-
Notifications
You must be signed in to change notification settings - Fork 0
/
miller_rabin&pollard_rho.cpp
189 lines (188 loc) · 4.81 KB
/
miller_rabin&pollard_rho.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#include<stdio.h>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
typedef pair<ll,ll> PLL;
namespace Factor {
const int N=1010000;
ll C,fac[10010],n,mut,a[1001000];
int T,cnt,i,l,prime[N],p[N],psize,_cnt;
ll _e[100],_pr[100];
vector<ll> d;
inline ll mul(ll a,ll b,ll p) {
if (p<=1000000000) return a*b%p;
else if (p<=1000000000000ll) return (((a*(b>>20)%p)<<20)+(a*(b&((1<<20)-1))))%p;
else {
ll d=(ll)floor(a*(long double)b/p+0.5);
ll ret=(a*b-d*p)%p;
if (ret<0) ret+=p;
return ret;
}
}
void prime_table(){
int i,j,tot,t1;
for (i=1;i<=psize;i++) p[i]=i;
for (i=2,tot=0;i<=psize;i++){
if (p[i]==i) prime[++tot]=i;
for (j=1;j<=tot && (t1=prime[j]*i)<=psize;j++){
p[t1]=prime[j];
if (i%prime[j]==0) break;
}
}
}
void init(int ps) {
psize=ps;
prime_table();
}
ll powl(ll a,ll n,ll p) {
ll ans=1;
for (;n;n>>=1) {
if (n&1) ans=mul(ans,a,p);
a=mul(a,a,p);
}
return ans;
}
bool witness(ll a,ll n) {
int t=0;
ll u=n-1;
for (;~u&1;u>>=1) t++;
ll x=powl(a,u,n),_x=0;
for (;t;t--) {
_x=mul(x,x,n);
if (_x==1 && x!=1 && x!=n-1) return 1;
x=_x;
}
return _x!=1;
}
bool miller(ll n) {
if (n<2) return 0;
if (n<=psize) return p[n]==n;
if (~n&1) return 0;
for (int j=0;j<=7;j++) if (witness(rand()%(n-1)+1,n)) return 0;
return 1;
}
ll gcd(ll a,ll b) {
ll ret=1;
while (a!=0) {
if ((~a&1) && (~b&1)) ret<<=1,a>>=1,b>>=1;
else if (~a&1) a>>=1; else if (~b&1) b>>=1;
else {
if (a<b) swap(a,b);
a-=b;
}
}
return ret*b;
}
ll rho(ll n) {
for (;;) {
ll X=rand()%n,Y,Z,T=1,*lY=a,*lX=lY;
int tmp=20;
C=rand()%10+3;
X=mul(X,X,n)+C;*(lY++)=X;lX++;
Y=mul(X,X,n)+C;*(lY++)=Y;
for(;X!=Y;) {
ll t=X-Y+n;
Z=mul(T,t,n);
if(Z==0) return gcd(T,n);
tmp--;
if (tmp==0) {
tmp=20;
Z=gcd(Z,n);
if (Z!=1 && Z!=n) return Z;
}
T=Z;
Y=*(lY++)=mul(Y,Y,n)+C;
Y=*(lY++)=mul(Y,Y,n)+C;
X=*(lX++);
}
}
}
void _factor(ll n) {
for (int i=0;i<cnt;i++) {
if (n%fac[i]==0) n/=fac[i],fac[cnt++]=fac[i];}
if (n<=psize) {
for (;n!=1;n/=p[n]) fac[cnt++]=p[n];
return;
}
if (miller(n)) fac[cnt++]=n;
else {
ll x=rho(n);
_factor(x);_factor(n/x);
}
}
void dfs(ll x,int dep) {
if (dep==_cnt) d.pb(x);
else {
dfs(x,dep+1);
for (int i=1;i<=_e[dep];i++) dfs(x*=_pr[dep],dep+1);
}
}
void norm() {
sort(fac,fac+cnt);
_cnt=0;
rep(i,0,cnt) if (i==0||fac[i]!=fac[i-1]) _pr[_cnt]=fac[i],_e[_cnt++]=1;
else _e[_cnt-1]++;
}
vector<ll> getd() {
d.clear();
dfs(1,0);
return d;
}
vector<ll> factor(ll n) {
cnt=0;
_factor(n);
norm();
return getd();
}
vector<PLL> factorG(ll n) {
cnt=0;
_factor(n);
norm();
vector<PLL> d;
rep(i,0,_cnt) d.pb(mp(_pr[i],_e[i]));
return d;
}
bool is_primitive(ll a,ll p) {
vector<PLL> D=factorG(p-1);
rep(i,0,SZ(D)) if (powl(a,(p-1)/D[i].fi,p)==1) return 0;
return 1;
}
int findorder(ll a,ll p) {
vector<PLL> D=factorG(p-1);
int t=p-1;
rep(i,0,SZ(D)) {
while (t%D[i].fi==0&&powl(a,t/D[i].fi,p)==1) t/=D[i].fi;
}
return t;
}
}
int main(){
Factor::init(1000000);
int T;
scanf("%d",&T);
while (T--){
long long x;
scanf("%lld",&x);
if (Factor::miller(x)) printf("Prime\n");
else{
vector<PLL>ans=Factor::factorG(x);
sort(ans.begin(),ans.end());
}
}
return 0;
}