forked from cyb0124/FissionOpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFissionNet.h
41 lines (35 loc) · 1.29 KB
/
FissionNet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#ifndef _FISSION_NET_H_
#define _FISSION_NET_H_
#include <unordered_map>
#include "OptFission.h"
namespace Fission {
constexpr int nStatisticalFeatures(5), nLayer1(128), nLayer2(64), nMiniBatch(64), nEpoch(2), nPool(1'000'000);
constexpr double lRate(0.01), mRate(0.9), rRate(0.999), leak(0.1);
class Net {
Opt &opt;
double mCorrector, rCorrector;
std::unordered_map<int, int> tileMap;
int nFeatures;
// Data Pool
xt::xtensor<double, 2> batchInput;
xt::xtensor<double, 1> batchTarget;
std::vector<std::pair<xt::xtensor<double, 1>, double>> pool;
int trajectoryLength, writePos;
xt::xtensor<double, 2> wLayer1, mwLayer1, rwLayer1;
xt::xtensor<double, 1> bLayer1, mbLayer1, rbLayer1;
xt::xtensor<double, 2> wLayer2, mwLayer2, rwLayer2;
xt::xtensor<double, 1> bLayer2, mbLayer2, rbLayer2;
xt::xtensor<double, 1> wOutput, mwOutput, rwOutput;
double bOutput, mbOutput, rbOutput;
xt::xtensor<double, 1> extractFeatures(const Sample &sample);
public:
Net(Opt &opt);
double infer(const Sample &sample);
void newTrajectory() { trajectoryLength = 0; }
void appendTrajectory(const Sample &sample);
void finishTrajectory(double target);
int getTrajectoryLength() const { return trajectoryLength; }
double train();
};
}
#endif