-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
149 lines (124 loc) · 4.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
from torch.utils.data import DataLoader
from torch.cuda.amp import GradScaler, autocast
import torch.nn.functional as F
import multiprocessing
import random
import numpy as np
from tqdm.auto import tqdm
from torchinfo import summary
from torchvision.datasets import STL10
from simple_ijepa.ijepa import IJEPA
from simple_ijepa.transformer import VisionTransformer
# from relic.utils import accuracy, get_dataset, get_encoder
from simple_ijepa.stl10_eval import STL10Eval
from simple_ijepa.utils import training_transforms
from simple_ijepa.dataset import MaskedImageDataset, collate_fn
SEED = 42
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
# cosine EMA schedule (increase from tau_base to one) as defined in https://arxiv.org/abs/2010.07922
# k -> current training step, K -> maximum number of training steps
def update_gamma(k, K, tau_base):
k = torch.tensor(k, dtype=torch.float32)
K = torch.tensor(K, dtype=torch.float32)
tau = 1 - (1 - tau_base) * (torch.cos(torch.pi * k / K) + 1) / 2
return tau.item()
def train_ijepa(args):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dim = 512
image_size = 96
patch_size = 8
depth = 6
heads = 6
mlp_dim = dim * 2
num_targets = 4
encoder = VisionTransformer(
image_size=image_size,
patch_size=patch_size,
dim=dim,
depth=depth,
heads=heads,
mlp_dim=mlp_dim,
)
ijepa = IJEPA(encoder,
hidden_emb_dim=dim,
patch_size=patch_size,
num_targets=num_targets)
if args.ckpt_path:
model_state = torch.load(args.ckpt_path)
ijepa.load_state_dict(model_state)
ijepa = ijepa.to(device)
# summary(ijepa, input_size=(2, 3, 96, 96))
params = (list(ijepa.context_encoder.parameters()) + [ijepa.mask_token] +
list(ijepa.predictor.parameters()))
optimizer = torch.optim.Adam(params,
lr=args.learning_rate,
weight_decay=args.weight_decay)
stl10_ds = STL10(
"data/",
split="unlabeled",
download=True,
transform=training_transforms((image_size, image_size)),
)
num_patches = int((image_size // patch_size))**2
dataset = MaskedImageDataset(stl10_ds,
num_patches=num_patches,
num_targets=num_targets)
train_loader = DataLoader(
dataset,
batch_size=args.batch_size,
num_workers=8,
drop_last=False,
pin_memory=True,
collate_fn=collate_fn,
shuffle=True,
)
scaler = GradScaler(enabled=args.fp16_precision)
stl10_eval = STL10Eval()
total_num_steps = (len(train_loader) *
(args.num_epochs + 2)) - args.update_gamma_after_step
gamma = args.gamma
global_step = 0
total_loss = 0.0
for epoch in range(args.num_epochs):
epoch_loss = 0.0
progress_bar = tqdm(train_loader,
desc=f"Epoch {epoch+1}/{args.num_epochs}")
for step, (images, context_indices,
target_indices_list) in enumerate(progress_bar):
images = images.to(device)
with autocast(enabled=args.fp16_precision):
loss = ijepa(images, context_indices, target_indices_list)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
if (global_step > args.update_gamma_after_step
and global_step % args.update_gamma_every_n_steps == 0):
ijepa.update_params(gamma)
gamma = update_gamma(global_step, total_num_steps, args.gamma)
if global_step <= args.update_gamma_after_step:
ijepa.copy_params()
total_loss += loss.item()
epoch_loss += loss.item()
avg_loss = total_loss / (global_step + 1)
ep_loss = epoch_loss / (step + 1)
current_lr = optimizer.param_groups[0]["lr"]
progress_bar.set_description(
f"Epoch {epoch+1}/{args.num_epochs} | "
f"Step {global_step+1} | "
f"Epoch Loss: {ep_loss:.7f} |"
f"Total Loss: {avg_loss:.7f} |"
f"EMA gamma: {gamma:.6f} |"
f"Lr: {current_lr:.6f}")
global_step += 1
if global_step % args.log_every_n_steps == 0:
torch.save(ijepa.state_dict(),
f"{args.save_model_dir}/training_model.pth")
ijepa.save_encoder(f"{args.save_model_dir}/encoder.pth")
if global_step % (args.log_every_n_steps * 5) == 0:
stl10_eval.evaluate(ijepa)
print("!" * 100)