Open
Description
We've run into a problem fitting the SWIFT BAT data where the minimisation algorithm runs into an invalid matrix at some point. Here's an example using the SWIFT BAT dataset. The datasets you need to reproduce these are as follows (in a different repository)
Data: https://github.com/phajy/SWIFT_J0909/blob/main/data/swift_bat/swift_bat_157month.pha
Response: https://github.com/phajy/SWIFT_J0909/blob/main/data/swift_bat/swiftbat_survey_full_157m.rsp
swift_bat_path = "./data/swift_bat/swift_bat_157month.pha"
SpectralFitting.read_fits_header(swift_bat_path; hdu = 3)
SpectralFitting.OGIP.read_paths_from_spectrum(swift_bat_path)
swift_bat_data = SpectralFitting.OGIPDataset(swift_bat_path; rmf_matrix_index = 2, rmf_energy_index = 3)
drop_bad_channels!(swift_bat_data)
regroup!(swift_bat_data)
normalize!(swift_bat_data)
plot(swift_bat_data, xaxis = :log, xrange=[1,200], yaxis = :log, yrange=[1e-8,1e-5])
model = XS_PowerLaw()
prob = FittingProblem(model => swift_bat_data)
result = fit(prob, LevenbergMarquadt())
gives the following error
ERROR: ArgumentError: matrix contains Infs or NaNs
Stacktrace:
[1] chkfinite
@ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/lapack.jl:86 [inlined]
[2] getrf!(A::Matrix{Float64}; check::Bool)
@ LinearAlgebra.LAPACK ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/lapack.jl:559
[3] getrf!
@ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/lapack.jl:557 [inlined]
[4] #lu!#158
@ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:82 [inlined]
[5] lu!
@ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:81 [inlined]
[6] #lu#164
@ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:300 [inlined]
[7] lu (repeats 2 times)
@ ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:299 [inlined]
[8] \(A::Matrix{Float64}, B::Vector{Float64})
@ LinearAlgebra ~/.julia/juliaup/julia-1.10.1+0.aarch64.apple.darwin14/share/julia/stdlib/v1.10/LinearAlgebra/src/generic.jl:1124
[9] levenberg_marquardt(df::NLSolversBase.OnceDifferentiable{…}, initial_x::Vector{…}; x_tol::Float64, g_tol::Float64, maxIter::Int64, maxTime::Float64, lambda::Float64, tau::Float64, lambda_increase::Float64, lambda_decrease::Float64, min_step_quality::Float64, good_step_quality::Float64, show_trace::Bool, store_trace::Bool, lower::Vector{…}, upper::Vector{…}, avv!::Nothing)
@ LsqFit ~/.julia/packages/LsqFit/OglWj/src/levenberg_marquardt.jl:200
[10] levenberg_marquardt
@ ~/.julia/packages/LsqFit/OglWj/src/levenberg_marquardt.jl:79 [inlined]
[11] #lmfit#15
@ ~/.julia/packages/LsqFit/OglWj/src/curve_fit.jl:82 [inlined]
[12] lmfit
@ ~/.julia/packages/LsqFit/OglWj/src/curve_fit.jl:75 [inlined]
[13] lmfit(f::LsqFit.var"#32#34"{…}, p0::Vector{…}, wt::Vector{…}; autodiff::Symbol, kwargs::@Kwargs{…})
@ LsqFit ~/.julia/packages/LsqFit/OglWj/src/curve_fit.jl:72
[14] lmfit
@ ~/.julia/packages/LsqFit/OglWj/src/curve_fit.jl:54 [inlined]
[15] curve_fit(model::SpectralFitting.var"#f!!#90"{…}, xdata::Vector{…}, ydata::Vector{…}, wt::Vector{…}, p0::Vector{…}; inplace::Bool, kwargs::@Kwargs{…})
@ LsqFit ~/.julia/packages/LsqFit/OglWj/src/curve_fit.jl:187
[16] _lsq_fit(f::Function, x::Vector{…}, y::Vector{…}, cov::Vector{…}, parameters::Vector{…}, alg::LevenbergMarquadt{…}; verbose::Bool, max_iter::Int64, kwargs::@Kwargs{…})
@ SpectralFitting ~/Documents/GitHub/SWIFT_J0909/dev/SpectralFitting/src/fitting/methods.jl:22
[17] _lsq_fit
@ ~/Documents/GitHub/SWIFT_J0909/dev/SpectralFitting/src/fitting/methods.jl:11 [inlined]
[18] #fit#120
@ ~/Documents/GitHub/SWIFT_J0909/dev/SpectralFitting/src/fitting/methods.jl:60 [inlined]
[19] fit(prob::FittingProblem{FittableMultiModel{…}, FittableMultiDataset{…}, Vector{…}}, alg::LevenbergMarquadt{Float64})
@ SpectralFitting ~/Documents/GitHub/SWIFT_J0909/dev/SpectralFitting/src/fitting/methods.jl:52
[20] top-level scope
@ REPL[9]:1
Some type information was truncated. Use `show(err)` to see complete types.
Perhaps the model explores an invalid region of parameter space of becomes zero? I need to do some more investigation but thought I'd start a thread here.
This does work for other datasets, e.g., NuSTAR.
Metadata
Metadata
Assignees
Labels
No labels