forked from melanieganz/sad_classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprediction_loops.R
293 lines (260 loc) · 12.8 KB
/
prediction_loops.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
####
## DEFINE DATA
####
param <- list()
# param$fMRI <- list()
# param$fMRI$df_name <- dd0
# param$fMRI$nTrainSize <- 16
# param$fMRI$splitType_set <- c('winter', 'summer', 'first', 'random')
# param$fMRI$predvar <- c("angry_lamy", "angry_ramy", "fear_lamy", "fear_ramy", "neutral_lamy", "neutral_ramy")
# param$fMRI$df_name[,param$fMRI$predvar] <- scale(param$fMRI$df_name[,param$fMRI$predvar])
# param$rsfMRI <- list()
# param$rsfMRI$df_name <- dd_rs
# param$rsfMRI$nTrainSize <- 16
# param$rsfMRI$splitType_set <- c('winter', 'summer', 'first', 'random')
# param$rsfMRI$predvar <- paste0('DefaultMode', seq(6))
# param$rsfMRI$df_name[,param$rsfMRI$predvar] <- scale(param$rsfMRI$df_name[,param$rsfMRI$predvar])
#
# param$SB <- list()
# param$SB$df_name <- dd_sb
# param$SB$nTrainSize <- 5
# param$SB$splitType_set <- c('winter', 'summer', 'first', 'random')
# param$SB$predvar <- c('sb.hb', 'sb.neo')
# param$SB$df_name[,param$SB$predvar] <- scale(param$SB$df_name[,param$SB$predvar])
#
# param$DASB <- list()
# param$DASB$df_name <- dd_dasb
# param$DASB$nTrainSize <- 15
# param$DASB$splitType_set <- c('winter', 'summer', 'first', 'random')
# param$DASB$predvar <- c('dasb.hb', 'dasb.neo')
# param$DASB$df_name[,param$DASB$predvar] <- scale(param$DASB$df_name[,param$DASB$predvar])
#
# param$srt <- list()
# param$srt$df_name <- dd_np.srt
# param$srt$nTrainSize <- 20
# param$srt$splitType_set <- c('winter', 'summer', 'first', 'random')
# param$srt$predvar <- c("srt")
# param$srt$df_name[,param$srt$predvar] <- scale(param$srt$df_name[,param$srt$predvar])
#
# param$sdmt_lns <- list()
# param$sdmt_lns$df_name <- dd_np.sdmt_lns
# param$sdmt_lns$nTrainSize <- 20
# param$sdmt_lns$splitType_set <- c('winter', 'summer', 'first', 'random')
# param$sdmt_lns$predvar <- c('sdmt.correct','lns')
# param$sdmt_lns$df_name[,param$sdmt_lns$predvar] <- scale(param$sdmt_lns$df_name[,param$sdmt_lns$predvar])
# param$mixed1 <- list()
# param$mixed1$df_name <- dd_np.all
# param$mixed1$nTrainSize <- 18
# param$mixed1$splitType_set <- c('winter', 'summer', 'random')
# param$mixed1$predvar <- c("neopir.neuroticism","neopir.extraversion","neopir.openness","neopir.agreeableness","neopir.conscientiousness", 'sdmt.correct', 'lns', 'srt')
# param$mixed1$df_name[,param$mixed1$predvar] <- scale(param$mixed1$df_name[,param$mixed1$predvar])
# param$mixed2 <- list()
# param$mixed2$df_name <- dd_fmri_np
# param$mixed2$nTrainSize <- 8
# param$mixed2$splitType_set <- c('winter', 'summer', 'random')
# param$mixed2$predvar <- c("neopir.neuroticism","neopir.extraversion","neopir.openness","neopir.agreeableness","neopir.conscientiousness", 'sdmt.correct', 'lns', 'srt', "angry_lamy", "angry_ramy", "fear_lamy", "fear_ramy", "neutral_lamy", "neutral_ramy")
# param$mixed2$df_name[,param$mixed2$predvar] <- scale(param$mixed2$df_name[,param$mixed2$predvar])
# param$mixed3 <- list()
# param$mixed3$df_name <- dd_rs_faces
# param$mixed3$nTrainSize <- 16
# param$mixed3$splitType_set <- c('winter')#, 'summer', 'random')
# param$mixed3$predvar <- c("angry_lamy", "angry_ramy", "fear_lamy", "fear_ramy", "neutral_lamy", "neutral_ramy", paste0('DefaultMode.', seq(6)))
# param$mixed3$df_name[,param$mixed3$predvar] <- scale(param$mixed3$df_name[,param$mixed3$predvar])
####
## ANALYSIS
####
# Output directory
if (Sys.getenv("LOGNAME") == 'mganz'){
top <- '/data1/Ganz/Project14/Rresults'
} else {
top <- '/data1/patrick/fmri/hvi_trio/sad_classification/'
}
# n random splits
rsplit <- 100
# n permutations
perm <- 1000
startTime <- Sys.time()
print(startTime)
# Performance measures
measure_set <- c('specificity', 'sensitivity', 'accuracy')
for (name in names(param)){
nTrainSize <- param[[name]]$nTrainSize
dd <- param[[name]][['df_name']]
predvar <- param[[name]][['predvar']]
for (splitType in param[[name]][['splitType_set']]){
print(paste0('Working on: ', name, ', ', splitType))
### Derive observed accuracy
## rF
rF_rsplit <- mclapply(seq(rsplit), function(i) {
# set.seed(i)
fx_model(fx_sample(dd, nTrainSize, splitType, predvar=predvar), predvar=predvar, model.type = 'rF')},
mc.cores = 20)
# Contingency table across splits
rF_rsplitTable <- fx_cTable(rF_rsplit)
# Performance measures across splits
rF_rsplitPerf <- fx_modelPerf(rF_rsplitTable, make.c_table = F)
## logistic
logistic_rsplit <- mclapply(seq(rsplit), function(i) {
set.seed(i)
fx_model(fx_sample(dd, nTrainSize, splitType, predvar=predvar), predvar=predvar, model.type = 'logistic')},
mc.cores = 20)
# Contingency table across splits
logistic_rsplitTable <- fx_cTable(logistic_rsplit)
# Performance measures across splits
logistic_rsplitPerf <- fx_modelPerf(logistic_rsplitTable, make.c_table = F)
## svm
svm_rsplit <- mclapply(seq(rsplit), function(i) {
set.seed(i)
fx_model(fx_sample(dd, nTrainSize, splitType, predvar=predvar), predvar=predvar, model.type = 'svm')},
mc.cores = 20)
# Contingency table across splits
svm_rsplitTable <- fx_cTable(svm_rsplit)
# Performance measures across splits
svm_rsplitPerf <- fx_modelPerf(svm_rsplitTable, make.c_table = F)
### Derive null distribution
permOutput <- lapply(seq(perm), function(i){
if (i %% 100 == 0){
print(paste0('Reached perm: ', i, ' at ', Sys.time()))
}
# Set seed so that null distribution is reproducible and consistent across models
set.seed(i)
dd.perm <- fx_scramble(param[[name]]$df_name)
tmp <- mclapply(seq(rsplit), function(j) {
# Set seed so that rsplit of scrambled data is reproducible and consistent across models
set.seed(j)
dd.sample <- fx_sample(dd.perm, nTrainSize, splitType, predvar=predvar)
# Model performance
logisticObj <- fx_model(dd.sample, predvar=predvar, model.type = 'logistic')
rFObj <- fx_model(dd.sample, predvar=predvar, model.type = 'rf')
svmObj <- fx_model(dd.sample, predvar=predvar, model.type = 'svm')
# Return objects for each model type, for each rsplit
return(list(logisticObj = logisticObj, rFObj = rFObj, svmObj = svmObj))},
mc.cores = 20)
# Compute average model performance measures across each rsplit
logisticPerf <- fx_modelPerf(fx_cTable(lapply(seq(rsplit), function(i) tmp[[i]]$logisticObj)), make.c_table = F)
rfPerf <- fx_modelPerf(fx_cTable(lapply(seq(rsplit), function(i) tmp[[i]]$rFObj)), make.c_table = F)
svmPerf <- fx_modelPerf(fx_cTable(lapply(seq(rsplit), function(i) tmp[[i]]$svmObj)), make.c_table = F)
# Return model performance measures for each model type
return(list(logisticPerf = logisticPerf, rfPerf = rfPerf, svmPerf = svmPerf))
})
# Visualize observed model performance against model-specific null distributions
modelPerm.types <- c('logisticPerf', 'rfPerf', 'svmPerf')
modelObs.types <- c('logistic_rsplitPerf', 'rF_rsplitPerf', 'svm_rsplitPerf')
modelTypes <- c('logistic', 'rF', 'svm')
nModelTypes <- length(modelTypes)
pdf(paste0(top, name, '_', splitType, '_', nTrainSize, '_allModels.pdf'))
for (j in seq(nModelTypes)){
for(measure in measure_set){
nullDistribution <- unlist(sapply(seq(perm), function(i) permOutput[[i]][[modelPerm.types[j]]][measure]))
fx_nullComparison(nullDistribution, get(modelObs.types[j]), measure = measure, model.type = modelTypes[j])
}
}
dev.off()
}
}
####
## BOOTSTRAP (not polished)
####
# boot_repeat <- 100
# boot_result <- data.frame(log.spe = rep(0,boot_repeat), log.sen = rep(0,boot_repeat), log.acc = rep(0,boot_repeat), rf.spe = rep(0,boot_repeat), rf.sen = rep(0,boot_repeat), rf.acc = rep(0,boot_repeat), svm.spe = rep(0,boot_repeat), svm.sen = rep(0,boot_repeat), svm.acc = rep(0,boot_repeat))
#
# for (k in seq(boot_repeat)){
# for (name in names(param)){
#
# nTrainSize <- param[[name]]$nTrainSize
# dd <- param[[name]][['df_name']]
# predvar <- param[[name]][['predvar']]
#
# for (splitType in param[[name]][['splitType_set']]){
#
# print(paste0('Working on: ', k))
#
# ### Derive observed accuracy
#
# ## rF
# rF_rsplit <- mclapply(seq(rsplit), function(i) {
# set.seed(i)
# fx_model(fx_sample(dd, nTrainSize, splitType, predvar=predvar), predvar=predvar, model.type = 'rF')},
# mc.cores = 20)
# # Contingency table across splits
# rF_rsplitTable <- fx_cTable(rF_rsplit)
# # Performance measures across splits
# rF_rsplitPerf <- fx_modelPerf(rF_rsplitTable, make.c_table = F)
#
# boot_result[k, 'rf.spe'] <- rF_rsplitPerf$specificity
# boot_result[k, 'rf.sen'] <- rF_rsplitPerf$sensitivity
# boot_result[k, 'rf.acc'] <- rF_rsplitPerf$accuracy
#
# ## logistic
# logistic_rsplit <- mclapply(seq(rsplit), function(i) {
# set.seed(i)
# fx_model(fx_sample(dd, nTrainSize, splitType, predvar=predvar), predvar=predvar, model.type = 'logistic')},
# mc.cores = 20)
# # Contingency table across splits
# logistic_rsplitTable <- fx_cTable(logistic_rsplit)
# # Performance measures across splits
# logistic_rsplitPerf <- fx_modelPerf(logistic_rsplitTable, make.c_table = F)
#
# boot_result[k, 'log.spe'] <- logistic_rsplitPerf$specificity
# boot_result[k, 'log.sen'] <- logistic_rsplitPerf$sensitivity
# boot_result[k, 'log.acc'] <- logistic_rsplitPerf$accuracy
#
# ## svm
# svm_rsplit <- mclapply(seq(rsplit), function(i) {
# set.seed(i)
# fx_model(fx_sample(dd, nTrainSize, splitType, predvar=predvar), predvar=predvar, model.type = 'svm')},
# mc.cores = 20)
# # Contingency table across splits
# svm_rsplitTable <- fx_cTable(svm_rsplit)
# # Performance measures across splits
# svm_rsplitPerf <- fx_modelPerf(svm_rsplitTable, make.c_table = F)
#
# boot_result[k, 'svm.spe'] <- svm_rsplitPerf$specificity
# boot_result[k, 'svm.sen'] <- svm_rsplitPerf$sensitivity
# boot_result[k, 'svm.acc'] <- svm_rsplitPerf$accuracy
# }
# }
# }
#
# lapply(names(boot_result), function (i) {
# print(paste0(i, ': ', paste(quantile(boot_result[,i], probs = c(0.025, 0.975)), collapse = ',')))})
#
#
# rf.acc <- sapply(seq(rsplit), function(i) fx_modelPerf(rF_rsplit[[i]])$accuracy)
# rf.spe <- sapply(seq(rsplit), function(i) fx_modelPerf(rF_rsplit[[i]])$specificity)
# rf.sen <- sapply(seq(rsplit), function(i) fx_modelPerf(rF_rsplit[[i]])$sensitivity)
# log.acc <- sapply(seq(rsplit), function(i) fx_modelPerf(logistic_rsplit[[i]])$accuracy)
# log.spe <- sapply(seq(rsplit), function(i) fx_modelPerf(logistic_rsplit[[i]])$specificity)
# log.sen <- sapply(seq(rsplit), function(i) fx_modelPerf(logistic_rsplit[[i]])$sensitivity)
# svm.acc <- sapply(seq(rsplit), function(i) fx_modelPerf(svm_rsplit[[i]])$accuracy)
# svm.spe <- sapply(seq(rsplit), function(i) fx_modelPerf(svm_rsplit[[i]])$specificity)
# svm.sen <- sapply(seq(rsplit), function(i) fx_modelPerf(svm_rsplit[[i]])$sensitivity)
#
# pdf(paste0(top, 'melPlots.pdf'))
# hist(rf.acc, main = 'rF accuracy')
# abline(v = rF_rsplitPerf$accuracy, lwd = 2, col = 'red', lty = 2)
#
# hist(rf.spe, main = 'rF specificity')
# abline(v = rF_rsplitPerf$specificity, lwd = 2, col = 'red', lty = 2)
#
# hist(rf.sen, main = 'rF sensitivity')
# abline(v = rF_rsplitPerf$sensitivity, lwd = 2, col = 'red', lty = 2)
#
# hist(log.acc, main = 'logistic accuracy')
# abline(v = logistic_rsplitPerf$accuracy, lwd = 2, col = 'red', lty = 2)
#
# hist(log.spe, main = 'logistic specificity')
# abline(v = logistic_rsplitPerf$specificity, lwd = 2, col = 'red', lty = 2)
#
# hist(log.sen, main = 'logistic sensitivity')
# abline(v = logistic_rsplitPerf$sensitivity, lwd = 2, col = 'red', lty = 2)
#
# hist(svm.acc, main = 'svm accuracy')
# abline(v = svm_rsplitPerf$accuracy, lwd = 2, col = 'red', lty = 2)
#
# hist(svm.spe, main = 'svm specificity')
# abline(v = svm_rsplitPerf$specificity, lwd = 2, col = 'red', lty = 2)
#
# hist(svm.sen, main = 'svm sensitivity')
# abline(v = svm_rsplitPerf$sensitivity, lwd = 2, col = 'red', lty = 2)
# dev.off()