Skip to content

Latest commit

 

History

History
257 lines (195 loc) · 16.5 KB

README.md

File metadata and controls

257 lines (195 loc) · 16.5 KB

CrisisBench: Crisis Dataset for Benchmarks

The CrisisBench dataset consists data from several different data sources such as CrisisLex (CrisisLex26, CrisisLex6), CrisisNLP, SWDM2013, ISCRAM13, Disaster Response Data (DRD), Disasters on Social Media (DSM), CrisisMMD and data from AIDR. The purpose of this work was to map the class label, remove duplicates and provide a benchmark results for the community. More details of this dataset can be found in our work CrisisBench: Benchmarking Crisis-related Social Media Datasets for Humanitarian Information Processing

Table of contents:

Datasets

Download:

Before trying to start running any script, please download the dataset first. More detail of this dataset can be found here: https://crisisnlp.qcri.org/crisis_datasets_benchmarks.html and the associated published papers.

Assuming that your current working directory is YOUR_PATH/crisis_datasets_benchmarks

tar -xvf crisis_datasets_benchmarks_v1.0.tar.gz
mv crisis_datasets_benchmarks_v1.0 YOUR_PATH/crisis_datasets_benchmarks

Directory Structure

  • data/all_data_en -- all combined english dataset used for the experiments
  • data/individual_data_en -- consists of data used for the experiments as individual data source such as crisisnlp and crisislex
  • data/event_aware_en -- all combined english dataset with event tag (fire, earthquake, flood, ...) are tagged
  • data/data_split_all_lang -- all combined dataset with their train/dev and test splits
  • data/initial_filtering -- all combined dataset duplicate removed data
  • data/class_label_mapped -- all combined dataset initial set of dataset where class label mapped

Experiments

Setting up environments to Run CNN based experiments

For CNN based experiments we used python 2.7

Create a virtual environment

python -m venv crisis_cnn_env python=2.7

Activate your virtual environment

source $PATH_TO_ENV/crisis_cnn_env/bin/activate

Install dependencies

pip install -r requirements.txt

Setting up environments to Run BERT based experiments

conda env create -f environment_crisis_bert_env.yml

word2vec model:

Download the word2vec model and place it under your home or current working directory, (https://crisisnlp.qcri.org/data/lrec2016/crisisNLP_word2vec_model_v1.2.zip)

CNN

  • You need to modify the word2vec model path in bin/text_cnn_pipeline_unimodal.py script.
CUDA_VISIBLE_DEVICES=1 python bin/text_cnn_pipeline_unimodal.py -i data/all_events_en/crisis_consolidated_informativeness_filtered_lang_en_train.tsv \
-v data/all_events_en/crisis_consolidated_informativeness_filtered_lang_en_dev.tsv -t data/all_events_en/crisis_consolidated_informativeness_filtered_lang_en_test.tsv \
--log_file checkpoint_log/informativeness_cnn.txt --w2v_checkpoint w2v_models/data_w2v_info_cnn.model -m models/informativeness_cnn.model -l labeled/informativeness_labeled_cnn.tsv \
-o results/informativeness_results_cnn.txt >&log/text_info_cnn.txt &

CUDA_VISIBLE_DEVICES=0 python bin/text_cnn_pipeline_unimodal.py -i data/all_events_en/crisis_consolidated_humanitarian_filtered_lang_en_train.tsv \
-v data/all_events_en/crisis_consolidated_humanitarian_filtered_lang_en_dev.tsv -t data/all_events_en/crisis_consolidated_humanitarian_filtered_lang_en_test.tsv \
--log_file checkpoint_log/humanitarian_cnn.txt --w2v_checkpoint w2v_models/data_w2v_hum_cnn.model -m models/humanitarian_cnn.model -l labeled/humanitarian_labeled_cnn.tsv \
-o results/humanitarian_results_cnn.txt >&log/text_hum_cnn.txt &

Run experiments with CrisisLex dataset

CUDA_VISIBLE_DEVICES=1 python bin/text_cnn_pipeline_unimodal.py -i data/individual_event_en/crisislex_informativeness_filtered_lang_en_train.tsv \
-v data/individual_event_en/crisislex_informativeness_filtered_lang_en_dev.tsv -t data/individual_event_en/crisislex_informativeness_filtered_lang_en_test.tsv \
--log_file checkpoint_log/crisislex_informativeness_cnn.txt --w2v_checkpoint w2v_models/data_w2v_crisislex_informativeness_cnn.model -m models/crisislex_informativeness_cnn.model -l labeled/crisislex_informativeness_labeled_cnn.tsv \
-o results/crisislex_informativeness_results_cnn.txt >&log/text_crisislex_informativeness_cnn.txt &

CUDA_VISIBLE_DEVICES=0 python bin/text_cnn_pipeline_unimodal.py -i data/individual_event_en/crisislex_humanitarian_filtered_lang_en_train.tsv \
-v data/individual_event_en/crisislex_humanitarian_filtered_lang_en_dev.tsv -t data/individual_event_en/crisislex_humanitarian_filtered_lang_en_test.tsv \
--log_file checkpoint_log/crisislex_humanitarian_cnn.txt --w2v_checkpoint w2v_models/data_w2v_crisislex_humanitarian_cnn.model -m models/crisislex_humanitarian_cnn.model -l labeled/crisislex_humanitarian_labeled_cnn.tsv \
-o results/crisislex_humanitarian_results_cnn.txt >&log/text_crisislex_humanitarian_cnn.txt &

Run experiments with CrisisNLP dataset

CUDA_VISIBLE_DEVICES=1 python bin/text_cnn_pipeline_unimodal.py -i data/individual_event_en/crisisnlp_informativeness_filtered_lang_en_train.tsv \
-v data/individual_event_en/crisisnlp_informativeness_filtered_lang_en_dev.tsv -t data/individual_event_en/crisisnlp_informativeness_filtered_lang_en_test.tsv \
--log_file checkpoint_log/crisisnlp_informativeness_cnn.txt --w2v_checkpoint w2v_models/data_w2v_crisisnlp_informativeness_cnn.model -m models/crisisnlp_informativeness_cnn.model -l labeled/crisisnlp_informativeness_labeled_cnn.tsv \
-o results/crisisnlp_informativeness_results_cnn.txt >&log/text_crisisnlp_informativeness_cnn.txt &

CUDA_VISIBLE_DEVICES=0 python bin/text_cnn_pipeline_unimodal.py -i data/individual_event_en/crisisnlp_humanitarian_filtered_lang_en_train.tsv \
-v data/individual_event_en/crisisnlp_humanitarian_filtered_lang_en_dev.tsv -t data/individual_event_en/crisisnlp_humanitarian_filtered_lang_en_test.tsv \
--log_file checkpoint_log/crisisnlp_humanitarian_cnn.txt --w2v_checkpoint w2v_models/data_w2v_crisisnlp_humanitarian_cnn.model -m models/crisisnlp_humanitarian_cnn.model -l labeled/crisisnlp_humanitarian_labeled_cnn.tsv \
-o results/crisisnlp_humanitarian_results_cnn.txt >&log/text_crisisnlp_humanitarian_cnn.txt &

Cross model evaluation

Informativeness task

CUDA_VISIBLE_DEVICES=1 python bin/text_cnn_classifier.py -c models/crisis_consolidated_informativeness_filtered_lang_en_train_text/informativeness_cnn.config \
-d data/individual_event_en/crisisnlp_informativeness_filtered_lang_en_test.tsv -l labeled/crisisnlp_informativeness_filtered_lang_en_test_cnn_model_full_data.tsv -o results/crisisnlp_informativeness_test_results_cnn_model_full_data.txt

CUDA_VISIBLE_DEVICES=1 python bin/text_cnn_classifier.py -c models/crisis_consolidated_informativeness_filtered_lang_en_train_text/informativeness_cnn.config \
-d data/individual_event_en/crisislex_informativeness_filtered_lang_en_test.tsv -l labeled/crisislex_informativeness_filtered_lang_en_test_cnn_model_full_data.tsv -o results/crisislex_informativeness_test_results_cnn_model_full_data.txt

CUDA_VISIBLE_DEVICES=1 python bin/text_cnn_classifier.py -c models/crisisnlp_informativeness_filtered_lang_en_train_text/crisisnlp_informativeness_cnn.config \
-d data/all_events_en/crisis_consolidated_informativeness_filtered_lang_en_test.tsv -l labeled/crisis_consolidated_informativeness_filtered_lang_en_test_cnn_model_crisisnlp_data.tsv -o results/crisis_consolidated_informativeness_test_results_cnn_model_crisisnlp_data.txt

CUDA_VISIBLE_DEVICES=1 python bin/text_cnn_classifier.py -c models/crisislex_informativeness_filtered_lang_en_train_text/crisislex_informativeness_cnn.config \
-d data/all_events_en/crisis_consolidated_informativeness_filtered_lang_en_test.tsv -l labeled/crisis_consolidated_informativeness_filtered_lang_en_test_cnn_model_crisislex_data.tsv -o results/crisis_consolidated_informativeness_test_results_cnn_model_crisislex_data.txt

Humanitarian task

CUDA_VISIBLE_DEVICES=1 python bin/text_cnn_classifier.py -c models/crisis_consolidated_humanitarian_filtered_lang_en_train_text/humanitarian_cnn.config \
-d data/individual_event_en/crisisnlp_humanitarian_filtered_lang_en_test.tsv -l labeled/crisisnlp_humanitarian_filtered_lang_en_test_cnn_model_full_data.tsv -o results/crisisnlp_humanitarian_test_results_cnn_model_full_data.txt

CUDA_VISIBLE_DEVICES=1 python bin/text_cnn_classifier.py -c models/crisis_consolidated_humanitarian_filtered_lang_en_train_text/humanitarian_cnn.config \
-d data/individual_event_en/crisislex_humanitarian_filtered_lang_en_test.tsv -l labeled/crisislex_humanitarian_filtered_lang_en_test_cnn_model_full_data.tsv -o results/crisislex_humanitarian_test_results_cnn_model_full_data.txt

CUDA_VISIBLE_DEVICES=1 python bin/text_cnn_classifier.py -c models/crisislex_humanitarian_filtered_lang_en_train_text/crisislex_humanitarian_cnn.config \
-d data/all_events_en/crisis_consolidated_humanitarian_filtered_lang_en_test.tsv -l labeled/crisis_consolidated_humanitarian_filtered_lang_en_test_cnn_model_crisislex_data.tsv -o results/crisis_consolidated_humanitarian_test_results_cnn_model_crisislex_data.txt

CUDA_VISIBLE_DEVICES=1 python bin/text_cnn_classifier.py -c models/crisisnlp_humanitarian_filtered_lang_en_train_text/crisisnlp_humanitarian_cnn.config \
-d data/all_events_en/crisis_consolidated_humanitarian_filtered_lang_en_test.tsv -l labeled/crisis_consolidated_humanitarian_filtered_lang_en_test_cnn_model_crisisnlp_data.tsv -o results/crisis_consolidated_humanitarian_test_results_cnn_model_crisisnlp_data.txt

BERT model experiments

nohup bash bin/bert_multiclass.sh info data/all_events_en/crisis_consolidated_informativeness_filtered_lang_en_train.tsv data/all_events_en/crisis_consolidated_informativeness_filtered_lang_en_dev.tsv data/all_events_en/crisis_consolidated_informativeness_filtered_lang_en_test.tsv info >&log/bert_info.txt &
nohup bash bin/bert_multiclass.sh hum data/all_events_en/crisis_consolidated_humanitarian_filtered_lang_en_train.tsv data/all_events_en/crisis_consolidated_humanitarian_filtered_lang_en_dev.tsv data/all_events_en/crisis_consolidated_humanitarian_filtered_lang_en_test.tsv hum >&log/bert_hum.txt &

Event aware experiments

CNN

CUDA_VISIBLE_DEVICES=1 python bin/text_cnn_pipeline_unimodal.py -i data/event_aware_en/crisis_consolidated_informativeness_filtered_lang_en_w_event_info_train.tsv \
-v data/event_aware_en/crisis_consolidated_informativeness_filtered_lang_en_w_event_info_dev.tsv -t data/event_aware_en/crisis_consolidated_informativeness_filtered_lang_en_w_event_info_test.tsv \
--log_file checkpoint_log/event-aware_informativeness_cnn.txt --w2v_checkpoint w2v_models/data_w2v_event-aware_info_cnn.model -m models/event-aware_informativeness_cnn.model -l labeled/event-aware_informativeness_labeled_cnn.tsv \
-o results/event-aware_informativeness_results_cnn.txt >&log/event-aware_text_info_cnn.txt &

CUDA_VISIBLE_DEVICES=0 python bin/text_cnn_pipeline_unimodal.py -i data/event_aware_en/crisis_consolidated_humanitarian_filtered_lang_en_w_event_info_train.tsv \
-v data/event_aware_en/crisis_consolidated_humanitarian_filtered_lang_en_w_event_info_dev.tsv -t data/event_aware_en/crisis_consolidated_humanitarian_filtered_lang_en_w_event_info_test.tsv \
--log_file checkpoint_log/event-aware-humanitarian_cnn.txt --w2v_checkpoint w2v_models/data_w2v_event-aware_cnn.model -m models/event-aware_humanitarian_cnn.model -l labeled/event-aware_humanitarian_labeled_cnn.tsv \
-o results/event-aware_humanitarian_results_cnn.txt >&log/event-aware_text_hum_cnn.txt &

BERT

nohup bash bin/bert_multiclass.sh info-event-aware data/event_aware_en/crisis_consolidated_informativeness_filtered_lang_en_w_event_info_train.tsv data/event_aware_en/crisis_consolidated_informativeness_filtered_lang_en_w_event_info_dev.tsv data/event_aware_en/crisis_consolidated_informativeness_filtered_lang_en_w_event_info_test.tsv info-event-aware >&log/bert_info_event-aware.txt &

nohup bash bin/bert_multiclass.sh hum-event-aware data/event_aware_en/crisis_consolidated_humanitarian_filtered_lang_en_w_event_info_train.tsv data/event_aware_en/crisis_consolidated_humanitarian_filtered_lang_en_w_event_info_dev.tsv data/event_aware_en/crisis_consolidated_humanitarian_filtered_lang_en_w_event_info_test.tsv hum-event-aware >&log/bert_hum_event-aware.txt &

Publication

Please cite the following paper if you are using the data:

  • Firoj Alam, Hassan Sajjad, Muhammad Imran and Ferda Ofli, CrisisBench: Benchmarking Crisis-related Social Media Datasets for Humanitarian Information Processing, In ICWSM, 2021. paper
@inproceedings{alam2020standardizing,
  title={CrisisBench: Benchmarking Crisis-related Social Media Datasets for Humanitarian Information Processing},
  author={Alam, Firoj and Sajjad, Hassan and Imran, Muhammad and Ofli, Ferda},
  booktitle={Proceedings of the International AAAI Conference on Web and Social Media},
  series = {ICWSM~'21},
 month={May}, 
 pages={923-932},  
 number={1},
 volume={15}, 
 url={https://ojs.aaai.org/index.php/ICWSM/article/view/18115},
 year={2021}
}

and the following associated papers

  • Muhammad Imran, Prasenjit Mitra, Carlos Castillo. Twitter as a Lifeline: Human-annotated Twitter Corpora for NLP of Crisis-related Messages. In Proceedings of the 10th Language Resources and Evaluation Conference (LREC), 2016, Slovenia.
  • A. Olteanu, S. Vieweg, C. Castillo. 2015. What to Expect When the Unexpected Happens: Social Media Communications Across Crises. In Proceedings of the ACM 2015 Conference on Computer Supported Cooperative Work and Social Computing (CSCW '15). ACM, Vancouver, BC, Canada.
  • A. Olteanu, C. Castillo, F. Diaz, S. Vieweg. 2014. CrisisLex: A Lexicon for Collecting and Filtering Microblogged Communications in Crises. In Proceedings of the AAAI Conference on Weblogs and Social Media (ICWSM'14). AAAI Press, Ann Arbor, MI, USA.
  • Muhammad Imran, Shady Elbassuoni, Carlos Castillo, Fernando Diaz and Patrick Meier. Practical Extraction of Disaster-Relevant Information from Social Media. In Social Web for Disaster Management (SWDM'13) - Co-located with WWW, May 2013, Rio de Janeiro, Brazil.
  • Muhammad Imran, Shady Elbassuoni, Carlos Castillo, Fernando Diaz and Patrick Meier. Extracting Information Nuggets from Disaster-Related Messages in Social Media. In Proceedings of the 10th International Conference on Information Systems for Crisis Response and Management (ISCRAM), May 2013, Baden-Baden, Germany.
@inproceedings{imran2016lrec,
  author = {Muhammad Imran and Prasenjit Mitra and Carlos Castillo},
  title = {Twitter as a Lifeline: Human-annotated Twitter Corpora for NLP of Crisis-related Messages},
  booktitle = {Proc. of the LREC, 2016},
  year = {2016},
  month = {5},
  publisher = {ELRA},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
 }
 @inproceedings{olteanu2015expect,
  title={What to expect when the unexpected happens: Social media communications across crises},
  author={Olteanu, Alexandra and Vieweg, Sarah and Castillo, Carlos},
  booktitle={Proc. of the 18th ACM Conference on Computer Supported Cooperative Work \& Social Computing},
  pages={994--1009},
  year={2015},
  organization={ACM}
}
@inproceedings{olteanu2014crisislex,
  title={CrisisLex: A Lexicon for Collecting and Filtering Microblogged Communications in Crises.},
  author={Olteanu, Alexandra and Castillo, Carlos and Diaz, Fernando and Vieweg, Sarah},
  booktitle = "Proc. of the 8th ICWSM, 2014",
  publisher = "AAAI press",
  year={2014}
}
@inproceedings{imran2013practical,
  title={Practical extraction of disaster-relevant information from social media},
  author={Imran, Muhammad and Elbassuoni, Shady and Castillo, Carlos and Diaz, Fernando and Meier, Patrick},
  booktitle={Proc. of the 22nd WWW},
  pages={1021--1024},
  year={2013},
  organization={ACM}
}
@inproceedings{imran2013extracting,
  title={Extracting information nuggets from disaster-related messages in social media},
  author={Imran, Muhammad and Elbassuoni, Shady Mamoon and Castillo, Carlos and Diaz, Fernando and Meier, Patrick},
  booktitle={Proc. of the 12th ISCRAM},
  year={2013}
}

Licensing

This dataset is published under CC BY-NC-SA 4.0 license, which means everyone can use this dataset for non-commercial research purpose: https://creativecommons.org/licenses/by-nc/4.0/.

Contact

Please check the paper for contact information.