-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathload_data.py
332 lines (278 loc) · 15.8 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# load_data.py
import urllib.request
import tempfile
import zipfile
import tarfile
import os
import numpy as np
import pandas as pd
import cv2
from experience_replay import PrioritizedExperienceReplay
from atari_preprocessing import atari_montezuma_processor
class LoadAtariHeadData:
"""
***********************
** LoadAtariHeadData **
***********************
Class for loading the dataset of demonstrations in Atari 2600 games
described in 'Atari-HEAD: Atari Human Eye-Tracking and Demonstration Dataset' (Zhang et al. 2019)
-----------
Parameters:
-----------
game_name: string;
the name of the Atari 2600 game for which the demonstrations will be loaded
archive_dir: string;
the directory to store and load the demonstration data
frame_processor: callable;
function for processing the raw demonstration frames
reward_processor: callable;
function for processing the raw demonstration rewards
"""
def __init__(self, game_name = 'montezuma_revenge',
archive_dir = "AtariHEADArchives/",
atari_head_url = "https://zenodo.org/record/3451402/files/",
frame_processor = atari_montezuma_processor,
reward_processor = lambda x: np.sign(x)):
self.game_name = game_name
self.archive_dir = archive_dir
self.frame_processor = frame_processor
self.reward_processor = reward_processor
self._zipfile_loc = self.archive_dir + self.game_name + ".zip"
self._zipfile_url = atari_head_url + self.game_name + ".zip"
self._act_rew_df = None
self._png_name_df = None
def _check_archive_dir(self):
if not os.path.exists(self.archive_dir):
print("\n %s will be added to the current directory as it does not exist yet." %(self.archive_dir))
os.makedirs(self.archive_dir)
def _check_game_archive(self):
self._check_archive_dir()
if not os.path.exists(self._zipfile_loc):
print("\n %s will be downloaded from %s as it does not exist in %s." %(self.game_name + ".zip",
self._zipfile_url,
self.archive_dir))
urllib.request.urlretrieve(self._zipfile_url, self._zipfile_loc)
def _update_act_rew_df(self, txtfilepath):
# read in the data from the given txtfilepath and convert it to a dataframe indexed by the frame_id
series = pd.read_csv(txtfilepath, sep = '\n', squeeze = True)
df = series.str.split(pat = ',', expand = True, n = 6)
df.columns = series.name.split(',')
df.set_index('frame_id', inplace = True)
# remove columns, which won't be needed in this work
df.drop(['episode_id', 'score', 'duration(ms)', 'gaze_positions'], axis = 1, inplace = True)
# remove frames with unspecified actions or rewards
df.replace(to_replace = 'null', value = np.nan, inplace = True)
df.dropna(inplace = True)
# append df to _act_rew_df
self._act_rew_df = pd.concat([self._act_rew_df, df])
def _update_png_name_df(self, namelist):
namelist.sort(key = lambda s: (len(s), s))
frame_ids = []
png_names = []
for png_name in namelist:
if png_name.endswith('.png'):
png_names.append(png_name)
frame_ids.append(png_name.split('/')[-1].split('.')[0])
self._png_name_df = pd.concat([self._png_name_df, pd.DataFrame({'png_names': png_names}, index = frame_ids)])
def _get_frame_array(self, png_names, extract_dir, frame_shape = (84, 84)):
frames = np.zeros(shape=(png_names.shape[0], *frame_shape), dtype = np.uint8)
print('\n %i frames will be processed:' %(png_names.shape[0]))
for i in range(png_names.shape[0]):
# read image
im = cv2.imread(extract_dir.name + "/" + png_names[i]).astype(np.uint8)
# store processed image in frames
frames[i] = self.frame_processor(im)
if i%10000 == 0:
print('%i done' %(i))
return(frames)
def _get_episode_endings(self, frames):
ref_frames = (frames == frames[0]).all(axis=(1, 2))
episode_endings = np.append((ref_frames[1:].astype(np.int) -
ref_frames[:-1].astype(np.int)) == 1, True)
episode_endings[-1] = True
return(episode_endings.astype(np.uint8))
def _project_actions(self, actions):
if self.game_name == 'breakout':
# convert up to noop
actions[actions == 2] = 0
# convert down to noop
actions[actions == 5] = 0
# convert upright to right
actions[actions == 6] = 3
# convert upleft to left
actions[actions == 7] = 4
# convert downright to right
actions[actions == 8] = 3
# convert downleft to left
actions[actions == 9] = 4
# convert upfire to fire
actions[actions == 10] = 1
# convert rightfire to right
actions[actions == 11] = 3
# convert leftfire to left
actions[actions == 12] = 4
# convert downfire to fire
actions[actions == 13] = 1
# convert uprightfire to right
actions[actions == 14] = 3
# convert upleftfire to left
actions[actions == 15] = 4
# convert downrightfire to right
actions[actions == 16] = 3
# convert downleftfire to left
actions[actions == 17] = 4
# set index of right to 2
actions[actions == 3] = 2
# set index of left to 3
actions[actions == 4] = 3
if self.game_name == 'freeway':
# convert fire to noop
actions[actions == 1] = 0
# convert right to noop
actions[actions == 3] = 0
# convert left to noop
actions[actions == 4] = 0
# convert upright to up
actions[actions == 6] = 2
# convert upleft to up
actions[actions == 7] = 2
# convert downright to down
actions[actions == 8] = 5
# convert downleft to down
actions[actions == 9] = 5
# convert upfire to up
actions[actions == 10] = 2
# convert rightfire to noop
actions[actions == 11] = 0
# convert leftfire to noop
actions[actions == 12] = 0
# convert downfire to down
actions[actions == 13] = 5
# convert uprightfire to up
actions[actions == 14] = 2
# convert upleftfire to up
actions[actions == 15] = 2
# convert downrightfire to down
actions[actions == 16] = 5
# convert downleftfire to down
actions[actions == 17] = 5
# set index of up to 1
actions[actions == 2] = 1
# set index of down to 2
actions[actions == 5] = 2
if self.game_name == 'ms_pacman':
for i in range(9):
actions[actions == i+1] = i
for i in range(10, 18):
actions[actions == i] = i-9
return(actions)
def _skip_frames(self, frames, actions, rewards, episode_endings, frame_skip):
n = frames.shape[0] + 1
augmented_frames = frames[0:(n- frame_skip)][None]
augmented_actions = actions[0:(n - frame_skip)][None]
augmented_rewards = rewards[0:(n - frame_skip)][None]
augmented_episode_endings = episode_endings[0:(n - frame_skip)][None]
for i in range(1, frame_skip):
augmented_frames = np.concatenate((augmented_frames, frames[i:(n - frame_skip + i)][None]), axis = 0)
augmented_actions = np.concatenate((augmented_actions, actions[i:(n - frame_skip + i)][None]), axis = 0)
augmented_rewards = np.concatenate((augmented_rewards, rewards[i:(n - frame_skip + i)][None]), axis = 0)
augmented_episode_endings = np.concatenate((augmented_episode_endings, episode_endings[i:(n - frame_skip + i)][None]), axis = 0)
reduced_frames = augmented_frames[-1]#np.amax(augmented_frames[-2:], axis = 0)
reduced_actions = augmented_actions[-1]
reduced_rewards = np.sum(augmented_rewards, axis = 0)
reduced_episode_endings = np.amax(augmented_episode_endings, axis = 0)
new_frames = reduced_frames[::frame_skip]
new_actions = reduced_actions[::frame_skip]
new_rewards = reduced_rewards[::frame_skip]
new_episode_endings = reduced_episode_endings[::frame_skip]
for i in range(1, frame_skip):
new_frames = np.concatenate((new_frames, reduced_frames[i:][::frame_skip]), axis = 0)
new_actions = np.concatenate((new_actions, reduced_actions[i:][::frame_skip]), axis = 0)
new_rewards = np.concatenate((new_rewards, reduced_rewards[i:][::frame_skip]), axis = 0)
new_episode_endings = np.concatenate((new_episode_endings, reduced_episode_endings[i:][::frame_skip]), axis = 0)
return(new_frames, new_actions, new_rewards, new_episode_endings)
def _save_demonstrations(self, frames, actions, rewards, episode_endings):
np.save(self.archive_dir + self.game_name + "_frames", frames)
np.save(self.archive_dir + self.game_name + "_actions", actions)
np.save(self.archive_dir + self.game_name + "_rewards", rewards)
np.save(self.archive_dir + self.game_name + "_episode_endings", episode_endings)
print("\n Preprocessed demonstrations for the game %s have been saved to the directory %s"
%(self.game_name, self.archive_dir))
def _load_demonstrations(self):
frames = np.load(self.archive_dir + self.game_name + "_frames.npy")
actions = np.load(self.archive_dir + self.game_name + "_actions.npy")
rewards = np.load(self.archive_dir + self.game_name + "_rewards.npy")
episode_endings = np.load(self.archive_dir + self.game_name + "_episode_endings.npy")
return(frames, actions, rewards, episode_endings)
def get_demonstrations(self, frame_shape = (84, 84), recompute_demonstrations = False, only_highscore = False, exclude_highscore = True, frame_skip = 4):
"""Return demonstration data in the form: (frames, actions, rewards, episode_endings)"""
# check if demonstrations already exist and load them if they do exist
if (os.path.exists(self.archive_dir + self.game_name + "_frames.npy") and
os.path.exists(self.archive_dir + self.game_name + "_actions.npy") and
os.path.exists(self.archive_dir + self.game_name + "_rewards.npy") and
os.path.exists(self.archive_dir + self.game_name + "_episode_endings.npy") and
not recompute_demonstrations):
frames, actions, rewards, episode_endings = self._load_demonstrations()
# if no demonstrations exist, they are loaded from a zip archive,
# which either already exists or will be loaded from the internet otherwise
else:
self._check_game_archive()
extract_dir = tempfile.TemporaryDirectory()
with zipfile.ZipFile(self._zipfile_loc, 'r') as zip_archive:
zip_archive.extractall(extract_dir.name)
print("\n %i files have been extracted from %s to a temporary dircetory and will now be processed:" %(len(zip_archive.namelist()), self._zipfile_loc))
for filename in zip_archive.namelist():
if ((exclude_highscore and 'highscore' not in filename) or
(only_highscore and 'highscore' in filename) or
(not exclude_highscore and not only_highscore)):
if filename.endswith('.txt'):
self._update_act_rew_df(extract_dir.name + "/" + filename)
elif filename.endswith('.tar.bz2'):
with tarfile.open(extract_dir.name + "/" + filename, 'r') as tar_archive:
tar_archive.extractall(extract_dir.name)
self._update_png_name_df(tar_archive.getnames())
print('%s has been processed.' %(filename))
merged_df = pd.merge(self._act_rew_df, self._png_name_df, left_index=True, right_index=True)
frames = self._get_frame_array(merged_df['png_names'].values, extract_dir, frame_shape)
actions = self._project_actions(merged_df['action'].values.astype(np.intc))
rewards = self.reward_processor(merged_df['unclipped_reward'].values.astype(np.single))
episode_endings = self._get_episode_endings(frames)
if frame_skip is not None:
frames, actions, rewards, episode_endings = self._skip_frames(frames, actions, rewards, episode_endings, frame_skip)
self._save_demonstrations(frames, actions, rewards, episode_endings)
extract_dir.cleanup()
return(frames, actions, rewards, episode_endings)
def demonstrations_to_per(self,
max_frame_num = 2**20,
num_stacked_frames = 4,
frame_shape = (84, 84),
priority_dtype = np.single,
batch_size = 32,
prio_coeff = 0.0,
is_schedule = [0.4, 1.0, 5000000],
epsilon = 0.0001,
recompute_demonstrations = False,
only_highscore = False,
exclude_highscore = True,
frame_skip = 4):
"""Load demonstration data and return an instance of PrioritizedExperienceReplay,
initialized with the demonstration data."""
# get demonstrations
frames, actions, rewards, episode_endings = self.get_demonstrations(frame_shape, recompute_demonstrations, only_highscore, exclude_highscore, frame_skip)
# set all priorities of demonstrations to 1
priorities = np.ones(actions.shape[0], dtype = priority_dtype)
# iniatialize PrioritizedExperienceReplay object with the demonstrations
replay_memory = PrioritizedExperienceReplay(max_frame_num = max_frame_num,
num_stacked_frames = num_stacked_frames,
frame_shape = frame_shape,
frames = frames,
actions = actions,
rewards = rewards,
priorities = priorities,
episode_endings = episode_endings,
priority_dtype = priority_dtype,
batch_size = batch_size,
prio_coeff = prio_coeff,
is_schedule = is_schedule,
epsilon = epsilon)
return(replay_memory)