-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmobilenetv3.py
161 lines (138 loc) · 6.98 KB
/
mobilenetv3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from functools import partial
import torch
import torch.nn as nn
from .ops import blocks
from .utils import export, config, load_from_local_or_url
from typing import Any, OrderedDict, List
_BN_EPSILON = 1e-3
# Paper suggests 0.99 momentum
_BN_MOMENTUM = 0.01
hs = partial(nn.Hardswish, inplace=True)
@export
def mobilenet_v3_small(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs: Any):
model = MobileNetV3Small(**kwargs)
if pretrained:
load_from_local_or_url(model, pth, kwargs.get('url', None), progress)
return model
@export
class MobileNetV3Small(nn.Module):
@blocks.se(gating_fn=nn.Hardsigmoid)
def __init__(
self,
in_channels: int = 3,
num_classes: int = 1000,
dropout_rate: float = 0.2,
dilations: List[int] = None,
thumbnail: bool = False,
**kwargs: Any
):
super().__init__()
dilations = dilations or [1, 1, 1, 1]
assert len(dilations) == 4, ''
strides = [2 if dilations[i] == 1 else 1 for i in range(4)]
FRONT_S = 1 if thumbnail else 2
strides[0] = FRONT_S
self.features = nn.Sequential(OrderedDict([
('stem', blocks.Stage(
blocks.Conv2dBlock(in_channels, 16, 3, stride=FRONT_S, activation_fn=hs)
)),
('stage1', blocks.Stage(
blocks.InvertedResidualBlock(16, 16, 1, kernel_size=3, stride=strides[0], rd_ratio=0.5, se_ind=True)
)),
('stage2', blocks.Stage(
blocks.InvertedResidualBlock(16, 24, 72/16, kernel_size=3, stride=strides[1], dilation=dilations[0]),
blocks.InvertedResidualBlock(24, 24, 88/24, kernel_size=3, dilation=dilations[1])
)),
('stage3', blocks.Stage(
blocks.InvertedResidualBlock(24, 40, 4, kernel_size=5, stride=strides[2], dilation=dilations[1], rd_ratio=0.25, se_ind=True, activation_fn=hs),
blocks.InvertedResidualBlock(40, 40, 6, kernel_size=5, dilation=dilations[2], rd_ratio=0.25, se_ind=True, activation_fn=hs),
blocks.InvertedResidualBlock(40, 40, 6, kernel_size=5, dilation=dilations[2], rd_ratio=0.25, se_ind=True, activation_fn=hs),
blocks.InvertedResidualBlock(40, 48, 3, kernel_size=5, dilation=dilations[2], rd_ratio=0.25, se_ind=True, activation_fn=hs),
blocks.InvertedResidualBlock(48, 48, 3, kernel_size=5, dilation=dilations[2], rd_ratio=0.25, se_ind=True, activation_fn=hs)
)),
('stage4', blocks.Stage(
blocks.InvertedResidualBlock(48, 96, 6, kernel_size=5, stride=strides[3], dilation=dilations[2], rd_ratio=0.25, se_ind=True, activation_fn=hs),
blocks.InvertedResidualBlock(96, 96, 6, kernel_size=5, dilation=dilations[3], rd_ratio=0.25, se_ind=True, activation_fn=hs),
blocks.InvertedResidualBlock(96, 96, 6, kernel_size=5, dilation=dilations[3], rd_ratio=0.25, se_ind=True, activation_fn=hs),
blocks.Conv2d1x1Block(96, 576, activation_fn=hs)
))
]))
self.pool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Sequential(
nn.Linear(576, 1024),
hs(),
nn.Dropout(dropout_rate, inplace=True),
nn.Linear(1024, num_classes)
)
def forward(self, x):
x = self.features(x)
x = self.pool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
@export
def mobilenet_v3_large(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs: Any):
model = MobileNetV3Large(**kwargs)
if pretrained:
load_from_local_or_url(model, pth, kwargs.get('url', None), progress)
return model
@export
class MobileNetV3Large(nn.Module):
@blocks.se(gating_fn=nn.Hardsigmoid)
def __init__(
self,
in_channels: int = 3,
num_classes: int = 1000,
dropout_rate: float = 0.2,
dilations: List[int] = None,
thumbnail: bool = False,
**kwargs: Any
):
super().__init__()
dilations = dilations or [1, 1, 1, 1]
assert len(dilations) == 4, ''
strides = [2 if dilations[i] == 1 else 1 for i in range(4)]
FRONT_S = 1 if thumbnail else 2
strides[0] = FRONT_S
self.features = nn.Sequential(OrderedDict([
('stem', blocks.Stage(
blocks.Conv2dBlock(in_channels, 16, 3, stride=FRONT_S, activation_fn=hs),
blocks.InvertedResidualBlock(16, 16, t=1, kernel_size=3, stride=1)
)),
('stage1', blocks.Stage(
blocks.InvertedResidualBlock(16, 24, t=4, kernel_size=3, stride=strides[0]),
blocks.InvertedResidualBlock(24, 24, t=3, kernel_size=3, dilation=dilations[0])
)),
('stage2', blocks.Stage(
blocks.InvertedResidualBlock(24, 40, t=3, kernel_size=5, stride=strides[1], dilation=dilations[0], rd_ratio=0.25, se_ind=True),
blocks.InvertedResidualBlock(40, 40, t=3, kernel_size=5, dilation=dilations[1], rd_ratio=0.25, se_ind=True),
blocks.InvertedResidualBlock(40, 40, t=3, kernel_size=5, dilation=dilations[1], rd_ratio=0.25, se_ind=True)
)),
('stage3', blocks.Stage(
blocks.InvertedResidualBlock(40, 80, t=6, kernel_size=3, stride=strides[2], dilation=dilations[1], activation_fn=hs),
blocks.InvertedResidualBlock(80, 80, t=200/80, kernel_size=3, dilation=dilations[2], activation_fn=hs),
blocks.InvertedResidualBlock(80, 80, t=184/80, kernel_size=3, dilation=dilations[2], activation_fn=hs),
blocks.InvertedResidualBlock(80, 80, t=184/80, kernel_size=3, dilation=dilations[2], activation_fn=hs),
blocks.InvertedResidualBlock(80, 112, t=6, kernel_size=3, dilation=dilations[2], rd_ratio=0.25, se_ind=True, activation_fn=hs),
blocks.InvertedResidualBlock(112, 112, t=6, kernel_size=3, dilation=dilations[2], rd_ratio=0.25, se_ind=True, activation_fn=hs)
)),
('stage4', blocks.Stage(
blocks.InvertedResidualBlock(112, 160, t=6, kernel_size=5, stride=strides[3], dilation=dilations[2], rd_ratio=0.25, se_ind=True, activation_fn=hs),
blocks.InvertedResidualBlock(160, 160, t=6, kernel_size=5, dilation=dilations[3], rd_ratio=0.25, se_ind=True, activation_fn=hs),
blocks.InvertedResidualBlock(160, 160, t=6, kernel_size=5, dilation=dilations[3], rd_ratio=0.25, se_ind=True, activation_fn=hs),
blocks.Conv2d1x1Block(160, 960, activation_fn=hs)
))
]))
self.pool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Sequential(
nn.Linear(960, 1280),
hs(),
nn.Dropout(dropout_rate, inplace=True),
nn.Linear(1280, num_classes)
)
def forward(self, x):
x = self.features(x)
x = self.pool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x