopixel
void neopixel_write (uint8_t *pixels) {
led_pwm_duty_cycle(LED_RGB_RED, pixels[2]);
led_pwm_duty_cycle(LED_RGB_GREEN, pixels[1]);
led_pwm_duty_cycle(LED_RGB_BLUE, pixels[0]);
}
#endif
//--------------------------------------------------------------------+
// Display controller
//--------------------------------------------------------------------+
#ifdef DISPLAY_CONTROLLER_ST7789
#define ST_CMD_DELAY 0x80 // special signifier for command lists
#define ST77XX_NOP 0x00
#define ST77XX_SWRESET 0x01
#define ST77XX_RDDID 0x04
#define ST77XX_RDDST 0x09
#define ST77XX_SLPIN 0x10
#define ST77XX_SLPOUT 0x11
#define ST77XX_PTLON 0x12
#define ST77XX_NORON 0x13
#define ST77XX_INVOFF 0x20
#define ST77XX_INVON 0x21
#define ST77XX_DISPOFF 0x28
#define ST77XX_DISPON 0x29
#define ST77XX_CASET 0x2A
#define ST77XX_RASET 0x2B
#define ST77XX_RAMWR 0x2C
#define ST77XX_RAMRD 0x2E
#define ST77XX_PTLAR 0x30
#define ST77XX_TEOFF 0x34
#define ST77XX_TEON 0x35
#define ST77XX_MADCTL 0x36
#define ST77XX_VSCSAD 0x37
#define ST77XX_COLMOD 0x3A
#define ST77XX_MADCTL_MY 0x80
#define ST77XX_MADCTL_MX 0x40
#define ST77XX_MADCTL_MV 0x20
#define ST77XX_MADCTL_ML 0x10
#define ST77XX_MADCTL_RGB 0x00
#define ST77XX_RDID1 0xDA
#define ST77XX_RDID2 0xDB
#define ST77XX_RDID3 0xDC
#define ST77XX_RDID4 0xDD
// Some ready-made 16-bit ('565') color settings:
#define ST77XX_BLACK 0x0000
#define ST77XX_WHITE 0xFFFF
#define ST77XX_RED 0xF800
#define ST77XX_GREEN 0x07E0
#define ST77XX_BLUE 0x001F
#define ST77XX_CYAN 0x07FF
#define ST77XX_MAGENTA 0xF81F
#define ST77XX_YELLOW 0xFFE0
#define ST77XX_ORANGE 0xFC00
static void tft_controller_init(void) {
// Init commands for 7789 screens
uint8_t cmdinit_st7789[] = {
#if !defined(DISPLAY_PIN_RST) || (DISPLAY_PIN_RST < 0)
// Software reset if rst pin not available, no args, w/delay ~150 ms delay
ST77XX_SWRESET, ST_CMD_DELAY, 150,
#endif
// Out of sleep mode, no args, w/delay 10 ms delay
ST77XX_SLPOUT, ST_CMD_DELAY, 10,
// Set color mode, 1 arg + delay: 16-bit color, 10 ms delay
ST77XX_COLMOD, 1 + ST_CMD_DELAY, 0x55, 10,
// Mem access ctrl (directions), 1 arg: Row/col addr, bottom-top refresh
ST77XX_MADCTL, 1, DISPLAY_MADCTL,
// Vertical Scroll Start Address of RAM
// ST77XX_VSCSAD, 2, DISPLAY_VSCSAD >> 8, DISPLAY_VSCSAD & 0xFF,
// Column addr set, 4 args, no delay: XSTART = 0, XEND = 240
ST77XX_CASET, 4, 0x00, 0, 0, 240,
// Row addr set, 4 args, no delay: YSTART = 0 YEND = 320
ST77XX_RASET, 4, 0x00, 0, 320 >> 8, 320 & 0xFF,
// Inversion on
ST77XX_INVON, ST_CMD_DELAY, 10,
// Normal display on, no args, w/delay 10 ms delay
ST77XX_NORON, ST_CMD_DELAY, 10,
// Main screen turn on, no args, delay 10 ms delay
ST77XX_DISPON, ST_CMD_DELAY, 10
};
size_t count = 0;
while (count < sizeof(cmdinit_st7789)) {
uint8_t const cmd = cmdinit_st7789[count++];
uint8_t const cmd_arg = cmdinit_st7789[count++];
uint8_t const has_delay = cmd_arg & ST_CMD_DELAY;
uint8_t const narg = cmd_arg & ~ST_CMD_DELAY;
tft_cmd(cmd, cmdinit_st7789 + count, narg);
count += narg;
if (has_delay) {
uint16_t delay = (uint16_t) cmdinit_st7789[count++];
if (delay == 255) {
delay = 500; // If 255, delay for 500 ms
}
NRFX_DELAY_MS(delay);
}
}
}
#endif