-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtensor_flow_class.py
496 lines (441 loc) · 19.3 KB
/
tensor_flow_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
"""Routine for decoding the CIFAR-10 binary file format."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import re
import sys
import tarfile
import numpy as np
from six.moves import urllib
import tensorflow as tf
import os
from datetime import datetime
import os.path
import time
from six.moves import xrange # pylint: disable=redefined-builtin
# Process images of this size. Note that this differs from the original CIFAR
# image size of 32 x 32. If one alters this number, then the entire model
# architecture will change and any model would need to be retrained.
# Global constants describing the CIFAR-10 data set.
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 15000
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 1000
# Constants describing the training process.
MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average.
NUM_EPOCHS_PER_DECAY = 350.0 # Epochs after which learning rate decays.
LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor.
INITIAL_LEARNING_RATE = 0.01 # Initial learning rate.
def read_cifar10(filename_queue):
"""Reads and parses examples from CIFAR10 data files.
Recommendation: if you want N-way read parallelism, call this function
N times. This will give you N independent Readers reading different
files & positions within those files, which will give better mixing of
examples.
Args:
filename_queue: A queue of strings with the filenames to read from.
Returns:
An object representing a single example, with the following fields:
height: number of rows in the result (32)
width: number of columns in the result (32)
depth: number of color channels in the result (3)
key: a scalar string Tensor describing the filename & record number
for this example.
label: an int32 Tensor with the label in the range 0..9.
uint8image: a [height, width, depth] uint8 Tensor with the image data
"""
class CIFAR10Record(object):
pass
result = CIFAR10Record()
# Dimensions of the images in the CIFAR-10 dataset.
# See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
# input format.
result.height = 256
result.width = 320
result.depth = 3
with open('train.txt') as fid:
content = fid.read()
content = content.split('\n')
content = content[:-1]
valuequeue = tf.train.string_input_producer(content,shuffle=True)
value = valuequeue.dequeue()
dir, label1= tf.decode_csv(records=value, record_defaults=[['string'], ['']], field_delim=" ")
label1 = tf.string_to_number(label1, tf.int32)
result.label=label1
print(dir)
imagecontent = tf.read_file(dir)
image = tf.image.decode_jpeg(imagecontent, channels=3)
image = tf.image.resize_images(image,[256,320])
result.uint8image=image
return result
def _generate_image_and_label_batch(image, label, min_queue_examples,
batch_size, shuffle):
"""Construct a queued batch of images and labels.
Args:
image: 3-D Tensor of [height, width, 3] of type.float32.
label: 1-D Tensor of type.int32
min_queue_examples: int32, minimum number of samples to retain
in the queue that provides of batches of examples.
batch_size: Number of images per batch.
shuffle: boolean indicating whether to use a shuffling queue.
Returns:
images: Images. 4D tensor of [batch_size, height, width, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
# Create a queue that shuffles the examples, and then
# read 'batch_size' images + labels from the example queue.
print('generate')
num_preprocess_threads = 8
images=tf.placeholder(tf.float32)
label_batch=tf.placeholder(tf.float32)
if shuffle:
images, label_batch = tf.train.shuffle_batch(
[image, label],
batch_size=64,
num_threads=num_preprocess_threads,
capacity=50000,
min_after_dequeue=2800)
else:
images, label_batch = tf.train.batch(
[image, label],
batch_size=64,
shapes=([256,320,3],[]),
num_threads=num_preprocess_threads,
capacity=50000)
# Display the training images in the visualizer.
#tf.image_summary('images', images,max_images=64)
print(images)
return images, tf.reshape(label_batch, [batch_size])
def inputs():
print('input')
"""Construct input for CIFAR evaluation using the Reader ops.
Args:
eval_data: bool, indicating if one should use the train or eval data set.
data_dir: Path to the CIFAR-10 data directory.
batch_size: Number of images per batch.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
batch_size=64
filenames = './train.txt'
num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
# Read examples from files
read_input=tf.placeholder(tf.uint8)
read_input = read_cifar10('train.txt')
reshaped_image=tf.placeholder(tf.float32)
reshaped_image = tf.cast(read_input.uint8image, tf.float32)
# Ensure that the random shuffling has good mixing properties.
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(num_examples_per_epoch *
min_fraction_of_examples_in_queue)
# Generate a batch of images and labels by building up a queue of examples.
return _generate_image_and_label_batch(reshaped_image, read_input.label,
min_queue_examples, 64,
shuffle=False)
def _variable_on_cpu(name, shape, initializer):
"""Helper to create a Variable stored on CPU memory.
Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable
Returns:
Variable Tensor
"""
with tf.device('/gpu:0'):
dtype = tf.float32
var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
return var
def inference(images):
"""Build the CIFAR-10 model.
Args:
images: Images returned from distorted_inputs() or inputs().
Returns:
Logits.
"""
# We instantiate all variables using tf.get_variable() instead of
# tf.Variable() in order to share variables across multiple GPU training runs.
# If we only ran this model on a single GPU, we could simplify this function
# by replacing all instances of tf.get_variable() with tf.Variable().
#
# conv1
with tf.variable_scope('conv1') as scope:
norm1=tf.placeholder("float",shape=[None,256,320,3])
conv1=tf.placeholder("float")
conv=tf.placeholder("float")
bias=tf.placeholder("float")
#norm1=images
norm1 = tf.nn.lrn(images, 4, bias=255.0, alpha=0.0, beta=1.0,
name='norm1')
norm1=norm1-0.5
tf.histogram_summary('norm1' + '/activations', norm1)
kernel = tf.get_variable('weights',
shape=[5, 5, 3, 24],
initializer=tf.contrib.layers.xavier_initializer())
conv = tf.nn.conv2d(norm1, kernel, [1, 2, 2, 1], padding='VALID')
biases = _variable_on_cpu('biases', [24], tf.constant_initializer(0.1))
weight=tf.reduce_sum(kernel)/(5*5*3*24)
biases_ave=tf.reduce_sum(biases)/24
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias)
tf.scalar_summary('conv1' + '/weight', weight)
tf.scalar_summary('conv1' + '/biases', biases_ave)
tf.histogram_summary('conv1' + '/activations', conv1)
tf.image_summary('conv1', images,max_images=24)
#tf.image_summary('conv1', tf.transpose(conv1, [3, 1, 2, 0])[...,0:1],max_images=24)
#_activation_summary(conv1)
# conv2
with tf.variable_scope('conv2') as scope:
conv2=tf.placeholder("float")
conv=tf.placeholder("float")
bias=tf.placeholder("float")
kernel = tf.get_variable('weights',
shape=[5, 5, 24, 36],
initializer=tf.contrib.layers.xavier_initializer())
conv = tf.nn.conv2d(conv1, kernel, [1, 2, 2, 1], padding='VALID')
biases = _variable_on_cpu('biases', [36], tf.constant_initializer(0.1))
weight=tf.reduce_sum(kernel)/(5*5*36*24)
biases_ave=tf.reduce_sum(biases)/36
bias = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(bias)
tf.scalar_summary('conv2' + '/weight', weight)
tf.scalar_summary('conv2' + '/biases', biases_ave)
tf.histogram_summary('conv2' + '/activations', conv2)
tf.image_summary('conv2', tf.transpose(conv2, [3, 1, 2, 0])[...,0:1],max_images=36)
#_activation_summary(conv2)
# conv3
with tf.variable_scope('conv3') as scope:
conv3=tf.placeholder("float")
conv=tf.placeholder("float")
bias=tf.placeholder("float")
kernel = tf.get_variable('weights',
shape=[5, 5, 36, 48],
initializer=tf.contrib.layers.xavier_initializer())
conv = tf.nn.conv2d(conv2, kernel, [1, 2, 2, 1], padding='VALID')
biases = _variable_on_cpu('biases', [48], tf.constant_initializer(0.1))
weight=tf.reduce_sum(kernel)/(5*5*36*48)
biases_ave=tf.reduce_sum(biases)/48
bias = tf.nn.bias_add(conv, biases)
conv3 = tf.nn.relu(bias)
tf.scalar_summary('conv3' + '/weight', weight)
tf.scalar_summary('conv3' + '/biases', biases_ave)
tf.histogram_summary('conv3' + '/activations', conv3)
tf.image_summary('conv3', tf.transpose(conv3, [3, 1, 2, 0])[...,0:1],max_images=48)
#_activation_summary(conv3)
# conv4
with tf.variable_scope('conv4') as scope:
conv4=tf.placeholder("float")
conv=tf.placeholder("float")
bias=tf.placeholder("float")
kernel = tf.get_variable('weights',
shape=[3, 3, 48, 64],
initializer=tf.contrib.layers.xavier_initializer())
conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='VALID')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
weight=tf.reduce_sum(kernel)/(3*3*48*64)
biases_ave=tf.reduce_sum(biases)/64
bias = tf.nn.bias_add(conv, biases)
conv4 = tf.nn.relu(bias)
tf.scalar_summary('conv4' + '/weight', weight)
tf.scalar_summary('conv4' + '/biases', biases_ave)
tf.histogram_summary('conv4' + '/activations', conv4)
tf.image_summary('conv4', tf.transpose(conv4, [3, 1, 2, 0])[...,0:1],max_images=64)
#_activation_summary(conv4)
# conv5
with tf.variable_scope('conv5') as scope:
conv5=tf.placeholder("float")
conv=tf.placeholder("float")
bias=tf.placeholder("float")
kernel = tf.get_variable('weights',
shape=[3, 3, 64, 128],
initializer=tf.contrib.layers.xavier_initializer())
conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='VALID')
biases = _variable_on_cpu('biases', [128], tf.constant_initializer(0.1))
weight=tf.reduce_sum(kernel)/(3*3*64*64)
biases_ave=tf.reduce_sum(biases)/128
bias = tf.nn.bias_add(conv, biases)
conv5 = tf.nn.relu(bias)
tf.scalar_summary('conv5' + '/weight', weight)
tf.scalar_summary('conv5' + '/biases', biases_ave)
tf.histogram_summary('conv5' + '/activations', conv5)
tf.image_summary('conv5', tf.transpose(conv5, [3, 1, 2, 0])[...,0:1],max_images=64)
# local3
with tf.variable_scope('local3') as scope:
# Move everything into depth so we can perform a single matrix multiply.
local3=tf.placeholder("float")
dim=tf.placeholder(tf.int32)
bias=tf.placeholder("float")
weights=tf.placeholder("float")
reshape = tf.reshape(conv5, [64,-1])
dim = reshape.get_shape()[1].value
weights = tf.get_variable('weights', shape=[dim, 500],
initializer=tf.contrib.layers.xavier_initializer())
biases = _variable_on_cpu('biases', [500], tf.constant_initializer(0.1))
#local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases,name=scope.name)
bias = tf.matmul(reshape, weights)+biases
local3=tf.nn.relu(bias)
tf.scalar_summary('local3' + '/weight', tf.reduce_sum(weights)/(dim*100))
tf.scalar_summary('local3' + '/biases', tf.reduce_sum(biases)/100)
tf.histogram_summary('local3' + '/activations', local3)
#_activation_summary(local3)
# local4
with tf.variable_scope('local4') as scope:
local4=tf.placeholder("float")
weights=tf.placeholder("float")
weights = tf.get_variable('weights', shape=[500, 300],
initializer=tf.contrib.layers.xavier_initializer())
biases = _variable_on_cpu('biases', [300], tf.constant_initializer(0.1))
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases)
local4=tf.nn.dropout(local4,0.5)
tf.scalar_summary('local4' + '/weight', tf.reduce_sum(weights)/(500*300))
tf.scalar_summary('local4' + '/biases', tf.reduce_sum(biases)/300)
tf.histogram_summary('local4' + '/activations', local4)
#_activation_summary(local4)
with tf.variable_scope('local6') as scope:
local6=tf.placeholder("float")
weights=tf.placeholder("float")
weights = tf.get_variable('weights', shape=[300, 200],
initializer=tf.contrib.layers.xavier_initializer())
biases = _variable_on_cpu('biases', [200], tf.constant_initializer(0.1))
local6 = tf.matmul(local4, weights) + biases
#local6 = tf.tanh(local6)
tf.scalar_summary('local6' + '/weight', tf.reduce_sum(weights)/(300))
tf.scalar_summary('local6' + '/biases', tf.reduce_sum(biases))
# tf.histogram_summary('local6' + '/activations', local6)
#_activation_summary(local6)
#local6=local6[...,0]
return local6
def losss(logits, labels):
"""Add L2Loss to all the trainable variables.
Add summary for "Loss" and "Loss/avg".
Args:queue
logits: Logits from inference().
labels: Labels from distorted_inputs or inputs(). 1-D tensor
of shape [batch_size]
Returns:
Loss tensor of type float.
"""
loss=tf.placeholder("float")
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
'''regularizers = (tf.nn.l2_loss(local3/weights) + tf.nn.l2_loss(local3/biases) +
tf.nn.l2_loss(local4/weights) + tf.nn.l2_loss(local4/biases)+
tf.nn.l2_loss(local6/weights) + tf.nn.l2_loss(local6/biases))
loss=cross_entropy_mean+0.001*regularizers'''
loss=cross_entropy_mean
tf.histogram_summary('labels' + '/activations', labels)
tf.histogram_summary('local6' + '/activations', logits)
tf.scalar_summary('loss', loss)
return loss
def trainn(total_loss, global_step):
"""Train CIFAR-10 model.
Create an optimizer and apply to all trainable variables. Add moving
average for all trainable variables.
Args:
total_loss: Total loss from loss().
global_step: Integer Variable counting the number of training steps
processed.
Returns:
train_op: op for training.
"""
# Variables that affect learning rate.
num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / 64
decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)
# Decay the learning rate exponentially based on the number of steps.
#lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
# global_step,
# decay_steps,
# LEARNING_RATE_DECAY_FACTOR,
# staircase=True)
lr=0.01
tf.scalar_summary('learning_rate', lr)
# Generate moving averages of all losses and associated summaries.
#loss_averages_op = tf.reduce_sum(total_loss)
# Compute gradients.
#with tf.control_dependencies([loss_averages_op]):
opt = tf.train.GradientDescentOptimizer(lr)
grads = opt.compute_gradients(total_loss)
# Apply gradients.
#tf.scalar_summary('grad', grads)
#tf.histogram_summary('grads' + '/activations', grads)
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
'''# Add histograms for trainable variables.
for var in tf.trainable_variables():
tf.histogram_summary(var.op.name, var)
# Add histograms for gradients.
for grad, var in grads:
if grad is not None:
tf.histogram_summary(var.op.name + '/gradients', grad)
# Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
train_op = tf.no_op(name='train')'''
train_op=apply_gradient_op
return train_op
def train():
"""Train CIFAR-10 for a number of steps."""
with tf.Graph().as_default():
global_step = tf.Variable(0, trainable=False)
# Get images and labels for CIFAR-10.
images=tf.placeholder("float",shape=[None,256,320,3])
labels=tf.placeholder("float",shape=[None])
local6=tf.placeholder("float",shape=[None])
images, labels = inputs()
print('images')
print(images)
# Build a Graph that computes the logits predictions from the
# inference model.
logits = inference(images)
# Calculate loss.
loss = losss(logits, labels)
predictions=tf.nn.in_top_k(logits, labels, 1)
# Build a Graph that trains the model with one batch of examples and
# updates the model parameters.
train_op = trainn(loss, global_step)
# Create a saver.
saver = tf.train.Saver(tf.all_variables())
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.merge_all_summaries()
# Build an initialization operation to run below.
init = tf.initialize_all_variables()
# Start running operations on the Graph.
tf_config=tf.ConfigProto(
log_device_placement=False)
tf_config.gpu_options.per_process_gpu_memory_fraction=0.9
sess = tf.Session(config=tf_config)
sess.run(init)
# Start the queue runners.
tf.train.start_queue_runners(sess=sess)
summary_writer = tf.train.SummaryWriter('/home/fzyue/Desktop/caffeendtoend/1', sess.graph)
for step in xrange(100000):
start_time = time.time()
_, loss_value = sess.run([train_op, loss])
duration = time.time() - start_time
assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
if step % 10 == 0:
num_examples_per_step = 64
examples_per_sec = num_examples_per_step / duration
sec_per_batch = float(duration)
format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (datetime.now(), step, loss_value,
examples_per_sec, sec_per_batch))
#print(labels)
#print (sess.run(logits))
if step % 100 == 0:
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, step)
print (sess.run(predictions))
# Save the model checkpoint periodically.
if step % 5000 == 0 or (step + 1) == 100000:
checkpoint_path = os.path.join('/home/fzyue/Desktop/caffeendtoend/1', 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=step)
def main(argv=None): # pylint: disable=unused-argument
#cifar10.maybe_download_and_extract()
if tf.gfile.Exists('/home/fzyue/Desktop/caffeendtoend/1'):
tf.gfile.DeleteRecursively('/home/fzyue/Desktop/caffeendtoend/1')
tf.gfile.MakeDirs('/home/fzyue/Desktop/caffeendtoend/1')
train()
main()