-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcopuladensitymat_bic.m
59 lines (41 loc) · 1.51 KB
/
copuladensitymat_bic.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
% Compute the pairwise copula density matrix for every pair of connected nodes in the thin-membrane model
% Input parameters: 1) pairwise t copula matrix (testimate)
% 2) GEV location (muGEV) 3) scale (sigmaGEV) 4) shape (xiGEV) matrix
% 5) realizations (x)
% muGEV, sigmaGEV, and xiGEV are column vectors
% Output: 3-D pairwise copula density matrix where each 2-D matrix is
% symmetric
% Output is matrix w as in the paper
function [coppdf, rho_mat, nu_mat, typ_mat] = copuladensitymat_bic(Jp,Fx,typi) %
[n,p] = size(Fx);
% copulamatrix = cell(n,1); %zeros(p,p,n);
[edgerow,edgecol] = find(triu(Jp,1));
nedge = length(edgerow);
id_i = zeros(nedge,1);
id_j = zeros(nedge,1);
rhohat = zeros(nedge,1);
nuhat = zeros(nedge,1);
typ = zeros(nedge,1);
coppdf = zeros(n,nedge);
for k = 1:nedge;
[id_i(k),id_j(k),rhohat(k),nuhat(k),typ(k),coppdf(:,k)] = paircopest_bic(k,Fx,edgerow,edgecol,typi);
end
rho_mat = sparse(p,p);
nu_mat = sparse(p,p);
typ_mat = sparse(p,p);
rho_mat(sub2ind([p,p],id_i,id_j)) = rhohat;
rho_mat = rho_mat + rho_mat.';
nu_mat(sub2ind([p,p],id_i,id_j)) = nuhat;
nu_mat = nu_mat + nu_mat.';
typ_mat(sub2ind([p,p],id_i,id_j)) = typ;
typ_mat = typ_mat + typ_mat.';
% for i = 1:n
% for k = 1:nedge
% copmat = zeros(p,p);
% copmat(id_i(k),id_j(k),:) = coppdf(i,k);
% copmat(id_j(k),id_i(k),:) = coppdf(i,k);
% end
% copulamatrix{i} = sparse(copmat);
% end
% rho_mat = sparse(rho_mat);
% tnu = sparse(tnu);