-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTugas2_AI_1301164662.R
89 lines (69 loc) · 3.01 KB
/
Tugas2_AI_1301164662.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
train <- read.csv("E:/Matkul kuliah/Semester 6/AI/Tugas 2 AI/Dataset/DataTrain Tugas 2 AI.csv", sep = ",")
test <- read.csv("E:/Matkul kuliah/Semester 6/AI/Tugas 2 AI/Dataset/DataTest_Tugas_2_AI.csv", sep = ",")
#Fungsi dari distance untuk menghitung jarak antar attribut
distance <- function(x1, x2){
temp = 0
for(i in c(1:(length(x1)-1) ))
{
temp = temp + (x1[[i]]-x2[[i]])^2
}
temp = sqrt(temp)
return(temp)
}
#Fungsi KNN
K.Nearest.Neighbor <- function(valid, train, k){
# Inisialisasi vector untuk menyimpan prediksi kelas
rowclass <- c()
for(j in 1:nrow(valid)){
# Gabungkan label asli dari datatest dengan distance menjadi satu dataframe
rowvalue <- data.frame("dist" = distance(valid[j,], train), "kelas" = train$kelas)
# Urutkan dataframe berdasarkan jarak secara ascending
rowvalue <- rowvalue[order(rowvalue$dist),]
# Ambil hasil urut dari 1 sampai k dan hitung frekuensi kemunculan label yang ada
predict <- as.data.frame(table(rowvalue[1:k,]$kelas))
# Urutkan dataframe label berdasarkan frekuensi secara DESCENDING
predict <- predict[order(predict$Freq, decreasing = TRUE),]
# Append ke vector label dengan frekuensi maksimal
rowclass <- c(rowclass, as.numeric(as.character(predict$Var1[1])))
}
# Hitung akurasi antara vector prediksi label dengan label asli
acc <- rowclass == valid$kelas
return((length(acc[acc == TRUE]) / length(acc)) * 100)
}
# Pencarian K terbaik
K <-60
fold <- 5
split.data <- nrow(train) / fold
result <- c()
for(i in 1:fold){
# Ambil data validation dan train baru untuk validasi
test.validation <- train[c((1 + split.data*(i-1)) : (split.data*i)),]
train.validation <- train[-c((1 + split.data*(i-1)) : (split.data*i)),]
# inisialisasi vector untuk Tunning Hyperparameter K
accuracy.per.test <- c()
for(k in 1:K){
# Menghitung akurasi tiap K
accuracy.per.test <- c(accuracy.per.test, K.Nearest.Neighbor(test.validation, train.validation, k))
}
result <- rbind(result, accuracy.per.test)
}
train.validation
test.validation
colnames(result) <- 1:K
# Menghitung rata - rata dari semua lipatan setiap K
result <- colSums(result) / nrow(result)
result
# Ambil K dengan akurasi terbaik
K.Terbaik <- as.numeric(names(result[result == max(result)]))
K.Terbaik
plot(result, type = "b", col = "red", col.axis="red", main = "KNN Classification", xlab = "K Value", ylab = "Accuracy")
rowclass <- c()
for(j in 1:nrow(test)){
rowvalue <- data.frame("dist" = distance(test[j,], train), "kelas" = train$kelas)
rowvalue <- rowvalue[order(rowvalue$dist),]
class.predict <- as.data.frame(table(rowvalue[1:K.Terbaik,]$kelas))
class.predict <- class.predict[order(class.predict$Freq, decreasing = TRUE),]
rowclass <- c(rowclass, as.numeric(as.character(class.predict$Var1[1])))
}
rowclass
write.table(rowclass, file = "E:/Matkul kuliah/Semester 6/AI/Tugas 2 AI/Predicttugas2.csv", sep = ",", row.names = FALSE, col.names = "kelas")