-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathhybrid.py
142 lines (113 loc) · 4.71 KB
/
hybrid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import data
import pandas as pd
from sklearn.preprocessing import MinMaxScaler, StandardScaler
import numpy as np
from tqdm.auto import tqdm
def hybrid(scores_array):
label = pd.read_csv('label_full.csv')
impression_position = pd.read_csv('impression_position.csv')
def compute_mrr(df):
rr = 1 / df[df['label'] == 1]['ranking_pos'].values
print(np.sum(rr) / len(rr))
def normalize_scores(df):
cols = [c for c in df.columns if 'score' in c]
scaler = MinMaxScaler(copy=True, feature_range=(0, 1))
scaler.fit(df[cols])
df[cols] = scaler.transform(df[cols]).flatten()
print(df[cols])
# scaler = StandardScaler()
# scaler.fit(df[cols])
# df[cols] = scaler.transform(df[cols]).flatten()
# print(df[cols])
return df
def add_ranking_position(df, score_cols=None):
print(df.columns)
if score_cols is None:
score_cols = [c for c in df.columns if 'score' in c]
else:
score_cols = [score_cols]
df = df.sort_values(['user_id', 'session_id', score_cols[0]], ascending=False)
actual_u = 'sorpresina'
actual_s = 'baby'
position = []
score_nobias = []
count = 1
for (u, s) in tqdm(zip(df['user_id'], df['session_id'])):
if u != actual_u or s != actual_s:
actual_u = u
actual_s = s
count = 1
position.append(count)
count += 1
df['ranking_pos'] = position
return df
def compute_confidence(df):
recall_list = []
precision_list = []
clicked = df[df['label'] == 1]
for i in tqdm(range(25)):
tot_pred = len(df[df['ranking_pos'] == 1 & (df['impression_position'] == i + 1)])
num_prec = len(df[df['ranking_pos'] == 1 & (df['impression_position'] == i + 1) & (df['label'] == 1)])
tot = len(clicked[clicked['impression_position'] == i + 1])
predicted = len(clicked[(clicked['impression_position'] == i + 1) & (clicked['ranking_pos'] == 1)])
if tot == 0:
tot = 1
if tot_pred == 0:
tot_pred = 1
recall_list.append(predicted / tot)
precision_list.append(num_prec / tot_pred)
recall_list = np.array(recall_list)
precision_list = np.array(precision_list)
# confidence = (np.multiply(precision_list,recall_list)*2)/np.sum([recall_list, precision_list])
print(f'precision:{precision_list}')
print(f'recall:{recall_list}')
# set the confidence equal to the precision
confidence = precision_list
return confidence
def compute_confidence_score(df, confidence):
score_cols = [c for c in df.columns if 'score' in c]
confidence_score = []
count = None
for (s, rank, impr_pos) in tqdm(zip(df[score_cols[0]], df['ranking_pos'], df['impression_position'])):
if rank == 1:
count = impr_pos - 1
confidence_score.append(s * confidence[count])
df[score_cols] = confidence_score
return df
scores_prep_list = []
for score in scores_array:
# normalize the scores_array
score = score.merge(label)
score = score.merge(impression_position)
score = normalize_scores(score)
print(score)
# add ranking pos
score = add_ranking_position(score)
# compute confidence
confidence = compute_confidence(score)
# compute confidence score and append the preprocessed score on the list
score = compute_confidence_score(score, confidence)
# print(score)
scores_prep_list.append(score)
final_score = scores_prep_list[0]
for score in scores_prep_list[1:]:
final_score = pd.merge(final_score, score, on=['user_id', 'session_id', 'item_id'])
cols = [c for c in final_score.columns if 'score' in c]
f_score = None
for c in cols:
if f_score is None:
f_score = final_score[c]
else:
f_score += final_score[c]
final_score['final_score'] = f_score
final_score.rename(columns={'label_y': 'label'}, inplace=True)
final_score = add_ranking_position(final_score, 'final_score')
compute_mrr(final_score)
return final_score
if __name__ == '__main__':
#scores_cat = pd.read_csv('catboost_rank.csv.gz') # , nrows=100000)
# scores_rnn = pd.read_csv('rnn_GRU_2layers_64units_2dense_noclass0.csv.gz', nrows=100000)
scores_xg = pd.read_csv('xgb_forte_700.csv.gz') # , nrows=100000)
#scores_tf = pd.read_csv('scores_pairwise.csv.gz')
scores_tf2 = pd.read_csv('scores_softmax.csv.gz')
a = hybrid([scores_tf2, scores_xg])