Skip to content

Matrix contains Infs or NaNs when fitting #83

Open
@phajy

Description

@phajy

We've run into a problem fitting the SWIFT BAT data where the minimisation algorithm runs into an invalid matrix at some point. Here's an example using the SWIFT BAT dataset. The datasets you need to reproduce these are as follows (in a different repository)

Data: https://github.com/phajy/SWIFT_J0909/blob/main/data/swift_bat/swift_bat_157month.pha
Response: https://github.com/phajy/SWIFT_J0909/blob/main/data/swift_bat/swiftbat_survey_full_157m.rsp

swift_bat_path = "./data/swift_bat/swift_bat_157month.pha"
SpectralFitting.read_fits_header(swift_bat_path; hdu = 3)
SpectralFitting.OGIP.read_paths_from_spectrum(swift_bat_path)
swift_bat_data = SpectralFitting.OGIPDataset(swift_bat_path; rmf_matrix_index = 2, rmf_energy_index = 3)
drop_bad_channels!(swift_bat_data)
regroup!(swift_bat_data)
normalize!(swift_bat_data)

plot(swift_bat_data, xaxis = :log, xrange=[1,200], yaxis = :log, yrange=[1e-8,1e-5])
model = XS_PowerLaw()
prob = FittingProblem(model => swift_bat_data)
result = fit(prob, LevenbergMarquadt())

gives the following error

ERROR: ArgumentError: matrix contains Infs or NaNs
Stacktrace:
  [1] chkfinite
    @ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/lapack.jl:86 [inlined]
  [2] getrf!(A::Matrix{Float64}; check::Bool)
    @ LinearAlgebra.LAPACK ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/lapack.jl:559
  [3] getrf!
    @ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/lapack.jl:557 [inlined]
  [4] #lu!#158
    @ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:82 [inlined]
  [5] lu!
    @ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:81 [inlined]
  [6] #lu#164
    @ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:300 [inlined]
  [7] lu (repeats 2 times)
    @ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:299 [inlined]
  [8] \(A::Matrix{Float64}, B::Vector{Float64})
    @ LinearAlgebra ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/generic.jl:1124
  [9] levenberg_marquardt(df::NLSolversBase.OnceDifferentiable{…}, initial_x::Vector{…}; x_tol::Float64, g_tol::Float64, maxIter::Int64, maxTime::Float64, lambda::Float64, tau::Float64, lambda_increase::Float64, lambda_decrease::Float64, min_step_quality::Float64, good_step_quality::Float64, show_trace::Bool, store_trace::Bool, lower::Vector{…}, upper::Vector{…}, avv!::Nothing)
    @ LsqFit ~/.julia/packages/LsqFit/OglWj/src/levenberg_marquardt.jl:200
 [10] levenberg_marquardt
    @ ~/.julia/packages/LsqFit/OglWj/src/levenberg_marquardt.jl:79 [inlined]
 [11] #lmfit#15
    @ ~/.julia/packages/LsqFit/OglWj/src/curve_fit.jl:82 [inlined]
 [12] lmfit
    @ ~/.julia/packages/LsqFit/OglWj/src/curve_fit.jl:75 [inlined]
 [13] lmfit(f::LsqFit.var"#32#34"{…}, p0::Vector{…}, wt::Vector{…}; autodiff::Symbol, kwargs::@Kwargs{…})
    @ LsqFit ~/.julia/packages/LsqFit/OglWj/src/curve_fit.jl:72
 [14] lmfit
    @ ~/.julia/packages/LsqFit/OglWj/src/curve_fit.jl:54 [inlined]
 [15] curve_fit(model::SpectralFitting.var"#f!!#90"{…}, xdata::Vector{…}, ydata::Vector{…}, wt::Vector{…}, p0::Vector{…}; inplace::Bool, kwargs::@Kwargs{…})
    @ LsqFit ~/.julia/packages/LsqFit/OglWj/src/curve_fit.jl:187
 [16] _lsq_fit(f::Function, x::Vector{…}, y::Vector{…}, cov::Vector{…}, parameters::Vector{…}, alg::LevenbergMarquadt{…}; verbose::Bool, max_iter::Int64, kwargs::@Kwargs{…})
    @ SpectralFitting ~/Documents/GitHub/SWIFT_J0909/dev/SpectralFitting/src/fitting/methods.jl:22
 [17] _lsq_fit
    @ ~/Documents/GitHub/SWIFT_J0909/dev/SpectralFitting/src/fitting/methods.jl:11 [inlined]
 [18] #fit#120
    @ ~/Documents/GitHub/SWIFT_J0909/dev/SpectralFitting/src/fitting/methods.jl:60 [inlined]
 [19] fit(prob::FittingProblem{FittableMultiModel{…}, FittableMultiDataset{…}, Vector{…}}, alg::LevenbergMarquadt{Float64})
    @ SpectralFitting ~/Documents/GitHub/SWIFT_J0909/dev/SpectralFitting/src/fitting/methods.jl:52
 [20] top-level scope
    @ REPL[9]:1
Some type information was truncated. Use `show(err)` to see complete types.

Perhaps the model explores an invalid region of parameter space of becomes zero? I need to do some more investigation but thought I'd start a thread here.

This does work for other datasets, e.g., NuSTAR.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions