-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathmain.py
60 lines (51 loc) · 1.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import time
from data import load_dataset
from models import StyleTransformer, Discriminator
from train import train, auto_eval
class Config():
data_path = './data/yelp/'
log_dir = 'runs/exp'
save_path = './save'
pretrained_embed_path = './embedding/'
device = torch.device('cuda' if True and torch.cuda.is_available() else 'cpu')
discriminator_method = 'Multi' # 'Multi' or 'Cond'
load_pretrained_embed = False
min_freq = 3
max_length = 16
embed_size = 256
d_model = 256
h = 4
num_styles = 2
num_classes = num_styles + 1 if discriminator_method == 'Multi' else 2
num_layers = 4
batch_size = 64
lr_F = 0.0001
lr_D = 0.0001
L2 = 0
iter_D = 10
iter_F = 5
F_pretrain_iter = 500
log_steps = 5
eval_steps = 25
learned_pos_embed = True
dropout = 0
drop_rate_config = [(1, 0)]
temperature_config = [(1, 0)]
slf_factor = 0.25
cyc_factor = 0.5
adv_factor = 1
inp_shuffle_len = 0
inp_unk_drop_fac = 0
inp_rand_drop_fac = 0
inp_drop_prob = 0
def main():
config = Config()
train_iters, dev_iters, test_iters, vocab = load_dataset(config)
print('Vocab size:', len(vocab))
model_F = StyleTransformer(config, vocab).to(config.device)
model_D = Discriminator(config, vocab).to(config.device)
print(config.discriminator_method)
train(config, vocab, model_F, model_D, train_iters, dev_iters, test_iters)
if __name__ == '__main__':
main()