Skip to content

Commit 2a001f0

Browse files
committed
update dataset
1 parent f1aff76 commit 2a001f0

File tree

3 files changed

+142
-18
lines changed

3 files changed

+142
-18
lines changed

data/Wastewater_covid_level_data.csv

Lines changed: 124 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,124 @@
1+
Date,Viral Activity Level
2+
1/1/2022,16.86
3+
1/8/2022,23.77
4+
1/15/2022,23.11
5+
1/22/2022,19.33
6+
1/29/2022,14.04
7+
2/5/2022,9.19
8+
2/12/2022,5.83
9+
2/19/2022,3.72
10+
2/26/2022,2.47
11+
3/5/2022,1.62
12+
3/12/2022,1.35
13+
3/19/2022,1.13
14+
3/26/2022,1.23
15+
4/2/2022,1.17
16+
4/9/2022,1.53
17+
4/16/2022,2.02
18+
4/23/2022,3.05
19+
4/30/2022,3.87
20+
5/7/2022,4.97
21+
5/14/2022,5.56
22+
5/21/2022,6.61
23+
5/28/2022,7.15
24+
6/4/2022,7.01
25+
6/11/2022,6.73
26+
6/18/2022,6.63
27+
6/25/2022,7.11
28+
7/2/2022,7.81
29+
7/9/2022,9.15
30+
7/16/2022,8.72
31+
7/23/2022,9.32
32+
7/30/2022,8.8
33+
8/6/2022,7.89
34+
8/13/2022,7.27
35+
8/20/2022,6.79
36+
8/27/2022,6.37
37+
9/3/2022,5.69
38+
9/10/2022,5.45
39+
9/17/2022,5.01
40+
9/24/2022,4.52
41+
10/1/2022,3.71
42+
10/8/2022,3.33
43+
10/15/2022,3.32
44+
10/22/2022,3.32
45+
10/29/2022,3.91
46+
11/5/2022,4
47+
11/12/2022,4
48+
11/19/2022,4.52
49+
11/26/2022,5.28
50+
12/3/2022,8.34
51+
12/10/2022,8.4
52+
12/17/2022,8.91
53+
12/24/2022,9.38
54+
12/31/2022,10.52
55+
1/7/2023,8.21
56+
1/14/2023,5.93
57+
1/21/2023,5.59
58+
1/28/2023,5.77
59+
2/4/2023,6.13
60+
2/11/2023,6.07
61+
2/18/2023,6.24
62+
2/25/2023,5.79
63+
3/4/2023,5.13
64+
3/11/2023,4.37
65+
3/18/2023,4.54
66+
3/25/2023,4.53
67+
4/1/2023,3.42
68+
4/8/2023,2.9
69+
4/15/2023,2.71
70+
4/22/2023,2.12
71+
4/29/2023,1.86
72+
5/6/2023,1.98
73+
5/13/2023,1.93
74+
5/20/2023,1.66
75+
5/27/2023,1.53
76+
6/3/2023,1.27
77+
6/10/2023,1.12
78+
6/17/2023,1.14
79+
6/24/2023,1.13
80+
7/1/2023,1.3
81+
7/8/2023,1.52
82+
7/15/2023,1.67
83+
7/22/2023,1.95
84+
7/29/2023,2.41
85+
8/5/2023,2.82
86+
8/12/2023,3.67
87+
8/19/2023,3.95
88+
8/26/2023,4.42
89+
9/2/2023,5.08
90+
9/9/2023,5.61
91+
9/16/2023,5.1
92+
9/23/2023,4.69
93+
9/30/2023,4.46
94+
10/7/2023,3.78
95+
10/14/2023,3.31
96+
10/21/2023,3.38
97+
10/28/2023,3.53
98+
11/4/2023,3.67
99+
11/11/2023,4.06
100+
11/18/2023,4.73
101+
11/25/2023,5.31
102+
12/2/2023,6.95
103+
12/9/2023,7.67
104+
12/16/2023,8.95
105+
12/23/2023,10.61
106+
12/30/2023,12.66
107+
1/6/2024,11.67
108+
1/13/2024,9.06
109+
1/20/2024,7.48
110+
1/27/2024,7.17
111+
2/3/2024,6.05
112+
2/10/2024,6
113+
2/17/2024,5.71
114+
2/24/2024,5.39
115+
3/2/2024,4.52
116+
3/9/2024,3.55
117+
3/16/2024,2.65
118+
3/23/2024,2.21
119+
3/30/2024,2.04
120+
4/6/2024,1.86
121+
4/13/2024,1.57
122+
4/20/2024,1.38
123+
4/27/2024,1.23
124+
5/4/2024,1.16

modules/Data_Classes/lab/Data_Classes_Lab.Rmd

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ library(readr)
1616
library(tidyverse)
1717
library(dplyr)
1818
library(lubridate)
19-
library(jhur)
19+
library(dasehr)
2020
```
2121

2222
Create some data to work with by running the following code chunk.
@@ -64,11 +64,11 @@ Coerce `rand_vect` to character class using `as.character()`. Save this vector a
6464

6565
### 1.6
6666

67-
Read in the Charm City Circulator data using `read_circulator()` function from `jhur` package using the code supplied in the chunk. Or alternatively using the url link.
67+
Read in the Wastewater Covid Viral Load data from `dasehr` package using the code supplied in the chunk. Alternatively using the url link.
6868

6969
```{r}
70-
circ <- read_circulator()
71-
circ <- read_csv(file = "https://daseh.org/data/Charm_City_Circulator_Ridership.csv")
70+
#wwviral <-
71+
wwviral <- read_csv(file = "https://daseh.org/data/Wastewater_covid_level_data.csv")
7272
```
7373

7474
Use the `str()` function to take a look at the data and learn about the column types.
@@ -79,7 +79,7 @@ Use the `str()` function to take a look at the data and learn about the column t
7979

8080
### 1.7
8181

82-
Use the `mutate()` function to create a new column named `date_formatted` that is of `Date` class. The new variable is created from `date` column. Hint: use `mdy()` function. Reassign to `circ`.
82+
Use the `mutate()` function to create a new column named `date_formatted` that is of `Date` class. The new variable is created from `date` column. Hint: use `mdy()` function. Reassign to `wwviral`.
8383

8484
```
8585
# General format

modules/Data_Classes/lab/Data_Classes_Lab_Key.Rmd

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ library(readr)
1616
library(tidyverse)
1717
library(dplyr)
1818
library(lubridate)
19-
library(jhur)
19+
library(dasehr)
2020
```
2121

2222
Create some data to work with by running the following code chunk.
@@ -69,30 +69,30 @@ rand_char_vect # Numbers now have quotation marks
6969

7070
### 1.6
7171

72-
Read in the Charm City Circulator data using `read_circulator()` function from `jhur` package using the code supplied in the chunk. Or alternatively using the url link.
72+
Read in the Wastewater Covid Viral Load data from `dasehr` package using the code supplied in the chunk. Alternatively using the url link.
7373

7474
```{r}
75-
circ <- read_circulator()
76-
circ <- read_csv(file = "https://daseh.org/data/Charm_City_Circulator_Ridership.csv")
75+
#wwviral <-
76+
wwviral <- read_csv(file = "https://daseh.org/data/Wastewater_covid_level_data.csv")
7777
```
7878

7979
Use the `str()` function to take a look at the data and learn about the column types.
8080

8181
```{r 1.6response}
82-
str(circ)
82+
str(wwviral)
8383
```
8484

8585
### 1.7
8686

87-
Use the `mutate()` function to create a new column named `date_formatted` that is of `Date` class. The new variable is created from `date` column. Hint: use `mdy()` function. Reassign to `circ`.
87+
Use the `mutate()` function to create a new column named `date_formatted` that is of `Date` class. The new variable is created from `date` column. Hint: use `mdy()` function. Reassign to `wwviral`.
8888

8989
```
9090
# General format
9191
NEWDATA <- OLD_DATA %>% mutate(NEW_COLUMN = OLD_COLUMN)
9292
```
9393

9494
```{r 7response}
95-
circ <- mutate(circ, date_formatted = mdy(date))
95+
wwviral <- mutate(wwviral, date_formatted = mdy(date))
9696
```
9797

9898

@@ -108,12 +108,12 @@ NEWDATA <- OLD_DATA %>% relocate(COLUMN1, .before = COLUMN2)
108108
```
109109

110110
```{r P.1response}
111-
circ <- circ %>% relocate(date_formatted, .before = date)
111+
wwviral <- wwviral %>% relocate(date_formatted, .before = Date)
112112
113113
# alternative
114-
# circ <- circ %>% select(day, date_formatted, everything()) %>% head()
114+
# wwviral <- wwviral %>% select(day, date_formatted, everything()) %>% head()
115115
116-
glimpse(circ)
116+
glimpse(wwviral)
117117
118118
```
119119

@@ -122,8 +122,8 @@ glimpse(circ)
122122
Use `range()` function on `date_formatted` variable to display the range of dates in the data set. How does this compare to that of `date`? Why? (Hint: use the pull function first to pull the values.)
123123

124124
```{r P.2response}
125-
pull(circ, date_formatted) %>% range()
126-
pull(circ, date) %>% range()
125+
pull(wwviral, date_formatted) %>% range()
126+
pull(wwviral, date) %>% range()
127127
128-
# The max of `pull(circ, date) %>% range()` is numerical not based on date.
128+
# The max of `pull(wwviral, date) %>% range()` is numerical not based on date.
129129
```

0 commit comments

Comments
 (0)