-select(er_visits, rate:upper95cl) %>% head()
-
-# A tibble: 6 × 3
- rate lower95cl upper95cl
- <dbl> <dbl> <dbl>
-1 5.64 4.70 6.59
-2 7.39 6.30 8.47
-3 6.51 5.80 7.23
-4 5.64 4.72 6.57
-5 7.56 6.48 8.65
-6 6.58 5.88 7.29
+Use the div_100
function we created earlier to convert 0-100 percentiles to proportions.
-select(er_visits, rate:upper95cl) %>%
- sapply(times_2) %>%
+calenviroscreen %>%
+ select(ends_with("Pctl")) %>%
+ sapply(div_100) %>%
head()
- rate lower95cl upper95cl
-[1,] 11.28546 9.395283 13.17564
-[2,] 14.77374 12.597645 16.94983
-[3,] 13.02989 11.593179 14.46660
-[4,] 11.28268 9.430621 13.13474
-[5,] 15.12880 12.959418 17.29817
-[6,] 13.16714 11.750214 14.58407
+ OzonePctl PM2.5.Pctl DieselPMPctl DrinkingWaterPctl LeadPctl
+[1,] 0.0312 0.3627 0.3476 0.0421 0.0774
+[2,] 0.0312 0.4197 0.9271 0.0421 0.6820
+[3,] 0.0312 0.4390 0.8977 0.0421 0.6418
+[4,] 0.0312 0.4281 0.7910 0.0421 0.6708
+[5,] 0.0312 0.4281 0.6758 0.0421 0.6795
+[6,] 0.0312 0.4281 0.8376 0.0421 0.6970
+ PesticidesPctl ToxReleasePctl TrafficPctl CleanupSitesPctl
+[1,] 0 0.5603 0.5594 0.5817
+[2,] 0 0.5543 0.3749 0.0000
+[3,] 0 0.5504 0.4248 0.1183
+[4,] 0 0.5590 0.3800 0.0000
+[5,] 0 0.5648 0.4868 0.3387
+[6,] 0 0.5565 0.6706 0.2262
+ GroundwaterThreatsPctl HazWastePctl ImpWaterBodiesPctl SolidWastePctl
+[1,] 0.5242 0.9252 0.2388 0.3572
+[2,] 0.8793 0.2851 0.0000 0.0000
+[3,] 0.8529 0.7407 0.0000 0.0000
+[4,] 0.9256 0.5189 0.0000 0.0000
+[5,] 0.8434 0.5640 0.0000 0.0000
+[6,] 0.7906 0.5827 0.0000 0.0000
+ PollutionBurdenPctl AsthmaPctl LowBirthWeightPctl
+[1,] 0.2662 0.0444 0.2306
+[2,] 0.2418 0.0980 0.2792
+[3,] 0.3337 0.2657 0.2162
+[4,] 0.2624 0.5598 0.3702
+[5,] 0.3140 0.8838 0.1900
+[6,] 0.3694 0.9307 0.0503
+ CardiovascularDiseasePctl PopCharPctl EducationPctl LinguisticIsolPctl
+[1,] 0.0142 0.0153 0.1255 0.0849
+[2,] 0.1453 0.0165 0.0042 0.0000
+[3,] 0.2011 0.1227 0.2412 0.5336
+[4,] 0.1428 0.1843 0.2029 0.0564
+[5,] 0.3887 0.3016 0.0740 0.1330
+[6,] 0.5278 0.3770 0.0973 0.0627
+ PovertyPctl UnemploymentPctl HousingBurdenPctl
+[1,] 0.1103 NA 0.1939
+[2,] 0.1144 0.1711 0.0067
+[3,] 0.1090 0.2941 0.0981
+[4,] 0.3642 0.1066 0.3748
+[5,] 0.3813 0.2820 0.3748
+[6,] 0.2442 0.7167 0.5407