-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathnormalize.cpp
111 lines (101 loc) · 3.12 KB
/
normalize.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include <string.h>
#include <math.h>
#include <iostream>
#include <stdexcept>
#include "FireLog.h"
#include "FireSight.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "jansson.h"
#include "jo_util.hpp"
#include "MatUtil.hpp"
#include "version.h"
using namespace cv;
using namespace std;
using namespace firesight;
bool Pipeline::apply_normalize(json_t *pStage, json_t *pStageModel, Model &model) {
vector<float> domain = jo_vectorf(pStage, "domain", vector<float>(), model.argMap);
vector<float> range = jo_vectorf(pStage, "range", vector<float>(), model.argMap);
double alpha = 1;
double beta = 0;
string normTypeStr = jo_string(pStage, "normType", "NORM_L2", model.argMap);
int normType;
string errMsg;
if (errMsg.empty()) {
if (model.image.depth() == CV_8U) {
if (domain.size() == 0) {
domain.push_back(0);
domain.push_back(255);
}
}
if (domain.size() > 0) {
if (domain.size() != 2 || domain[0] >= domain[1]) {
errMsg = "Expected domain interval with 2 inclusive values (mininum, maximum)";
}
}
}
if (errMsg.empty() && domain.size() > 0) {
if (model.image.depth() == CV_8U) {
if (domain[1] != 255) {
threshold(model.image, model.image, domain[1], domain[1], THRESH_TRUNC);
}
} else {
threshold(model.image, model.image, domain[1], domain[1], THRESH_TRUNC);
}
if (domain[0] != 0) {
subtract(model.image, Scalar::all(domain[0]), model.image);
}
}
if (errMsg.empty()) {
if (model.image.depth() == CV_8U) {
if (range.size() == 0) {
range.push_back(0);
range.push_back(255);
}
}
if (range.size() > 0) {
if (range.size() != 2 || range[0] >= range[1]) {
errMsg = "Expected range interval with 2 values (mininum, maximum)";
}
}
}
if (errMsg.empty()) {
if (normTypeStr.compare("NORM_L2") == 0) {
normType = NORM_L2;
if (model.image.depth() == CV_8U) {
alpha = sqrt((double) model.image.cols * (double) model.image.rows * range[1] * range[1]);
}
} else if (normTypeStr.compare("NORM_L1") == 0) {
normType = NORM_L1;
if (model.image.depth() == CV_8U) {
alpha = (double) model.image.cols * (double) model.image.rows * range[1];
}
} else if (normTypeStr.compare("NORM_INF") == 0) {
normType = NORM_INF;
if (model.image.depth() == CV_8U) {
alpha = range[1];
}
} else if (normTypeStr.compare("NORM_MINMAX") == 0) {
normType = NORM_MINMAX;
if (model.image.depth() == CV_8U) {
alpha = range[0];
beta = range[1];
}
} else {
errMsg = "Unknown normType: ";
errMsg = errMsg + normTypeStr;
}
}
if (errMsg.empty() && normType != NORM_MINMAX) {
if (range[0] != 0) {
errMsg = "Range minimum can only be non-zero for NORM_MINMAX";
}
}
if (errMsg.empty()) {
alpha = jo_float(pStage, "alpha", alpha, model.argMap);
beta = jo_float(pStage, "beta", beta, model.argMap);
normalize(model.image, model.image, alpha, beta, normType);
}
return stageOK("apply_normalize(%s) %s", errMsg.c_str(), pStage, pStageModel);
}