-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBiofilm_QS_Tau_Leap_and_Deterministic.m
618 lines (537 loc) · 30 KB
/
Biofilm_QS_Tau_Leap_and_Deterministic.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
% Quorum Sensing based 1-D Biofilm Model for Bacterial Populations
% with the modified explicit Tau-Leap method in "Cao et al., Efficient step size selection for the tauleaping
% simulation method, 2006"
close all
clear
clc
tic
%% Definitions
% S1 is the downregulation state
% S2 is the upregulation state
% A = Autoinducer AHL molecules
% B = Bacteria
% E = Extracellular Polymeric Substance (EPS)
%% Parameters (Frederick et al., A mathematical model of quorum sensing regulated EPS production in biofilm communities ,2011)
N_av = 6.02214076 * 10^23; %Avogadro constant (mol^-1)
M_max = 24*10^3; % Max bacterial cell density (g m^-3)
% Bacterial growth experimental data (Fekete et al., 2010)
C_B_exp_t = [6.54E+05, 7.27E+05, 1.11E+06, 1.24E+06, 2.16E+06, 6.23E+06, 1.84E+07, 2.67E+07, 7.46E+07, 1.04E+08, 1.37E+08]; % Exp data (baffled flask) from (Fekete et al., 2010) # per ml
C_B_exp_t = C_B_exp_t.*10^3; % convert the concentration to # l^-1
% Initial values of A, B and E
init_num = 20;
% Simulation
MC = 1000; % Number of Monte Carlo loops for Stochastic Tau Leap Simulation
K = 32; % Number of compartments
% Find the domain length by using the initial concentration value of experimental bacterial concentration data
% V = h^2*L*10^3 (l) and h = L/K => V = h^2*L*10^3 = (L/K)^2*L*10^3 = N_B(0) / C_B_exp_t(0). Hence L is derived as
% L = nthroot( (K^2*init_num)/(C_B_exp_t(1)*10^3), 3); % The domain length (m)
L = 70*10^-4; % The domain length (m) (Khassekhan et al., A Nonlinear Master Equation for a Degenerate Diffusion Model of Biofilm Growth, 2009)
h = L/K; % The compartment length (m)
V = h^2*L*10^3; %Volume of the domain (l)
N_r = 10; % Number of reaction types
delta_t = 0.1; % step size (h)
t_s = 10; % Total simulation time (h)
t_vec = 0:delta_t:t_s; % Time vector (h)
N_reac = 4*K + 6*(K-1); % Number of reactions
N_spec = 3*K; % Number of species
n_c = 10; % Critical reaction threshold (Cao et al., 2006)
epsilon = 0.03; % Bounding parameter (Cao et al., 2006)
% State S1
% h_unit = 10^-4/128;
% r_alpha = 920 * 10^-6 * M_max * N_av * h^3/24; % Production rate of A at S1 (h^-1)
mu_alpha = 2.3*10^-19*N_av; % Specific production rate of A (mol per cell h^-1) (Fekete et al., 2010)
r_1 = 0.84/24; % EPS production rate at state S1 (h^-1)
% State S2
% r_beta = ((9200+920) * 10^-6 * M_max * N_av * h^3/24); % Production rate of A at S2 (h^-1)
mu_beta = (2.3*10^-18 + 2.3*10^-19)*N_av; % Specific production rate of A (mol per cell h^-1) (Fekete et al., 2010)
r_2 = 8.4/24; % EPS production rate at state S2 (h^-1)
% All states
r_sigma = 0.1109/24; % Degradation rate of A (h^-1)
% r_sigma = 0.005545; % Degradation rate of A (h^-1) (Fekete et al., 2010)
mu_g = 1/24; % Specific Growth rate of B (h^-1) (Frederick et al., 2011)
% D_A = ((0.26+0.52)/2)/24; % Diffusion coeff. of A - average value of D_A in water and D_A in fully developed biofilm (m^2 h^-1)
D_B = 6.67*10^-9/24; % Diffusion coeff. of B and E - average value, i.e., motility coeff. (m^2 h^-1)
D_A = 0; % Exclude autoinducer diffusion
% D_A = D_B;
% D_A = 10^-12/24; D_B = D_A; % (m^2 h^-1) (Khassekhan et al.,2009)
d_A = D_A/h^2; %reaction rate for the diffusion of A (h^-1)
d_B = D_B/h^2; %reaction rate for the diffusion of B and E (h^-1)
% Scaled reaction rate constants
f_s = 10^-6; % Scaling factor
mu_alpha = f_s*mu_alpha;
mu_beta = f_s*mu_beta;
% d_A = f_s*d_A;
% gamma_QS = 6*10^-6*N_av*h^2*L; % !!! Detection threshold for quorum sensing (number of particles) (Fekete et al..2010)- multiplied by h^2*L and N_av. The original value is 70*10^-9 n mol L^-1
gamma_QS = f_s*5*10^-9*N_av; % !!! Quorum sensing detection threshold (number of particles l^-1) (Fekete et al..2010)- multiplied by h^3 and N_av. The original value is 70*10^-9 n mol L^-1
% Generation of Stoichiometric change matrix
% Columns represent species: A_1 E_1 B_1 A_2 E_2 B_2 ... A_K E_K B_K
% Rows represent reactions R_1 (K reactions) R_2 (K reactions) ... R_10 (K-1 reactions)
nu = zeros(N_reac, N_spec); % Stoichiometric change matrix (state)
for i = 0:K-1
nu(i+1, i*3 + 1) = 1; % Reaction 1 - Production of A
nu(i+1+K, i*3 + 1) = -1; % Reaction 2 - Degradation of A
nu(i+1+2*K, i*3 + 2) = 1; % Reaction 3 - Production of E
nu(i+1+3*K, i*3 + 3) = 1; % Reaction 4 - Production of B
end
for i = 0:K-2
nu(i+1+4*K, i*3 + 1) = -1; nu(i+1+4*K, i*3 + 4) = 1; % Reaction 5 - Forward Diffusion of A
nu(i+1+4*K + K-1, i*3 + 2) = -1; nu(i+1+4*K + K-1, i*3 + 5) = 1; % Reaction 6 - Forward Diffusion of E
nu(i+1+4*K + 2*(K-1), i*3 + 3) = -1; nu(i+1+4*K + 2*(K-1), i*3 + 6) = 1; % Reaction 7 - Forward Diffusion of B
nu(i+1+4*K + 3*(K-1), i*3 + 1) = 1; nu(i+1+4*K + 3*(K-1), i*3 + 4) = -1; % Reaction 8 - Backward Diffusion of A
nu(i+1+4*K + 4*(K-1), i*3 + 2) = 1; nu(i+1+4*K + 4*(K-1), i*3 + 5) = -1; % Reaction 9 - Backward Diffusion of E
nu(i+1+4*K + 5*(K-1), i*3 + 3) = 1; nu(i+1+4*K + 5*(K-1), i*3 + 6) = -1; % Reaction 10 - Backward Diffusion of B
end
%% Modified Tau-Leap Algorithm (Cao et al., 2006)
C_A_t = zeros(length(t_vec),MC); %Initialize MC variables
C_B_t = zeros(length(t_vec),MC);
C_E_t = zeros(length(t_vec),MC);
C_A_x = zeros(MC,K);
C_B_x = zeros(MC,K);
C_E_x = zeros(MC,K);
state = ones(MC,length(t_vec)); % State matrix (up and downregulation)
t_detection_MC = zeros(MC,1);
% parpool('local',5) %starts the parallel pool
% parfor i_mc = 1:MC
for i_mc = 1:MC
%Initialize variables
N_B = zeros(length(t_vec), K); % Number of B
N_E = zeros(length(t_vec), K); % Number of E
N_A = zeros(length(t_vec), K); % Number of A
B = zeros(1, K); % Number of B - temp
E = zeros(1, K); % Number of E - temp
A = zeros(1, K); % Number of A - temp
a = zeros(1, N_reac); % Propensity functions matrix
X = zeros(1, N_spec); % State vector holding the number of molecules for each species (A_1 E_1 B_1 ... A_K E_K B_K)
% Initial conditions
init_x = K/2; %initial compartment to grow
N_A(1,init_x) = init_num/2; % Initial number of A
N_A(1,init_x+1) = init_num/2;
A = N_A(1,:);
X(1:3:end) = A;
C_A = sum(A)./V;
N_E(1,init_x) = init_num/2; % Initial number of E
N_E(1,init_x+1) = init_num/2;
E = N_E(1,:);
X(2:3:end) = E;
N_B(1,init_x) = init_num/2; % Initial number of B
N_B(1,init_x+1) = init_num/2;
B = N_B(1,:);
X(3:3:end) = B;
r_g = mu_g.*B; % Growth rate of B (h^-1)
r_alpha = mu_alpha.*B; % Production rate of A at S1 (h^-1) (Fekete et al., 2010) ?????? Multiplication with B?
r_beta = mu_beta.*B; % Production rate of A at S2 (h^-1) (Fekete et al., 2010) ?????
i = 1;
t = 0;
while t <= t_s
clearvars ind_set_a rows cols rowsn J_ncr temp_cr J_cr mu_hat var_hat P_c
% Decision of the states and updates of propensities depending on state
% if sum(A) >= gamma_QS
if C_A >= gamma_QS
state_temp = 2; % upregulation state - S2
a(1:K) = r_beta.*B; % Reaction 1 - Production of A
a(2*K+1:3*K) = r_2*B; % Reaction 3 - Production of E
else
state_temp = 1; % downregulation state - S1
a(1:K) = r_alpha.*B; % Reaction 1 - Production of A
a(2*K+1:3*K) = r_1*B; % Reaction 3 - Production of E
end
% Propensity Functions independent of the state
a(K+1: 2*K) = r_sigma*A; % Reaction 2 - Degradation of A
a(3*K+1: 4*K) = r_g.*B; % Reaction 4 - Production of B
a(4*K+1: 4*K+(K-1)) = d_A*A(1:K-1); % Reaction 5 - Forward Diffusion of A
a(4*K+(K-1)+1: 4*K+2*(K-1)) = d_B*E(1:K-1); % Reaction 6 - Forward Diffusion of E
a(4*K+2*(K-1)+1: 4*K+3*(K-1)) = d_B*B(1:K-1); % Reaction 7 - Forward Diffusion of B
a(4*K+3*(K-1)+1: 4*K+4*(K-1)) = d_A*A(2:K); % Reaction 8 - Backward Diffusion of A
a(4*K+4*(K-1)+1: 4*K+5*(K-1)) = d_B*E(2:K); % Reaction 9 - Backward Diffusion of E
a(4*K+5*(K-1)+1: 4*K+6*(K-1)) = d_B*B(2:K); % Reaction 10 - Backward Diffusion of B
% Step 1 - Determine the noncritical reactions (not likely to exhaust all molecules in one step)
Lj = zeros(1, length(a)); % maximum number of times (Lj) that Rj can fire before exhausting one of its reactants
ind_set_a = find(a > 0); % find the indices of a > 0
[rows, cols] = find( nu(ind_set_a,:) < 0 ); % find the indices of nu < 0 where a > 0
rowsn(:,1) = ind_set_a(rows);
for i_L = 1:length(rowsn)
% Lj(1,rowsn(i_L)) = min(X(1, cols(i_L))./abs( nu( rowsn(i_L), cols(i_L) ) ) ); %Eq. 10 in (Cao et al., 2006)
Lj(1,rowsn(i_L)) = min(floor(X(1, cols(i_L))./abs( nu( rowsn(i_L), cols(i_L) ) ) ) ); %Eq. 10 in (Cao et al., 2006)
end
J_ncr = find(Lj >= n_c); % indices of noncritical reactions
temp_cr = find(Lj(1,ind_set_a) < n_c); % indices of critical reactions
J_cr = ind_set_a(temp_cr);
% Step 2
if isempty(J_ncr)
tau_p = Inf;
else
mu_hat = a(J_ncr)*nu(J_ncr,:); % Eq. 32a in (Cao et al., 2006)
var_hat = a(J_ncr)*nu(J_ncr,:).^2; % Eq. 32b in (Cao et al., 2006)
tau_p = min( min( max(epsilon.*X, 1)./abs(mu_hat), max(epsilon.*X, 1).^2 ./abs(var_hat) ) ); % Eq. 33 in (Cao et al., 2006)
end
% Step 3
a0 = sum(a,'all');
control_tau_p = 0; %while loop with control_tau_p is created to go to step 3 from step 6 if there is a negative element in X
while control_tau_p < 1
if tau_p < (10/a0)
% EXECUTE 100 TIMES SINGLE REACTION SSA (first reaction method) and return to step 1
for i_s = 1:100
s_1 = rand(1, N_reac); % Generate random numbers from U(0,1)
tau_temp = (1./a).*log(1./s_1); %calculate the putative times of the reactions
[tau, I] = min(tau_temp,[],'all'); % Determine which reaction will occur
X = X + nu(I,:);
t = t + tau; % at which step the reaction occurs
A = X(1:3:end);
E = X(2:3:end);
B = X(3:3:end);
% Decision of the states and updates of propensities depending on state
if sum(A) >= gamma_QS
state_temp = 2; % upregulation state - S2
a(1:K) = r_beta*B; % Reaction 1 - Production of A
a(2*K+1:3*K) = r_2*B; % Reaction 3 - Production of E
else
state_temp = 1; % downregulation state - S1
a(1:K) = r_alpha*B; % Reaction 1 - Production of A
a(2*K+1:3*K) = r_1*B; % Reaction 3 - Production of E
end
% Propensity Functions independent of the state
a(K+1: 2*K) = r_sigma*A; % Reaction 2 - Degradation of A
a(3*K+1: 4*K) = r_g.*B; % Reaction 4 - Production of B
a(4*K+1: 4*K+(K-1)) = d_A*A(1:K-1); % Reaction 5 - Forward Diffusion of A
a(4*K+(K-1)+1: 4*K+2*(K-1)) = d_B*E(1:K-1); % Reaction 6 - Forward Diffusion of E
a(4*K+2*(K-1)+1: 4*K+3*(K-1)) = d_B*B(1:K-1); % Reaction 7 - Forward Diffusion of B
a(4*K+3*(K-1)+1: 4*K+4*(K-1)) = d_A*A(2:K); % Reaction 8 - Backward Diffusion of A
a(4*K+4*(K-1)+1: 4*K+5*(K-1)) = d_B*E(2:K); % Reaction 9 - Backward Diffusion of E
a(4*K+5*(K-1)+1: 4*K+6*(K-1)) = d_B*B(2:K); % Reaction 10 - Backward Diffusion of B
end
break; % go to step 1
end
% Step 4
a0_cr = sum(a(J_cr)); % sum of all propensities of critical reactions
tau_pp = exprnd(1/a0_cr);
% Step 5
k = zeros(1,size(nu,1)); % initialize k - # of firings of each reaction for each tau
if tau_p < tau_pp
tau = tau_p;
k(J_cr) = 0; % no critical reaction will take place
k(J_ncr) = poissrnd(a(J_ncr).*tau);
else
tau = tau_pp;
P_c = a(J_cr)./a0_cr;
jc = randsample(length(J_cr), 1, true, P_c); % Sample 1 point from J_cr and probabilities P
k(J_cr) = 0; k(J_cr(jc)) = 1; % one critical reaction takes place one time
k(J_ncr) = poissrnd(a(J_ncr).*tau);
end
% Step 6
temp_X = X + (k*nu);
if any(temp_X < 0)
tau_p = tau_p/2;
continue; % go to step 3
else
X = temp_X;
t = t + tau;
control_tau_p = 1;
end
end
% Sample the number of each species at each time step
if t >= i*delta_t
i = i + 1;
N_A(i,:) = X(1:3:end);
N_E(i,:) = X(2:3:end);
N_B(i,:) = X(3:3:end);
state(i_mc,i) = state_temp;
end
A = X(1:3:end);
E = X(2:3:end);
B = X(3:3:end);
C_A = sum(A)./V;
end
temp_det = find(state(i_mc,:) == 2, 1, 'first');
if ~isempty(temp_det)
t_detection_MC(i_mc) = t_vec( temp_det );
else
temp_det = NaN;
end
N_A_sum_t = sum(N_A,2); % sum of A wrt time
N_B_sum_t = sum(N_B,2); % sum of B wrt time
N_E_sum_t = sum(N_E,2); % sum of E wrt time
C_A_t(:,i_mc) = N_A_sum_t./V; % concentration of A (# l^-1)
C_B_t(:,i_mc) = N_B_sum_t./V; % concentration of B (# l^-1)
C_E_t(:,i_mc) = N_E_sum_t./V; % concentration of E (# l^-1)
C_A_x(i_mc,:) = N_A(end,:)./h^3; % concentration of A in each compartment (# l^-1)
C_B_x(i_mc,:) = N_B(end,:)./h^3; % concentration of B in each compartment (# l^-1)
C_E_x(i_mc,:) = N_E(end,:)./h^3; % concentration of E in each compartment (# l^-1)
% toc
end
C_A_t = C_A_t*(1/f_s);
% Mean and standard deviations of the Monte Carlo results
% Time
C_A_t_mean = mean(C_A_t,2); C_A_t_std = std(C_A_t,0,2);
C_E_t_mean = mean(C_E_t,2); C_E_t_std = std(C_E_t,0,2);
C_B_t_mean = mean(C_B_t,2); C_B_t_std = std(C_B_t,0,2);
% Space
C_A_x_mean = mean(C_A_x); C_A_x_std = std(C_A_t);
C_E_x_mean = mean(C_E_x); C_E_x_std = std(C_E_t);
C_B_x_mean = mean(C_B_x); C_B_x_std = std(C_B_t);
%% Deterministic Model
% Initial values of A, B and E
init_B = 20;
init_A = 20;
init_E = 20;
% Model
model = sbiomodel('Biofilm_QS');
% Add compartments
for i_c = 1:K
comp(1,i_c) = addcompartment(model, ['C_',num2str(i_c)]);
comp(1,i_c).Value = 1;
speciesB = addspecies (comp(1,i_c), 'B'); % Add Species - B
speciesA = addspecies (comp(1,i_c), 'A'); % Add Species - A
speciesE = addspecies (comp(1,i_c), 'E'); % Add Species - E
end
% Specify Initial Amounts of Each Species
comp(1,K/2).Species(1).InitialAmount = init_B/2; % B
comp(1,K/2+1).Species(1).InitialAmount = init_B/2; % B
comp(1,K/2).Species(2).InitialAmount = init_A/2; % A
comp(1,K/2+1).Species(2).InitialAmount = init_A/2; % A
comp(1,K/2).Species(3).InitialAmount = init_E/2; % E
comp(1,K/2+1).Species(3).InitialAmount = init_E/2; % E
% Reactions taking place in the same compartment
for j_c = 1:K
% Reaction 1 - Production of A
reac(1, j_c) = addreaction(model, ['C_',num2str(j_c),'.B -> C_', num2str(j_c), '.A + C_',num2str(j_c),'.B']);
kl(1, j_c) = addkineticlaw(reac(1,j_c), 'MassAction'); % Kinetic Law for reaction 1
r_alpha(j_c) = (1/f_s)*mu_alpha.*comp(1,j_c).Species(1).Value;
r_beta(j_c) = (1/f_s)*mu_beta.*comp(1,j_c).Species(1).Value;
p(1, j_c) = addparameter(kl(1,j_c), ['c_',num2str(j_c)], 'Value', r_alpha(j_c)); % Rate constants
kl(1, j_c).ParameterVariableNames = {['c_',num2str(j_c)]}; % Set the Kinetic Law Constants for Each Kinetic Law
% Reaction 2 - Degradation of A
reac(2, j_c) = addreaction(model, ['C_',num2str(j_c),'.A -> null']);
kl(2, j_c) = addkineticlaw(reac(2, j_c), 'MassAction'); % Kinetic Law for reaction 1
p(2, j_c) = addparameter(kl(2, j_c), ['c_',num2str(j_c)], 'Value', r_sigma); % Rate constants
kl(2, j_c).ParameterVariableNames = {['c_',num2str(j_c)]}; % Set the Kinetic Law Constants for Each Kinetic Law
% Reaction 3 - Production of E
reac(3, j_c) = addreaction(model, ['C_',num2str(j_c),'.B -> C_',num2str(j_c),'.E + C_',num2str(j_c),'.B']);
kl(3, j_c) = addkineticlaw(reac(3, j_c), 'MassAction'); % Kinetic Law for reaction 1
p(3, j_c) = addparameter(kl(3, j_c), ['c_',num2str(j_c)], 'Value', r_1); % Rate constants
kl(3, j_c).ParameterVariableNames = {['c_',num2str(j_c)]}; % Set the Kinetic Law Constants for Each Kinetic Law
% Reaction 4 - Production of B
reac(4, j_c) = addreaction(model, ['C_',num2str(j_c),'.B -> C_',num2str(j_c),'.B + C_',num2str(j_c),'.B']);
kl(4, j_c) = addkineticlaw(reac(4, j_c), 'MassAction'); % Kinetic Law for reaction 1
r_g = mu_g.*comp(1,j_c).Species(1).Value;
p(4, j_c) = addparameter(kl(4, j_c), ['c_',num2str(j_c)], 'Value', r_g); % Rate constants
kl(4, j_c).ParameterVariableNames = {['c_',num2str(j_c)]}; % Set the Kinetic Law Constants for Each Kinetic Law
end
% Reactions taking place between subsequent compartments - Diffusion
for j_c = 1:K-1
% Reaction 5 - Forward Diffusion of A
reac(5, j_c) = addreaction(model, ['C_',num2str(j_c),'.A -> C_',num2str(j_c+1),'.A']);
kl(5, j_c) = addkineticlaw(reac(5, j_c), 'MassAction'); % Kinetic Law for reaction 1
p(5, j_c) = addparameter(kl(5, j_c), ['c_',num2str(j_c)], 'Value', d_A); % Rate constants
kl(5, j_c).ParameterVariableNames = {['c_',num2str(j_c)]}; % Set the Kinetic Law Constants for Each Kinetic Law
% Reaction 6 - Forward Diffusion of E
reac(6, j_c) = addreaction(model, ['C_',num2str(j_c),'.E -> C_',num2str(j_c+1),'.E']);
kl(6, j_c) = addkineticlaw(reac(6, j_c), 'MassAction'); % Kinetic Law for reaction 1
p(6, j_c) = addparameter(kl(6, j_c), ['c_',num2str(j_c)], 'Value', d_B); % Rate constants
kl(6, j_c).ParameterVariableNames = {['c_',num2str(j_c)]}; % Set the Kinetic Law Constants for Each Kinetic Law
% Reaction 7 - Forward Diffusion of B
reac(7, j_c) = addreaction(model, ['C_',num2str(j_c),'.B -> C_',num2str(j_c+1),'.B']);
kl(7, j_c) = addkineticlaw(reac(7, j_c), 'MassAction'); % Kinetic Law for reaction 1
p(7, j_c) = addparameter(kl(7, j_c), ['c_',num2str(j_c)], 'Value', d_B); % Rate constants
kl(7, j_c).ParameterVariableNames = {['c_',num2str(j_c)]}; % Set the Kinetic Law Constants for Each Kinetic Law
% Reaction 8 - Backward Diffusion of A
reac(8, j_c) = addreaction(model, ['C_',num2str(j_c+1),'.A -> C_',num2str(j_c),'.A']);
kl(8, j_c) = addkineticlaw(reac(8, j_c), 'MassAction'); % Kinetic Law for reaction 1
p(8, j_c) = addparameter(kl(8, j_c), ['c_',num2str(j_c)], 'Value', d_A); % Rate constants
kl(8, j_c).ParameterVariableNames = {['c_',num2str(j_c)]}; % Set the Kinetic Law Constants for Each Kinetic Law
% Reaction 9 - Backward Diffusion of E
reac(9, j_c) = addreaction(model, ['C_',num2str(j_c+1),'.E -> C_',num2str(j_c),'.E']);
kl(9, j_c) = addkineticlaw(reac(9, j_c), 'MassAction'); % Kinetic Law for reaction 1
p(9, j_c) = addparameter(kl(9, j_c), ['c_',num2str(j_c)], 'Value', d_B); % Rate constants
kl(9, j_c).ParameterVariableNames = {['c_',num2str(j_c)]}; % Set the Kinetic Law Constants for Each Kinetic Law
% Reaction 10 - Backward Diffusion of B
reac(10, j_c) = addreaction(model, ['C_',num2str(j_c+1),'.B -> C_',num2str(j_c),'.B']);
kl(10, j_c) = addkineticlaw(reac(10, j_c), 'MassAction'); % Kinetic Law for reaction 1
p(10, j_c) = addparameter(kl(10, j_c), ['c_',num2str(j_c)], 'Value', d_B); % Rate constants
kl(10, j_c).ParameterVariableNames = {['c_',num2str(j_c)]}; % Set the Kinetic Law Constants for Each Kinetic Law
end
%Get the Active Configuration Set for the Model.
cs = getconfigset(model,'active');
cs.SolverType = 'ode15s'; %
cs.TimeUnits = 'hour';
solver = cs.SolverOptions;
cs.CompileOptions.DimensionalAnalysis = false;
for t_temp = 1:0.1:t_s
cs.StopTime = t_temp;
[t_det_f, N_det_f, names] = sbiosimulate(model);
N_A_det_f = N_det_f(:,2:3:end); % # of A - deterministic
N_A_det_t_f = sum(N_A_det_f,2); % # of A - deterministic - time evolution
C_A = N_A_det_t_f(end)/V; % concentration of A (# l^-1)
if C_A >= (1/f_s)*gamma_QS
init2_B = N_det_f(end,1:3:end); % # of B - deterministic
init2_A = N_det_f(end,2:3:end); % # of A - deterministic
init2_E = N_det_f(end,3:3:end); % # of E - deterministic
% Specify Initial Amounts of Each Species
for ii = 1:K
comp(1,ii).Species(1).InitialAmount = init2_B(ii); % B
comp(1,ii).Species(2).InitialAmount = init2_A(ii); % A
comp(1,ii).Species(3).InitialAmount = init2_E(ii); % E
end
% Update the state-dependent rates
for j_c = 1:K
% Reaction 1 - Production of A
reac(1, j_c) = addreaction(model, ['C_',num2str(j_c),'.B -> C_', num2str(j_c), '.A + C_',num2str(j_c),'.B']);
kl(1, j_c) = addkineticlaw(reac(1,j_c), 'MassAction'); % Kinetic Law for reaction 1
p(1, j_c) = addparameter(kl(1,j_c), ['c_',num2str(j_c)], 'Value', r_beta(j_c)); % Rate constants
kl(1, j_c).ParameterVariableNames = {['c_',num2str(j_c)]}; % Set the Kinetic Law Constants for Each Kinetic Law
% Reaction 3 - Production of E
reac(3, j_c) = addreaction(model, ['C_',num2str(j_c),'.B -> C_',num2str(j_c),'.E + C_',num2str(j_c),'.B']);
kl(3, j_c) = addkineticlaw(reac(3, j_c), 'MassAction'); % Kinetic Law for reaction 1
p(3, j_c) = addparameter(kl(3, j_c), ['c_',num2str(j_c)], 'Value', r_2); % Rate constants
kl(3, j_c).ParameterVariableNames = {['c_',num2str(j_c)]}; % Set the Kinetic Law Constants for Each Kinetic Law
end
cs.StopTime = t_s - t_temp;
[t_det, N_det, names] = sbiosimulate(model);
break;
end
end
t_det_c = [t_det_f(1:end-1); t_temp+t_det];
N_B_det = [N_det_f(1:end-1,1:3:end); N_det(:,1:3:end)]; % # of B - deterministic
N_A_det = [N_det_f(1:end-1,2:3:end); N_det(:,2:3:end)]; % # of A - deterministic
N_E_det = [N_det_f(1:end-1,3:3:end); N_det(:,3:3:end)]; % # of E - deterministic
N_B_det_t = sum(N_B_det,2); % # of B - deterministic - time evolution
N_A_det_t = sum(N_A_det,2); % # of A - deterministic - time evolution
N_E_det_t = sum(N_E_det,2); % # of E - deterministic - time evolution
C_A_det_t = N_A_det_t./V; % concentration of A (# l^-1)
C_B_det_t = N_B_det_t./V; % concentration of B (# l^-1)
C_E_det_t = N_E_det_t./V; % concentration of E (# l^-1)
N_B_det_x = N_B_det(end,:); % # of B - deterministic - spatial evolution
N_A_det_x = N_A_det(end,:); % # of A - deterministic - spatial evolution
N_E_det_x = N_E_det(end,:); % # of E - deterministic - spatial evolution
%% Results
t_vec = t_vec';
% Time Evoulution of the Biofilm formation in the whole domain
% All stochastic
% close all;
% h_f = figure;
% plot(t_vec, C_A_t_mean,'b-', t_vec, C_B_t_mean, 'r--', t_vec, C_E_t_mean,'k-.','LineWidth',1.25);
% xlabel('Time (h)'); ylabel('Concentration (number of molecules/l)'); xlim([0 10.25]);
% hold on; yyaxis right
% scatter(t_vec,state,10,'filled'); ylim([0 3]); ylabel('States');
% grid on; legend('Autoinducer (stochastic-mean)', 'Bacteria (stochastic-mean)', 'EPS (stochastic-mean)', 'States');
% Validation - Comparison with in vitro experimental data
t_exp = 0:t_s;
C_A_exp_t = [0.0, 33.4, 57.8, 11.6, 8.8, 6.0, 12.0, 19.3, 55.8, 72.8, 124.2]; % Exp autoinducer data (baffled flask) from (Fekete et al., 2010) (n mol l^-1)
C_A_exp_t = C_A_exp_t.*10^-9.*N_av; % convert the concentration to # l^-1
C_B_exp_t = [6.54E+05, 7.27E+05, 1.11E+06, 1.24E+06, 2.16E+06, 6.23E+06, 1.84E+07, 2.67E+07, 7.46E+07, 1.04E+08, 1.37E+08]; % Exp bacteria data (baffled flask) from (Fekete et al., 2010) # per ml
C_B_exp_t = C_B_exp_t.*10^3; % convert the concentration to # l^-1
% % Autoinducer comparison - Errorbar (mean+std)
% h_f = figure;
% % h_plot = plot(t_exp, C_A_exp_t,'r*', t_det_c, C_A_det_t,'b-','LineWidth',1.25); % concentration
% h_plot = plot(t_exp, C_A_exp_t,'r*'); % concentration
% hold on;
% errorbar(t_vec, C_A_t_mean, 1*C_A_t_std, 1*C_A_t_std,'Color', [0.4940 0.1840 0.5560], 'Linestyle', '-','Marker', 's','MarkerSize',3,...
% 'MarkerEdgeColor','red','MarkerFaceColor','red','LineWidth',1);
% xlabel('Time (h)'); ylabel('Concentration (number of molecules/l)');
% yyaxis right
% scatter(t_vec,state,10,'filled','m'); ylim([0 3]);
% ylabel('States'); set(gca,'ycolor','m');
% legend('Autoinducer (in vitro)', 'Autoinducer (stochastic)', 'States');
% grid on; xlim([-0.1 10.25]);
% Autoinducer comparison - Box plot
h_f = figure;
t_exp_b = 1:11;
t_vec_b = 1:delta_t:t_s+1;
t_det_c_b = t_det_c+1;
h1 = boxplot(C_A_t(1:10:end,:)',t_exp,'Whisker', Inf, 'Color', [0.4940 0.1840 0.5560]);
hold on;
h_plot = plot(t_exp_b, C_A_exp_t,'r*','LineWidth',1.25); % concentration
h_plot2 = plot(t_det_c_b, C_A_det_t,'Color', [0.6350 0.0780 0.1840],'LineStyle', '-.', 'LineWidth',1.25); % deterministic concentration
xlabel('Time (h)'); ylabel('Concentration (number of molecules/l)');
yyaxis right
h_s = scatter(t_vec_b,state,10,'filled','m','LineWidth',1.25);
ylabel('States'); set(gca,'ycolor','m'); ylim([0 3]);
grid on;
legend([h1(1,1), h_plot(1,1), h_plot2(1,1), h_s], 'Autoinducer (stochastic)', 'Autoinducer (in vitro)', 'Autoinducer (deterministic)', 'States');
% % Bacteria comparison - Errorbar (mean+std)
% h_f = figure;
% % h_plot = semilogy(t_exp, C_B_exp_t,'r*', t_det_c, C_B_det_t,'b-','LineWidth',1.25); % concentration
% h_plot = semilogy(t_exp, C_B_exp_t,'r*','LineWidth',1.25); % concentration
% hold on;
% errorbar(t_vec, C_B_t_mean, 1*C_B_t_std, 1*C_B_t_std, 'b-','Marker', 's','MarkerSize',3,...
% 'MarkerEdgeColor','red','MarkerFaceColor','red','LineWidth',1);
% legend('Bacteria (in vitro)', 'Bacteria (stochastic)');
% xlabel('Time (h)'); ylabel('Concentration (number of molecules/l)');
% grid on; xlim([-0.1 10.25]); ylim([10^7 10^12]);
% Bacteria comparison - Box plot
h_f = figure;
h1 = boxplot(C_B_t(1:10:end,:)',t_exp,'Whisker', Inf, 'Color', 'b');
hold on;
h_plot = plot(t_exp_b, C_B_exp_t,'r*','LineWidth',1.25); % concentration
xlabel('Time (h)'); ylabel('Concentration (number of molecules/l)');
grid on; ylim([10^7 10^12]);
legend([h1(1,1), h_plot(1,1)], 'Bacteria (stochastic)', 'Bacteria (in vitro)');
ax = gca;
ax.YAxis.Scale ="log";
% % EPS - Errorbar (mean+std)
% h_f = figure;
% errorbar(t_vec, C_E_t_mean, 1*C_E_t_std, 1*C_E_t_std, 'Color', [0.9290 0.6940 0.1250], 'Marker', 's','MarkerSize',3,...
% 'MarkerEdgeColor','red','MarkerFaceColor','red','LineWidth',1); % Concentration
% % h_plot = plot(t_det_c, C_E_det_t,'b-', 'LineWidth',1.25);
% hold on;
% xlabel('Time (h)'); ylabel('Concentration (number of molecules/l)');
% yyaxis right
% scatter(t_vec,state,10,'filled','m'); ylim([0 3]);
% ylabel('States'); set(gca,'ycolor','m');
% grid on; legend('EPS (Stochastic)', 'States');
% xlim([-0.1 10.25]);
% % plot(t_det_c, C_A_det_t,'b-', t_det_c, C_B_det_t,'r-', t_det_c, C_E_det_t,'k-','LineWidth', 1.25); %Deterministic plot concentration
% EPS Box plot
h_f = figure;
h1 = boxplot(C_E_t(1:10:end,:)',t_exp,'Whisker', Inf, 'Color', [0.8500 0.3250 0.0980]);
hold on;
xlabel('Time (h)'); ylabel('Concentration (number of molecules/l)');
yyaxis right
h_s = scatter(t_vec_b,state,10,'filled','m'); ylim([0 3]);
ylabel('States'); set(gca,'ycolor','m');
grid on; legend([h1(1,1), h_s],'EPS (Stochastic)', 'States');
xlim([0.5 11.5]);
grid on;
% % Detection time
% h_f = figure;
% pd = fitdist(t_detection_MC,'Normal')
% histfit(t_detection_MC,10);
% title('Histogram of the detection time');
% xlabel('Time (h)'); ylabel('Number of appearance'); xlim([0 10.25]);
% grid on;
% legend('Histogram', ['$\mathcal{N}$(', num2str(pd.mu),', ', num2str(pd.sigma^2),')'],'Interpreter','latex');
% Spatial Evolution of the Biofilm
x_plot = h:h:h*K;
h_f = figure;
C_bio_x_mean = C_B_x_mean + C_E_x_mean;
C_bio_x_mean_n = C_bio_x_mean./max(C_bio_x_mean);
C_E_x_mean_n = C_E_x_mean./ max(C_bio_x_mean);
C_B_x_mean_n = C_B_x_mean./ max(C_bio_x_mean);
plot(x_plot, C_B_x_mean_n, 'b--','LineWidth',1.25); hold on;
plot(x_plot, C_E_x_mean_n, 'Color', [0.8500 0.3250 0.0980], 'LineStyle', '-.','LineWidth',1.25);
plot(x_plot, C_bio_x_mean_n, 'Color', [0.1 0.6 0.3], 'LineStyle', '-', 'LineWidth',1.25);
legend('Bacteria', 'EPS' , 'Biofilm (Bacteria+EPS)');
xlabel('x-axis (m)'); ylabel('Concentration ratio');
grid on; ylim([0 1.1]);
% Concentration ratios of the biofilm
h_f = figure;
C_bio_t_mean = C_E_t_mean + C_B_t_mean;
C_bio_t_mean_n = C_bio_t_mean./ max(C_bio_t_mean);
C_E_t_mean_n = C_E_t_mean./ max(C_bio_t_mean);
C_B_t_mean_n = C_B_t_mean./ max(C_bio_t_mean);
plot(t_vec, C_B_t_mean_n, 'b--', 'LineWidth',1.25); hold on;
plot(t_vec, C_E_t_mean_n, 'Color', [0.8500 0.3250 0.0980], 'LineStyle', '-.', 'LineWidth',1.25);
plot(t_vec, C_bio_t_mean_n, 'Color', [0.1 0.6 0.3], 'LineStyle', '-', 'LineWidth',1.25);
xlabel('Time (h)'); ylabel('Concentration ratio');
yyaxis right
scatter(t_vec,state,10,'filled','m');
ylabel('States'); set(gca,'ycolor','m');
grid on; legend('Bacteria (Stochastic-mean)','EPS (Stochastic-mean)', 'Biofilm (Stochastic-mean)','States');
xlim([-0.1 10.25]); ylim([0 3]);
set(h_f,'Units','Inches');
pos = get(h_f,'Position');
set(h_f,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3), pos(4)]);
% print(h_f,sprintf('Plot_Biofilm_t.pdf'),'-dpdf','-r0') %save as pdf
% savefig(h_f,sprintf('SIR_TLW_plot_dinf_%.1f_gamma_%d_MC_%d.fig',d_inf,gamma,MC)); %save the figure file
% save('I_alpha_t.mat','I','t')
toc
save(['data_MC_', num2str(MC), '.mat']); %save all workspace variables