From ec34a963818c0b74c2fd8c130ed497a46ed1bd49 Mon Sep 17 00:00:00 2001 From: axelkelman Date: Tue, 13 Jul 2021 19:47:37 -0300 Subject: [PATCH] elimino basura --- parte_2/#4 - Support Vector Machines.ipynb | 2 +- parte_2/#5 - Red neuronal.ipynb | 332 ++- parte_2/#7 - Random Forest.ipynb | 1219 ---------- parte_2/#7 - Stacking.ipynb | 118 +- parte_2/Basura de Axel.ipynb | 1964 ----------------- parte_2/mejor_modelo/saved_model.pb | Bin 229520 -> 0 bytes .../variables/variables.data-00000-of-00001 | Bin 19773 -> 0 bytes .../mejor_modelo/variables/variables.index | Bin 2563 -> 0 bytes parte_2/sintesis_enunciado.md | 31 - parte_2/t-SNE-poly-red.png | Bin 379129 -> 0 bytes parte_2/t-SNE_23_components.png | Bin 351033 -> 0 bytes 11 files changed, 218 insertions(+), 3448 deletions(-) delete mode 100644 parte_2/#7 - Random Forest.ipynb delete mode 100644 parte_2/Basura de Axel.ipynb delete mode 100644 parte_2/mejor_modelo/saved_model.pb delete mode 100644 parte_2/mejor_modelo/variables/variables.data-00000-of-00001 delete mode 100644 parte_2/mejor_modelo/variables/variables.index delete mode 100644 parte_2/sintesis_enunciado.md delete mode 100644 parte_2/t-SNE-poly-red.png delete mode 100644 parte_2/t-SNE_23_components.png diff --git a/parte_2/#4 - Support Vector Machines.ipynb b/parte_2/#4 - Support Vector Machines.ipynb index c2af58a..dcfd48d 100644 --- a/parte_2/#4 - Support Vector Machines.ipynb +++ b/parte_2/#4 - Support Vector Machines.ipynb @@ -2235,7 +2235,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.5" + "version": "3.8.10" }, "toc-autonumbering": true }, diff --git a/parte_2/#5 - Red neuronal.ipynb b/parte_2/#5 - Red neuronal.ipynb index 2b662e8..ea3c000 100644 --- a/parte_2/#5 - Red neuronal.ipynb +++ b/parte_2/#5 - Red neuronal.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "cb2e3c8d", + "id": "3c6e6efc", "metadata": {}, "source": [ "# Modelo: Red Neuronal" @@ -10,7 +10,7 @@ }, { "cell_type": "markdown", - "id": "a0a1e585", + "id": "1a34677b", "metadata": {}, "source": [ "El modelo a entrenar en el siguiente notebook se tratará de una red neuronal. Por el tipo de modelo del que se trata, iremos mostrando la serie de pasos y decisiones hasta llegar a los hiperparámetros y estructura de la red final, en lugar de realizar dicha busqueda con GridSearch o técnicas similares. Por una cuestión de no extenderse demasiado, buscaremos sintetizar el camino pero intentando mostrar los problemas que surgieron" @@ -18,7 +18,7 @@ }, { "cell_type": "markdown", - "id": "ceae10f3", + "id": "07d4740d", "metadata": {}, "source": [ "## Librerias y funciones necesarias" @@ -26,7 +26,7 @@ }, { "cell_type": "markdown", - "id": "5949ca39", + "id": "a19d6f9e", "metadata": {}, "source": [ "Para comenzar importamos las librerias que utilizaremos. En este caso para la construcción de la red utilizaremos la libreria Keras y para evaluar las metricas utilizaremos Sklearn. Luego importamos las funciones necesarias para los preprocesamientos" @@ -35,7 +35,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "2042a90c", + "id": "23d4d485", "metadata": {}, "outputs": [ { @@ -76,7 +76,7 @@ }, { "cell_type": "markdown", - "id": "b5965668", + "id": "4adf912c", "metadata": {}, "source": [ "Para lograr tener la misma salida realizamos lo siguiente. Es válido aclarar que esto genera la misma salida en la misma cpu, al cambiar, en nuestra experiencia genero salidas parecidas pero podria no suceder. La idea de esto es poder reproducir siempre los mismos resultados si se corre de nuevo el notebook. En ocasiones observamos bastante diferencia según se elija una seed u otra. También lo ejecutaremos previo a cada entrenamiento ya que en algunas ocasiones encontramos error al entrenar si no lo haciamos " @@ -85,7 +85,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "60128447", + "id": "015d6743", "metadata": {}, "outputs": [], "source": [ @@ -97,7 +97,7 @@ }, { "cell_type": "markdown", - "id": "15e9795c", + "id": "867c5092", "metadata": {}, "source": [ "## Primer preprocesamiento" @@ -105,7 +105,7 @@ }, { "cell_type": "markdown", - "id": "316861c8", + "id": "c7aebb57", "metadata": {}, "source": [ "En primer lugar obtenemos el dataset para entrenar y el holdout. En segundo lugar, aplicamos una función que trabaja sobre las features, generalizando algunas y dejando de lado otras según lo observado en la primer parte de este trabajo práctico. También separamos a la variable target del resto del dataset. Por último, convertimos a númericas las variables categoricas para poder entrenar nuestro modelo" @@ -114,7 +114,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "db946612", + "id": "88f5694b", "metadata": {}, "outputs": [ { @@ -133,7 +133,7 @@ }, { "cell_type": "markdown", - "id": "bd46dcb6", + "id": "ac9b077b", "metadata": {}, "source": [ "Luego vamos a realizar un split del dataset para dividir en train y test. Como observamos en la primer parte de este trabajo práctico, la variable target no esta distribuida uniformente por lo cual realizamos una división estratificada" @@ -142,7 +142,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "834819e1", + "id": "ecb1f32a", "metadata": {}, "outputs": [], "source": [ @@ -151,7 +151,7 @@ }, { "cell_type": "markdown", - "id": "3082a00a", + "id": "05cf7c7f", "metadata": {}, "source": [ "### Primer diseño de la red" @@ -159,7 +159,7 @@ }, { "cell_type": "markdown", - "id": "67c88483", + "id": "a69b250d", "metadata": {}, "source": [ "#### Diseño y entrenamiento" @@ -167,7 +167,7 @@ }, { "cell_type": "markdown", - "id": "8c440ffe", + "id": "ebb36204", "metadata": {}, "source": [ "Comenzaremos con una red simple de una capa de 4 neuronas con función de activación Tanh y una ultima capa de una neurona con función de activación Sigmoidea. Esta última capa se repetirá en todas nuestras redes a construir. También se repetirá nuestra función de perdida (binary_crossentropy) y las métricas para evaluar que serán AUC y accuracy. Comenzaremos con SGD como primer optimizador, cuyo larning rate por default es 0.01" @@ -176,7 +176,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "8bfcd9fa", + "id": "ffa44b34", "metadata": {}, "outputs": [], "source": [ @@ -187,7 +187,7 @@ }, { "cell_type": "markdown", - "id": "6ea732d8", + "id": "9e349942", "metadata": {}, "source": [ "Compilamos nuestro primer modelo y observamos un resumen de su composición" @@ -196,7 +196,7 @@ { "cell_type": "code", "execution_count": 6, - "id": "9f328f87", + "id": "aa081cc8", "metadata": {}, "outputs": [ { @@ -226,7 +226,7 @@ }, { "cell_type": "markdown", - "id": "1b39dfdf", + "id": "8a08c3a0", "metadata": {}, "source": [ "Ahora si, realicemos nuestro primer entrenamiento. Primeramente entrenaremos 100 epochs" @@ -235,7 +235,7 @@ { "cell_type": "code", "execution_count": 7, - "id": "df98448b", + "id": "a565ec8a", "metadata": {}, "outputs": [ { @@ -451,7 +451,7 @@ }, { "cell_type": "markdown", - "id": "c6f50f8c", + "id": "2a46cdd5", "metadata": {}, "source": [ "#### Métricas" @@ -459,7 +459,7 @@ }, { "cell_type": "markdown", - "id": "bc6bc5e7", + "id": "3e6e891d", "metadata": {}, "source": [ "Para evaluar los resultados obtenidos, observaremos la curva de aprendizaje tanto de la accuracy como del AUC" @@ -468,7 +468,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "77a0ed63", + "id": "69b2b32d", "metadata": {}, "outputs": [ { @@ -498,7 +498,7 @@ { "cell_type": "code", "execution_count": 9, - "id": "ad85fc78", + "id": "52098701", "metadata": {}, "outputs": [ { @@ -527,7 +527,7 @@ }, { "cell_type": "markdown", - "id": "f85c6f9e", + "id": "adc1d4c2", "metadata": {}, "source": [ "Llegado este punto es importante destacar algunas cosas. En primer lugar, el calculo de AUC provisto por keras tomo una cierta cantidad de samples a la hora de calcular esta metrica (en este caso tomamos 200, que además es lo que toma la función por default) y no es del todo representativa e incluso su valor es distinto al real. Por esto, vamos a calcularlo con la función de sklearn.metrics y de paso aprovecharemos para obtener otras metricas que resultan interesantes para evaluar el modelo" @@ -536,7 +536,7 @@ { "cell_type": "code", "execution_count": 10, - "id": "0c3521c9", + "id": "8689b67a", "metadata": {}, "outputs": [ { @@ -594,7 +594,7 @@ }, { "cell_type": "markdown", - "id": "0b23ee45", + "id": "e115b824", "metadata": {}, "source": [ "Obtuvimos un AUC-ROC de 0.85 tanto para el set de train como para el set de test. Aún así, en otros modelos obtuvimos mejores valores y además el recall con respecto a las instancias de alto valor adquisitivo es bastante bajo. Busquemos complejizar más la red" @@ -602,7 +602,7 @@ }, { "cell_type": "markdown", - "id": "efddc9f7", + "id": "0bcff9ea", "metadata": {}, "source": [ "### Segundo diseño de la red" @@ -610,7 +610,7 @@ }, { "cell_type": "markdown", - "id": "e4016a07", + "id": "daf15e73", "metadata": {}, "source": [ "#### Diseño y entrenamiento" @@ -618,7 +618,7 @@ }, { "cell_type": "markdown", - "id": "af2e14ea", + "id": "d6bd9425", "metadata": {}, "source": [ "Para complejizar la red agregaremos más capas. Como la red se volverá más compleja utilizaremos relu como función de activación" @@ -627,7 +627,7 @@ { "cell_type": "code", "execution_count": 11, - "id": "00c3ee97", + "id": "af3dee79", "metadata": {}, "outputs": [], "source": [ @@ -638,7 +638,7 @@ { "cell_type": "code", "execution_count": 12, - "id": "5f5913c0", + "id": "01ad2404", "metadata": {}, "outputs": [], "source": [ @@ -651,7 +651,7 @@ }, { "cell_type": "markdown", - "id": "c29e1359", + "id": "db9dd890", "metadata": {}, "source": [ "Compilamos y mostramos un resumen de la red" @@ -660,7 +660,7 @@ { "cell_type": "code", "execution_count": 13, - "id": "91c607e5", + "id": "1b06f376", "metadata": {}, "outputs": [ { @@ -694,7 +694,7 @@ }, { "cell_type": "markdown", - "id": "cf4f7e45", + "id": "ba65a35e", "metadata": {}, "source": [ "Vemos que pasamos de alrededor de 100 params a 800. Finalmente, entrenamos nuestra red" @@ -703,7 +703,7 @@ { "cell_type": "code", "execution_count": 14, - "id": "6fb2bdbf", + "id": "b388ae63", "metadata": {}, "outputs": [ { @@ -919,7 +919,7 @@ }, { "cell_type": "markdown", - "id": "306295ea", + "id": "532d60f5", "metadata": {}, "source": [ "#### Métricas" @@ -927,7 +927,7 @@ }, { "cell_type": "markdown", - "id": "3f4fec03", + "id": "71cb4d8d", "metadata": {}, "source": [ "Obtenemos las curvas de aprendizaje y demás metricas para establecer conclusiones" @@ -936,7 +936,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "f812c9e0", + "id": "307342af", "metadata": {}, "outputs": [ { @@ -966,7 +966,7 @@ { "cell_type": "code", "execution_count": 16, - "id": "c82f0b13", + "id": "73e4671a", "metadata": {}, "outputs": [ { @@ -996,7 +996,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "716e6f63", + "id": "a407e360", "metadata": {}, "outputs": [ { @@ -1054,7 +1054,7 @@ }, { "cell_type": "markdown", - "id": "cb5d19a1", + "id": "c9506456", "metadata": {}, "source": [ "Visualizando lo obtenido vemos una mejora interesante. No solo obtuvimos un mejor score de AUC-ROC sino que mejoro mucho el recall de la clase de altos ingresos. Aun así notamos algunos problemas en la curva de aprendizaje de la metrica accuracy. Por lo que probaremos bajar el learning rate " @@ -1062,7 +1062,7 @@ }, { "cell_type": "markdown", - "id": "cbcf2e02", + "id": "eb851510", "metadata": {}, "source": [ "### Tercer diseño de la red" @@ -1070,7 +1070,7 @@ }, { "cell_type": "markdown", - "id": "6d566b34", + "id": "feab3361", "metadata": {}, "source": [ "#### Diseño y entrenamiento" @@ -1078,7 +1078,7 @@ }, { "cell_type": "markdown", - "id": "6d7c69af", + "id": "a9663bfc", "metadata": {}, "source": [ "Realizaremos el mismo entrenamiento que antes pero bajando el learning rate (hasta ahora utilizabamos el default de SGD que es 0.01)" @@ -1087,7 +1087,7 @@ { "cell_type": "code", "execution_count": 18, - "id": "96649fde", + "id": "451d3b3c", "metadata": {}, "outputs": [], "source": [ @@ -1098,7 +1098,7 @@ { "cell_type": "code", "execution_count": 19, - "id": "4e1426fb", + "id": "60735abc", "metadata": {}, "outputs": [], "source": [ @@ -1111,7 +1111,7 @@ }, { "cell_type": "markdown", - "id": "97fce84d", + "id": "f477ca38", "metadata": {}, "source": [ "Compilamos y mostramos un resumen de la red" @@ -1120,7 +1120,7 @@ { "cell_type": "code", "execution_count": 20, - "id": "733a4672", + "id": "8bd5d25e", "metadata": {}, "outputs": [ { @@ -1154,7 +1154,7 @@ }, { "cell_type": "markdown", - "id": "d11eab1b", + "id": "d1c58e64", "metadata": {}, "source": [ "Entrenamos aumentando también la cantidad de epochs. Sino aumentasemos los epochs parecia que la red podia seguir aprendiendo (esperable al haber disminuido el learning rate)" @@ -1163,7 +1163,7 @@ { "cell_type": "code", "execution_count": 21, - "id": "7ec7de08", + "id": "e05534d5", "metadata": {}, "outputs": [ { @@ -1879,7 +1879,7 @@ }, { "cell_type": "markdown", - "id": "612ef44f", + "id": "86367a27", "metadata": {}, "source": [ "#### Métricas" @@ -1887,7 +1887,7 @@ }, { "cell_type": "markdown", - "id": "22665121", + "id": "d28c658c", "metadata": {}, "source": [ "Obtenemos las curvas de aprendizaje y demás metricas para establecer conclusiones" @@ -1896,7 +1896,7 @@ { "cell_type": "code", "execution_count": 22, - "id": "d6666a05", + "id": "d85fc72f", "metadata": {}, "outputs": [ { @@ -1926,7 +1926,7 @@ { "cell_type": "code", "execution_count": 23, - "id": "14f90c21", + "id": "d77830a8", "metadata": {}, "outputs": [ { @@ -1956,7 +1956,7 @@ { "cell_type": "code", "execution_count": 24, - "id": "c270b58f", + "id": "00a70579", "metadata": {}, "outputs": [ { @@ -2014,7 +2014,7 @@ }, { "cell_type": "markdown", - "id": "42711a94", + "id": "d02beb01", "metadata": {}, "source": [ "Si bien se estabilizo un poco mas el entrenamiento, perdimos score en metricas. Es importante destacar que la curva de aprendizaje viendo la métrica accuracy se estanca durante muchos epochs. Busquemos usar un mejor optimizador (en cuanto a complejidad del mismo)" @@ -2022,7 +2022,7 @@ }, { "cell_type": "markdown", - "id": "3e37e2fe", + "id": "d19b7021", "metadata": {}, "source": [ "### Cuarto entrenamiento" @@ -2030,7 +2030,7 @@ }, { "cell_type": "markdown", - "id": "ce10fc19", + "id": "061d44a1", "metadata": {}, "source": [ "#### Diseño" @@ -2038,7 +2038,7 @@ }, { "cell_type": "markdown", - "id": "16d39413", + "id": "f6edae2a", "metadata": {}, "source": [ "Ahora cambiamos el optimizador por RMSprop y agregamos algo de regularización ya que sino corremos riesgo de overfittear" @@ -2047,7 +2047,7 @@ { "cell_type": "code", "execution_count": 25, - "id": "734975ae", + "id": "a7b6e15d", "metadata": {}, "outputs": [], "source": [ @@ -2058,7 +2058,7 @@ { "cell_type": "code", "execution_count": 26, - "id": "786f165a", + "id": "28acb53c", "metadata": {}, "outputs": [], "source": [ @@ -2071,7 +2071,7 @@ }, { "cell_type": "markdown", - "id": "9cd8ba7b", + "id": "4f433413", "metadata": {}, "source": [ "Compilamos y mostramos un resumen de la red" @@ -2080,7 +2080,7 @@ { "cell_type": "code", "execution_count": 27, - "id": "da5c6197", + "id": "27f3980e", "metadata": {}, "outputs": [ { @@ -2114,7 +2114,7 @@ }, { "cell_type": "markdown", - "id": "658bd8b8", + "id": "f6539f7e", "metadata": {}, "source": [ "Entrenamos 200 epochs" @@ -2123,7 +2123,7 @@ { "cell_type": "code", "execution_count": 28, - "id": "d8bcfeaf", + "id": "133dcc66", "metadata": {}, "outputs": [ { @@ -2539,7 +2539,7 @@ }, { "cell_type": "markdown", - "id": "d9c4bf0a", + "id": "cb7744c6", "metadata": {}, "source": [ "#### Métricas" @@ -2547,7 +2547,7 @@ }, { "cell_type": "markdown", - "id": "6270bd11", + "id": "1e099c00", "metadata": {}, "source": [ "Obtenemos las curvas de aprendizaje y demás metricas para establecer conclusiones" @@ -2556,7 +2556,7 @@ { "cell_type": "code", "execution_count": 29, - "id": "9d08735f", + "id": "a19da9b8", "metadata": {}, "outputs": [ { @@ -2586,7 +2586,7 @@ { "cell_type": "code", "execution_count": 30, - "id": "d79cab18", + "id": "0701d2ce", "metadata": {}, "outputs": [ { @@ -2616,7 +2616,7 @@ { "cell_type": "code", "execution_count": 31, - "id": "1a6aaaf1", + "id": "ef408d81", "metadata": {}, "outputs": [ { @@ -2674,7 +2674,7 @@ }, { "cell_type": "markdown", - "id": "c2234f8a", + "id": "ce128f39", "metadata": {}, "source": [ "Observamos que mejoro considerablemente el AUC-ROC. También se observan mejoras significativas en la medición de precision y recall de la clase con altos ingresos. Por último, destacar la estabilización de la curva de aprendizaje" @@ -2682,7 +2682,7 @@ }, { "cell_type": "markdown", - "id": "959c641b", + "id": "05124660", "metadata": {}, "source": [ "### Quinto entrenamiento" @@ -2690,7 +2690,7 @@ }, { "cell_type": "markdown", - "id": "4281f80a", + "id": "85a84f4e", "metadata": {}, "source": [ "#### Diseño" @@ -2698,7 +2698,7 @@ }, { "cell_type": "markdown", - "id": "392b4eb0", + "id": "f3bf83bf", "metadata": {}, "source": [ "Realizamos un retoque final a la red, modificando la regularización a l1 y agregando una capa más de 16 neuronas. No agrandamos más al red en este caso porque no encontramos mejora alguna e incluso empeoraba en algunas configuraciones" @@ -2707,7 +2707,7 @@ { "cell_type": "code", "execution_count": 32, - "id": "34f7a519", + "id": "ee092ef3", "metadata": {}, "outputs": [], "source": [ @@ -2718,7 +2718,7 @@ { "cell_type": "code", "execution_count": 33, - "id": "267d9c44", + "id": "4d421277", "metadata": {}, "outputs": [], "source": [ @@ -2732,7 +2732,7 @@ }, { "cell_type": "markdown", - "id": "d4c4b22e", + "id": "6074d8ec", "metadata": {}, "source": [ "Compilamos y mostramos un resumen de la red" @@ -2741,7 +2741,7 @@ { "cell_type": "code", "execution_count": 34, - "id": "2546b39e", + "id": "48499248", "metadata": {}, "outputs": [ { @@ -2777,7 +2777,7 @@ }, { "cell_type": "markdown", - "id": "fc819eb8", + "id": "4e6bde3e", "metadata": {}, "source": [ "Tenemos 1200 params, mientrás que anteriormente teniamos aproximadamente 800" @@ -2786,7 +2786,7 @@ { "cell_type": "code", "execution_count": 35, - "id": "7f2e4e11", + "id": "ee9dccf8", "metadata": {}, "outputs": [ { @@ -3202,7 +3202,7 @@ }, { "cell_type": "markdown", - "id": "1142cef0", + "id": "b5deae04", "metadata": {}, "source": [ "#### Métricas" @@ -3210,7 +3210,7 @@ }, { "cell_type": "markdown", - "id": "ff0f574f", + "id": "b30fb083", "metadata": {}, "source": [ "Obtenemos las curvas de aprendizaje y demás metricas para establecer conclusiones" @@ -3219,7 +3219,7 @@ { "cell_type": "code", "execution_count": 36, - "id": "634188be", + "id": "c979d373", "metadata": {}, "outputs": [ { @@ -3249,7 +3249,7 @@ { "cell_type": "code", "execution_count": 37, - "id": "93a36827", + "id": "0d2bdcc9", "metadata": {}, "outputs": [ { @@ -3279,7 +3279,7 @@ { "cell_type": "code", "execution_count": 38, - "id": "9d82df7a", + "id": "7e6f8236", "metadata": {}, "outputs": [ { @@ -3337,7 +3337,7 @@ }, { "cell_type": "markdown", - "id": "3e5b14ab", + "id": "ac4e4dcc", "metadata": {}, "source": [ "Observamos que mejoro levemente el AUC-ROC y también mejoro el recall en la clase de altos ingresos. Pasamos al siguiente preprocesamiento" @@ -3345,7 +3345,7 @@ }, { "cell_type": "markdown", - "id": "a17843e6", + "id": "023544fd", "metadata": {}, "source": [ "## Segundo preprocesamiento" @@ -3353,7 +3353,7 @@ }, { "cell_type": "markdown", - "id": "f1b9e7de", + "id": "ba491670", "metadata": {}, "source": [ "Volveremos a entrenar una red, pero en este caso realizaremos otro preprocesamiento a nuestros datos. Volvemos a cargar el dataset" @@ -3362,7 +3362,7 @@ { "cell_type": "code", "execution_count": 40, - "id": "09d26076", + "id": "5092b20b", "metadata": {}, "outputs": [], "source": [ @@ -3371,7 +3371,7 @@ }, { "cell_type": "markdown", - "id": "1ed47afc", + "id": "1886bc78", "metadata": {}, "source": [ "Realizamos nuesttro nuevo preprocesado. En este caso se trata de una modificación mas leve a nuestras features en donde no agruparemos como lo hicimos en el primer preprocesado (por ejemplo en la educación). Además, tendremos en cuenta a la feature barrio, generalizando entre los residente en Palermo y los no residentes en Palermo. Luego, escalamos nuestro datos con StandardScaler de sklearn" @@ -3380,7 +3380,7 @@ { "cell_type": "code", "execution_count": 41, - "id": "7fb82fa5", + "id": "4edcb337", "metadata": {}, "outputs": [ { @@ -3398,7 +3398,7 @@ }, { "cell_type": "markdown", - "id": "c6e8bd3d", + "id": "80bd22a1", "metadata": {}, "source": [ "Observemos cuantas features tenemos" @@ -3407,7 +3407,7 @@ { "cell_type": "code", "execution_count": 42, - "id": "c682d3a1", + "id": "2af47f71", "metadata": {}, "outputs": [ { @@ -3427,7 +3427,7 @@ }, { "cell_type": "markdown", - "id": "9ef47f08", + "id": "3a10b98f", "metadata": {}, "source": [ "Luego vamos a realizar un split del dataset para dividir en train y test" @@ -3436,7 +3436,7 @@ { "cell_type": "code", "execution_count": 43, - "id": "8b31039b", + "id": "dceda997", "metadata": {}, "outputs": [], "source": [ @@ -3445,7 +3445,7 @@ }, { "cell_type": "markdown", - "id": "5ee87f17", + "id": "2aa9be49", "metadata": {}, "source": [ "Finalemente, escalamos los datos" @@ -3454,7 +3454,7 @@ { "cell_type": "code", "execution_count": 44, - "id": "d7e438f1", + "id": "00f57429", "metadata": {}, "outputs": [], "source": [ @@ -3464,7 +3464,7 @@ }, { "cell_type": "markdown", - "id": "4e66e87b", + "id": "991e41ee", "metadata": {}, "source": [ "### Primer diseño de la red" @@ -3472,7 +3472,7 @@ }, { "cell_type": "markdown", - "id": "356c2265", + "id": "500a8925", "metadata": {}, "source": [ "#### Diseño" @@ -3480,7 +3480,7 @@ }, { "cell_type": "markdown", - "id": "bfd5fb6c", + "id": "1225651a", "metadata": {}, "source": [ "Como ya fuimos de menos a más en el anterior preprocesado, comenzemos con una red algo más compleja. Usaremos función de activación relu en las capas, optimizador SGD (learning rate 0.01) y obviamente sigmoidea como función de activación en la última capa" @@ -3489,7 +3489,7 @@ { "cell_type": "code", "execution_count": 45, - "id": "f09343a0", + "id": "e1a0f821", "metadata": {}, "outputs": [], "source": [ @@ -3500,7 +3500,7 @@ { "cell_type": "code", "execution_count": 46, - "id": "e7862c31", + "id": "f8b36eef", "metadata": {}, "outputs": [], "source": [ @@ -3513,7 +3513,7 @@ }, { "cell_type": "markdown", - "id": "d32a3985", + "id": "3fc69163", "metadata": {}, "source": [ "Vemos un resumen de nuestra red" @@ -3522,7 +3522,7 @@ { "cell_type": "code", "execution_count": 47, - "id": "fc9934f2", + "id": "583adb74", "metadata": {}, "outputs": [ { @@ -3556,7 +3556,7 @@ }, { "cell_type": "markdown", - "id": "97f8e1d3", + "id": "a80fe49d", "metadata": {}, "source": [ "Finalmente entrenamos" @@ -3565,7 +3565,7 @@ { "cell_type": "code", "execution_count": 48, - "id": "495902e2", + "id": "ce16fb58", "metadata": {}, "outputs": [ { @@ -3981,7 +3981,7 @@ }, { "cell_type": "markdown", - "id": "067cd491", + "id": "89b373a3", "metadata": {}, "source": [ "#### Métricas" @@ -3989,7 +3989,7 @@ }, { "cell_type": "markdown", - "id": "d38b10a8", + "id": "2e1417ea", "metadata": {}, "source": [ "Obtenemos las curvas de aprendizaje y demás metricas para establecer conclusiones" @@ -3998,7 +3998,7 @@ { "cell_type": "code", "execution_count": 49, - "id": "7b8cdcd8", + "id": "a6223960", "metadata": {}, "outputs": [ { @@ -4028,7 +4028,7 @@ { "cell_type": "code", "execution_count": 50, - "id": "1f64c554", + "id": "dd265828", "metadata": {}, "outputs": [ { @@ -4058,7 +4058,7 @@ { "cell_type": "code", "execution_count": 51, - "id": "2f2db9be", + "id": "ed548352", "metadata": {}, "outputs": [ { @@ -4116,7 +4116,7 @@ }, { "cell_type": "markdown", - "id": "0f1690b1", + "id": "1d27a41e", "metadata": {}, "source": [ "Lo obtenido es muy prometedor, practicamente empato los resultados del último modelo del primer preprocesado. Veamos que sucede si mejoramos el optimizador" @@ -4124,7 +4124,7 @@ }, { "cell_type": "markdown", - "id": "b5eb3c0e", + "id": "1a4fdb87", "metadata": {}, "source": [ "### Segundo diseño de la red" @@ -4132,7 +4132,7 @@ }, { "cell_type": "markdown", - "id": "48034b57", + "id": "406c65ab", "metadata": {}, "source": [ "#### Diseño" @@ -4140,7 +4140,7 @@ }, { "cell_type": "markdown", - "id": "ad8de06d", + "id": "0a2a47d1", "metadata": {}, "source": [ "Seguiremos con la misma estrucctura pero modificando el learning rate a 0.0001 y cambiando el optimziador" @@ -4149,7 +4149,7 @@ { "cell_type": "code", "execution_count": 52, - "id": "0e01edea", + "id": "7e0f4bde", "metadata": {}, "outputs": [], "source": [ @@ -4160,7 +4160,7 @@ { "cell_type": "code", "execution_count": 53, - "id": "18f572f6", + "id": "07e565ae", "metadata": {}, "outputs": [], "source": [ @@ -4173,7 +4173,7 @@ }, { "cell_type": "markdown", - "id": "d7f8b482", + "id": "042ec4b2", "metadata": {}, "source": [ "Vemos un resumen de nuestra red" @@ -4182,7 +4182,7 @@ { "cell_type": "code", "execution_count": 54, - "id": "d54b6a6e", + "id": "ce8b173a", "metadata": {}, "outputs": [ { @@ -4216,7 +4216,7 @@ }, { "cell_type": "markdown", - "id": "761a20c1", + "id": "f0e8cf9b", "metadata": {}, "source": [ "Finalmente entrenamos" @@ -4225,7 +4225,7 @@ { "cell_type": "code", "execution_count": 55, - "id": "63bcc1dd", + "id": "e570f658", "metadata": {}, "outputs": [ { @@ -4641,7 +4641,7 @@ }, { "cell_type": "markdown", - "id": "bdd1ee3f", + "id": "3ade77cc", "metadata": {}, "source": [ "#### Métricas" @@ -4649,7 +4649,7 @@ }, { "cell_type": "markdown", - "id": "f65853c9", + "id": "31e56864", "metadata": {}, "source": [ "Obtenemos las curvas de aprendizaje y demás metricas para establecer conclusiones" @@ -4658,7 +4658,7 @@ { "cell_type": "code", "execution_count": 56, - "id": "d632408f", + "id": "3f3659bc", "metadata": {}, "outputs": [ { @@ -4688,7 +4688,7 @@ { "cell_type": "code", "execution_count": 57, - "id": "a6199d3b", + "id": "5708967a", "metadata": {}, "outputs": [ { @@ -4718,7 +4718,7 @@ { "cell_type": "code", "execution_count": 58, - "id": "c5eba18d", + "id": "f694f2b9", "metadata": {}, "outputs": [ { @@ -4776,7 +4776,7 @@ }, { "cell_type": "markdown", - "id": "624b4da8", + "id": "d51b2b66", "metadata": {}, "source": [ "Observamos un incrememento en la métrica AUC-ROC. Busquemos seguir complejizando la red" @@ -4784,7 +4784,7 @@ }, { "cell_type": "markdown", - "id": "2b8af1b6", + "id": "4e8e184d", "metadata": {}, "source": [ "### Tercer diseño de la red" @@ -4792,7 +4792,7 @@ }, { "cell_type": "markdown", - "id": "74e6d729", + "id": "a2660ec0", "metadata": {}, "source": [ "#### Diseño" @@ -4800,7 +4800,7 @@ }, { "cell_type": "markdown", - "id": "abda52e1", + "id": "f6cee34d", "metadata": {}, "source": [ "Buscaremos agrandar la red para ver si obtenemos mejores resultados. Como corremos riesgo de overfittear, utilizaremos regularizaión l1" @@ -4809,7 +4809,7 @@ { "cell_type": "code", "execution_count": 59, - "id": "acc585ca", + "id": "617af526", "metadata": {}, "outputs": [], "source": [ @@ -4820,7 +4820,7 @@ { "cell_type": "code", "execution_count": 60, - "id": "4d510ab1", + "id": "d592bdfc", "metadata": {}, "outputs": [], "source": [ @@ -4835,7 +4835,7 @@ }, { "cell_type": "markdown", - "id": "4bd8b526", + "id": "86349475", "metadata": {}, "source": [ "Vemos un resumen de nuestra red" @@ -4844,7 +4844,7 @@ { "cell_type": "code", "execution_count": 61, - "id": "98a1228e", + "id": "d3555800", "metadata": {}, "outputs": [ { @@ -4882,7 +4882,7 @@ }, { "cell_type": "markdown", - "id": "7148fa9d", + "id": "76f155be", "metadata": {}, "source": [ "Finalmente entrenamos" @@ -4891,7 +4891,7 @@ { "cell_type": "code", "execution_count": 62, - "id": "8df46098", + "id": "aa949db2", "metadata": {}, "outputs": [ { @@ -5307,7 +5307,7 @@ }, { "cell_type": "markdown", - "id": "a9d88151", + "id": "eb8ddd07", "metadata": {}, "source": [ "#### Métricas" @@ -5315,7 +5315,7 @@ }, { "cell_type": "markdown", - "id": "6d875a22", + "id": "422f388d", "metadata": {}, "source": [ "Obtenemos las curvas de aprendizaje y demás metricas para establecer conclusiones" @@ -5324,7 +5324,7 @@ { "cell_type": "code", "execution_count": 63, - "id": "4dc657f6", + "id": "a6755eac", "metadata": {}, "outputs": [ { @@ -5354,7 +5354,7 @@ { "cell_type": "code", "execution_count": 64, - "id": "f35279ea", + "id": "6f9666ef", "metadata": {}, "outputs": [ { @@ -5384,7 +5384,7 @@ { "cell_type": "code", "execution_count": 65, - "id": "c4bc18ea", + "id": "4483aa15", "metadata": {}, "outputs": [ { @@ -5442,7 +5442,7 @@ }, { "cell_type": "markdown", - "id": "f4daf8c5", + "id": "4ebe8e17", "metadata": {}, "source": [ "Observamos que practicamente obtuvimos los mismo resultados que en el entrenamiento anterior por lo que pararemos aquí" @@ -5450,7 +5450,7 @@ }, { "cell_type": "markdown", - "id": "58d32289", + "id": "6fefb6fa", "metadata": {}, "source": [ "## Holdout" @@ -5458,7 +5458,7 @@ }, { "cell_type": "markdown", - "id": "50d9a476", + "id": "d1dc9bac", "metadata": {}, "source": [ "Realizamos el testeo en el holdout" @@ -5467,7 +5467,7 @@ { "cell_type": "code", "execution_count": 72, - "id": "210eecf6", + "id": "10a30f46", "metadata": {}, "outputs": [], "source": [ @@ -5477,7 +5477,7 @@ { "cell_type": "code", "execution_count": 73, - "id": "ea6b5750", + "id": "8cc97451", "metadata": {}, "outputs": [], "source": [ @@ -5488,7 +5488,7 @@ }, { "cell_type": "markdown", - "id": "fe97a5c7", + "id": "3f112803", "metadata": {}, "source": [ "Luego aplicamos el preprocesado correspondiente" @@ -5497,7 +5497,7 @@ { "cell_type": "code", "execution_count": 74, - "id": "871a4b72", + "id": "1dbed93b", "metadata": {}, "outputs": [ { @@ -5514,7 +5514,7 @@ }, { "cell_type": "markdown", - "id": "f9f762b4", + "id": "389d6158", "metadata": {}, "source": [ "Y escalamos" @@ -5523,7 +5523,7 @@ { "cell_type": "code", "execution_count": 75, - "id": "b9072ec5", + "id": "f7a52970", "metadata": {}, "outputs": [], "source": [ @@ -5532,7 +5532,7 @@ }, { "cell_type": "markdown", - "id": "d420baff", + "id": "af0c58a8", "metadata": {}, "source": [ "Predecimos" @@ -5540,35 +5540,19 @@ }, { "cell_type": "code", - "execution_count": 79, - "id": "6b6d882a", + "execution_count": 80, + "id": "2f6f0ff6", "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "'int' object is not callable", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0my_pred_holdout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel_2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_holdout_numerico\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mround\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mX_holdout\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'tiene_alto_valor_adquisitivo'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0my_pred_holdout\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mX_holdout\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'tiene_alto_valor_adquisitivo'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX_holdout\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'tiene_alto_valor_adquisitivo'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/.local/lib/python3.8/site-packages/pandas/core/series.py\u001b[0m in \u001b[0;36mmap\u001b[0;34m(self, arg, na_action)\u001b[0m\n\u001b[1;32m 3980\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3981\u001b[0m \"\"\"\n\u001b[0;32m-> 3982\u001b[0;31m \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_map_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mna_action\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mna_action\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3983\u001b[0m return self._constructor(new_values, index=self.index).__finalize__(\n\u001b[1;32m 3984\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"map\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.local/lib/python3.8/site-packages/pandas/core/base.py\u001b[0m in \u001b[0;36m_map_values\u001b[0;34m(self, mapper, na_action)\u001b[0m\n\u001b[1;32m 1158\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1159\u001b[0m \u001b[0;31m# mapper is a function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1160\u001b[0;31m \u001b[0mnew_values\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmap_f\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmapper\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1161\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1162\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnew_values\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32mpandas/_libs/lib.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.map_infer\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: 'int' object is not callable" - ] - } - ], + "outputs": [], "source": [ "y_pred_holdout = model_2.predict(X_holdout_numerico).round().astype(int)\n", - "X_holdout['tiene_alto_valor_adquisitivo'] = y_pred_holdout\n", - "X_holdout['tiene_alto_valor_adquisitivo'] = X_holdout['tiene_alto_valor_adquisitivo'].map(int())" + "X_holdout['tiene_alto_valor_adquisitivo'] = y_pred_holdout" ] }, { "cell_type": "code", - "execution_count": null, - "id": "0ad11f94", + "execution_count": 81, + "id": "5741f0dd", "metadata": {}, "outputs": [], "source": [ diff --git a/parte_2/#7 - Random Forest.ipynb b/parte_2/#7 - Random Forest.ipynb deleted file mode 100644 index b54f7ab..0000000 --- a/parte_2/#7 - Random Forest.ipynb +++ /dev/null @@ -1,1219 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "45ff8243", - "metadata": {}, - "source": [ - "# Vamos ahora con un ensamble de arboles de decisión" - ] - }, - { - "cell_type": "markdown", - "id": "2d15638d", - "metadata": {}, - "source": [ - "## Importamos librerias y funciones necesarias" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "1ee72929", - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.ensemble import RandomForestClassifier\n", - "from sklearn.model_selection import GridSearchCV\n", - "import pandas as pd\n", - "import numpy as np\n", - "import seaborn as sns\n", - "import matplotlib.pyplot as plt\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.model_selection import StratifiedKFold\n", - "from sklearn.metrics import classification_report\n", - "from sklearn.metrics import confusion_matrix\n", - "from sklearn.metrics import roc_curve, auc\n", - "from sklearn.metrics import roc_auc_score\n", - "from sklearn.metrics import accuracy_score, roc_auc_score\n", - "from sklearn.tree import plot_tree" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "df21f20c", - "metadata": {}, - "outputs": [], - "source": [ - "from preprocessing import obtener_datasets\n", - "from preprocessing import aplicar_preparacion\n", - "from preprocessing import conversion_numerica\n", - "from preprocessing import plot_roc_curves\n", - "from preprocessing import graficar_matriz_confusion" - ] - }, - { - "cell_type": "markdown", - "id": "2d5a95e8", - "metadata": {}, - "source": [ - "# Ahora obtengo el set de entrenamiento y realizo el primer preproccesing" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "6dcc7785", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Aplicando 'conversion_numerica' en las variables categóricas.\n" - ] - } - ], - "source": [ - "df, df_holdout = obtener_datasets()\n", - "\n", - "X_df, y_df = aplicar_preparacion(df)\n", - "\n", - "\n", - "# acá solo convierto simplemente a numerico.. primer preprocessing!\n", - "X_df = conversion_numerica(X_df) " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "dc89286d", - "metadata": {}, - "outputs": [], - "source": [ - "X_train, X_test, y_train, y_test = train_test_split(X_df, y_df, test_size=0.20, random_state=10,stratify=y_df)" - ] - }, - { - "cell_type": "markdown", - "id": "55105321", - "metadata": {}, - "source": [ - "# Primer Preprocesameinto simple: conversion_numerica()" - ] - }, - { - "cell_type": "markdown", - "id": "3d783f0d", - "metadata": {}, - "source": [ - "Naturalemnte, utilizo gridsearch para la busqueda optima de hiperparámetros" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "fffc95f1-0461-4b57-a20b-8febeffd11c9", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Fitting 5 folds for each of 60 candidates, totalling 300 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.\n", - "[Parallel(n_jobs=-1)]: Done 17 tasks | elapsed: 7.5s\n", - "[Parallel(n_jobs=-1)]: Done 90 tasks | elapsed: 31.1s\n", - "[Parallel(n_jobs=-1)]: Done 213 tasks | elapsed: 1.2min\n", - "[Parallel(n_jobs=-1)]: Done 300 out of 300 | elapsed: 1.8min finished\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Best score in train: 0.9065823365020392\n", - "Count estimators 100\n", - "AUC-ROC score sobre test: 0.9042280132477661\n", - "AUC-ROC score sobre train: 0.9087918785040457\n", - "Accuracy sobre test: 0.8466144633809305\n", - "Los mejores hiperpametros elegidos: {'criterion': 'gini', 'max_depth': 7, 'min_samples_leaf': 50, 'n_estimators': 100}\n", - " precision recall f1-score support\n", - "\n", - " Bajo valor 0.95 0.86 0.90 5494\n", - " Alto valor 0.51 0.78 0.61 1019\n", - "\n", - " accuracy 0.85 6513\n", - " macro avg 0.73 0.82 0.76 6513\n", - "weighted avg 0.88 0.85 0.86 6513\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAG2CAYAAABmhB/TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABDrAAAQ6wFQlOh8AABdb0lEQVR4nO3dd7wcVf3/8dc7vZFGC0gHIXQQkCqdUKUJXxAsKP4EEUQ60kFBujSRIoiIht4hJLSAEDpEWhJ6DzWV9PL5/XFmk81m7727t+7ufT/zmMfcnTlz5uxm7v3sKXNGEYGZmZlVvw5tXQAzMzNrHg7qZmZmNcJB3czMrEY4qJuZmdUIB3UzM7Ma4aBuZmZWIxzUzczMaoSDupmZWY3o1NYFMDOrBpK2ALYHJgCXhmfusgrkoG5m1gBJywB3AX2AnRzQrVK5+d2qhqThkkLSGW1dFgBJN2TluaGty1LpJK0s6d+SPpM0O/vchrdheSJbti4hbSdgMLAY8KuIeKyFi2fWaA7qNSQvyOSWVRpIv7ikmXnp72/m8mwt6QxJBzVnvlZdJPUDngIOAJYCJgFfAOPaslxl+BOwBXB6RNzY1oUxq4+Dem37eQP7DwQ6t+D5twZOBw5qpvw+AsYAXzdTftY6fgwMIAXxVSOif0QMiIi927BMY7Jlan2JJO0MHA/cEBFntUbBzJrCfeq16UNgeeBnkk6rp//voIL0FS0iftbWZbBGWStbPx4Rb7dpSTIRMbDEdENw5ceqiC/W2vQ6MBJYDtimWAJJ6wHrkgL6E61VMGuXumfrb9u0FGbtgIN67bohWx9Ux/7c9huBOkfySuoh6QBJN0n6n6SvJc2Q9ImkWyVtWeSYFSQFqekdYKuCvv4FBihJ+iDbdpCkvpLOkzRa0lRJE/LSFR0oVyTvupYFjiuFpG0lDZU0XtK3kl6WdISkkn53JG0g6Z/Ze5wuaaKkZyX9XlK3cstTkPfuku7I/i9mSPpS0ouSzpa0Wh3HbCxpcN4x30h6TNLP63pPhQMCs+thhKRJkiZnP+9T5Ljh2XVwULbp58WugVIGHNaXRlJnSYdJ+q+kcZJmSfpK0pvZcT8scky9A+Uk9c8+x1ez//cpkt6QdL6kJeo4Zutcvtnr1ZUGB47NPut3JJ0rqVdd79OsySLCS40spEAewP3A4sBMUu2oV0G6zsCXwFxg5fzjiuR5ULYvgDmkftFpedvmAscVHLMs8Hl27sjK8XnBslle+g+ydMcB72Y/TycNqJqQl254tu+MgvMV5l24RLHjSvg8j8w7NoDxwOzs59vyPrcb6jj+9OzzyR0/Ke/4AF4CFmvE/3Mv4N6Csk0AJue9XqhMwB+KvJ9Zea+HAj3rua5uAK7Kfp4NTCzI7/CC4+7MPv/c9TKt2DXQ0OdYXxqgI/BIkfc1M+/160Xyy+3busi+9Qqum6nMv5aDNKZj4yLHbZ2XZntgSt7/zZy8fc8Andv674WX2lxcU69REfEVMAToCexbsHtXUtB/KiLebSCr8cAFwGakP/j9gR7ACsClgIBzJW2Ud+6PI2IAcGG2aUSkgVH5y4gi5zqN9IVjZ6BHRPQGNizhvRbmPW8BLs+SzSL98S+JpM2Av2Qv7waWj4h+pPuUjwf2Bvas5/jfAGeQPr8jgUWz99Mje39vA99jfotKOf4F/JAUWE8DBkRE34hYhPSF6rdZ/vnl2Rs4J3s5GFg2ez+9gSNIn88g4Ip6zrs7afDlb4DeEdEHWAl4Mtt/vqT+ucQRsXf2f3BLtumWEq6Bch0AbEf6wnAQ6brpB3QDls7K+3ipmUnqQ/rCtCTwPik494yIXsDmwChgUeDeumrsmVtJX65XjIi+pM8596VqE+Dgkt+hWTna+luFl+ZbKKhxA3tlr58oSHd3tv2XxY4r85zXZcdeX2TfGdm+4Q3k8QHza/Rr1ZNuOGXUuLP3Pzf/vZbxvnK1vxeATkX2n04dtWLSH/CJpEC5aR35r8z8mtz3yijXjnnnPaDEYwSMzo55CFCRNIfl5btGHddVAAcWOXZpYEa2/2f1XJc31FG+evfXlwa4Mtt+VZn/v0Vr6sBJzK+dr1LHe52QpTmvYN/WefkOq+Nzvi/b/1g55fXipdTFNfXa9gDwDfADSStBujcd2IX0R+u2ZjjHfdl6i2bIa0hEvN4M+eQGAv6LFNAuiojryzi2P7Bt9vL8iJhdJNnFpNphMfuQAvvTEfFMsQSRWkiezV4OKrVszO+ffiYi/lPiMesCuT72syIiiqS5Gvgs+3n/OvL5CFjonBHxGfB89nKtwv0tbGK2XqqZ8vu/bH1TRLxTuDN7r1dlL39cTz7n1vE5352tW/tzsnbCQb2GRcRM0h9hAbnbwXL3pt8ZEZNLyUfSUtmgoeezAWNz8gYE3ZUlW7oZilw0AJZL0gBSE2pPUhPo8WVmsT7pM4PUOrCQ7LN7sY7jN8vW35f0eV1LXrrlyijbptn6gTKO2SBbT2H+F4kFRMQc5jdTb1AsDfBiHYEK4NNs3a+McjWHB7P17pIelPR/kpZsTEaSujA/2NbXVZPbt2z2JbmYF+rY3lafk7UTDuq175/Z+meSxPya3g2lHCxpc1LT7UnARkBfUnD4kjQr2Pgsac9mKOtXTc0gG1F+N6lv+TXgxxExt8xscn+oZ0Uam1CXT+vYnqs1dif1zda15Ea/9yijbLmA9WEZx+Tez9gGPotPsnVdfcX1fQmcnq1bcjKjhUTEf0l91bNIYxVuAT6X9K6kKyXV9QWlmP6kgXdQ9/8tzP+coI7Pqp4vzLnPyXOEWItwUK9xEfES6b71FUkDttYlNaM2OH+10pzX/yE1Jb8M7AQsEhG9I2LJSIOgCgfhNcWcZsjj78DGpC8dP4yItrg3OhcYrosIlbAc1AZlrBkRcS5pjMKxpJaZcaQBfL8BXpR0Tj2Hm9UUB/X2IVdbPz9b31hPM2q+TUlNw3OA3SNiaJEg2aimzpYg6SRS98IMYK+IKKc2my9XO+8sabF60n2nju1fZOtymtVL9Xm2Xr6MY3LvZ6kG7q9fJlt/WXapmiY3ZqG++/b71JdBpDsuLoqIH5IevLIx87uG/iDpByWUYxzzv1jW9X8L8z8naP3PyqxeDurtw02kP1a5ptF/1pM237LZ+quIqKs5cvt6js819aqeNM1C0l6kB29AepJWU26XeoX5E/JsVcf5elF333Pu3JtL6tuEctSX925lHJPr++9JCnYLyYL9NgXpW0uuC2eZYjuzbqOSm9EjeZ7UipT7Yrd1CcfNJHXZQLpNri65a/6jBrpnzFqdg3o7EBGfA0cDFwEnFhvVW4fcyOIli92TK2lt0n3CdZmUrfuWeL5GKRjpfk5E3NSU/CJiHPBo9vJ4SR2LJPs9dfeF30bqf+4BnFffuST1zAZoleqGbL2JpPpGX+d7lfTwEoBTsiBZ6FDmD3a8uYzyNIdcIN1IUrFR7Acy/wvmAur77LLBf7Oyl6XO3ndrtv6JpBWLnG8p4JDs5eAS8zRrNQ7q7UREXBYRx0ZEvUGmwNOkQXECblH2KNdsWs69gYepfz7v3O1pa0gqWkNsqqx5PDfS/U7glGbKOncf+veBWyUtm52vh6RjgDOZ/6VnAdmXgtyI+18rTae7Tl6ZO0laX9Ifgfeoe2BasbwfJr1PgH9KOiX/C5ekZSQdL+m0vGOCNNAR0u2MN0r6Tpa+u6TDgUuy/TdExKhSy9NM7iPdYtkFGJwLptlnfQhwLfNr84XulnStpEGSeuc2ZndsXArkHj88pMSyXAl8TPpC9rCkbXJfgiRtSvqy15fU7H5RGe/RrFU4qFudImICcEL2cmvgbUmTSIH8DtJI3iPryWI4aWazTsCzSvOMf5AtmzRTMddifi1ua2BsPbeRHVtqplnz/VHZy72BjySNIwXyC0mB9e56jr+KNHBrDqkZ+H9Kc9l/Q/rcXiZ9AVmCeuber8PPSbdydQb+CHyR3Wo4mRSQziMNFMsvz53AydnLnwAfZ+9nEmnWvc6kL2mHl1mWJouI8aQpgiF1d7wnaSLps76K9HyCe+s4vAfwK9IUtxMkTcg+h8+A32VpzomIp0osy0RgD9K4iJVJA0q/lfQtqetjdVLf+x5uerdK5KBu9YqIv5L+yP2XVGvvRJo+83zS/dx13vqTTdqyHanJ+CNgEdIAr+UpvTm0HP2p/xaysh6kERGXkvpPHyYFmC6k1offAfuVcPxFwBqkoPkmKcD3JgWF/wJnA+vVM16hrny/JfWp70Ma7f0FqaViCun+6D9leRcedw7p3vhbgLGkz2My6cvXL4CdImJKOWVpLhFxJenLU651qANpbvyfR8Qh9Rx6BHAiKai/S7o+u5D60m8BtomIk+s+vGhZXgHWJE2r+0a2uQPp1s4LSTPuFb3f36ytqbRB0GZmZlbpXFM3MzOrEQ7qZmZmNcJB3czMrEY4qJuZmdUIB3UzM7Ma4aBuZmZWIxzUzczMaoSDupmZWY3o1NYFqCTd1z/cM/FYRRn/whVtXQSzorp1avmnL0LT/y5Pe+WKVilnpXBN3czMrEa4pm5mZpVLrnuWw0HdzMwql9pV63mTOaibmVnlck29LP60zMzMaoRr6mZmVrnc/F4WB3UzM6tcbn4vi4O6mZlVLtfUy+KvQGZmZjXCQd3MzCqXOjRtaerppV6SPpEUkjbM2z4821a4DCw4vo+k6ySNkzRZ0u2Slipyns0kPSNpmqQPJZ0gld9M4eZ3MzOrXG3f/H4qdcfKp4FjC7Z9UPD6FmBN4FBgOnA2METShhExG0DSKsBQ4GHgFGAd4FxgDnBhOYV1UDczs8rVhgPlslr3b4FjgKuKJJkQEc/Wc/ymwI7AjhExLNs2BhgF7A3cmiU9DvgG2D8iZgKPSlocOFnS5RExo9Qyu/ndzMwql9S0pWkuJwXzMY08fmdgAqkGDkBEjAFGArsUpLs7C+g5NwN9gU3LOaGDupmZWQFJ+wBrA2fVk2wrSVMkTZf0hKQtC/YPBMZEROGT5kZl+5DUE1gWGF2QZjQQuXSlcvO7mZlVriY2v0vqDfQu2DwpIibVc0wP4GLgpIiYVMd4tSeAG4G3gaVJfeuPSNoqIp7J0vQj1dQLjQf6Zz/3zdYLpIuImZKm5qUriYO6mZlVrqY3oR8NnF6w7UzgjHqOOQX4AvhHXQkiYoE8Jd0PvEEaWLdL0YNagYO6mZlVrqYPlLsY+HvBtvpq6cuTBsbtBfTJaum9st29JPWKiG8Lj4uIKZIeAPbJ2zye1LReqB8wLvt5QrbuU1COLkCPvHQlcVA3M7OalTWz1xnEi1gR6AI8UGTf48BzwCYl5jUa2F6SCvrVBwKvZeWbIuljFu47Xw0QC/e118sD5czMrHK1/uQzI4FtCpajsn2HAocVLWYa8LYb8ELe5iGkWvl2eelWBdYHHixIt4ekznnb9iPV4keUU3jX1M3MrHJ1aN3JZyJiAjA8f1veQLmXIuJlST8g3Vt+F2mymaVJTfYDgH3z8npG0lDgeknHMH/ymVeBO/NOcQFwIDBY0pWkUffHAScX3ObWIAd1MzOrXJX5lLaxpCb6c4BFgSmkGvWhEfF8Qdr9SP3615Bi7jDgiNxscgAR8Y6kQVm6B4GvSIP7Liq3YA7qZmZm9YiI4aT+7dzrd4CdSjx2InBwttSXbgSl99XXyUHdzMwqV9vP/V5VHNTNzKxyVWbze8VyUDczs8rlmnpZHNTNzKxyuaZeFn9aZmZmNcI1dTMzq1xufi+Lg7qZmVUuN7+XxUHdzMwql2vqZfFXIDMzsxrhmrqZmVUuN7+XxUHdzMwql5vfy+KgbmZmlcs19bL40zIzM6sRrqmbmVnlck29LA7qZmZWudynXhYHdTMzq1yuqZfFQd3MzCqXa+pl8VcgMzOzGuGaupmZVS43v5fFQd3MzCqXm9/L4qBuZmYVSw7qZXG7hpmZWY1wTd3MzCqWa+rlcVA3M7PK5ZheFje/m5lZxZLUpKUZzt9L0ieSQtKGBfsOlvSWpOmS/idptyLH95F0naRxkiZLul3SUkXSbSbpGUnTJH0o6QQ14g04qJuZmdXtVIq0akvaH7gWuAXYGXgGuEvSJgVJbwEGAYcCBwKrAUMkdcrLaxVgKDAW2A24BDgLOKbcwrr53czMKlZb9qlLGgj8lhRcryrYfSZwc0Scmr1+XNI6wGnALtnxmwI7AjtGxLBs2xhgFLA3cGt27HHAN8D+ETETeFTS4sDJki6PiBmlltk1dTMzq1ht3Px+OSmYjyko00rAqswPyjk3A9tJ6pq93hmYADycSxARY4CRZIE/L93dWUDPz6svsGk5BXZQNzOzitVWQV3SPsDapGbwQgOz9eiC7aOALsCKeenGREQUSTcwO09PYNkieY0GIu9cJXHzu5mZVa4mVrYl9QZ6F2yeFBGT6jmmB3AxcFJETCry5aBftp5QsH18tu6fl64wTS5dLk3fYnlFxExJU/PSlcQ1dTMzq2VHAx8XLEc3cMwpwBfAP1q2aM3PNXUzM6tYzdAvfjHw94Jt9dXSlycNjNsL6JOdv1e2u5ekXsyvkfcBPs87PFeDH5etx5Oa1gv1y0szIS+v/HJ0AXrkpSuJg7qZmVWspgb1rJm9ziBexIqkfvEHiux7HHgOOCB7PZAFB9ENBGYC72WvRwPbS1JBv/pA4LWsfFMkfczCfeerkTofCvva6+XmdzMzq1htMFBuJLBNwXJUtu9Q4LCIeA94C9i34Nj9gEfzRrEPIdXKt8t7P6sC6wMP5h03BNhDUueCvCYAI8opvGvqZmZmmYiYAAzP35b35eCliHg5+/kM4N+S3iXV4PcDNga2zMvrGUlDgeslHQNMB84GXgXuzDvFBaSJaQZLupI06v444OSC29wa5KBuZmYVq1If6BIRg7NR8idmyxhgr4h4piDpfqR+/WtIMXcYcEREzM7L6x1Jg7J0DwJfAacDF5VbLgd1MzOrXBUQ0yNiOEVKEhHXAdc1cOxE4OBsqS/dCKBwitmyOaibmVnFqtSaeqVyUDczs4rloF4ej343MzOrEa6pm5lZxXJNvTwO6mZmVrkc08vioG5mZhXLNfXyuE/dzMysRrimbmZmFcs19fI4qJuZWcVyUC+Pg7qZmVUsB/XyuE/dzMysRrimbmZmlcsV9bI4qLdjd152KDv/YC0A/nXvs/z69JsW2P+TH27MtWf9tOT8VtvlVD4aO37e6149urLbVmuz7SYD+d4ay7H80ovSuVMHvhr3LS++8SH/uGsEw55+s8F8lx3Qj2N+sQODNluDpRbvw6Qp03n5zY+4+pYneeipN0oun1WXz8eO5dFHH+aF559jzOhRfP3VV3To2JEll1ySDTfamB8f+BO++91VFzouInjl5Zd48onhjHzlZd5/712+/fZbevToyUorrcQ2223PvvvtT8+evYqe99NPP2GXQdsV3ZfvwosvZYcdd2ry+7T6ufm9PA7q7dT/7bTBvIBel+kzZvH515PqTbNon5507tyRsV9N5NMvJy6w75nBJ7DKcksskN/MWXNYZkA/lhnQjz23W4/BDzzP/zv9JubMmVs0/83XX5k7Lj2UPot0B2Di5Gks2qcnO22xJjttsSaX3Pgof/jLXaW8Zasin48dy047bENEzNvWo0cPZs+ezYcffMCHH3zAPXfdwTHHn8gBBy74xfPv11zFFZddMu91hw4d6NmrF5MnT2LkyFcYOfIVbrn5P1x51bWsuNLK9ZajX79+dOjQsei+Ll27Nv4NWskc1MvjoN4O9evdg/OP/RETJk9l7FcTWX2lpYqmu33Yy9w+7OU68+nVoysfPHIOnTt3ZPADzy8UmDt36sjrb3/GP+8ewUNPvck7H30JpJr3if9vJ3659+b8eNfv8/Hn4zn9ivsWyn/Rvj255eJf02eR7ox45V0OOePfvPPRl/Ts3oWjfr49Jx+yC7//2Xa8+tYnDH7ghSZ8IlZp5sydQ0Sw6WZbsPsee7LxJpuy6GKLMWfOHEaPepMLzz+Xl196kfPO+RPLL78Cm2/xg3nHzp49m0UWWYRddtudHXfambXXWZcuXbowdepUhg0dwl8uPJ/PPv2Uww87hDvveYCu9QTnf99yO9/5zjKt8ZatDg7q5fFAuXbovGP2ZslFe3Pa5ffy1bhvG53PjwZ9j57d0x/EG+99dqH9vzrtX2z0f+dwxX+GzwvoAB9/Pp7f/nEw197+FACH/XhrunZZ+PvlMQftwKJ9ezL2q4ns/bur5uUxZdpM/nTVg/w9O/6sw3enY0dfyrWkd+8+3Hz7XVx17XXsstsPWXSxxQDo2LEja661Ntf8/R+suupqANxw/d8XOHabbbfnwWGPcdIpp7HBhhvRpUsXINX099zrR1z216sA+OTjjxk2dEgrviuzlue/hO3MNhuvxk9334TnX32fv9/+dJPy+tnumwDw3KvvM+b9Lxba/9RL79R7/D/vGgGkGv/AFQcstH//XTYC4Nrb/8vEb6cttP+C64cBsMyAfmy54XfLK7xVtEUWWYTVV1+jzv2du3Rh1x/uDsCbb7y+wL6Bq69O79696zx23fXWZ6WVVyl6rFUgNXFpZxzU25FuXTtzxcn7M2vWHA4/++YF+ivLtfJyi7PZ+qk/8sZ7Fq6ll2L6zNnzfi6saQ9caQBLLd4HgGFPFR9M99HYcYx6bywA2268WqPKYNUr16dd13iM+nRtwrHWuiQ1aWlvqqZPXVI34Fbgwoh4sq3LU41O+82urLTs4vzln4/w2lufNimvn++xKQBTp83ktqEvNSqPXO16xsxZvP3hlwvsW32l+TX3N94dW2ceb74zltVXWqrOcQFWu158/nkAvrvqwiPg6zN+/Djeefutko497ujf89FHHzJ92jT69e/P2muvy557/4gtt9q6UWW28rXHwNwUVVNTj4jpwFZA8aGoVq/1Bi7DEQduw0djx/Gnqx5sUl4dOogDd/s+AHc/OpLJU6aXncciPbtx3C8HAXDnw68slEeulj5u4hSmz5hVZz6ffTkBgAFZemsfXn31fzz+2CMA7LX3PmUd+7e/XsGsWbPo1asXgwbVf0vaG6+/RsydS8eOHfnyiy949JFhHHHYIRx39JHMmjmz0eU3aylVU1PPDAMGAY+3dUGqSYcO4q+nHkCnTh056txbmTq9aX+Mtt90dZZeoi8A/7znmUblce2ZP2GpxfswbuIUTrv83oX25wbgTWugrFOnp4C/SA/fXtReTJwwgT8cfwxz585l7XXWZY+99i752EcfeZhbb/4PAIf/7ij69O27UJquXbqy3/4HsNMuu7LawIHz7md/5523+cd113L/vfcwbOhDLLJIb04784/N8p6sbq6pl6fagvo/gKslLQI8CHwBLNAxHBF134PVTh35k2353hrLcc+jI3nwyaYPDMoNkHv/k6958sW3yz7+7CP3YI/t1mPOnLn8+vSb+OSLCU0uk7UP06dP56gjD+eTjz+mX79+nHfhxXTsWFrj3WuvvsopfzieiGCHQTvy4wN/UjTdYosvzkmnnr7Q9lVW+S5n//l8+vXrz7/++Q/uvOM2fnbQL1hhxZWa9J6sfg7q5ama5vfM/cB3gMOyn58HXsiWF7N1SST1lrRM/hJzaq85bYXvLMrJh+7CpG+nccz5tzc5v369e7DrVmsD8K/7yh8g94df78TRB+3A3LlzOfzswTzwxGtF002ZNgOA7t261Jtfj26dAZg8dUbZZbHqMnPmTI4+8nBeevEFFllkEf52zXUl30M+etQoDjvkV0ydOpVNNt2Mc867sNHlOOzw39GtWzcigieeGN7ofKxEHv1elmqrqW/TjHkdDSzwdXz2lyPpvNT3m/EUbe/8Y/amZ/eunHb5vUyYPJWe3RcMkh07pKu+U8cO8/ZNnT6rzpHx++28Id26dmbOnLn8+77nyirLcb8cxGm/2Q2AY86/nRvuqrvpfuxXaXa6/n160q1r5zr71XPdAJ9/NbHofqsNs2bO5Jjf/46nn/ovPXr04K9XXcvqa6xZ0rFvjRnNIb86iEmTJrLBhhtxyeVXzrt3vTF69OjByiuvwhtvvM6nH3/c6HzMWkJVBfWIeKIZs7sYWGDWik5LrFdzv6HLLb0oAGcdsTtnHbF7nel+vOv3+fGu6QvNxvv9mVfrGB3/s2zU+/AX3lpgnveGHHPQ9vPOf+LFd3LVLfXfwDDqvc/n/bzmykvx0psfFU23xipLZenrHiFv1W3WrFkce/SRPPnE43Tr3p0r/nYN6663fknHvv32W/z6V79gwoQJrLve+lxx5dV07969hUtszam1m98l7QKcAKwB9AY+Be4GzoyIiVmaG4CfFzl854h4KC+vLsDZwE+BRYARwOERMabgnAOBy4HNgMnAjcApEVF283FVBfUcSWsCWwD9gXHAUxFR1pM9ImISsMDE5t3XP7zZyliL1l71O6y/+rIA/KuMe9N//9Pt+NORewJw6uX3cum/HmvwmNHvfc5nX05g6SX6ssPmaxQN6sst1W/erWyPPTdmof1W/WbNmsVxx/ye4Y8/Rrdu3bjsir+xwYYblXTsO++8za8PPojx48ax5lprc+XVf6dHz55NLtPUqVN59900sdJ3lvEUsi2tDfrU+wPPAZcB3wBrAWdk60F56d4DDiw4dlTB68uA/Uktw58CJwOPSloz7wtCP+Ax4G1gb1IX88VAD6DsoFRVQV1SV+BfwI9IvSUzgK5ASLod+GljvtnUsk32P7fe/UOvPZItN/xu0ae0FcoNkBs/aSp3PzaypPMfceA2/PnovQA462/3c2E2C1wpbhnyIkf9fHt+ve8PuHLwcCZ9u+Btb0cftAMAn3w+vlED9qyyzZ49mxOPO4bHH32ELl268JfL/srGm2xa0rHvv/cuv/7lQYz75htWX2NNrrr2enr1Kv5UtkIRUW8guerKy5k+fTqSfL96K2jtmB4RhX8Ih0uaAVwjaemI+CzbPi0i6qzdSFoG+BVwWERcn217AfgIOAQ4P0t6KKlFYK+IGJel6wRcKemcvPOVpNoGyp0D7Er6EPpGRHegb/Z612y/tYBOnTqw3y4bAnDb0JeYkTcbXF0O3W9Lzj/2RwCcffWD/Pmahxo4YkEX3fAw30yYwlKL9+GOSw9l5eUWB6BHty784dc78f/22QKA06641zOD1Zg5c+Zw0onH8cjDQ7OAfgWbbb5FScd++OEH/L9f/pxvvvma1QauztXXXl/vtLGFDj7op/z9mqt4a8xoZs+ef52/+847nHbKH/jnP64H0v3xDT3lzZquQmaU+yZblzMYYxApxt6W25AF7WHALnnpdgYeyQX0zK3ZsfktAyWpqpo6qRnjDxFxbW5D1ox+raQewPHAsW1VuFq265Zrs3i/RQC48e7S7k2/6Pj5k4Ic/KMtOPhHdf9RPu6C2xd6Itw3E6aw3zHXcMclh7LF91bh9XtOZ8LkqfTq3pVOndJtTJfc+Kif0FaDRr7yMkOHpEmSIoLTTj6p3vT/ueV2BiyVumKuu/ZqvvrqKwA++/QT9tp91zqPW3f99fnLpVcssG3sZ59x+aV/4fJL/0KnTp3o1asX02fMYPq0+c8f2GXX3TjplNMa9d6sOkjqCHQm9a2fBtwbER/kJVlF0kSgO/Aa8MeIuDtv/0Dgy4goHHw0Cji4IN31+QkiYoKksdm+slRbUO8PjK5j3+hsv7WAn2ZN72+881mdg9YKdegwvyFowGL115S6de1cdPvTL7/L9/c7h6MP2oEdN1+DAYv1Yfzkqbz85kdcdfOTPPRUWUMprErMnTu/5WXWrFl8883X9aafM3fOvJ9j7vw7NyZPnkwad1TcpIkL3zVx1LHH8ewzz/DG66/x9VdfMXHiBDp26sRyyy3POuutxx577s33N96kjHdjTdHUyrak3qTm7XyTsgphfT4k9W8DPAQckLfvFdIt1G+QWot/A9wlad+IyN073A+YUCTf8SwYq0pNVxI15aEerU3SK8DrEfHTIvv+BawVEaUNiy2i+/qHV8+HYe3C+BeuaDiRWRvo1ql17gJf7YShTfq7/Nb5O51Jwe3LpJHsZ9R3nKR1gJ7AmsAppIFxO0TEnCJpO5BGtveOiDWybdcCP4iIgQVpjwXOiYgu2etZwKkRcW5ButeBERHx61LfK1RfTf2PwG2SVgDuIM0otwSwD7ApsG/bFc3MzJpbM3SLL3T7MgV3PhUTEa9mPz6TDXAbCewFLDSLV0TMlXQHcL6k7hExjVTTLvZQin6ku7ZySk1XkqoK6hFxp6S9SN+6LiKNgA+yDzsi7mvD4pmZWYUpdvtyI7wKzAJWKeOY0cCSkvoV9KsPZMFu5NEU9J1L6gMsRd3dzXWqttHvRMS9EbEBqY9kWVJzxwYO6GZmtadDBzVpaSYbkwbNvVdsZ9b8vi/wRlZLhzTKfS7pFuxcun6kEe35j8ocAmwvqW/etn2zY0u/BzhTVTX1fBExBZjS1uUwM7OW09r3qUu6k/QskVeBacC6wHHZ67slLQ/8ExgMvENqJv8NsCF5ATwiPpH0d+ACSXNIk8+cBEwErs475VXAEVne55AG510AXFXuPepQBUFd0mVlJI+IOLLFCmNmZq2qDWaUex7YDziR1Jr9AXAtcGFEzJQ0mRSYTyGN6ZpJ+hKwc0QMLcjrSOBb4FzSNLFPA9vnZpMDiIjxkrYjTRN7N+l2jb+TZp8rW8UHdeCHZaQN0odoZmZWtmwUep1TcWaTxOxRYl4zSHOn1Dt/SkSMArYvo5h1qvigHhErtnUZzMysbfhx6uWp+KBuZmbtVxs0v1e1qgzqklYBVgW6Fe6LiDtbv0RmZtYSHNTLU1VBPZvu7y5g69ymbJ0/41DH1iyTmZm1HMf08lTbfernAQOAH5AC+l6kAH8d8D7gCZnNzKzdqragvhNwNukB9gCfRcST2dy49wDHtFnJzMys2VXIo1erRlU1v5PuCfw4IuZImgIsmrfvQdJ88GZmViPaYVxukmqrqX8MLJb9/Dawe96+TYHprV4iMzNrMa6pl6faauoPk27Qvwv4C/BPSRuTZvT5PukhL2ZmZu1StQX1E4AeABHxL0nfkh672h04nAXn0zUzsyrXDivbTVJVQT0ipgJT817fRaq1m5lZDWqPTehNUVV96pKelnSYpMXbuixmZtbypKYt7U1VBXVgLHAh8KmkoZJ+JmmRti6UmZm1DA+UK09VBfWI2Id0W9uvgNmkx9N9IekOST+S1LVNC2hmZtaGqiqoA0TEtxFxY0TsCiwFHAX0B24GvmjTwpmZWbNy83t5qmqgXKGI+EbS08DywGrAkm1cJDMza0btsQm9KaoyqEtaGdg/W9Yg1dBvBQa3ZbnMzKx5OaaXp6qCuqSjSYF8A2AiaVrYI4HhETG3LctmZmbW1qoqqANnAfcCfwQeiohZbVweMzNrQW5+L0+1BfUlsglozMysHXBML09VBXUHdDOz9sU19fJU3S1tZmZmVlxV1dTNzKx9cU29PA7qZmZWsRzTy+PmdzMzq1itPfe7pF0kPSHpK0kzJL0n6WJJfQrS/VDS/yRNl/SWpF8UyauLpAskfS5piqSHJa1WJN3AbN+ULO35krqUXXiqsKau9L+0C7AFaXrYccB/gSEREW1ZNjMza15tUFPvDzwHXAZ8A6wFnJGtB6UyaQvSY7//Dvwe2Ba4TtLkiLg9L6/LSHOrHA18CpwMPCppzYiYmOXVD3gMeBvYG/gOcDHQAzi83MJXVVDP3vyDwMbABNJMcksCJwDPStolIia0WQHNzKyqRcRNBZuGS5oBXCNp6Yj4DDgVeC4iDs3SPJ7NdHoWcDuApGVIDx87LCKuz7a9AHwEHAKcnx17KNAb2CsixmXpOgFXSjonO1/Jqq35/UJgZWDHiOgfEatHRH9gx2z7hW1aOjMza1YV8ujVb7J1l+xpoNsAtxWkuRlYXdIK2etBpBg7L10WtIeRWptzdgYeyQX0zK3ZsYPKLWi1BfXdgRMi4uH8jdnrPwB7tEmpzMysRbTVU9okdZTUTdL3gNOAeyPiA1IFsjMwuuCQUdl6YN76y4gYXyTdwLzXAwvzylqcxxakK0lVNb8DPan78aqfZ/vNzKxGdGhibVtSb1Lzdr5JETGpgUM/JPVvAzwEHJD93C9bTyhInwve/fPSFabJpeuf97rUdCWptpr6K8Dhkjrmb5TUATgCeLlNSmVmZpXqaODjguXoEo7bBdgM+H/A6sB9hbGnElVbTf0PpP6IdyTdQ6q1LwHsCQygEf0PZmZWuZqhW/xi0ij1fA3V0omIV7Mfn8kGuI0E9gLezLb3KTgkV4PP9Y2PL5Imly6//7zUdCWpqqAeEU9K2px0W8ABzH/TTwFnR4Rr6mZmNaSpg92yZvYGg3gDXgVmAasA92U/DwSG5qXJ9X+PzlsvKalfQb96YR/6aAr6zrN74pdi4X77BlVb8zsR8VJE7B0RS0RE54hYMiJ+5IBuZlZ7OqhpSzPZmDQ47r2ImAE8DuxTkGY/YFQ2mA5Sq/Jc4Ee5BNlt2YNIt2bnDAG2l9Q3b9u+2bHDyi1oVdXUzczMWpKkO4EXSbXzacC6wHHZ67uzZH8k3b9+Jen2s21Ircf75fKJiE8k/R24QNIc0uQzJwETgavzTnkVaUzY3ZLOIQ3OuwC4qtx71KEKgrqke4FjIuLt7Of6BKk5/nng+uwblZmZVak2eKDL86TgfCKpNfsD4FrgwoiYCRART0naG/gTcDBpQplfRUThvetHAt8C5wKLAE8D2+dmk8vyGi9pO+By0peGyaQxACc3pvAVH9RJH0RuxGFvUuCuz3eAA0nNJQe1XLHMzKyltXZMj4hzSUG4oXT3AvVWNLOK5bHZUl+6UcD2ZRSzThUf1CNim7yfty7lGEkHkL71mJlZFRN+TFs5Kj6oN9KjpDl4zcysijXjYLd2oeqCejbRzLbAqkC3wv0RcXFEfAFc2tplMzMza0tVFdQlDQCGkwJ6wLx2mfx+9otbuVhmZtZC2mCgXFWrtvvULyY9LWdZUkDfGFiB9Bi8t0nB3szMakRbPdClWlVVTR3YEvgd6ek1AIqIj4BzlL7OXUF6jJ2ZmdWApj7Qpb2ptpp6H+CriJhLmvZvibx9zwBbtEmpzMzMKkC1BfX3SfPhArwB/DRv3140YvJ7MzOrXG5+L0+1Nb8/QJo391bSTD73SPqSNLn+AOCENiybmZk1Mw+UK09VBfWI+EPez0MkbQbsTbq17eGIGNJmhTMzs2bnmF6eqgrqhSLiRdLE+2ZmZu1eVQd1SWsAawJfA09GxJw2LpKZmTUjj34vT9lBXdJpzXXyiGhwKtfsVrXjSM3snYHbgPNIT7E5iHS/egBvSNo2Ir5urvKZmVnbckgvT2Nq6mfQ8JPSSlXK/OzHAn8G7iE9ku4UYB3S/ejHAqOAtUmPqTuNdB+7mZnVAA+UK09jgvqTNF9QL8UvgD9GxBkAku4A7gKOjIgrsjQPSZoN/BYHdTOzmuEHupSn7KBe6uNPm9GKwON5rx8jtci8VJDuRdL0sWZmZu1SNQyU6wpMy3ud+3lGQbqZVMf7MTOzErn5vTzVEgSLNfe3ZheAmZm1Acf08lRLUH9c0tyCbf8t2FZtU96amVkDXFMvT7MGdUndgH1ID1ZZGuhJ3XckRERsV0K2ZzZT8czMzGpaswV1SVsBg4ElmX/vOMwP6vnN5aLE5vOIcFA3M2unPPq9PM0S1CWtCNwH9ALeBB4GjgS+BS4hBfptgZVJs79dDcxujnObmVntcvN7eZqrpn4MKaA/BOwREbMkHQl8GxHzZqCT9GvgCmD9iNitmc5tZmY1yiG9PM01uGx7UnP6KRExq65EEXENaea3nSX9ppnObWZmZjRfUF8GmAO8krctSPeYF7oq2/ezZjq3mZnVqA5Sk5ZySdpX0j2SPpE0RdJISb9UXj+ApOGSosgysCCvPpKukzRO0mRJt0taqsg5N5P0jKRpkj6UdEL++crRXM3vc4EJEZE/+G0K0FtSx/ynp0XEZEmTgNWa6dxmZlaj2qBL/WjgA1K38lfADsC1pBlL8wduP016/ki+Dwpe30J6kuihwHTgbGCIpA0jYjaApFWAoaSxaLlnm5xLqihfWG7hmyuofwqsKEl5gf1jYGBWwHk1eEl9gL4sPCOcmZnZAtpgoNwPC572+ZikRYGjJf0xInLzo0yIiGfrykTSpsCOwI4RMSzbNob0ELK9gVuzpMcB3wD7R8RM4FFJiwMnS7o8IsqKlc3V/P4W6bGo+bXvp7N14TeZP2brt5vp3GZmVqOkpi3lquPx3a8AvUlzr5RqZ2ACqQaey3sMMBLYpSDd3VlAz7mZVPndtIzzAc0X1B8lDVLcOW/b30h95/tLek3SvyX9j/QktQD+0UznNjMza0lbAJ9GxOS8bVtlfe7TJT0hacuCYwYCYwq6pSHV1AcCSOpJatYfXZBmNClODqRMzdX8fiuwPtAttyEiXpF0NHARqU9hzYL0lzTTuc3MrEY1ZrBbPkm9SbXsfJMiYlKJx28B7E/qY895AriR1OK8NKlF+hFJW0XEM1mafqSaeqHxQP/s577ZeoF0ETFT0tS8dCVrlqAeEZ+TnnteuP0yScNIU8cuC0wEhkbEo81xXjMzq23N0KV+NHB6wbYzgTMaPreWIQ12exy4LLc9Ik4vSHc/8AZwKgs2rbe6Fn+gS0SMBv7U0ucxM7Pa0wwD5S4G/l6wrcFauqS+wBDSILYf5Q2QW0hETJH0AKkCmzOeVJkt1A8Yl/08IVv3KTh3F6BHXrqSVctT2lrFqIfLvnvArEWNnTC9rYtgVtSKi3VrOFEFyJrZS2pqz5HUHbifFGw3jYiJjTj1aGD7grvCIPWTv5aVbYqk3J1i+VYjjVMr7GtvULM/rlTSepKOl3SFpOsK9nWWtHSxm+/NzMwKdWjiUi5JnUjjvlYHdoqIT0s4piewG/BC3uYhpFr5dnnpViWNP3uwIN0ekjrnbduPVIsfUW75m/Mpbf2BG4Bdc5tIo/cOzkvWGXgZWEzS+hHxWnOd38zMak8b3Kd+JSlAH0OaQG2TvH2vAN8n3Vt+F2mymaWztAOAfXMJI+IZSUOB6yUdw/zJZ14F7szL8wLgQGCwpCuBtbP8Ty64za0kzfWUtq7AMNI3kGnAs8BmFEwTGxFTJV1Lmv99X7ImCDMzs2La4NGrg7L1RUX2rQiMBboA5wCLkmZPHQEcGhHPF6Tfj9Snfw0p3g4DjsjNJgcQEe9IGpSle5A0i93pdZy/Qc1VUz8U+B5pEpqdI+J9SWOBJYqkvYMU1Avv6TMzM1tAawf1iFihhGQ7lZjXRFJr9cENpBsBbFJfmlI1V5/6/qSm9t9FxPsNpH2NNKdt2TfVm5mZWd2aq6a+OilQP9ZQwoiYI2kiaQCBmZlZndqgT72qNVdQ7wpMze8naEB30qABMzOzOrVBn3pVa67m98+BRbKb9eslaW1SUP+omc5tZmY1qrUf6FLtmiuoP5mtDywh7Smk/ndPFWtmZtaMmiuoX5qtz5D0/WIJJPWW9DfSrWxzgCua6dxmZlajOkhNWtqb5nqgy8uSziLdW/dfSU+TPRVH0jXAcsDmpLlsAU6IiHea49xmZla7mn3a0xrXbDPKRcSZkr4E/gxsnbfrYNLscgCTgeMj4urmOq+ZmdWudljZbpJmfaBLRPxN0k2kJ9VsBiwFdAS+IM24c1tEjIfUHF/q82zNzMysYc3+lLaImAz8I1sWkj2w/ijgd6Qp9szMzIpqj/3iTdFqj17NC+ZHUvDsWDMzs2Ic08vTpKAuaQfgIGBN0niG94B/RsRdeWm6kYL5caRgLmAqCz+03szMbAGefKY8jQ7qks4BTsi9zNZrAj+U9LeIODybaOY24LtZmgmkW9kujYhvGl1qMzNrF9z8Xp5GBXVJWwInZi+/Bp4nBe3vk/rJfyPpv8DlwGLAl8CFwFUR8W1TC21mZmYLa2xN/dfZ+klgz4iYACCpP3A3sAVwI9AZuAw4KSKmNqmkZmbW7riiXp7GBvVNSFO9HpUL6AARMU7SUcALWd5XRMTvm1pIMzNrn9ynXp7GBvUBwGxgZJF9r2T7OpKa383MzBpFOKqXo7Ez8PUAvomIKNwREXOB3CC49xpbMDMzMytPi96nHhFzWjJ/MzOrbW5+L0+rTT5jZmZWLgf18jQlqPeX9Fhd+wDq2Q8QEbFdE85vZmY1Th7+XpamBPUuLPg0tmLq279Qf7yZmZk1XmOD+j+btRRmZmZFuPm9PI0K6hHxi+YuiJmZWSG3vpensbe0mZmZtbgOUpOWcknaV9I9kj6RNEXSSEm/VEHnvqSDJb0labqk/0narUhefSRdJ2mcpMmSbpe0VJF0m0l6RtI0SR9KOqHwfKVyUDczs4rVQU1bGuFo0pNEjwF+CAwBrgVOyyWQtH+27RZgZ+AZ4C5JmxTkdQswCDgUOBBYDRgiqVNeXqsAQ4GxwG7AJcBZ2fnLpiLzx7RbH3w93R+GVRRfkFapVlysW6s0jF/21PtN+jX43RYrllVOSYtFxNcF264B9gP6RcRcSWOAlyLigLw0I4AJEbFL9npTYASwY0QMy7atBowC9o+IW7NtVwM7AqtGxMxs2znAb4ABETGjnPK7pm5mZhVLatpSrsKAnnkF6A30lLQSsCpwa0Gam4HtJHXNXu9Metz4w3l5jyFNr75L3nE7A3fnAnpeXn2BTcstv4O6mZlVrA6oSUsz2QL4NCImAwOzbaML0owi3eq9YvZ6IDCmyHTqo3J5SOoJLFskr9GkhrqBlMkzypmZWcVq6uh3Sb1Jtex8kyJiUonHbwHsz/w+7n7ZekJB0vHZun9eusI0uXS5NH2L5RURMyVNzUtXMtfUzcyslh0NfFywHF3KgZKWIQ12exy4rKUK2JxcUzczs4rVDJPPXAz8vWBbg7V0SX1JI9+/AX6UPYEU5tfI+wCf5x2Sq8GPy0u3bJGs++WlmZCXV/65u5CehjqOMjmom5lZxWrMveb5smb2kpracyR1B+4nBdtNI2Ji3u5c//dAYEze9oHATOY/cnw0sL0kFfSrDwRey8o2RdLHLNx3vhogFu5rb5Cb383MrGK19uj37B7yW4HVgZ0i4tP8/RHxHvAWsG/BofsBj+aNYh9CqpXPe3CZpFWB9YEH844bAuwhqXNBXhNIt8SVxTV1MzOz+a4kTQJzDNC7YEKZV7L7xs8A/i3pXVJ/+37AxsCWuYQR8YykocD1ko4BpgNnA68Cd+bleQFpYprBkq4E1gaOA04uuM2tJA7qZmZWsZra/N4Ig7L1RUX2rQh8EBGDJfUATsyWMcBeEfFMQfr9SH3615Di7TDgiIiYnUsQEe9IGpSlexD4Cji9jvM3yDPK5fGMclZpfEFapWqtGeWuf+GjJv0a/HKj5drVI2FcUzczs4rlgV/lcVA3M7OK1ciHlbVb/hJkZmZWI1xTNzOziuV6enkc1M3MrGK1wej3quagbmZmFcshvTzuUzczM6sRrqmbmVnFcut7eRzUzcysYvmWtvI4qJuZWcVyH3F5HNTNzKxiuaZeHn8JMjMzqxGuqZuZWcVyPb08DupmZlax3PxeHgd1MzOrWO4jLo8/LzMzsxrhmrqZmVUsN7+Xx0HdzMwqlkN6eRzUzcysYrmiXh73qZuZmdUI19TNzKxidXADfFkc1M3MrGK5+b08DupmZlax5Jp6WRzUzcysYrmmXh4PlDMzM8sjaRVJV0kaKWm2pNeLpBkuKYosAwvS9ZF0naRxkiZLul3SUkXy20zSM5KmSfpQ0glqxE36rqmbmVnFaqOBcmsCuwLPkSq/dVWAnwaOLdj2QcHrW7L8DgWmA2cDQyRtGBGzIX2JAIYCDwOnAOsA5wJzgAvLKbiDupmZVaw2an6/LyLuSefXDcCGdaSbEBHP1pWJpE2BHYEdI2JYtm0MMArYG7g1S3oc8A2wf0TMBB6VtDhwsqTLI2JGqQV387uZmVUsqWlLY0TE3GYq/s7ABFINPJf3GGAksEtBuruzgJ5zM9AX2LScEzqom5mZNc5WkqZImi7pCUlbFuwfCIyJiCjYPirbh6SewLLA6II0o4HIpSuVm9/NzKxiNfWWNkm9gd4FmydFxKQmZQxPADcCbwNLk/rWH5G0VUQ8k6XpR6qpFxoP9M9+7putF0gXETMlTc1LVxIH9XZux83XLTntTw/+DT/55aHzXg974B4uOue0ko+/8Y4hLDlg6QbT3frvf3DdlZcAsOSApbnxjiEln8Nqx05lXJs/Kbg2c76dPIl7bvsPI/77OGM/+Zg5c+ew5ICl2XjzLdnngIPo07dfWWW6Le/aXMLXZqvo0PQ+9aOB0wu2nQmc0ZRMI2KBPCXdD7wBnMqCTeutykG9nevXf9F698+YPp2pU6cA8N2Bayywr0vXrg0eP2niRObMmU3/RRdjscWWaLA8n33yMTddd1WD6az2NeXaBPjw/Xc59Zjf8uUXYwHo2q0bHTt05KMP3uOjD97j4Qfv5ZxLrmalVVYtqTy+NttGM0w+czHw94JtTa2lLyQipkh6ANgnb/N4UtN6oX7AuOznCdm6T34CSV2AHnnpSuKg3s7dfN9j9e4//48n8+hD99N/0cXZcOPNF9i39fY7sfX2O9V57NQpU9h/922ZM2c22+24Gx07NXy5XXrBH5kxYzqrr7kOo954tbQ3YTVpcAPX5gX1XJvTp0/j9OOP4MsvxrLU0svw+xNPZ53vbYQk3n1rNJeefxZvjXqD0479Ldf8+2569OzZYHkuy67NgWuuw2hfm1Uja2Zv9iBeotHA9pJU0K8+EHgN5n0Z+JiF+85XIz15trCvvV4eKGd1mjplCk8NfwSA7XbalY4dO5Z1/JOPDWXG9OkADNp1jwbTD3vgHka++BxbbjuIDTberPwCW7vR0LU59L67+PyzT+nQoQOn/vkvrLvB98nN47HyqgM564LL6dGzF19/9SV33Hxjg+fztdl22mL0e+PKqZ7AbsALeZuHkGrl2+WlWxVYH3iwIN0ekjrnbduPVIsfUU45HNStTk88mh+U9yz7+GEP3gPA6muuw3IrrFRv2gnjv+GaKy6iR89eHHrk8WWfy9qXhq7NF559CoD1N9qkaPN6336Lsv3OPwTgkSH31nuuCeO/4drs2jzE12arUxP/NeqcUg9J+0jaB1ge6J17LWlxST+QdK+kX0jaRtKBwH+BAcBZuXyyAXNDgesl7Svph8DtwKvAnXmnvABYAhgsaVtJR5LuXT+74Da3Brn53eo0LyivtS7LLb9iWcd++vGHvPHqSKC0WvrfLjmfyZMm8tuj/8Ciiy1edlmtfXk479pctsi1+eXnqR992eXqvm5zXzS/GPsZn3z0Acsst0LRdLlr8zBfm22iGQbKNcYSwG0F23KvtwE+AboA5wCLAlNINepDI+L5guP2I/XrX0OKucOAI3KzyQFExDuSBmXpHgS+Ig3uu6jcgldNUJfUiTR13scR8VVbl6fWffzhB7z52kgAdmxELX3o/XcD0LVrN7aqp98d4LkRTzL8kYdYbY212G2v/yv7XNa+5F+bDbUgzZ07p+59c+bv+/D9d4sG9edGPMkTvjbbVFs8pS0iPoAGT1z/H7b5eU0EDs6W+tKNADYpJc/6VFPz+1zgWaD0+1ys0YY9eDeQRgxvtd2OZR07Z84cHnnoPgC22Ho7evbsVWfaaVOncsWF59ChY0eOPO5UOnSopkvS2sLDJVybSwxIz8v48P1368zng/femffzN18vXE+YNnUqf82uzd/52rQqUTVXaTZt33ukQQfWgubMmcOjD90PwA+23qGkkcH5Xn7+mXl/JBuqSd1wzeV8+cVY9tz3AFZetayJk6wdKvXazI2G/9/LLzDq9YVHqn/1xefz8oE08K6Qr83KUC0D5SpF1QT1zDnAqZIansHEGu2l50bkBeWG+8MLDc36Owcs/R3W/d5GdaYb/car3HvHzSy+5AB+dvBhjSustSv51+YO9VybO+62F4svOQCAs046iiceeYgpU75lxozpvPTcCE466lDmzJnXpUmHgo7b0W+8yn3ZtflTX5ttSk1c2puq6VPP7AssDrwn6VXgC9LcuDkRESVFoWJTB7763hcsskjhbILtT26A3FJLL8M669f1cKLiJk2ayLNPDQdgh513n3cbUaHZs2dxyXlnMXfuXA476kS69+jRpDJb+1Dqtdm9Rw/OPO8yTj32t3zz9Vf8+fQTFtjfqVMnfnPUiVx+wZ8A6JX3e+9rs7J0aI/V7SaotqDeiwVvxK+7s7ZhC00deN3fLuP3x5/ShCyr36SJE+YH5V3qDsp1eXzYg8yaOZMOHTqwwy6715nu3jtu4f1332bDTTZn/Q02ZtrUqQvsnzVrFgARMW9f5y6d6dSp80J5WfswaeIEnsuuze1LuDZX+u5qXH3Tndx/1228+OxTfPnF53Tt2pVVV1+Tvfb7Cb16LTIv7XeWXX7ez/fdcQsfZNfmekWuzdnZtYmvTatAVRXUI2KbZsxuoakDD/7N7z5uxvyr0mPDHmDWrFlZUC6/6X3YA3cDsO73vl/vPO9fjP0MgBeffZo9d6j7yYJffjF23v5Dfncce+/3k7LLZLUh/9ocVOK12WuR3uz/s4PZ/2cLDzz+7+PpaZidOnVi1YFrztuef23u1cC1uVfetbmXr80W4Xp6eaoqqDenYlMHfvD19DYqTeUY9kBq3lxvg++zRNYnWap33x7DO2+lhpTG9MWb1efhvGtz8TKvzWIeH/YAAJttua2b2CuZo3pZqi6oS1ofOAnYgvRIunGkmXz+HBGvtGXZqt27b43m3bfHALDjbnuWfXzuC0GvRRZhi622qzftb35/PL/5fd2zc/3rur9x0/VX+SltBix4bQ5qxLVZ6Jn/Ps6IJx+nQ8eO7PuTXy6w79DfH8+hDVyb/77+Kj+lrZW0xX3q1ayqgrqkHwAPA58Dg0kD5ZYE9gJGSNohIp5qwyJWtdwgpF6L9GazH2xb1rGzZ8/i8YfTVMZbbbcTXbp2bfbyWfvVmGvzln9dx1LfWZZ1v7fRvEesfv3VFzx0313ccmPqeTvwF4fw3dVWb5lCm7WBqgrqwLnAcGC3/Cn2JB0HPJDt36JtilbdZs2axWPDUlDeZoedyw7Kzz71BBMnjAcaV8s3q8usWbN4PLs2ty7j2nzxuRG89sqLQJrZsGPHjvMe1dqxYyd++qvDOPAXh7RMoa3ZePB7eaotqK8P7JMf0AEiYo6ky0gT5VsjPPvUE0yaOAGg5EFI+XI1qeVXXJnVVl+rOYtm7dxzjbw299z3ABZdbHHeHv0G477+mjlz5/CdZZdj/Q03Yde9/o8VV/5uC5XYmpNjenm04CNeK5ukr4DjIuKGIvt+AZwfEY1+4sIHX0+vng/D2gVfkFapVlysW6vE2xfen9ikX4ONVuzTrr4XVNuMcvcB50naPn9j9vrPQP3PUDQzs6rSFo9erWbV1vx+DLAmMFTSJOBL0iPyepMeTH9sG5bNzMysTVVVUI+I8ZI2BXYjDYjrR7ql7SnggeyhL2ZmViM8UK48VRXUYd7T2u7FTe1mZjXPMb08FR/UJfUvJ31EjGupspiZWStzVC9LxQd14GvKGwTcsaUKYmZmVsmqIaj/Et/ZY2bWLrXHEexNUfFBvdg96WZm1j54oFx5Kj6om5lZ++WYXp6qC+qStgR+DawKdCvcHxHrtHqhzMzMKkBVzSgnaUfgMWAxYEPgY9JAutWAnsCLbVc6MzNrdmri0s5UVVAHzgQuAXbNXp8aEduSau2zSAHfzMxqhKeJLU+1BfXVgSHAXNKI+J4AEfEhcAZwSpuVzMzMmp3UtKVx59Qqkq6SNFLSbEmv15HuYElvSZou6X+SdiuSpo+k6ySNkzRZ0u2SliqSbjNJz0iaJulDSSdI5b+Dagvq04EOkR4tNxZYOW/fZGDZNimVmZm1iDZqfV+T1CL8DvBm0XJJ+wPXArcAOwPPAHdJ2qQg6S3AIOBQ4EBSd/EQSZ3y8loFGEqKa7uRWqTPIj3vpCzV9ujVYcC9EXGFpH8CmwFHkZrezwVmREThB1oyP3rVKo0vSKtUrfXo1dc/+bZJvwZrLdOr7HJK6pB7loikG4ANI2KtgjRjgJci4oC8bSOACRGxS/Z6U2AEsGNEDMu2rQaMAvaPiFuzbVcDOwKrRsTMbNs5wG+AARExo9SyV1tN/RLm/507iVQ7v5fUJL8o8Nu2KZaZmbWINqiqN/RwMEkrkcZy3Vqw62ZgO0lds9c7AxOAh/PyHgOMBHbJO25n4O5cQM/Lqy+waTllr6pb2iLiwbyfP5W0AbAK0B0YXfCBmJlZlavQwW4Ds/Xogu2jgC7Aitm+gcCYWLhJfFQuD0k9SV3HhXmNJlViBwLDSy1YVQV1STsAj+Q+oGz9dtuWyszMWkpTZ5ST1BvoXbB5UkRMakK2/bL1hILt47N1/7x0hWly6XJp+hbLKyJmSpqal64k1db8PhT4TNKlRQYjmJmZFTqaNKdJ/nJ0m5aoBVVbUF8HuJ40KnGEpPcknS1p7TYul5mZtYBm6FK/mNS8nb9c3MRi5WrkfQq252rw4/LSFabJpculmVAsL0ldgB556UpSVUE9Il6PiJMjYhVgE+Ae4OfASEmvSfpD25bQzMyaVROjekRMiohPCpamNL3D/P7vgQXbBwIzgffy0q1W5H7zgbk8ImIKqfWgMK/VsndR2Nder6oK6vki4vmIOIr0rWtP0jefP7VpoczMrFlV4oxyEfEe8Bawb8Gu/YBH8wZtDyHFpu3mvR9pVWB94MG844YAe0jqXJDXBNItcSWrqoFy+bJbBn4I7E+6NaATMKxNC2VmZs2qLR69KqkH8285Wx7oLWmf7PUTEfEVaRbTf0t6F3icFIQ3BrbM5RMRz0gaClwv6RjSBGpnA68Cd+ad8gLSxDSDJV0JrA0cB5xc7l1d1Tb5TEfSDfo/BnYHegFPA4OB2yLi66bk78lnrNL4grRK1VqTz4z5fGqTfg1WG9CjMZPPrAC8X8fubSJieJbuYOBEYDlgDHBSRNxfkFcfUh/+3syvfB4REZ8VpNssS7ce8BXwV+C8IrfD1V/2Kgvq35CG/48kBfKbI+KT5srfQd0qjS9Iq1StFdTfamJQX7URQb2aVVvz+2XA4Ih4q60LYmZmraBdheSmq6qgHhFntnUZzMys9VTojHIVq2pHv5uZmdmCqqqmbmZm7UtbjH6vZg7qZmZWsRzTy+OgbmZmlctRvSxV26cuqbukpSR1b+uymJmZVYKqC+qSdpP0AjAZ+ASYLOkFSbs0cKiZmVWZSpwmtpJVVVCXtCfpIS4zSY/OOwA4BpgB3Ctpj7YrnZmZNTepaUt7U20zyr0CvBERPymy7yZgzYhYv7H5e0Y5qzS+IK1StdaMck39u7xCK5WzUlRVTZ30aLob69j3LxZ+dJ2ZmVWzZnigentSbUF9HOkZs8WsRpkPkzczM6sl1XZL2y3AOZKmAbdHxITsCTj7kp6lfm2bls7MzJpVexzs1hTVFtT/QHq27TXA1ZJmAZ1JjSx3Aie1YdnMzKyZtcfBbk1RVUE9ImYAP5K0NvADoB+pyf2piHitTQtnZmbNzjG9PFUV1CVtCbycBfDXCvb1BDaIiCfbpHBmZmZtrNoGyj0OrFHHvoHZfjMzqxG+T708VVVTp/6WmJ7AtNYqiJmZtYZ2GJmboOKDuqRNgM3yNh0gaYuCZN2APYBRrVYwMzNrce2xtt0UFR/UgR2B07OfA/hdkTSzSAH9sNYqlJmZWaWptmli5wKbRMTzLZG/p4m1SuML0ipVa00T+9mEmU36NVi6b5d2Vdevhpr6PBFRbQP7zMysCdz8Xp6KD+qSvldO+oh4uaXKYmZmrcszypWn4oM68CKltUIqS9exZYtjZmatxjG9LNUQ1Ldp6wKYmVn7IOkg4B9Fdp0XESfmpTsYOAFYDhgDnBwR9xfk1Qe4GNiLNKX5UOCIiBjbMqWvgqAeEU+UmlbSii1ZFjMza11tWFHfCZiY9/rT3A+S9ic9QOxs4DFgP+AuST+IiGfzjrkFWBM4FJiepR8iacOImN0Sha74oN4QSYuRPtADgE1w87uZWc1ow4FyL0XE13XsOxO4OSJOzV4/Lmkd4DRgFwBJm5Juyd4xIoZl28aQbr/eG7i1JQpdlaPJJfWQdKCkB0jfni4nTUBzVNuWzMzMmpOa+K/ZyyOtBKzKwkH5ZmA7SV2z1zsDE4CHcwkiYgwwkizwt4SqCeqSOkraVdK/gS+AG4H1SK0N+0fEBhFxWVuW0czMasYbkuZIek/SHyTlWoEHZuvRBelHAV2AFfPSjYmFJ4MZlZdHs6v45ndJm5Oa1vcFFgO+AW4C/gO8nr3+vM0KaGZmLaeJlW1JvYHeBZsnRcSkOg4ZS5rF9DnSHVW7A38CvgMcTnrkN6RaeL7x2bp/tu5XJE0uXf8i25tFxQd14L+kD/Zx0ijCYbkBBtnIQjMzq1HN0IB+NPOnGs85EzijWOKIGEoapZ4zTNI04ChJZze9OC2rGoL6a8DawFbAHGAxSXdFxOS2LZaZmbW0ZhgodzHw94JtddXS63IrcCypyzdXI+/Dgq3EuRr8uGw9Hli2SF798tI0u4rvU4+IdYG1gAuA7wI3AJ9LupX0ZDZPj21mZkVFxKSI+KRgKTeo58v1pRf2iw8EZgLv5aVbTVroa8lAFu6PbzYVH9QBIuLNiDgpIlYCfkAK7Ftla4AjJW3ZRsUzM7MWUiGj3/cntRS/EhHvAW+Rxnnl2w94NCJmZq+HkGrl2817L9KqwPrAg81VsEJV9ZS2fNlIxB2BH5Nq7D2BD7PA3yh+SptVGl+QVqla6ylt46fOadKvQb8eHcsqp6ShpAllXss27Q78Grg0Io7K0vwY+DfwR9J4r/2AXwFbRsQzeXk9BKwBHMP8yWfmAp58plBEzCF923lQUndgT1KANzMza6zRwMHAMqTW7LeA35PmQwEgIgZL6gGcmC1jgL3yA3pmP1Kf/jWkeDuMNE1siwR0qOKaektwTd0qjS9Iq1StVVOfMK1pNfW+3curqVe7quhTNzMzs4ZVbfO7mZnVPj9PvTwO6mZmVrHa8IEuVclB3czMKpZjenncp25mZlYjXFM3M7PK5ap6WRzUzcysYnmgXHkc1M3MrGJ5oFx53KduZmZWI1xTNzOziuWKenkc1M3MrHI5qpfFQd3MzCqWB8qVx0HdzMwqlgfKlcdPabNmJ6k3cDRwcURMauvymIGvS2sfHNSt2UlaBvgYWDYiPmnr8piBr0trH3xLm5mZWY1wUDczM6sRDupmZmY1wkHdWsIk4MxsbVYpfF1azfNAOTMzsxrhmrqZmVmNcFA3MzOrEQ7qZmZmNcJB3czMrEY4qFc5SWdIirxluqRRko6XVPb/r6Thku5vibI2lqQPJF3R1uWwppH0v+wa/UGRfVtn+zbM23aGpM1at5QNk3RQVtbF2rosZoX8QJfaMA3YNvu5O7ANcC7pS9u5ZeZ1GDCn+YpmBpLWBNbJXh4A/LeEw04HvgVGtFS5zGqNg3ptmBsRz+a9flzS2sDelBnUI+LNZi1ZBZHUPSKmtXU52qkDgbnAE8C+kn4XEbPauExtSlJHoEN7/xysebn5vXZNBjrnb5B0rqTXJH0r6VNJgyUtVZBmoeZ3SVtKGiFpmqSvJV0vqX9dJ5bUU9IUSccW2Xe7pGfy0l0haYykqVkz+1WS+jT05iTtLWlk1t3wmaSLJXXL259rzt01O+ck4LaG8rXmJ0nAj4HHgIuBRYGdGjgmN4HGBXldS1tn+7pl/9+fZf//IyXt1UB+Z0gaJ6nwd2KtLO8ds9e7SnpY0peSJkl6TlK9Zc2O65/9Xnyd/Z6MkLRlQZrhku6X9HNJY4AZwLoN5W1WDgf1GiGpU7YsIml34EfA7QXJlgDOAXYFjgRWAJ6QVGeLjaQNgIdJXxL2BU4AfggMyWoaC4mIKcC9wP4FeS2Snfs/2aYeQEfgZGBn4BRgK+DuBt7r7tl7exPYEzgfOBS4qUjya4B3gb2AC+vL11rMZqRr7T/AUOAbUhN8fTbN1pdnP28KvJxt+zdwCOn/fU/SdXBHdl3UZTDQD9ixYPuPgS+BR7LXKwL3AT8l/Q49DTyY+0JRTPZ7MIT0e3EC6ffkW+Dh7Pcn34bAccBpwC6kp8aZNZ+I8FLFC3AGEEWWm4GO9RzXEfhOlnZQ3vbhwP15r+8EPgQ6520blB33w3ry3z1L8928bT8DZgNL1nFMJ2Dz7LhV87Z/AFyR9/plYETBsb/Ojls7e7119vpvbf1/1N4X4K+kcR99stdXAVOAXnlpcv9fG+ZtC+DYgrzWybYfUrB9BPBSA+V4Gfh3wbZ386+tgn0dsmtyKPCfvO0HZWVYLHudu9Z3zEvTOfu9uSNv23BgJunRr23+/+KlNhfX1GvDNGCjbNmCVAvfCbg2P5GknbNmwYmk4Jp7pvSq9eT9A+CeyOv3i4hhwITsXHV5KEuTX1vfH3g8Ir7IK9NPJb0i6VtgFvBUfWWS1AtYj4VbIW7J1oVleqCeMloLy1qB9gUejIiJ2eb/kFpp6m0yr0Nu5HxhV8otwPqSetZz7GBgd0nds7J9H1gp254r7zKS/inpU9LvyCzSl9iGfkcmRcTQ3Ibs9+VOFr4eX40I186txTio14a5EfFitjwdEZcBZwG/kLQWgKSNSE3in5GaFjcFNsmO71Ys00w/4Isi278A6uxXj4iZwB1kQV3SosAOzG96J+sHvRF4Hvi/rDy5P/R1lakvoMIyZQFjRpEyFSu7tZ5BwOLAfZL6SuoLvAaMpeEm+GL6AbMiYlzB9i9I10Xfeo69GehJaiaH1PT+IdnoeqVbQO8lBeLTSHeRbERqWm/od+TLItuL/Y74erQW5dHvtWtUtl4TeJ0ULCcC/xcRcwEkLV9CPuNIffGFlsz21WcwcLCkdUhfIuaQai85+wIjI+KQ3AZJWzWQ5wRSU+cCZcoG13UtUiY/saht5QL3P7Il3+KSloiIYgGxLuOAzpL6RcT4vO1Lkv6vJ9R1YER8LOlpYH9Jt5O+SP4rInLXyCrA+sCeEXFP7rhczb6BMpX6O+Lr0VqUa+q1a61s/XW27k5qSsz/o3JgCfk8BeyZP5hO0g6kGtFTdR2UGQ58TqoR/RgYktcEmyvTzIJj6i1TRHwLjAT2Kdj1f3nltQogqQewB2ng4zYFy49JlYr96sliFgvXkHP/v/sWbN8XeCXSIM36DCYNUNsNWJq8pnfS9Qh512T2xXfzBvJ8CugtaVDecZ1IX6R9PVqrck29NnSQlGtK7wJsQBpJ/ibwZLb9YeD3wOWS7iLVnH9aQt5nk5on75d0Oan2cS6pyfzB+g6MiDmSbiUNLFqCgtHwWZn+KulU4BnSH9vtSijTGcDdkm4ijXhfjTSq/46IeK2E46117AH0Ai6LiOGFOyUdT6rJX17H8aOAPST9lzSwbkxEvCrpTuDirAY9BvgJaYT9HiWU6TbgUuBvwJsR8b+8faNJ40zOzUa09yI9f/3TBvJ8gPT7cJOkE0lN7EcAS5GuS7NW45p6behOCorPAI+S/qDcBGyTG+AWEQ+SbrfZg9RvuCWptlLMvNp8RLxE6hftTeojv4D0R2zniChl5rnBwABgKlA4/ezVwEVZee8ElqWEftaIuJdUM1sbuAc4kXTr2k9KKI+1ngOAj0gtNsX8E9hE0sp17P8t6W/UEOAF0pdVSP/P15L+3+8hXQf7RMR9DRUoIr4i/Y4U1tKJiBmkCZtmkIL/WaQvtU80kOcc0hfSB0i/H3eQfl8GZb8/Zq1G87uTzEDSS8DrEfHzti6LmZmVxzV1A0DSAEkHkO4DfqGty2NmZuVzULec/UmThNwMXNfGZTEzs0Zw87uZmVmNcE3dzMysRjiom5mZ1QgHdTMzsxrhoG5mZlYjHNTNzMxqhIO6WQWS9IGkkHRQwfYVsu0haYWWPJeZVR8HdatZkm7IC4D5y7eSRku6VtK6bV1OM7Pm4qBu7cEs0kM2cks30kNgfgW8KOnQNixbuWaRHmIyJvvZzGweB3VrD0ZExIDcAvQgPaTmHdKTCv9aLTX2iPg0IgZmS0NPDzOzdsZB3dqdiJgZEQ+Tnlg3i/R7UE21dTOzohzUrd2KiDeBF7OXGwJIOijrd/8ge72zpCGSvpQ0V9Lv8/OQ9F1Jf5P0lqSpkiZLGinpdEl96jq3kkMkvShpiqRvJD0iaaf6ylzKQDlJ3SQdLulxSV9JmiHp4+z1kZIWrSf/rpJOkTRK0jRJX0u6W9J6DZSrv6SzJb2ajVmYIukNSedLWqK+Y82s+XRq6wKYtbFPsvVCAVjSMcCFpOfLTwTmFuw/GPgb0DnbNBXoCqybLT+XtENEvFtwXEfSs7z3zTbNIT3De1tgW0lHNvbNSPou6bn1q2ab5gITgMWBZYCts/dyQ5HDFwGeIn3BmZEduyipRWMHSdtExPNFzrke8BCwZLZpWnbsGtnyS0m7RsRzjX1fZlYa19StvVs+W48v2L4kcB5wJbBURPQDegG3A0jaBbgWmA2cDiwdET1J/fWbk1oAVgTulFT4e3Yc8wP6mUD/iOgPfIcU7C8iBeGySOoLDCUF9C+AnwK9I2LRrFxrA2cXea85ZwKLATsBPbP3uyXpi08P4LIi5+wD3Ev6vN4Htgd6RkQv0ucwivTF4F7X2M1aQUR48VKTC6k2GsDwOvZvRKolB3Bptu2g7HUA/6njuI7Au1mafetI0x/4LEuzd972HqSacgB/KXKcgEfzynBQwf4V8vatULDvz9n2ycCqZXxOH2THTQVWKbL/R3nnXK5g30kNHLs0qaUggPPa+prw4qXWF9fUrd2RtLSkn5JqmB2AmaRnyRe6oI4stgJWAj6MiNuKJYiIccCQ7OWgvF2DgN6k5unzihwXwDklvI1ifp6tL4+Itxpx/O0R8U6R7feSgjLAWgX7/i9b31Ts2Ij4DLgqe/njRpTJzMrgPnVrD7aSFHXsm0qqDRcGwWnA/+o4ZrNsvZSkz+s5b69svVzetg2y9eiIqOvYp0jN+iX/fmaD5pbKXj5Q6nEFXii2MSJmSfqS1MTeL++cXZgf5B+pJ99HgBOAZSUtHhFfNbJ8ZtYAB3VrD2YB47Kfc03FnwD/Ba6JiI+KHPNNRMwtsh3mB88uzB8cVp8eeT/n+srrvMc8ImZI+hoYUELeOfnl+LCM4/JNrmff9GzdOW9bf1JXBNTzfpg/GBFgCcBB3ayFOKhbezAiIrYu85g59ezLBbJHI2L7xhXJzKz5uU/drHxfZOvl6k1VXK6WunRdCbJm7cXKzDe/KX/5OlM1r3HM//LznXrSLZP385ctVxwzc1A3K9+IbP1dSavWm3JhL2XrgZLqarrfgjJb0SLiQ9Joe4DdyixTo0TETOC17OV29STNtWZ85P50s5bloG5WvseY3299STaZTFGSOkvqlbdpGOmWto7A8UXSC/hDI8t1Q7Y+vBFfNhrr1mz9E0krFu6UtBRwSPZycCuVyazdclA3K1NEzAIOI92WtjMwTNKmuUlmJHWQtIakE4G3gPXyjp0KnJu9PErSaZIWyY4bAPyTdMvc1EYU7QLSBDC9gCckHSipR16Z1pF0iaS9GpF3Xa4EPiYNBnxY0jbZFxMkbUq6574vqdn9omY8r5kV4YFyZo0QEQ9K+glwHWl61xHADEnfku5Dzx8lXng73QWkW9v2Ic3idpqkSaTgB3AkcAxl9o1HxIRs7vgHgFWAm4A5kiaQAn3XLOnIcvJt4JwTJe1Buid/ZVIrxtTsFsKeWbJxwB5uejdrea6pmzVSRAwGvkuqeY8kzZfel3Rr2HPAxcAWEfF0wXFzSJO2HAq8TJr8BlJA3DUiLm9Cmd4C1gGOAp4GJpHmdP8SeBz4HWkymWYTEa8Aa5ImzXkj29wBGE2aO3+NiHi2Oc9pZsUpTWBlZmZm1c41dTMzsxrhoG5mZlYjHNTNzMxqhIO6mZlZjXBQNzMzqxEO6mZmZjXCQd3MzKxGOKibmZnVCAd1MzOzGuGgbmZmViMc1M3MzGqEg7qZmVmNcFA3MzOrEQ7qZmZmNcJB3czMrEb8f0UA/UGX9iVdAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAGoCAYAAAB13vBmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABDrAAAQ6wFQlOh8AACO10lEQVR4nOzdd1yV1R/A8c8B2YoCouLee+89cpWaqWmmpWlDzb21rNRKy3JVltpSs3Kv3HtrvzRz7w2KAwHZ857fHw8gICogcC/wfb9e93XvPc85z/O9oPDlnPOco7TWCCGEEEKItGVl7gCEEEIIIbIiSbKEEEIIIdKBJFlCCCGEEOlAkiwhhBBCiHQgSZYQQgghRDqQJEsIIYQQIh1IkiWEEEIIkQ4kyRJCCCGESAeSZAkhhBBCpANJsoQQQggh0oEkWUIIIYQQ6UCSLCFEqijDi0qpP5RSl5VSQUqpYKXUJaXUOqXUm0opB3PHmV6UUs2VUjqJR4RS6rZSarNSqvszztFGKbVEKXVNKRUS87gWU9bmGW3tlVLvKqU2KKVuKaXClFJ+SqkzSqlflFJt0/YTCyFSSskG0UKIlFJK5QX+BFo/o2oLrfWe9I8o4ymlmgO7k1F1ktZ6cqK2TsBvQJdntF0F9NZahyRqXxNYDpR6WmOttUpGfEKIdCI9WUKIFFFK2QNbSJhgrQF6AC8ArwPzgcB0jMHKAnvJhgJNgT7A7Xjlo5VSNonqJk6wfgXaxzwWxCt/NaZuHKVUWWAHjxKscOBboCPQEngXWAtEp/qTCCHShtZaHvKQhzyS/QDGATreY8IT6rkDBWJeN4/fJlG9PvGOXY9XXjzRdaoC3wC3MBKIsfGOhQEuic7bJd7xazzquZ8N7AE8gSAgAvAGNgDtU/B1aJ4ovubxjo1OdKxAvGOtEh2bmcS5v01Up2W8Y5vjlUfGv26ic1Qx978Vecgjuz+kJ0sIkVJ94r2+AnyRVCWt9X2t9Z00vO5KjN6ighi98BeBvTHH7IDXEtXvFe/1z1rr2LkRw4BmQGHACbABCmD0Im1QSg1Kw5gBQoH78d6/Hu91FPBlEm2mxhxL0EYpVQCIP9dqsX7CcKzW+lRqghVCpJ0c5g5ACJF5KKUcgfLxirZrrU0ZdPlSwAyMobK8GAneTxgJExhJ1fyYOF2AdjHl0SQcgvscOA/4AiEYCVotjMQG4DOl1HytdfwkJzmqKKWiMXrghscrn6W1jj90Vy3e65ta63uJT6S1vqOU8oo5V/w2NYH486y2pjBGIUQGkiRLCJESLoneP8jAa8/WWo+OX6CUugR8hxFXI6VUSa31VYxeLduYahu11vHnSG0ARgD1MXqw7BJdxwUjkTydwvi+TfT+LvC51npOovI88V4/lmAlal88URtzfv2FECkkw4VCiJTwS/TeLQOvvSpxgdY6DFgcryh2iPDNeGU/xb5QSrUCDgDdgWI8nmDFcn2uSA35gBpKqcQ/Z/0T1XmS/Em0MefXXwiRQpJkCSGSTRtLCZyLV9RKKZWcZQISrBWjlIrfi+6ezMt7P6H8x3iv31RKFQcaxbz3wpgoHmssj3rwLwFvYNwR2DzROVPzs7EF4Ai8D5gwhvXexrhRIL6T8V4XVUo9lmgppfJjzBmLdSLm+RgJv5ZPXUtLCGFekmQJIVJqYbzXpXk8iQCMtbRiJmrD4z0w8ROIDsm8bpKL+mmtzwCH48XzHY/mLf2aaD5U0Xivv9Va/6m13k8aLXegtQ7VWs8j4ddoQqJEakm81zkwEr/EPiDhdI6lMee/g7F8RqxeSqkmScWilKqcgtCFEOlAkiwhREp9C/wb7/0XSqmVSqnXYlZB76aUmgNc5tEk+askvFvud6XU+0qpNRg9Sc/rp3ivY5M2E8b6U/Fdjff6XaVUB6VUb4yFVdPSpxjLK4BxB+P42ANa6x3Aunh1RymlflJKvRTz+BnjDshYa7XWO+O9H86jpNUG2KaUmqWUaq+UekEp1UcptQI4nrYfSQiRUrLiuxAixZRS7sAfpGDFd6XUXGBAEnVOAVViXt/QWhePqV8cY32rWCW01tefEI8TxgKgzvGKt2itX0pUrzWwLYlT7MJYSPWxuJ8kiRXfE7RRSv2CMVwIxjIOpbTW3jHHcmJ8/To+7RoYydibWuugRNeWFd+FyASkJ0sIkWJa6/sY6zW1w+gFuoqxHEIoxtIKfwG9gf/FazYamIuxZlQ48B/GnKiZaRBPMI/3Rv2URL3twCsYc5tCMRKz2Tw72UmN+GtdOWAMAcbGEaS1fgXj67cMuIGxoGpYzOtlQDutdafECVZM+2NAZeA9YBPGfLUI4CHGnLkFwIvp8JmEECkgPVlCCCGEEOlAerKEEEIIIdKBJFlCCCGEEOlAkiwhhBBCiHQgSZYQQgghRDqQJEsIIYQQIh1IkiWEEEIIkQ4kyRJCCCGESAc5nl0le1BK2WGsOn2fNNrHTAghhBAWzxpjo/pTWuvwtDyxJFmPVAGOmDsIIYQQQphFHeBoWp5QkqxH7gP8888/eHh4mDsWIYQQQmQAb29v6tatCzF5QFqSJOuRaAAPDw8KFy5s7liEEEIIkbHSfKqQTHwXQgghhEgHkmQJIYQQQqQDSbKEEEIIIdKBJFlCCCGEEOlAkiwhhBBCiHQgSZYQQgghRDqQJEsIIYQQIh1YTJKllCqtlJqnlDqulIpSSp1OZjullBqvlLqplApVSh1WStVP73iFEEIIIZ7GYpIsoBLQHrgMnE1Bu3HAZGAW0AHwBrYppUqmeYRCCCGEEMlkSUnWeq11Ea11V+BYchoopeyBD4AZWutZWuudwOuALzA6/UIVQgghhHg6i0mytNamVDRrCDgDy+OdJwJYDbRLo9CEEEIIIVLMYpKsVCof83w+Ufk5oKhSyiGD4xFCCCGEADL/BtEuQLjWOixRuR+gYo6HJtVQKeWM0QsWq0C6RCiEENldcDDcvv3UKlprTNqECZPxGuN9aEgAIaf+JcpKEUk0UTqacB3J3eiHhJuiiCKaaG0iChPR2kQ0JiJ1FHeiHhJBVFxZ4udLEXdwsXYyro1Ga+PZZLxDx5SbtEbHKzNpU9yxuDJMaA3nI25TIEfuR9dCJ7juzSgfrLXCDmusUOn9VX9cdDSY47rmEB2z1/NTPq42WRF5tA5Y+6VbGJk9yXoeI4GJ5g5CCCGel0mbiDJFJXg8DHtIpCmSaFM00TqaaFM0Jm2Kex2towmJDOF+8H0ioiOIiI4g0hRJeFQ4/mH+HL97HCcbp7g2pvAwosPDjETI349oNCZM3Ai6RQ4T2GBNtDIRHRREVA4ropUmOiyU6y5gGwU2JjApjKRExbyO95zerE0xD208AwTZQXE/4/ew0mClH71WxLx/Rln8NsWAW7n8qXwPcsS7VuxzEw23c2kq3I9CKTMkO1obz/nzZ/y1zSE8HIoUeeLhw3srcezv8hQvdZ7rXEyXEDJ7kuUH2Cml7BP1Zrlg/F9+Wno6E/g53vsCwJG0D1EIIQxRpiiCIoIICA/gVsAtwqLCiAwPIcrnHpGmSK4H3cIxhz1RpmiidFTc883g2+RQOYiMjiDg7g18o4N5aArhcMhFoknNdNZnyxENUdZQLEBhZQLraI2VNhIGq3jJQ04Nt3JBpftgGx2TXJjAOo8L1tqehv5ReBfMRUWdF6u87lihsEKhUFipeK9j3se9jikP1ZE4Y4tbycrksMqBjcpBDitrHK3tyW/nhrWyIofKgbWySvDa1TY3uXI4Yq2ssVIWNjOmfHmwszN3FNmSv38YoaGReHjk4vbtQHbuvErz5q4ULbo0Xa6X2ZOs2LlY5YAT8crLAze11kkOFQJorQOAgNj3ZvmrQgiRKQSEB+Af5k9wRDA+IT4ERgQSFhWG50NPHoY/5G6AN9EP7hP50JfImOGq42HXuR3ph6OyJTIyjAAVQaR6voTIKQIcIiF3OLgHQ8cgiLCGqneN5CbukdsFk5MjuSOtcYy2wgqw1upRz0pQCNbVqmOnrclvcsAOa2y1FbbaGlusyG2yxT7xr4ewMKNXoGhRo4egQQOwikleSpSAPHme67MJkZ601ixbdoYRI7ZSu3ZB1q/vQcGCuejVqxpeXl7pdt3MnmQdwkiUuhGTZCmlbIAuwCYzxiWEyIRCI0O57n+dfTf2ccjrED4hPpy9fYLrwbee2TZ3GNhEG8NiNtFGL4+LgkIBIVTwAbsoiLKC3FYOFLZxJW94DtwirLHx8SNH3frYVKyCAtysnLBTNlijyIE1OZQVObDGSdmSQ1kbyU6DBmBtnTAANzcoXjxdvi5CZGaXL/syaNAmtm27QpUq+fjgg8YZdm2LSbKUUo48WnahGOCslOoa836v1vq+UmonUExrXRpAax2mlPoCmKSUug+cAgYCbsD0jP0EQghLpLUm0hRJcEQwR28fxTvIm5N3T3LZ9zLeQd48DHuIyRSNb8gDHoQnnGGQN8KGmjcj6XUL8geBUyS4hUCeMLCPMh55wqBgIFjXqAkDB0KVKo8H4egIFSqAUo96f4QQ6W758jP07r0Ga2srvv66NcOG1cPGxvrZDdOIxSRZQD5gRaKy2PctgD2ANY/HPA1j3uFowB04DrTVWl9Nr0CFEJYnIjqCAzcPcODmAcKiwth6ZSs2JsV136vcjUx6eqaVCYoGWVPhbjR5wiBfMLiGQoX70NATCgVGQrFi0L07dO78+AkqVjQSqByW9KNUCBEVZSJHDivq1ClIx47lmD69DUWL5s7wOJSOvdsgm1NKFQY8PT09KVy4sLnDEUIkorXGP8yfQ56HWHNuNefvnMY75C7eQXewQhFsSriSi12U8dz6CpTyA49AyBsCFe9DUWsX8jdrT47YpQJNJrCxgerV453ADt57T3qehMhE7t0LZsyY7YSHR7F0addnNwC8vLwoYtyFWERrnaYTtOTPLyGERdBac+LuCfZc34N3oDfe/p78e+0g4VHh3InwJUxHEh0v36l6B0oFQxFrY7jONRRyhcMrF6CmN9i+/gbcvQvNmkGNGpA7t3Hrepky5vuQQoh0YTJpfvnlGOPG7SAgIJzhw+tjMmmsrMx7U5skWUKIDOcT4sPmS5u56neVH4/9SGhECH7h/gnquIUYd9PZmKB2ANTwNu6qK4ULTcILULxqU6heFkJCoGZNcDIWlqRMGShYMOM/lBDCLM6f9+Gdd/7i0CFP6tUrxPz5HahWzTLWF5ckSwiRbkzaxN2gu5zzOcfOqzu5HXSbLZe3cCfoTlydAoGgc8CwE1DkIVS7C3VuGQkVxYrBggXg7GxMHHd0NN+HEUJYJK01ly/7Mndue/r1q2X23qv4JMkSQqSJ8KhwlpxeQlBEEEERQRy/c5yd13biE+KToF7Nh468cANaXjPmSxUOANWkCbRsCR07GmsuAdjaSlIlhEjS+vUX+OefW3z22QtUqODOjRvDsbe3vJTG8iISQli04IhgvIO8OX7nOJ4PPdl6ZSsR0RHsvr47QT2lobpPDoadMhbObHwTyvuAtQ4x1nhq0wbeagtDhxpLGwghxDN4ej5k6NAtrF17nrJl3Rg/vjFOTrYWmWCBJFlCiKeIMkVx2PMwa86tYvW5NdwIuPnEuuXvQ7tLMOJvY9VxYy2pKGjSBKzC4MOexgT0+vVlSxEhRIpERZn49tv/8cknu4mMNDFpUjPGjWtssclVLMuOTgiRIcKiwvjb629O3T3FzYc3+fm/nzFpEwHhcTtPYRMNVe9DjTvGJPR8wdDM2xYXuzw4PAyGOnWgRQtohLHsQZcuxjpSQgjxnM6evc+YMdtp0aI4P/zQnrJl3cwdUrJIkiVENuIT4sPxO8e5H3yfO0F3uPnwJguOL+Bh+MME9YqoPITqaMYegFwR8NoZKNO6O6pcebDzh8/eNfaxy53xi/sJIbIHf/8wduy4SteuFalaNT///PMuNWt6ZKq9hiXJEiKLCosKY+r+qVzxu8Le63u5FZj0/nuFHfLT3q0GzRfsoaSfcXdf3hD/hJVCQ8HePv2DFkJke1prliw5zYgRW/H1DaV+/cIULuxMrVqZb2kWSbKEyALO3T/H+ovr2XdjH+HR4VzwuYB3kDdRJmPZ85IuJSluX4BGqhj1bEpQ7dQ9Spvy4PLHauyj7qK4++hkq1cbd/ZVrQoODpA3r5k+lRAiu7l48QEDB25k585rVKuWn7/+ep3ChZ3NHVaqSZIlRCYSGR3JeZ/zHL19lBsPb7Dj6g5uBd7iuv/1uDo5rHJQ2rU0L+epx2uBRel01oT9H8tijt4B/vfohHZ2UKEsfPIJ5MoFrVvLNjJCCLO4dSuAatXmYW2tmDGjDUOH1iNHjsz980iSLCEsmNaafTf2ceLuCX4+9jOn7p1KcNwjpwfWVtb0qd6HTqXa89LpcGwX/Aa7dkHUeeBgwhOuWweVKxuJVLFisnSCEMLsrl/3p3jxPBQq5MzMmW1o376sWTZzTg+SZAlhIYIjgtlyeQtX/K5wyPMQ1/yvcenBJUKjQhPU+7Dxh1QvUJ16hetRNMoJTp6E776DNd0SnjBfPpgxw1iPKl++DPwkQgjxbHfvBjFy5DZWrDjDiRMDqFDBnfffr2PusNKUJFlCmJHWmtXnVvPdP99xzPsYgRGBADjkcCCnbU66VepGvUL1aFu0BQXuheB06ChM/gP2T036hO7ucOCAsX+f9FIJISyQyaT58cd/GT9+B0FBEYwc2YAiRbJGz1VikmQJkcG01hz2Oswhz0OM2T4mrrxNqTb0rd6XuoXqUsImH+rGDfjpJ9j7E1yfAP7+RsVChaBxY7h7F9q1g8KFoWRJePllsLExz4cSQohkCA6OoFWrxfz9txcNGxZh3rz2VKmS39xhpRtJsoTIIP/c+od159ex+ORiPAM8AaiQtwKV81Xmp5d/IvfNu/D557CiL4SFPX6CyZONFdNffFGSKSFEpmIyaaysFE5OtlSrlp+3367OO+/UtKjNnNODJFlCpKMb/jfYcHEDi04s4sjtI3Hlg+oMYnj94ZRyKYUKDIQur8PmzY8a1qtnPBo2hM6djSUVhBAiE1q79jzjx+9g8+Y3KFHChXnzOpg7pAwjSZYQaey6/3X+OPkHC44v4Irflbjy5sWb8+2L31LRvSLWS5bC1HlGj9Q33xiLfZYvD716wYcfmjF6IYRIGzdu+DN06Bb++usC5cq54esbSokSLuYOK0NJkiVEGvAJ8WHukbmcuHuCVedWxZVXyFuByaXf5aXh35OzmB0sGQM+PvDvv4+f5L//ZFV1IUSmZzJpZsw4xKRJe4mONvHZZy0YM6YhdnbZL+XIfp9YiDQSbYpm1LZRXHhwgb3X98YttdC1Yle6VujKK+Vfwf7iVahUyWhw/ipUr268rlMHZs2CRo3ME7wQQqQTpWDPnhs0blyU779vR+nSruYOyWwkyRIihaJN0Xy8+2O+OPBFXNkbVd6gb/W+NCnWBFtrWwgOhqEjYe5co0KTJrBvn5kiFkKI9OXrG8rEibv54IMmFCyYi2XLuuLkZJOpNnNOD5JkCZFMfqF+rDi7gu+PfM/JuycB6FmlJ4s7L8ZKxWz9cOIEtGplDAnGatBAEiwhRJakteb3308yatQ2fHxCqFnTg759a5Azp9ysA5JkCfFMmy5t4vN9n3PY6zAAbg5uLOq0iDervmkkV1obQ39ffQV37hiNGjWCZs2gf38oWtSM0QshRPo4f96H99/fyJ4916lRowAbNvSkbt1C5g7LokiSJUQSIqMj+eLAF0zeOxmTNgHQt3pfOpZ8iY4ezbH6YS5smgY3b8K8eQkbf/ABTH3CiuxCCJFFDBu2haNHbzN7dlsGDaqb6TdzTg+SZAkRT2R0JD/++yMjt40kIjoCd4e8NMtfl6+tXqT49+th+2tPbnz5MpQqlXHBCiFEBtu27Qq1anng5ubI3LntsbW1pnBhZ3OHZbEkyRICY17B14e+ZtyOcXFlP2yAfv/6YK03AZuMQkdH6NIFqlSBvn3Bzu7RQwghsihv70BGjNjKsmVnGD26AV9/3YaSJbPXmlepIUmWyNb+5/U/Fh5fyFHvoxy9fRSAkV5FGP+nJ+4hMZW+/NJ4bt0aatY0T6BCCGEG0dEm5s//lw8+2ElISCQffNCYjz5qau6wMg1JskS2ci/4HgduHmDL5S0c9jrM6XunAcgbasWkv2HMIXCMNPYV5LffjBXYhRAim3r//Y389NMxGjcuyrx57alUKZ+5Q8pUJMkSWd7Gixv5aPdHeD705EHogwTH+vwHIw9DFV8reKk9jK9u3BnYtq15ghVCCDMLDAxHKUXOnLYMGFCb+vUL06dP9Sy/mXN6kCRLZFk7ru5g8KbBXHhwAYCmxZryYqm2lLvykPyffEV9L7DWMZWjw8FK7owRQmRfWmtWrz7HsGFbePXVCnzzzUvUrOlBzZoe5g4t05IkS2QpWmuWnVlGj1U94spqetRk6ysryTv6E+g74VHlvHlh/HgYOdLYB0IIIbKpa9f8GDx4M5s2XaJChby8+mpFc4eUJUiSJbKMNefWMGHXBM75nIsru237AR79v4D+JR9VdHODFSugRQszRCmEEJZl4cLjDBy4Ea1h6tQXGDWqIba21uYOK0uQJEtkemfvn2XCrgmsPb8WgC9bfsmQekNw7NAZtsXsL9iwobEC+5gx4CK3HQshhNYapRSlS7vSvHlx5sxpJ8sypDFJskSmtfrcakZtG8V1/+sAjGowivEe3cj77c/QxOlRxSNHoHZt8wQphBAWxscnhHHjtlOwYC4+++wFGjcuyqZNb5g7rCxJZvqKTGfn1Z24feXGq8tfJTI6kubFm/PPu/8wXbcmb9X68PPPRsVateDsWUmwhBACo+dq4cLjlC8/h4ULTxAaGmXukLI86ckSmcrQzUP57p/v4t5fGHwBJ1sn2LsXXnzRKHz1VfjpJxkWFEKIGOfP+9C//wb27btB7doF2bq1PbVqFTR3WFmeJFkiU7j44CJT9k/htxO/AfD3O39Tr3A9MJmgUydYt86oeOCAsc6VEEKIODdu+HP8+B2+++4l3n+/NtbWMpCVESTJEhZv/YX1dFzaEYC+1fsyt/1c7HLYGQmWqys8fGhUXLhQEiwhhIixZctlvLwCePfdmrRtW5rr14fh4uJg7rCyFUmyhMXyDfWlxaIWnLx7kpy2Odnz1h5qFaxlHLx5E4oVe1T5zBmoKOu6CCHE7duBDB++hRUrzlK5cj769KlOjhxWkmCZgSRZwuLcDbrLy0te5sjtIwDUK1SPP1/9k5IuMWtdhYdD2bLGaxcXOH0aCsrcAiFE9hYdbeKHH44wYcIuwsKimDChCRMmNCFHDhkaNBdJsoRFCY8K58U/XuT4nePkdczLmIZjGNtobMJKhw8bidbgwfDdd0mfSAghspkdO64ydOgWmjUrxty57alQwd3cIWV7kmQJi+Eb6kvTBU05c/8MP3b4kfdqvZewgr8/HDwIHToY7wcNyvAYhRDCkjx8GMbx43do1qw4bdqUYsuWN2jTphRKtgqzCNKHKCzCqbunqPNTHS48uMD01tN5t+a7jw7u3QseHsbQYGyC1bUrlC9vnmCFEMLMtNYsX36GChW+55VXlhIQEI5SirZtS0uCZUGkJ0uYldaa3078xqBNg3CwcWBHrx00K97MOBgYCNWqwbVrjxqMHQtNmjxKtoQQIpu5etWPQYM2sWXLZSpVcmf58m44O9uZOyyRBEmyhNn4hvrScUlHDnoepKRLSXb13kWxPDF3DP70E/Tr96jyihXGIqPyF5oQIhs7ffoeder8hFIwbVorRoyoj42NbOZsqSTJEmZxN+guL/z2Ahd8LjCt1TTer/0+uexygZ8fDBkCf/wBNWvCa68ZvVeSXAkhsrEHD0Jwc3OkUiV3Ro1qwLvv1qR48TzmDks8gyRZIkNprVlyegnv/vUuoVGhTGgy4dHdg+HhUKAARETAW28ZvVk2NuYNWAghzOj+/WDGjNnOxo2XOHduEHnzOvL55y+YOyyRTJJkiQxz2fcy/Tf0Z9e1XQD80vEX3q7eFwYMgIsXYfduo2LXrsbq7UIIkU2ZTJoFC/5j7Ngd+PuHMWxYPezsZFgws5EkS2SIU3dP0XRhU/zD/OlTvQ/fFxmA4/a90L8eHDEWHcXNzUiw5s41b7BCCGFGPj4hdO68jAMHblKnTkHmz+9AjRoe5g5LpIIkWSLdhUWF0WtNL/zD/Dn09iEarPwbOtU3Drq4QIMG8OefULy4WeMUQghL4OJij6OjDT/80I5+/WrJZs6ZmMV855RS5ZVS25VSwUqpO0qpr5RStslo56aUmqeUuhnT9rRSakBGxCyeLcoUxRur3+DE3RMsefEnGrw1AUaONA7Omwc+PnDokCRYQohsbePGizRq9CsBAeFYW1uxZcsbvP9+HUmwMjmL6MlSSrkAu4BLQBegEDATcAQGP6P5CqA88CFwE2gHzFVKRWutf0q3oMUzXXxwkW4runHy7kmG1R7M6+3Gga8v1K8P27dDzpzmDlEIIczKyyuAYcO2sHr1OUqVcsHT8yGVKuWTBUWzCItIsoABgDPQWWvtC6CUygH8oJSaqrW+nVQjpVQBoAXQV2u9MKZ4l1KqDvA6IEmWmfiE+NDo10b4hPiw8JWF9P4n3EiwOnWCNWvMHZ4QQphVVJSJOXP+4eOPdxMeHsXHHzflgw8a4+Agd1RnJZaSZL0E7IhNsGIsB+YBbYCFT2gX+6/xYaLyh4B0k5hJWFQYnZZ24mHYQ9b3WE8H71wwuLUxJPjDD+YOTwghzE5rzS+//EedOgX54Yf2lC+f19whiXRgKYO95YHz8Qu01v6Ad8yxJGmtPYFtwIdKqYpKqVxKqdcwErPv0y9c8SQmbaLvur4c9DzITy//RIfQItCuHURGwl9/GXsQCiFENuTvH8ZHH+0iJCQSGxtrdu7szc6dvSXBysIspSfLBfBPotwPcH1G2y7AMuBMzPtoYIjWetXTGimlnDGGKGMVSFak4okehDyg07JOHLh5gInNJvJWYEl4pQXkygW7dkGVKuYOUQghMpzWmmXLzjBixFbu3Amidu2CdOpUnnz5nMwdmkhnlpJkpYoyZgYuAMoAPTF6vloDs5VSflrrpU9pPhKYmP5RZg/3g++Tb3o+AHpV7cXEKkOM1du1hjNnoFw5M0cohBAZ7/JlXwYN2sS2bVeoUiUfq1e/RoMGRcwdlsgglpJk+QG5kyh3AXyTKI/VHugGVNVan4op26OUygfMAJ6WZM0Efo73vgBwJNkRizjegd40+KUBAK9Veo3fHN8whgWjouDnnyXBEkJkS1prOnVayrVr/nz9dWuGDasnmzlnM5aSZJ0n0dwrpVRuwINEc7USqYgxPHg6Ufl/wLtKKUetdUhSDbXWAUBAvOulImxx+t5pGv7SkMCIQGa1ncXwwl2hSMxfaZ06wdtvmzU+IYTIaAcO3KRu3ULY2lqzcGEn8uVzomjRpPoRRFZnKRPfNwOtlFJ54pV1A0wYE9uf5AZgDVRNVF4LuPekBEukjTXn1lBjfg0CIwJZ230tw+sPh5IljYN9+hhLNUjyKoTIJu7dC6Z37zU0abKA77//B4DatQtKgpWNWUpP1jxgCLBWKTUVYzHSr4F58dfIUkrtBIpprUvHFG3CWIB0pVJqMsacrDZAH2S+VboKiwqj/4b+WCtrjvY/SrWcpYw5WJGRUKkSzJ9v7hCFECJDmEyaX345xrhxOwgICGfUqAa8914tc4clLIBFJFlaaz+lVEvgO2AtEIgxX2pCoqrWxItZax0Y024KMA3IA1zDmNQ+J90Dz8a+OvgV90Pus6nnJqrlqwItW8Ldu8bBv/4C22fuiCSEEFnC66+vZMWKs9SvX5h589pTrZrcrC4MFpFkAWitzwGtnlGneRJll4Hu6RSWSML4HeOZdnAabg5uvFj6RVi6FPbsgdGj4euvzR2eEEKku+DgCOztc2BtbUWvXlVp2bIE771XCysrmSIhHrGUOVkiE4iMjuSttW8x7eA06hWqx3/9/0N5ehrzrypWhC++MHeIQgiR7v766wIVK/7A998bN6S//HI5+vevLQmWeIzF9GQJyxYRHcFba99i6eml1C9cn70dVmGbp9CjCp9+Cjnkn5MQIuu6efMhQ4duZt26C5Qp40qVKvnMHZKwcPJbUTxTlCmKV5a+wpbLWxjVYBTT20yHN998VGHRInj1VfMFKIQQ6ezHH/9l5MitREWZmDy5OWPHNsLeXn6FiqeTfyHiqYIigqjzUx3O+5yne6XuTG/9Nbz+OixbBo0bw759skyDECLLs7fPQYMGRfjhh3aUKeNm7nBEJpHqJEspZQu8A7wAuGitWymlmgAKOKa1DkqjGIWZBEUE0fK3lpz3Oc/7td/ne69qYGdnLNMA8M03kmAJIbIkP79QPvxwJ/XqFaZPn+r06lWVXr2qysLVIkVSlWQppZyA3RiLfipAxxwaDXQAhgLfp0WAwnzq/VyPs/fPMqPNDEY6vAAdasQcqGf0YMkyDUKILEZrzZ9/nmLkyG3cvx+Mi4sDILuCiNRJ7d2Fk4DaGAlWfD/FlHVKfUjCElx8cJGz98/SvHhzRtYeAjViEqzffoO//5YESwiR5Vy8+IDWrRfz5ptrKFgwF4cPv8PUqS3NHZbIxFKbZL2K0XvVK1H5wZhn2RE4E1t7fi0Nf2mIi70L8zvMhwsXjAN588Ibb5g3OCGESCc7dlzl77+9mDmzDUeOvEe9eoXNHZLI5FI7Jyv23v0VwOJ45WExz3JfayZ1xfcKry5/FZM2caDvAcq6loGZHxkH//oLrGRpNSFE1rFjx1UiI6N56aUy9O9fi06dylOwYC5zhyWyiNT+xnwY85w4zW8b8+yfyvMKM9pyeQvV5lUjh1UOjvU7RqOijWDoUJg6Fdq3h/r1zR2iEEKkiTt3gnjjjdW0br2YTz/dh9Yaa2srSbBEmkptT9YB4BVgWWyBUuoH4C2MYcT9zx+ayEhn75+l24pueOTyYFnXZdTIXw2KFAEvL3BxgSVL5E5CIUSmZzJp5s8/ygcf7CQ4OJKxYxvyySfNZGK7SBepTbKmAO2Amjy6s7A/xqT3CGDq84cmMkqUKYpKP1Qih1UOtr65lZIuJY0J7l5eRoVt2yCX/HUnhMj8fvvtBAMHbqJhwyLMm9eeKlXymzskkYWlKsnSWv+rlHoZ+AEoFe/QFeB9rfV/aRGcyBgTdk4A4JVyr1AyZxHYvx/eess4ePgw1K5txuiEEOL5BAaGc+PGQypXzscbb1TBzs6a7t0ry16DIt2lejFSrfV2oIxSqgzgDtzXWl9Ks8hEhph3dB5fHfoKj5we/Fr7s4RLM/TqJfOwhBCZltaatWvPM3ToFmxsrLhwYTA2Ntb06FHF3KGJbCJVE9+VUruUUjsBtNaXtNaHYhMspdSnSqnJaRmkSB8n755k4MaBNCnahDMDz+D87XzjwIABcPGiMWQohBCZ0I0b/nTsuJQuXZbj5GTDr7++go2NtbnDEtlManuymvNoLlZiH8Ucm5jKc4sM4BXgRdMFTXG0ceT3Lr/jMulLY5ucrl1h7lxzhyeEEKl24MBN2rb9HZNJ8/nnLRg9uiF2drJVr8h4afqvTilVKS3PJ9LPkM1DCI4M5vA7hynqXARmzjT2JVywwNyhCSFEqoSEROLoaEOtWh706FGZDz5oTKlSruYOS2RjyR4uVEpNVEpFK6WiienFin0fr/xkzDHv9AlXpIULPhdYe34t79R4h9oFaxuLjEZFQffukDOnucMTQogU8fUN5b33/qJOnZ+IiIjGwcGGn3/uKAmWMLuUzslSyXwsT8MYRRqKNkUzZvsYrJU14xqNg8hImBgzsvvFF+YNTgghUkBrzW+/naBcuTn88st/vPBCcSIjo80dlhBxUjJceBxYFPM6dtHR+DOjNeAHHEGSLIv17f++Zf3F9XzS9BNKnPOGtlUhKAg+/xwKFjR3eEIIkSy3bgXw5ptr2LPnOjVrerB58xvUri0/w4RlSXaSpbVeB6wDUEq9FVPWN53iEunAN9SXz/d/TpOiTZjUfBJ8+62RYM2YASNHmjs8IYRINmdnO+7dC+abb15k4MA65Mgh+6oKy5PaxUjlX3MmNHLrSHxDffm69dfGFhL37hkHBg82b2BCCJEM27Zd4aefjrF06avkymXHyZMDsLaWX0fCcqX67kKllA3wElAOcEh8XGv96XPEJdLY5/s+Z9GJRdQpWId6hesZhefPQ548CRcgFUIIC+PtHciIEVtZtuwMxYvn4ebNh5Qo4SIJlrB4qUqylFKFgd1AyadUkyTLQvzt9Tcf7/6Y8nnLs7xbzHS548dh9WqoWNGssQkhxJNER5uYN+8oH364i5CQSD74oDEffdQUR0cbc4cmRLKktifrMxLuWZjYkxYqFRksJDKEN1e/iUKx+63dFMhZADZsgJdfNip8+aV5AxRCiCcICAhn8uS9VKuWn7lz21OpUj5zhyREiqS2r7UlRiIVu32OBl4GDgKXgfbPH5pIC3V+qsMVvyt81forI8E6ePBRgtW06aPXQghhAQICwpk9+29MJo2LiwOHD7/Dnj19JMESmVJqk6z8Mc+zYgu01huBHkBpoONzxiXSwI///sjZ+2dpXrw5oxuOBpMJGjc2Do4dC3v3mjdAIYSIobVm1aqzVKjwPSNGbOXAgZsAlCrlipWVMnN0QqROapOssJjnkNjXSqkygCmm/LXnjEs8p2Pex+i/oT/VC1RnfY/1RmHPnsbzq6/CtGnmC04IIeK5ds2PDh2W0LXrCnLntmPv3j40bVrM3GEJ8dxSOyfrHpATcAWuAeWBPUDsUrsyJ8uMgiKCqPtTXQCWvrqUnLY5jTsJly0zKvz0kxmjE0KIRyIiomnU6Ff8/MKYOvUFRo1qiK2ttbnDEiJNpDbJOo4x8b0msBqYABTA2FIHYMNzRyZSxaRNdFvRjWgdzcDaAymXt5xxYMIE43nlSnBxMV+AQggBnDhxh6pV82Nra83PP3ekfPm8lCwpP5tE1pLa4cKxQAvgFMZSDd8BdwBfjK13hqdFcCLllpxawpbLWxhSdwjft//eKDxyxFiuwdERWrY0b4BCiGzNxyeEd95ZR/Xq81m16hwA7dqVkQRLZEmpXfH9GsYwYaxhMQ9hZnOPziWfUz5mtY25J+HCBahrDB1y9Kix+KgQQmQwrTWLFp1g9Oht+PmFMXRoXdq0edpKQEJkfqle8f1JlFKtgM+01g3S+tzi6X478RsHPQ/yRcsvsLayhgMHoEkT4+Do0VChgnkDFEJkS1pr2rf/k82bL1O7dkG2bm1PrVqymbPI+lKUZCmligFvAkUwJr+v1lofjzlWF/gaaJzGMYpkCI0MZcjmIeR1zMugOoNg3z5o1sw4OGsWDB9u1viEENlPREQ0trbWKKXo0KEs7dqV4f33a8t2OCLbSHaSpZSqgXEHYc54xR8opfoAjsAPGHO8FHJ3YYabfmg6AeEBfN36a3LZ5XqUYP30E7z7rnmDE0JkO1u2XGbgwI18991LtG9floED65g7JCEyXEr+nJgI5MJIomIf1sBsYHrMawUcAV5M0yjFU605t4ZP9nzCCyVeMBYdPX/+0UFJsIQQGej27UBee20FL730B0opnJxkA3qRfaVkuLABRg/VBuAnjITqXYztdAC8gKFa67VpGaB4uo92fcSU/VMAmNt+rlEYu9DoiRNmikoIkR3Nm3eUsWO3ExYWxUcfNeHDD5vg4CCbOYvsKyVJllvM81taa38ApdRBwIeYvQu11vJbPYNoremxqgfLzizDycaJG8Nv4BYKqJilyooVg0qVzBqjECJ78fYOpGZND+bObU+FCu7mDkcIs0vJcKEVQGyCFfPaN95rSbAy0A9HfmDZmWU45HDAc4Qnbo5u0L+/cbB4cTh5Eqxl1WQhRPp5+DCMoUM3s2fPdQA+/rgZu3e/JQmWEDFSvISDUupqMsq11loWQEkna8+vZfDmwdjnsMdnrA+ONo7g6wurVhkVrlwBK7l7RwiRPrTWrFhxluHDt+DtHYS7uyPNmxcnRw75uSNEfKlZJyvxrp06UbncXZiO9l7fS+dlnQGY1XYWjgf/gQUL4LffjApjxkiCJYRIN1eu+DJ48Ga2bLlMpUruLF/ejcaNi5o7LCEsUkqTLPXsKiI9dV/ZHVtrW04MOEH5BethbItHBzt3fjTpXQgh0sH8+f+yd+91pk1rxYgR9bGxkWkJQjxJspMsrbV0j5jZR7s+4m7wXd6s+ibl/axh7FjjwB9/wEsvycbPQoh0sXfvdZyd7ahRw4NPPmnGwIF1KF48j7nDEsLiSeKUSUSboll8cjEA88qNgrJljQO9ekHPnpJgCSHS3P37wfTps5bmzRfxySd7AMiZ01YSLCGSKc33LhTp42+vv7n58Ca/dvwFp5HjjcI33oBFi8wbmBAiyzGZNAsW/MfYsTvw9w9jxIj6TJ7c3NxhCZHpSJKVCWitGbdjHArFy+N+ge2HoGRJWLz40bpYQgiRRqZPP8S4cTuoW7cQ8+a1p0YND3OHJESmJElWJjB081AOeh6kVZ5a5N1+yCg8dkwSLCFEmgkOjsDPL4zChZ15772a5Mljzzvv1JDNnIV4DvK/x8Kd9znPnCNzqJSnLEs+/BdsbIztcnLnNndoQogsYuPGi1Sq9AOvv74SrTUuLg7061dLEiwhnpP8D7JgJm2iy7IuACz46iJ5Q4DvvoOqVc0bmBAiS/DyCuDVV5fTocMSbGysmTixGUp6yIVIM881XKiUegl4AXDRWr+rlIpdke621jrquaPL5hafWMw5n3MM+R/UuY2xXU6/fuYOSwiRBWzZcplu3VYQERHNJ5805YMPmmBvLzNIhEhLqfofpZTKAawG2scrfhdYDDSOeb3guaPLxh6GPaTPuj4ATNoTU3jqlMzDEkI8l6goEzlyWFG9egFatSrJl1+2pFy5vOYOS4gsKbXDheOADhgrwMf/rf99zPsuKT2hUqq8Umq7UipYKXVHKfWVUso2mW0LKaUWKaXuK6VClVLnlFJvpDQGSzJpzyQAflkHrg6ucOcO5Mxp3qCEEJmWv38YAwdupGPHJWitKVAgJ2vWdJcES4h0lNokqxfG/oQfJirfHfNcOSUnU0q5ALsAW4wE7UOgHzAzGW09gMNAwZg2HYC5gF1KYrAktwJuMft/s3n1LLz9H/DNN5A/v7nDEkJkQlprliw5Rfnyc5g79yhFijgTERFt7rCEyBZSOwBfPOZ5NjA1XvnDmOcCKTzfAMAZ6Ky19oW4IckflFJTtda3n9L2K8ATeFFrHfuTY2cKr29R5v87H4B+/wIdOhiLjgohRApdv+5Pv37r2b79KlWq5GPNmu40aFDE3GEJkW2kticrJObZNVF5w5jn4BSe7yVgR2yCFWM5RnxtntRIKeUMvAb8EC/BytQu+17my/1f0OYytMlTC5YulXlYQohUsbJSnDhxl+nTW/Pvv/0kwRIig6U2yToS8/xjbIFSaiywFGMY8Z8Unq88cD5+gdbaH/COOfYkNTGGGCOVUnuVUpEx87mmKaVsnnZBpZSzUqpw7IOU976li6GbhhAdHcWczcCqVeDkZO6QhBCZyK5d1xg9ehsARYvm5vr1YYwa1RAbG2szRyZE9pPaJOurmOeXMJIqgC+AfDHvv07h+VwA/yTK/Xi8tyy+2MToZ+AoRq/XLGA48OkzrjkSY5gx9nHk6dXTn0+ID5uvbKH5dSjTbQAUK2bukIQQmcS9e8H06rWGli1/Y/nyM9y/bwwoODg89e9NIUQ6SlWSpbXeCbwDBPDoDkOFMSfrXa317qc0T0ux8e/QWo/SWu/WWk/DSPJGKKUcntJ2JlAk3qNO+ob6bH9d+AuAN04BL7xg3mCEEJmCyaT58cd/KVduDkuWnGL06AacPTsId3fpBRfC3FK98pzWeqFSagXGPCx34D5wSGud0vlYYPRYJbVPjAvgm0R5/HZg3JkY305gAlAaOJVUQ611AEaSCGARqxwvO70MgG7ertCunZmjEUJkBtev+zNkyGZq1vRg3rz2VKtmETMfhBCkfjHSL4BFWuvzwPY0iOM8ieZeKaVyAx4kmquVyNlnnNf+OePKMCZtYtvVbTS9DrlGjJO5WEKIJwoKimDDhou8/nplSpZ04dCht6lRwwMrK/P/sSiEeOR5FiM9o5Q6qpQaqpRyf844NgOtlFJ54pV1A0zAtic10lrfwOipapXoUGsglGcnYRbjhyM/APDKBaBHD/MGI4SwWOvWnadixe/p0WMV587dB6BWrYKSYAlhgZ5ng2iFcXffLOCWUmqDUqq7Uio1i4DOAwKBtUqpNkqpvhjzqubFXyNLKbVTKXU5UdsJQEel1GylVGul1IfAaGBmKocuzWLWXx9SMABGeBaCInKbtRAioZs3H9Kp01I6dVqGg4MNO3f2pkKF5/37VgiRnp5nMdLXMHqb6sScpx3G3YaBSqkVWuv3knsyrbWfUqol8B2wFiPh+hkjgYrPOnHMWuv1SqkewMfA+xjLPkwEvkzxpzKTi14nuGoTyJh/QC1bbu5whBAWxt8/jKpV5xIWFsXkyc0ZN64RdnaymbMQlk5prZ9d62knUKoYRrL1GlA7plhrrTPVoiwxa2V5enp6Urhw4Qy9dsEv3fEO9+E0g6g0cU6GXlsIYblu3PCnWLE8APzyyzGaNi1GmTJu5g1KiCzGy8uLIsYIUhGttVdanvt5hgtjBWDcAegHRKXB+bKV3dd24x3uw4uXoFLd9uYORwhhAfz8QhkwYAOlSn3LP//cAuCdd2pKgiVEJpPauwtdgM4YPVgvxDuPAsKBv9Ikumzg8/2fA/D7XldY/KKZoxFCmJPWmj//PMXIkdu4fz+Y99+vTdmyklgJkVmldlD/DgkTKw0cBH4DVmitHz6poXjEpE3surYL13Ar3MpWlz0KhcjGoqJMtGv3B9u3X6V69QL89dfr1KuXsVMXhBBpK7VJVuw+DZeAxcDvWuvraRJRNnLg5gEAhh4yQc6nLU4vhMiqTCaNlZUiRw4rqlbNT7t2ZRg8uC45cqTFbA4hhDmlNsn6AVistf5fWgaT3RzzPgZAl3PAtK7mDUYIkeG2b7/CsGFbWL68G5Ur52P69DbmDkkIkYZSu3fhYEmwnt+OqzsoFACV7wF9+pg7HCFEBrlzJ4iePVfRps3vhIRE4ucXau6QhBDpINk9WUqpXRhLM7SMef00Wmvd8vlCy9oehj1k46WNdPECVaaMucMRQmQArTXz5//L+PE7CA6OZNy4Rnz8cVOcnGzNHZoQIh2kZLiwOcYE98SvE1NPOSZizD06F4AXLwMLFpg3GCFEhlBKceDATSpXzsfcue2pUiW/uUMSQqSjlCRZNzH2Eox9LYnUc/jj+GJKP4D3/EtCo0bmDkcIkU4CA8OZPHkvAwbUpnRpV+bP74CDg43sNShENpDsJEtrXTyp1yLlDtw8wOkHZxl1AejUydzhCCHSgdaatWvPM3ToFry8Aihc2Jnhw+vL0KAQ2UhqFyP9BGPe1WdJHHsB4+Cz5m1lWzMOfAXAGyeB6X3MGosQIu3duOHP4MGb2bDhIuXL52X37rdo3ry4ucMSQmSw1C7hMAljuPCxJAvYgTGsKLuXJsErwIu1l9ZT/j7U6DkSqlQxd0hCiDQ2btwOduy4yueft2DMmEbY2maqrVyFEGkkTRMhpZRz7Mu0PG9WMmrTcAB++Qu4Os2ssQgh0s7BgzcpViwPhQs7M316G6ZMeYFSpVzNHZYQwoxSsoTDW8BbicoSDwkWjXn2f76wsqawqDB2nt9EGV9oaFsKckhnnxCZna9vKOPGbefnn//jnXdq8PPPHSlc2PnZDYUQWV5KfssXJ+HSDQpolqhObA/WvueKKosatmkID1QoE/8HnDpl7nCEEM9Ba83ixScZNWobDx6EMHhwHT7//AVzhyWEsCApSbL8gRsxr4thJFs34x3XgB9wBJiYFsFlNXuPrcEjCIZEVAcH2atQiMzsgw92Mm3aQWrW9GDz5jeoXbuguUMSQliYlCzh8A3wDYBSyhRTViKd4spy7gfd47J+QP9zwKZN5g5HCJEKoaGRhIdHkyePPW+/XQMPj5wMGiSbOQshkpbaSUEt0jSKbGDlscVEW0GXfE3Bw8Pc4QghUmjr1ssMHLiJxo2LsmhRJ8qWdaNsWTdzhyWEsGApmfjeFEBrvY+YeVmxZUmJqSeAiOgIvj3yPe7BUKt5T3OHI4RIAW/vQEaM2MqyZWcoXjwP3btXMndIQohMIiU9WXt4tP7VHp6+rY5O4bmztO4ru3M+6BrLNkGetqXNHY4QIplWrz5H377rCAmJ5IMPGvPRR01xdLQxd1hCiEwipYmQesJr8QQ7r+5k7fm1VLkL3c4A1aqZOyQhxDNorVFKUbq0K7VrF+Tbb1+kUqV85g5LCJHJpCTJ6vuE1+IpFp9cDMCapTFZad68Zo1HCPFkAQHhfPLJbkwmzbffvkTVqvnZubO3ucMSQmRSKbm7cFFSr8WThUWFsezMMprctaeUXxhcvWrukIQQSdBas2rVOYYN28Lt24G8+26NuN4sIYRIrdRuEG0HOAHhWuvgmO10BgHuwBat9bY0jDHT+mT3J4RFhTE49haA4sXNGY4QIgnXr/szaNAmNm26RMWK7ixd+ipNmhQzd1hCiCwgtYu7zAHuA6Nj3m8HPgeGAZuVUl3TILZM7Yb/Db4+9DUVAu157QywaxfIX8VCWJw7d4LYu/c6X3zRkv/+6y8JlhAizaT2DsB6Mc8blFIVgDpANBCG0cM1HFj53NFlYgc9DwLwydYwo6CFLC0mhKXYv/8Gx4/fYciQetSvXxhPzxG4uMguDEKItJXanqwiMc+XgJoxrz8F6sa8Lvc8QWUF269ux0HZ0vECMGqUucMRQgA+PiG8/fY6mjZdyIwZhwkNjQSQBEsIkS5Sm2TZxTxHApUw1sX6F7gcU57zOePK1LwCvFh9bjUvPnTHMRIYOtTcIQmRrWmtWbDgP8qXn8OiRScYNqweJ0++j4ODrHklhEg/qR0uvA2UABYAjWPKzgIFYl77PGdcmVa0KZois4yOvrf/F5OLFi1qxoiEEEeO3Obtt/+idu2CbN3anlq1ZDNnIUT6S21P1jqMZZ+6AQWBU1rr60CtmOOnnz+0zOl/t/4HQNvL0OHgfZgwwcwRCZE9hYREsmvXNQDq1i3E1q1v8vff70iCJYTIMKntyfoYcAQaATd4dJdhGWAvsOT5Q8ucpuyfAsC07cDYsfD55+YNSIhsaNOmSwwatAlv70CuXx9OgQI5adOmlLnDEkJkM6lKsrTWIcD7SZR/DXz9vEFlVlprtl7einswVLsLfPSRuUMSIlu5dSuA4cO3snLlWUqWdGHdutcpUCBbTxEVQphRqjdxVkrlAN4CXsRYhNQH2Aws0lpHpU14mcvxO8eJ1tEMPAL06gW5cpk7JCGyjZs3H1K58g+EhUXx0UdN+PDDJjKxXQhhVqld8d0e2IYxXBhfZ6CvUqqV1jrseYPLbLZd2gxA99PA5/3NG4wQ2YSvbyiurg4ULZqb0aMb8tprlShfXvYIFUKYX2onvn+IcVehSuLRIOZ4thL10I/xuyfgHAblmnWBRonzTyFEWnr4MIwhQzZRosQ3eHo+BOCTT5pJgiWEsBipTbJew1gbawXGZHf7mOflGInWa2kSXSay9Duj56qllw1Wc+eZORohsi6tNcuWnaZ8+e+ZM+cIr71WEScnW3OHJYQQj0ntnKziMc/9tdb+Ma+vKKUGYCRYxZNok6V9G74PcsCv086Du7u5wxEiSwoMDKdbtxVs3XqFypXzsXJlNxo1knXohBCWKbU9WaExz4nviS6V6Hi2YNImTuu7tLsIeQqWNHc4QmRZOXPaYm+fg2nTWnHsWD9JsIQQFi21PVlHgZbARqXUIsATKIxxt2HsFjvZxn+bfiHUBjrdczF3KEJkOXv2XGfChF2sWdOdfPmcWLOmO0opc4clhBDPlNokazrwAsbSDaPjlSuMJGv6c8aVqXyxYhh2RaDDwNnmDkWILOP+/WBGj97Ob7+doHBhZ65d8yNfPidJsIQQmUaqhgu11luB/kAgCe8sDAQGaK23pFmEFs50+hTbPULpcMcZj869zR2OEJmeyaT55ZdjlC//PX/8cZKRI+tz9uxA6tUrbO7QhBAiRVK9GKnW+mel1FKgIZAXYzHSQ1rroLQKLjO48M8mAuyhdWNJsIRIK7/88h+lS7syf34Hqlcv8OwGQghhgVKcZCmlivNoI+hjWuttaRpRJrPy71+hENSt/KK5QxEi0woOjuDrrw8xfHh98uSxZ92613F1dcDaOrX35gghhPklO8lSxkSIucC7GEODseULgPe01jrtw7NwXl488LwIhaBy+abmjkaITGnDhosMHryJGzceUqxYbvr2rYG7u5O5wxJCiOeWkj8ThwD9eHyF977A8DSPLDO4fZtv6kNpXLFxkn0KhUgJL68AunRZxssvL8HGxprt23vRt28Nc4clhBBpJiVJ1tsxzxHAX8B6IBwj0eqTtmFlDr7/HgCgWd7aZo5EiMynR49VbNx4iYkTm3Hq1Pu0aiVrzAkhspaUzMkqi7E8w0ta6z0ASqkWwE6MLXWynYN3j4CCdlW6mDsUITKFf/65RaVK7jg52fL99+2ws7OmXDnZa1AIkTWlpCfLHiA2wYoR+9oujeLJVA6f3wFAowptzByJEJbN3z+MgQM3Ur/+z0ybdhCAqlXzS4IlhMjSUnN3YRHiTXx/UrnW+ubzhWbhgoJYUNiHF7xsyO9ewtzRCGGRtNYsWXKakSO3cvduMP3712LEiPrmDksIITJEatbJup7ovU6iXKfy3JnGvp8+4k4uGGOq9ezKQmRTAwduZN68f6laNT9r1nSnQYMi5g5JCCEyTGoWoUl8d+GTHik7qVLllVLblVLBSqk7SqmvlFK2KTzHcKWUVkptSOn1U2rClR+xj4Q3h/6U3pcSIlMJD48iPDwKgNdeq8T06a35999+kmAJIbKdlPQ27eNRr1WaUkq5ALuAS0AXoBAwE3AEBifzHAWAicC99IgxPr9QP/5xCeXNs9bkK145vS8nRKaxa9c13n9/I2+8UYVPPmlGixYlaNFChtOFENlTspMsrXXzdIxjAOAMdNZa+wIopXIAPyilpmqtbyfjHF9hLC1RLP3CNGw/toKIHNAjumJ6X0qITOHevWBGjdrG77+fpEgRZ2rW9DB3SEIIYXaWsmfFS8CO2AQrxnKM+J55655SqjHQCRifLtElcmDtt9hEQ6MX38uIywlh0ZYtO025cnNYsuQUY8Y05OzZQXToUNbcYQkhhNlZyuT08sCv8Qu01v5KKe+YY0+klLIG5gBTtNbexu4/6et3m3PUuQUOw3qm+7WEsHSOjjZUqJCXefM6ULVqfnOHI4QQFsNSkiwXwD+Jcj/A9RltBwJOwKyUXFAp5YwxRBmrQHLaXT21Dz87E27O+cHNLSWXFCJLCAqKYNKkPRQtmpuhQ+vx8svl6NChLBnxB44QQmQmljJcmCpKqXzAp8BIrXVECpuPBDzjPY4kp9E/M0YC0L/M6ym8nBCZ37p156lY8XtmzDjMuXP348olwRJCiMdZSk+WH5A7iXIXwDeJ8lifAieB/UqpPDFlOYAcMe+DtNZRT2g7E/g53vsCJCPR+jfkMtYmeOHdqc+qKkSWcfPmQ4YM2cxff12gbFk3du7szQsvyF2DQgjxNJaSZJ0n0dwrpVRuwCPm2JOUB5piJGmJ+WFMqN+SVEOtdQAQEO96zwxSa83Kgg+peUfhYOv4zPpCZBUHD95k69bLfPppc8aObYSdnaX86BBCCMuV6p+USik3YCzwAuCitS6tlOoZc84tWuuUrFe1GfhQKZVHa+0fU9YNMAHbntJuOJAnUdlsIBT4AKOXK838d/tfrrvAAL+SaXlaISzS4cOeeHsH0aVLBV5/vTKNGxelSJGkOpyFEEIkJVVJVsxcqL8x1qRSPFqk9EXgDYwE56sUnHIeMARYq5SairEY6dfAvPhrZCmldgLFtNalAbTWx5OIzR9jmHBPij5UMhz9dz0Arcq2TetTC2Ex/PxCGT9+Bz/+eIwKFfLSqVN5rKyUJFhCCJFCqZ34/hlQHIhOVL4QI+l6OSUn01r7AS2BKGAt8CXGfKmRiapaY8YhzrMnd2IbBdUqtTRXCEKkG601v/9+knLl5vDTT8cYOLA2hw69g5WVTGoXQojUSG3C0h6j96otsDNe+T8xz6VSekKt9Tmg1TPqNE/GeZ5ZJ7VOeR+nbA4bcnTslF6XEMJs1q+/SK9ea6hevQAbNvSkbt1C5g5JCCEytdT2ZLnHPB98wvEsuYDUrnzBVHEqAVaZeuULIeKEhUVx4sQdADp0KMvvv3fmyJH3JMESQog0kNpswSfmOfFq7D1intN9k+aMduPqfwDkt3vW2qhCZA7bt1+hSpW5tGnzO8HBEVhZKd54oyo5csgfEUIIkRZS+9M0dohwbWyBUmoTMBdjGHFnEm0ytdWrpwDQJ+9TRzSFsHh37gTRs+cq2rT5ncjIaH79tSNOTrbmDksIIbKc1M7J+hToiDH5PfbOwrYYk94fYkyMz1I2+P1NqSCo2n+QuUMRItVOnrxL06YLCA6OZNy4Rnz8cVNJsIQQIp2kqidLa30ZaALswljLSsU87wKaaq2vpFmEFsCkTRxVd6gblBtVIFlbHAphUUJDIwGoWNGd116rxLFj/fjyy1aSYAkhRDpK9XIIWutTQCullAMx299orcPSLDILcuu/vQTYRFMvV+IpaEJYtsDAcCZO3MPatec5efJ9cua05ccfU7TCihBCiFR67jWntNahGCusZ1kXt/wBQLnGr5g5EiGSR2vNmjXnGTp0M7duBdKnT3UiIxMvayeEECI9pXbF92f9tNZa6yyzudnF03uhHJR54TVzhyLEM/n4hNCnz1o2brxE+fJ52bOnC82aFTd3WEIIke2kNhHKPktABwbyT8hlHEzWFMtTzNzRCPFMuXLZcutWIJ9/3oIxYxpha2tt7pCEECJbSm2StSjRe2ugBNAQCAFWPE9QFuXBAzaVgdJWeclhlWU650QWc/DgTaZPP8ySJa9ib5+Do0ffw9pa1rsSQghzSlXWoLXum1S5UqotsBk49jxBWRIdFESIDRR1lLsKheV58CCE8eN38PPP/+HhkZNLlx5QpUp+SbCEEMICpOlPYq31ViAIGJqW5zWn4/uWE2QH7Qo2N3coQsTRWrNo0XHKl/+eX375j8GD63Du3CCqVMlv7tCEEELESO3E96ZJFNsDLwE5AY/nCcqS7Pc6CHbQrNW75g5FiDihoVFMnLiHokVzs3nzG9SuXdDcIQkhhEgktZOM9vBopffENHA8lee1OPt8/wMPKO5SwtyhiGwuNDSSH3/8l0GD6uLoaMOuXW9RtGhu2WtQCCEs1PPM5H7SHYY3gYHPcV6Lcts+kvzBCidbJ3OHIrKxrVsvM3DgJq5e9aN48Ty88kp5SpZ0MXdYQgghniK1SVZSE9/DAU/gf1rrqNSHZDmiTdGcyBlMr0DpxRLmcft2ICNGbGX58jOUKJGHjRt70q5dGXOHJYQQIhlSnGQppewAv5i3h7XW99M2JMtx+d45Qmw0NWyLmjsUkQ2ZTJoXXljE1at+fPhhYyZMaIqjo425wxJCCJFMKU6ytNbhSqmVGHcmZunZtseXzgages7S5g1EZCtnztyjQgV3rKwUc+a0o2DBXFSs6G7usIQQQqRQamfMXsaYk5WlN0P77/rfWJmgSv9PzB2KyAYCAsIZNmwzVavO45dfjKXmWrUqKQmWEEJkUqlNsibFPE9RStmmUSwWZ3PUeYqG2OBYoIi5QxFZmNaalSvPUqHC93z77T/06VONLl0qmDssIYQQzym1E9/fBx4C7wHdlFIXgdB4x7XWuuXzBmdu2toKm7Rdr1WIx/TuvZbffz9JxYruLF36Kk2ayB6ZQgiRFaQ2yWqGsR6WAlyAuvGOKZ68hlamERQRxLk8kQx6WM7coYgsKDIymhw5rFBK0bp1SSpVcmfkyAaymbMQQmQhyU6ylFK9MXqoFmOshZXpE6mn8QrwIsoKqkXnNXcoIovZt+8GAwZsYMKEJrzxRlV6965m7pCEEEKkg5T0ZC0ETMBirXXxdInGggSEBwCQWzmYORKRVfj4hDB27HYWLDhOwYK5yJ3b3twhCSGESEcpHS580irvWc7tB9cByGeTx6xxiKzhjz9OMnToFvz9wxg2rB6fftoCZ2c7c4clhBAiHT3PtjpZ2r7VM0FBofptzB2KyALu3QumZEkX5s/vQM2aWWb/dCGEEE+htE7e1CqllAljHtbeZFTPdHcXKqUKA56enp4ULlyYysNtOeMSiWlsCMpBhgxFyoSERPLZZ3tp0KAIHTuWIzraBIC1tdytKoQQlsTLy4siRYoAFNFae6XluVPTk9XsGcezxN2FZ1wiqXwXSbBEim3adIlBgzZx/bo/I0bUp2PHcpJcCSFENpSaJCvLz8uKiI4AoKpDcfMGIjKVW7cCGDZsC6tWnaNUKRe2bHmDtm1lSyYhhMiuUpNklUjzKCzM3aC7ADRQstK7SL5Fi07w118X+PjjpnzwQWMcHGQzZyGEyM5Ss0H0jfQIxJI8+GcPAG4muftLPN2RI7eIjDTRsGERRo1qwKuvVqBcOVlbTQghROr3LszSHhzZB4BbjUZmjkRYqocPwxg8eBP16v3M2LHbAbCzyyEJlhBCiDgp6cm6ibEYaZb3wBQEQN46z5rjL7IbrTXLl59h+PCt3LkTxHvv1eTLL1uZOywhhBAWKNlJVnZY5T2WT9A9cAC3/Fl++plIoV9++Y/33ltP5cr5WLXqNRo2lHl7QgghkiaLkSbhzp3LUALy5cxv7lCEBQgPj+LOnSCKFctDjx6VCQuLon//WtjYyGbOQgghnkzmZCXhZtAt3EMUDjayRlZ2t3v3NapVm0fHjkuJijLh5GTL4MF1JcESQgjxTJJkJRYUxM2c0RS1kQnM2dm9e8G89dZaXnjhN4KDI5k8uTnW1ll+iTghhBBpSIYLEzt/nut5oLqrzMfKrg4evMnLLy8hICCckSPrM3lyC3LmtDV3WEIIITIZSbISiTh7ihu5oWvhquYORWSw6GgT1tZWVK6cjyZNijF5cnOqVy9g7rCEEEJkUjJcmMh1z1OYrKBMidrmDkVkkODgCMaN206LFoswmTS5c9uzbt3rkmAJIYR4LpJkJXLa+wQAhfMUNXMkIiNs2HCRSpV+4KuvDlG0aG5CQiLNHZIQQogsQoYLEwmKDgWggnsFM0ci0tOdO0EMHLiRNWvOU6aMKzt29KJly5LmDksIIUQWIklWIndtwgEokFOGirIya2vF3397MWlSM8aNa4y9vfxXEEIIkbbkN0si3gSRN9IG+xz25g5FpLH//c+L338/ybffvoS7uxNXrgzFwcHG3GEJIYTIomROViJ3VAiFI2UR0qzE3z+MgQM30qDBLyxffpabNx8CSIIlhBAiXUmSlYh3LijkKEOFWYHWmj//PEX58nOYO/co/frV4vz5QRQrlsfcoQkhhMgGZLgwEe+c0LJAWXOHIdLA/fsh9O+/gZIlXVizpjsNGshmzkIIITKOJFmJBNtCIScPc4chUik8PIpVq87Rs2cV8uVzYu/ePlStmp8cOaTTVgghRMaSJCsJBZ3ymzsEkQo7d15l4MBNXLz4gBIl8tCgQRFq1pSEWQghhHnIn/dJyGmXy9whiBS4ezeIN99cTatWiwkLi2LdutdlaFAIIYTZWUySpZQqr5TarpQKVkrdUUp9pZR66q68SimPmHrHlVKBSikvpdSfSqlizxOLfV6Z+J5ZhIVFUaPGfJYuPc2YMQ05e3YgHTuWM3dYQgghhGUMFyqlXIBdwCWgC1AImAk4AoOf0rRWTP1fgb+BvMDHwD9Kqcpa6/upiad08VqpaSYy0M2bDylaNDf29jn46qvWVK2an6pVZZhXCCGE5bCIJAsYADgDnbXWvgBKqRzAD0qpqVrr209odwAor7WOii1QSh0CbgK9gRmpCaaMW5nUNBMZICgogkmT9jB79t9s2fImrVqV5M03q5o7LCGEEOIxljJc+BKwIzbBirEcI742T2qktfaPn2DFlHkB94GCqQnE3qSwtX7qKKUwk3XrzlOx4vfMmHGYnj2rSM+VEEIIi2YpPVnlMYb84mit/ZVS3jHHkk0pVRbIB5xLTSA5olPTSqQnrTXduq1g1apzlC3rxs6dvXnhhRLmDksIIYR4KktJslwA/yTK/QDX5J5EKaWAb4HbwJJn1HXGGKKMVQCgkClnci8n0pnJpLGyUiilqFw5H9Wq5Wfs2EbY2VnKP1shhBDiySxluDCtTAJaAr211sHPqDsS8Iz3OAJgZyX72VmCQ4c8qVlzPocOeQIwaVJzPv64mSRYQgghMg1LSbL8gNxJlLsAvkmUP0Yp9R7wCdBfa70zGU1mAkXiPeoA5FH2ybmcSCe+vqH077+eRo1+5c6dIB4+DDN3SEIIIUSqWEq3wHkSzb1SSuUGPGKOPZVSqjMwF/hEa/3rs+oDaK0DgIB45wCgkFWe5MYs0tiff55i+PAt+PiEMHBgbaZMaUmePJL0CiGEyJwsJcnaDHyolMqjtfaPKesGmIBtT2uolGqOMf/qJ631Z88bSB6HPM97CpFKhw55UqiQMxs29KRu3ULmDkcIIYR4LpaSZM0DhgBrlVJTMRYj/RqYF3+NLKXUTqCY1rp0zPsKwFqMRUwXK6Xqxzvnfa31lZQGktcxX6o/hEiZsLAovvhiP507V6B69QJ89VVrbG2tZTNnIYQQWYJFJFlaaz+lVEvgO4ykKRD4GZiQqKo1CWOuhzGXKzdwMFHdRUCflMbinls2FM4I27dfYeDATVy+7IvWUL16ARwd5aYDc9Na4+PjQ1hYGNHRsp6JECLzsra2xt7enrx588ZNCcpoFpFkAWitzwGtnlGneaL3C4GFaRmHe35Zfyk93bkTxMiRW1my5DTFiuVmw4YetG9f1txhCYwE69atWwQGBmJra4u1tbW5QxJCiFSLiIggKCiI8PBwChUqZJZEy2KSLEuRM5ebuUPI0iZP3sOKFWcZN64RH3/cFCcnWV3fUvj4+BAYGEi+fPlwc5P/B0KIzO/Bgwfcu3cPHx8f3N3dM/z6kmQlYmdtZ+4Qspz//vMmVy47Spd25dNPWzBoUF0qV5a5b5YmLCwMW1tbSbCEEFmGm5sb/v7+hIWZZzkgmWGciGMOB3OHkGUEBoYzYsQWatf+iXHjdgDg7u4kCZaFio6OliFCIUSWY21tbbY5ptKTlYiLfR5zh5Dpaa1Zvfocw4Zt4datQPr0qc5XXz11up0QQgiR5UiSlYiNtdzh9ry++uog48fvpEKFvPzxRxeaNStu7pCEEEKIDCfDhYlYWclwSWpERkbj6xsKwJtvVuWLL1py/PgASbCEWUyaNAmlVNzDzc2Nxo0bs2nTpiTr+/n5MWbMGEqVKoWdnR358+enR48enDt3Lsn6QUFBTJ48mcqVK+Po6IiTkxN169Zl5syZZpv7kVFmzZpF0aJFsba2plOnTml+/vjftyc9Fi5c+FzXOH78OJMmTSIkJCTZbbp168aYMWOe67qZ0fr166lWrRr29vaULVuWBQsWJKvduXPnaNeuHU5OTri4uNCrVy98fHweq3f+/Hlat26Nk5MTBQoUYOzYsURERMQdDwwMxNXVlYMHE6/SlDlIT1Yi1kq+JCl14MBNBgzYQMmSLqxb9zqFCjkzfnxjc4clsjkHBwd27doFwO3bt5k6dSovv/wy+/fvp2HDhnH17ty5Q9OmTfHz82PChAnUqFEDLy8vpk+fTp06ddi0aRNNmzaNq+/j40OLFi3w9PRk+PDhNG5s/Fs/fPgwX375JdbW1gwbNixjP2wGuXTpEqNGjWLcuHG8/PLL5M2bN82vcfjw4QTvGzRowJAhQ+jZs2dcWalSpZ7rGsePH2fy5MkMHjwYR0fHZ9Y/duwY69ev5+rVq8913czmwIEDdO7cmXfffZfZs2eza9cu3nnnHXLlykXXrl2f2C4gIIAXXniBwoUL8+effxISEsIHH3xA+/btOXz4MFZWRv+On58fL7zwAmXKlGH16tXcunWLkSNHEhISwpw5cwDIlSsXQ4YM4cMPP2Tv3r0Z8rnTlNZaHloDFAb0zaNHtUgeH59g/c476zRM0h4e0/Xy5ae1yWQyd1gila5du6avXbtm7jDSxMSJE7WTk1OCMi8vL62U0v369UtQ3rlzZ21nZ6fPnTuXoDwoKEhXqFBBFypUSIeGhsaVd+vWTTs6OupTp049dt0HDx7ogwcPpuEnSb6QkJB0v8b69es1oK9cufLc5woLC9PR0dHPrAfor7/++rmvF9+CBQs0oO/fv5+s+r1799YdO3ZMk2tnxPcprbRp00Y3bNgwQVmPHj10hQoVntruiy++0A4ODvrOnTtxZUeOHNGAXr16dVzZ1KlTtZOTk37w4EFc2fz587W1tbW+detWXNn169c1oI8fP56qz/Gsn22enp4a0EBhnca5hQwXJqKs5EuSHNu3X6F8+e9ZsOA4Q4bU5fz5wXTrVslsq+oK8SyFChXC3d2dmzdvxpXduHGDtWvX0rt3b8qXT7BHPU5OTkyYMIFbt26xYsWKuPorV65kwIABVK5c+bFruLq6JuglS8q5c+fo0qULrq6uODo6Uq1aNZYsWQLA9evXUUqxcuXKBG2GDx9O8eLF494vXLgQpRSHDx+OG2oZM2YMzZs3p0OHDo9dc86cOTg4OPDw4UPA+ON6+vTplC1bFjs7O0qWLMmsWbOeGnefPn14+eWXAaMnKf6w3Y0bN+jatSu5c+fGycmJtm3bcurUqQTtixcvzuDBg/nqq68oVqwYDg4O+Pr6PvWaT7Jw4UKqVq2Kvb09hQoVYsKECQnuHvP39+e9996jUKFC2NvbU6RIEV5//fW4tn379gXA3d0dpVSCr21iwcHBrFq16rGem8OHD9OxY0cKFiyIk5MT1atXZ/HixQnq7NmzB6UUGzdupGvXrjg7O9OtW7e4GAcOHIiHhwd2dnbUqlWLbdsSbtW7ceNGWrduTb58+XB2dqZevXps2bIlVV+zlAoPD2f37t1x8cZ6/fXXOXfuHNevX39i2//++49q1aqRP3/+uLLatWvj5ubG+vXr48o2b95Mq1atcHV1jSt77bXXMJlMCb4WxYoVo27dus89TGwOMjaWmCRZT6W1RilFqVKulC+fl1mz2lK7dkFzhyXEMwUFBeHr60uJEo92ddi3bx9a67jkIbHY8n379tGrVy/279+P1poXX3wxVTFcunSJBg0aUKRIEb799lsKFCjA6dOnEyR+KdGzZ0/69evHhx9+iKOjI8ePH2fIkCH4+vom+MW1ZMkS2rVrR+7cuQEYNmwYP//8MxMmTKBevXocOnSIcePG4eDgwIABA5K81scff0zFihUZN24cq1evxsPDg1KlShEYGEjz5s2xsrJi3rx52NvbM2XKFJo2bcrJkycpUqRI3DlWrVpFmTJl+Oabb7C2tsbJySnFn3nmzJmMHTuWESNGMGPGDM6dOxeXZH355ZcAjBw5ks2bN/Pll19SvHhxvL292bx5MwDt27fno48+4vPPP2fLli3kzp0bO7snr494+PBhgoODadSoUYLyGzdu0KhRIwYMGIC9vT0HDx7knXfewWQy8dZbbyWo269fP958803WrFmDtbU1ERERtG7dmrt37zJlyhQKFSrE77//Tvv27Tl27BhVqlQB4Nq1a7z88suMHj0aKysrNm/eTLt27di1axfNmzd/Ysxa62QtWWBtbf3EP4yvXLlCZGTkY398VKhQATDmUj0pOQ0LC0vya2pnZ5dgnuP58+d5++23E9TJkycPHh4enD9/PkF5w4YN2b59+zM/k6WRJCsx6YlJUmhoJFOm7MfLK4CFCztRsqQL+/f3NXdYIiO8/z4k6pXIUFWqwNy5qWoaFRUFGHOyxo4dS65cuRLMl7p16xYARYsWTbK9s7MzefLkwcvLK1n1n2XSpEnY2tpy8OBBnJ2dAWjVKvXLmwwYMIBx48bFvS9dujRDhgxh1apVvPfee4CRDBw+fJjly5cDxi/POXPmMG/ePPr16xcXQ0hICJMnT6Zfv35xc2biK1WqFGXLGltg1ahRI+4X7LfffsuNGzc4c+ZM3C/gZs2aUbRoUWbPns2MGTPizhEZGcnmzZtTlVyBMQl64sSJjB07lqlTpwLQunVrbG1tGTlyJGPGjMHNzY1//vmHnj17Jkh2Ynuy3N3d4+Z01apV65nzyo4cOULOnDkpWbJkgvLY84GR1DRt2hQvLy/mz5//WJLVsWNHpk2bFvd+wYIFHD9+nBMnTlCxYkUA2rZty6VLl/jss8/ivleDBw+Oa2MymWjRogVnzpzhxx9/fGqStXfvXlq0aPHUzwWwe/fuJ57Hz88PMJKe+FxcXACe2gtZpkwZFixYQGhoKA4OxtqTN2/exNvbm5w5cya4RuLzx14j8fmrVavGN998Q2BgILly5XrWR7MYkmQlJknWY7ZsucygQZu4etWPbt0qEhkZjY2N3IUpLFtwcDA2No+WZLG2tmbdunWUK1fuuc+d2mHxnTt3xg0bpYX27dsneO/m5kbr1q1ZunRpXJK1bNkycubMGTeMuGOHsTDwq6++GpeEgpFoTZs2DU9PT4oVK5bsGPbv30/lypXjEiwwhk1bt27NgQMHEtRt3rx5qhMsgEOHDhEUFES3bt0eiz00NJTTp0/TrFkzatasycKFC/Hw8ODFF19Mcmg3uby9vZNMxPz8/Jg4cSLr1q3j1q1bcT1HSe2YkPj7tG3bNqpUqULZsmUTfI7WrVvz+++/x7338vJiwoQJ7NixA29v79j5w9SqVeupMdeqVYsjR44887Olxf+FpLz33nt888039O/fny+//JKQkJC45D21/3fy5s2L1pq7d+9KkiWyBm/vQIYP38ry5WcoUSIPmzb15KWXypg7LJHRUtmLZG4ODg7s27cPk8nEpUuXGD9+PL179+b06dN4eHgAxjwtMP7Krlat2mPnCAwMxN/fn8KFCz9WP7ZXJyUePHhAwYJpN7wef85LrB49evDWW29x584dChQowJIlS+jcuTP29vaAcXek1vqJPTgpTbL8/PySjCN//vycPn36mfGmROwSADVr1kzyuKenJwDfffcdrq6uzJgxgzFjxlCkSBE++OAD3n///RRf80lDX3369OHQoUN88sknVKpUCWdnZ+bOncuyZcseq5v4c/v4+PDff/8l+CMgVuyuCyaTiY4dO/Lw4UM+/fRTSpcujZOTE5988skzh5dz5sxJ9erVn/nZnrbDQ2yPVew8vlixPVzxh6MTK1euHL/88gvDhg2Lm6fWpUsX2rVrR2BgYIJrJD5/7DUSnz/2exAaGvq0j2RxJMlKTHqy4vj6hrJhw0U+/LAxEyY0xdFRFmoVmYeVlRW1a9cGoG7dupQrV4569erx6aefMjcmcWzatGncxOSk5mVt2LAhrl78+lu3bk3VMJ+bmxu3b99+4vHYRCj+OkHw6BdbYkn1CrzyyivY2dmxfPly2rZty/Hjx/niiy/ijru6uqKU4sCBA9jaPr5Be0p7N1xdXblw4cJj5Xfv3n3sF+Xz3hgTe77Vq1cnmOsVK3a+Xe7cuZk9ezazZ8/m1KlTfPPNNwwcOJDKlSvTpEmTFF/T398/QVlYWBgbNmxg5syZDBkyJK7cZDIleY7En9vV1ZWqVavyyy+/PPG6ly9f5r///mPt2rW88sorceXJSTLSYriwVKlS2NjYcP78edq2bRtXHjtXKvFcrcR69+7N66+/zsWLF3FxcaFQoUJUqlSJjh07xtUpX778Y3OvHj58iLe392Pnj/0eZLa9VSXJSiybJ1n//nubXbuuMWZMIypVyoen5whcXWU/R5H51a5dmx49erBgwQImTpxIgQIFKFasGJ06dWLRokWMHDkyQe9USEgIU6ZMoXDhwnF3WBUtWpSuXbsyd+5c+vbtGzefJpa/vz/nzp2jQYMGScbQqlUrVq5cybRp05Ic8siXLx82NjYJJgdHRESkaH2gXLly0aFDB5YsWYKvry/u7u4JEsKWLVsCRq/akyb8p0Tjxo1ZuXIlFy5ciEvQ/Pz82LFjR9ycr7TSoEEDHB0d8fLyonPnzslqU6VKFWbNmsUvv/zCuXPnaNKkSVxymZyFY8uVK8f9+/cJDg6OG+oMDw/HZDIlSFIDAwP566+/khVTq1at2LRpEwULFnxiz2ZsMhX/Gjdu3ODgwYPP7EVNi+FCOzs7WrRowcqVKxPMY1y2bBkVKlR46h2ZsWxtbeOGanft2sXFixfp06dP3PGXXnqJqVOn4u/vHzc3a8WKFVhZWdGmTZsE57p+/Tq5c+emQIECz7yuRUnrNSEy64OYdbI8z5x54loaWdnDh2F6yJBN2spqsnZ3/0r7+maetVxE2sjq62RprfX58+e1tbW1HjduXFyZt7e3LlOmjM6XL5+ePXu23rt3r/7zzz91zZo1tZOTk967d2+Cc9y/f19XqlRJ58mTR0+ePFnv2LFD79ixQ0+ZMkUXKFBAz549+4lxXbx4UefOnVtXrVpV//7773rnzp36u+++09OmTYur0717d50nTx69cOFCvWHDBv3iiy/qokWL6mLFisXVedY6T6tXr9aA9vDw0AMHDnzs+ODBg3Xu3Ln1559/rrdv3643bdqkZ8+erV955ZUnxq611mvWrNFAgn8nAQEBunjx4rpUqVJ6yZIles2aNbp27do6T548+ubNm3H1ihUrpgcNGvTU8yeFROtkTZ8+Xdvb2+uxY8fqTZs26a1bt+q5c+fqF198UQcHB2uttW7YsKH++uuv9ebNm/W2bdv0m2++qW1tbfXZs2e11lofO3ZMA3r8+PH677//1idPnnzi9S9cuKABvX///gTlderU0UWLFtUrVqzQa9as0fXq1dMlSpRI8O9u9+7dGtBHjhxJ0DYsLEzXqlVLlylTRs+fP1/v3r1br1mzRn/yySd6/PjxcXUKFy6sq1atqtevX6+XLFmiy5Ytq4sXL64rVaqU4q9jauzfv19bW1vr999/X+/evVt/8sknWimlly9fnqCetbW1fvvtt+PeBwUF6dGjR+u//vpLb9u2TX/66afawcFBf/755wna+fr6ag8PD92sWTO9detW/euvv+o8efIk+e/ktdde0y+99FKqPoc518kye3JjKY+4JCvmP2F2YTKZ9PLlp7WHx3QNk/Q776zTPj7B5g5LmEF2SLK01vqNN97Qzs7O2t/fP67M19dXjx49WpcoUULb2Nhod3d33b1797hfyokFBAToSZMm6YoVK2p7e3vt6Oio69Spo2fNmpVg4dKknDlzRnfs2FE7OztrR0dHXb16db106dK44/fu3dOdOnXSzs7OulChQnr27Nl62LBhKUqywsLCdO7cuZNMDrQ2/t9/9913unLlytrW1la7urrqBg0a6JkzZz419qSSLK2NxSK7dOmic+XKpR0dHXXr1q0fS1zSKsnSWuslS5boOnXqaAcHB+3s7Kxr1KihP/74Yx0ZGam11nrMmDG6SpUqOmfOnNrZ2Vk3atRIb926NcE5Jk2apAsXLqytrKwSfG2TUqVKFf3hhx8mKLt06ZJ+4YUXtKOjoy5SpIj++uuvH/t396QkS2utHz58qEeMGKGLFi2qbWxstIeHh27Xrp3esGFDXJ1//vlH16lTR9vb2+syZcroRYsW6bfeeivDkiyttV63bp2uUqWKtrW11aVLl9a//PLLY3UA/dZbb8W9DwkJ0W3bttVubm7azs5OV6tWTS9YsCDJ8589e1a3bNlSOzg46Hz58unRo0fr8PDwBHUiIiK0q6trktdODnMmWUobCUa2p5QqDHh6njtH4WeMNWclFy74UKHC91Ss6M68eR1o3Dh1t6aLzC92ccHkDAMIkZ189913fPPNN1y6dEkWXDaDjRs30rNnT27dupVgCYjketbPNi8vr9g5fkW01l6pDjQJsvJmYtngP1BERDQ7dhh7cJUrl5etW9/k2LH+kmAJIUQS3n33XUJDQxOsVi4yzowZMxg1alSqEixzkyQrsSyeZO3bd4Pq1efRtu3vXLr0AIDWrUthayvrXgkhRFIcHBxYuHDhY3d9ivQXFBREs2bNGDFihLlDSRW5uzCxLJpk+fiEMGbMdhYuPE6hQrlYsaIbpUs/eZ0TIYQQj7Ru3drcIWRLOXPmZOLEieYOI9UkyUosCyZZDx6EUL78HPz8whg+vB6fftqCXLmevFeXEEIIIZ6fJFmJZaEky9c3FFdXB9zcHBk9uiFt2pSiZk0Pc4clhBBCZAsyJyuxp+zGnlmEhETywQc7KFp0FhcuGNtQjB/fWBIsIYQQIgNJT1YWs2nTJQYN2sT16/68/nplcue2N3dIQgghRLYkSVYWERERTc+eq1i16hylSrmwdeubtGlTytxhCSGEENmWJFlZhK2tNXZ2Ofj446Z88EFjHBxkM2chhBDCnGROViZ25MgtmjZdwPXr/gD8/ntnPv20hSRYQgghhAWQJCsTevgwjMGDN1Gv3s+cP+/D1at+ALLdgxAxJk2ahFIq7uHm5kbjxo3ZtGlTkvX9/PwYM2YMpUqVws7Ojvz589OjRw/OnTuXZP2goCAmT55M5cqVcXR0xMnJibp16zJz5kzCwsLS86OZ3axZsyhatCjW1tZ06tQpzc8f//v2pMfChQtTff7mzZvToUOHNIv31KlT5MqVi/v376fZOTODhw8f8s477+Dq6kquXLno2rUr3t7ez2yntearr76iRIkS2NnZUblyZZYtW/ZYvR9++IEOHTrg7u6OUoqVK1c+VmfKlCkWv36ZDBdmIlprli8/w/DhW7lzJ4j33qvJl1+2wtXVwdyhCWFxHBwc2LVrFwC3b99m6tSpvPzyy+zfv5+GDRvG1btz5w5NmzbFz8+PCRMmUKNGDby8vJg+fTp16tRh06ZNNG3aNK6+j48PLVq0wNPTk+HDh9O4cWMADh8+zJdffom1tTXDhg3L2A+bQS5dusSoUaMYN24cL7/8Mnnz5k3zaxw+fDjB+wYNGjBkyBB69uwZV1aqVOrnm/7www9YW6fdDhcfffQRffr0wd3dPc3OmRl0796dM2fOMG/ePOzt7ZkwYQIvvfQSR48eJUeOJ6cWX3/9NRMmTOCjjz6iQYMG/PXXX/To0QNHR0defvnluHq//fYbAO3atYt7ndigQYP46quv2L17Ny1atEjbD5hW0nrH6cz6AAoD2tPT84k7dZubyWTSL774u65c+Qd98OBNc4cjsphn7VSfmUycOFE7OTklKPPy8tJKKd2vX78E5Z07d9Z2dnb63LlzCcqDgoJ0hQoVdKFChXRoaGhcebdu3bSjo6M+derUY9d98OCBPnjwYBp+kuQLCQlJ92usX79eA/rKlSvPfa6wsDAdHR39zHqA/vrrr59aJyM+e1KuXLmilVL62LFjz32uqKgoHRERkQZRpb9Dhw5pQG/dujWu7Pz581oppZctW/bEduHh4TpXrlx65MiRCco7dOigq1atmqAs9t/GtWvXNKBXrFiR5Dn79u2rX3nllafG+6yfbZ6enhrQQGGdxrmFDBdauPDwKL74Yj/e3oEopVi8uDPHjvWjYcMi5g5NiEylUKFCuLu7c/PmzbiyGzdusHbtWnr37k358uUT1HdycmLChAncunWLFStWxNVfuXIlAwYMoHLlyo9dw9XVNUEvWVLOnTtHly5dcHV1xdHRkWrVqrFkyRIArl+/nuTQyPDhwylevHjc+4ULF6KU4vDhw7Ru3RonJyfGjBnzxKGwOXPm4ODgwMOHDwHjj+vp06dTtmxZ7OzsKFmyJLNmzXpq3H369InraShVqlSCYbsbN27QtWtXcufOjZOTE23btuXUqVMJ2hcvXpzBgwfz1VdfUaxYMRwcHPD19X3qNZMyadIkcubMyT///EODBg2wt7fn+++/B2D8+PFUqVKFnDlzUqhQIXr06PHYEFbir1Hs+U6dOkXjxo1xdHSkcuXKbN269Zmx/Pbbb5QsWZIaNWokKE9JHIsWLaJcuXLY2dlx4sQJADZu3Ei9evVwcHDA3d2d999/n+Dg4Li2wcHBDB48mHLlyuHo6Ejx4sUZMGBA3Pc3vW3evJk8efIkGKorV64c1atXf+KQPMCVK1cIDAykTZs2Ccrbtm3LyZMnE/zftLJKXnrSrVs3Nm7ciI+PTwo/RcaQ4UILtnv3Nd5/fyMXLjzA1taaUaMakjevo7nDEiJTCgoKwtfXlxIlSsSV7du3D611gmGK+GLL9+3bR69evdi/fz9aa1588cVUxXDp0iUaNGhAkSJF+PbbbylQoACnT59O8MslJXr27Em/fv348MMPcXR05Pjx4wwZMgRfX19cXR/tTbpkyRLatWtH7ty5ARg2bBg///wzEyZMoF69ehw6dIhx48bh4ODAgAEDkrzWxx9/TMWKFRk3bhyrV6/Gw8ODUqVKERgYSPPmzbGysoobOpoyZQpNmzbl5MmTFCny6A/CVatWUaZMGb755husra1xcnJK1eeOiIigZ8+ejBgxgqlTp+Lm5gbAvXv3+PDDDylYsCD3799nxowZNGvWjLNnzz51CCsyMpI33niDoUOH8vHHHzNt2jReffVVbty4EXfupOzYsSPJpDq5cRw9epTr16/z6aef4uLiQpEiRVi5ciXdu3enb9++TJ48GW9vb8aPH4+fnx9Lly4FICQkhOjoaKZMmYK7uzuenp5MmTKFTp06sXv37qd+7aKjo2NHb55IKfXUIdXz589Trly5x+YBV6hQgfPnzz+xXex8RbtEi37Hvj937hxFixZ9amyJNWjQgOjoaPbs2UPXrl1T1DYjSJJlge7dC2b06G0sXnySwoWdWbOmO506lX92QyHSwfsb3ufUvVPPrphOquSrwtwOc1PVNioqCjDmZI0dO5ZcuXIlmC9169YtgCf+YHd2diZPnjx4eXklq/6zTJo0CVtbWw4ePIizszMArVq1StW5AAYMGMC4cePi3pcuXZohQ4awatUq3nvvPcDoZTp8+DDLly8HjN6EOXPmMG/ePPr16xcXQ0hICJMnT6Zfv35J9iKUKlWKsmXLAlCjRo24nrVvv/2WGzducObMGSpUqABAs2bNKFq0KLNnz2bGjBlx54iMjGTz5s2pTq7in2fKlCl07949Qfmvv/4a9zo6OpoGDRpQuHBhdu3a9VjvSXwRERF8+eWXtGvXDjB6ZUqUKMHmzZt58803k2yjtebo0aNJTv5Pbhy+vr4cOXIkLhHVWjN69Gi6d+/Ozz//HFfPw8ODdu3a8fHHH1OpUiXc3d2ZO/fR/4moqChKlChB48aNuXjxYtz3KSktW7Zk7969TzwOxvdvz549Tzzu5+dHnjx5Hit3cXF5au9kbA/oP//8Q/PmzePK//77b4BU9WzmyZOHokWL8r///U+SLJE87723no0bLzJyZH0mT25Bzpy25g5JiEwnODgYG5tHy5lYW1uzbt06ypUr99znTu2dvDt37qRr165xCdbzat++fYL3bm5utG7dmqVLl8YlWcuWLSNnzpxxQ2Q7duwA4NVXX41LQsFItKZNm4anpyfFihVLdgz79++ncuXKcQkWGMOmrVu35sCBAwnqNm/e/LkTrFiJPzsYw1ifffYZZ86cISAgIK784sWLT02yrKysEiS7xYsXx8HBIS65Toqfnx/h4eFJTnhPbhxVq1ZN0NN38eJFbty4wezZsxN8b5o1a4aVlRVHjx6lUqVKACxevJiZM2dy6dKlBEOJz0qy5s+fT2Bg4BOPA+TKleupx1PL2dmZN998k2nTplGlShXq16/P+vXr44bLU/v/Km/evMm6s9EcJMmyEKdO3aVQIWdcXR346qtWTJ7cnOrVC5g7LCFS3Ytkbg4ODuzbtw+TycSlS5cYP348vXv35vTp03h4GPt4FipUCICbN29SrVq1x84RGBiIv78/hQsXfqz+036RPcmDBw8oWLBgaj/SY/Lnz/9YWY8ePXjrrbe4c+cOBQoUYMmSJXTu3Bl7e2OLLR8fH7TWT7wzMKVJlp+fX5Jx5M+fn9OnTz8z3tRwdHQkZ86cCcqOHDlCx44deeWVVxg/fjz58uVDKUX9+vWfuayGg4MDtrYJ/5i1tbV9arsnDX2lJI7EX4/YeUWdO3dO8pqenp4ArFmzht69e9OvXz+mTJmCm5sb3t7edO7c+ZmftXTp0skaLnwaFxeXuFji8/PzSzBMnZRZs2Zx586duF7DvHnz8tlnnzF69Oi4/5cpZWdnR2hoaKrapjdJsswsODiCTz/dy8yZfzNgQC2++64d5cql/W3RQmQ3VlZW1K5dG4C6detSrlw56tWrx6effho31NK0aVOUUmzcuDHJeVkbNmyIqxe//tatW1M1zOfm5sbt27efeDw2EYqIiEhQ7ufnl2T9pH4ZvvLKK9jZ2bF8+XLatm3L8ePH+eKLL+KOu7q6opTiwIEDjyUWQIp7+lxdXblw4cJj5Xfv3n3sF25areWX1HnWrFlD7ty5Wb58edxw540bN9LkekmJ/Wz+/v6pjiPx54g955w5c6hXr95j9WMT9BUrVlC9enXmz58fd+xZQ4Cx0mK4sHz58uzYsQOtdYLPcP78eapUqfLUc7u5ubFt2zZu376Nr68vZcqU4a+//sLW1paaNWsm6zMk5u/vH9fDZ2kkyTKj9esvMHjwZm7efMgbb1Tho4+aPruRECJVateuTY8ePViwYAETJ06kQIECFCtWjE6dOrFo0SJGjhyZoHcqJCSEKVOmULhwYbp16wYYc7G6du3K3Llz6du3LxUrVkxwDX9/f86dO0eDBg2SjKFVq1asXLmSadOmJTkkky9fPmxsbBIsghoREZHsX6BgDPV06NCBJUuW4Ovri7u7e4KEsGXLloDRq/akCf8p0bhxY1auXMmFCxfiEjQ/Pz927NgRN+crI4SGhmJjY5Pgl/4ff/yRbtezt7enaNGiXLt2Lc3iKF++PIULF+bq1asMGjToifVCQ0MfS5CTe420GC586aWX+Oyzz9i5c2fcv62LFy/y33//JZgj+DQFCxakYMGCREdHM3fuXLp3756qYUqTycTNmzd5++23U9w2I0iSZSYTJuxk6tQDlCnjyo4dvWjZsqS5QxIiy/v4449ZunQps2fP5ssvvwSMxSmbNm1KkyZN+PDDD6lRowa3bt1i+vTpXL9+nU2bNsX1MMXWb968OY0aNWLEiBE0atQIgP/973989913jB8//olJ1sSJE9mwYQONGzdm7NixeHh4cPbsWUJCQhg7dixWVlZ06dKFOXPmULp0afLmzcucOXMe6zF4lh49etClSxdu3LhBt27dEtzRVrZsWQYNGkSvXr0YM2YM9erVIzIykosXL7J7927Wrl2boq9p3759mTVrFu3bt+fzzz+Pu7swR44cDB8+PEXneh6tW7dm9uzZDBkyhM6dO3P48GEWL16crtds1KgR//77b5rFoZRi5syZ9OzZk+DgYNq3b4+TkxM3btxg48aNTJ06lbJly9K6dWsGDRrEZ599RoMGDdi0aRM7d+5M1jXSYk5igwYNaNu2LW+//TYzZsyIW4y0atWqdOnSJa7ep59+yqeffsqVK1fihqD/+OMPQkNDKV26NLdv32b+/Plcu3btsSQx9s7L2JX0YyfHu7u706xZs7h6Fy5cICgoiCZNmjz350oXab3wVmZ9kAGLkUZGRuuQEGOxuaNHb+lJk3br0NDIdLueECmR1RcjjfXGG29oZ2dn7e/vH1fm6+urR48erUuUKKFtbGy0u7u77t69uz579myS5wgICNCTJk3SFStW1Pb29trR0VHXqVNHz5o1K8HCpUk5c+aM7tixo3Z2dtaOjo66evXqeunSpXHH7927pzt16qSdnZ11oUKF9OzZs/WwYcN0sWLF4uosWLBAA/r+/ftJXiMsLEznzp1bA3r//v2PHTeZTPq7777TlStX1ra2ttrV1VU3aNBAz5w586mxr1mzRgOP/Tu5fv267tKli86VK5d2dHTUrVu31idPnkxQp1ixYnrQoEFPPX9SSLQY6dO+t9OmTdOFCxeOi+HixYuPtW/WrJlu3779M8+XO3duPXHixKfGtmrVKm1vb68DAgKeO474tm3bpps1a6adnJy0k5OTrlSpkh41alTcv9moqCg9atQo7e7urnPlyqW7du2q//7776cu2pnW/P399dtvv63z5Mmjc+bMqbt06aJv3bqVoM7EiRMf+/eyePFiXb58eW1nZ6fd3Nx0r169kvy9+9Zbb8UuEJrg0axZswT1ZsyYoYsVK6ZNJtMTYzXnYqRKP2MCXHahlCoMeHp6esZNck1L//ufF/37b6BFi+LMmpW6NXaESE/Xr18HSLDopRDiySIjIylatCjTpk2jd+/e5g4nW6pTpw4vv/wyn3zyyRPrPOtnm5eXV+xdnkW01k++pTQVZMX3dObnF8r772+gQYNf8PYOok6dQuYOSQghRBqwsbFh/PjxfPPNN+YOJVvat28fV65cYejQoeYO5YlkTlY62rjxIm+//Rf37wfTv38tpk5tiYuLbOYshBBZxYABAwgICMDHxyddNswWTxYQEMBvv/2W5MKolkKSrHSUK5cdBQvmYt2616lfP+2HIIUQQpiXnZ0dH3/8sbnDyJaS2qfT0kiSlYbCwqKYNu0A1tZWfPRRU5o2Lca///bDyipt1oYRQgghROYhSVYa2bHjKgMHbuTSJV9ee61S3C3XkmAJIYQQ2ZNMfH9Od+8G8eabq2ndejHh4dGsW/c6y5Z1TbOVjYXIKNbW1kRHR5s7DCGESFPR0dFYW1ub5dqSZD2n//67w9KlpxkzpiFnzw6kY8fnX+hNCHOwt7cnIiKCBw8emDsUIYRIEw8ePCAiIiLBgsIZSYYLU+HEiTucOXOfnj2r8OKLpblyZSjFiuUxd1hCPJe8efMSHh7OvXv38Pf3N9tffkIIkRaio6OJiIggV65cZrvzU3qyUiAoKILRo7dRq9aPjB27nfDwKABJsESWoJSiUKFC5M2bN8mNg4UQIjOxtbUlb968FCpUyGxTeCymJ0spVR74DmgIBAK/AR9prSOe0U4B44CBgDtwHBihtf47LeNbu/Y8Q4ZsxssrgN69q/H1162xs7OYL58QaUIphbu7u7nDEEKILMEisgSllAuwC7gEdAEKATMBR2DwM5qPAyYD44GTwCBgm1Kqutb6alrEt3//DTp3Xka5cm7s2tWbFi1KpMVphRBCCJGFWUSSBQwAnIHOWmtfAKVUDuAHpdRUrfXtpBoppeyBD4AZWutZMWX7gYvAaIzerVSJjIzm9Ol71KjhQePGRVm8uDPdulWU3ishhBBCJIulzMl6CdgRm2DFWI4RX5untGuIkZwtjy2IGV5cDbRLbTCHDnlSq9aPNG++CB+fEJRSvPlmVUmwhBBCCJFslpJklQfOxy/QWvsD3jHHntaOxG2Bc0BRpVSKNwocO3Y7jRr9yv37Ifz4Ywfc3GSvQSGEEEKknKV0zbgA/kmU+wGuz2gXrrUOS6KdijkemlRDpZQzRi9YrEIAS5Yc4q23mjBmTENy57bn1q1byfsEQgghhMh0vL29Y1+m+bo1lpJkmcNIYOLjxT+zaNHPLFqU4fEIIYQQwnyKAzfS8oSWkmT5AbmTKHcBfJMoj9/OTilln6g3ywXQMcefZCbwc7z3RYGDQH1Auq8sRwHgCFAHuGPmWERC8r2xTPJ9sUzyfbFchYC/Ac+0PrGlJFnnSTT3SimVG/Dg8flWidsBlANOxCsvD9zUWic5VAigtQ4AAuJdL/blLa21V7IjF+kq3vfljnxfLIt8byyTfF8sk3xfLFe8781T1+VMDUuZ+L4ZaKWUyhOvrBtgArY9pd0hjESpW2yBUsoGY62tTWkfphBCCCFE8lhKkjUPY5X3tUqpNkqpvsDXwLz4a2QppXYqpS7Hvo8ZIvwCGK2UGqaUegFYArgB0zP0EwghhBBCxGMRw4Vaaz+lVEuMbXXWYiRcPwMTElW15vGYp2HcSTiaR9vqtE3Fau8BGCvHBzyroshQ8n2xXPK9sUzyfbFM8n2xXOn2vVFa67Q+pxBCCCFEtmcpw4VCCCGEEFmKJFlCCCGEEOlAkiwhhBBCiHQgSZYQQgghRDrIFkmWUqq8Umq7UipYKXVHKfWVUso2Ge2UUmq8UuqmUipUKXVYKVU/I2LODlLzfVFKecTUO66UClRKeSml/vx/e/cfLFdZ33H8/YFAEpCQBAgBAgEMkAClEWgLYjXBQEVGi9rgCFoCCkWlJQgtElF+icg4CGMVnUGBmIrSItZKpSCQRFpEZBqpAWKxNSFEEqJNguR3wrd/PM9yD5u99+7d3ZOFez6vmTN399nz43vOM3vPd5/nOedIGr+94q6CVr8zdeuYKSkk3VNWnFXTTr1I2k/SbEkr8/+zpyWdWXbMVdDGOWYPSV/L55i1khZKOn97xFwFkibk4/tzSVskLWxyuY6d+18Tt3Aok6RRwEPAM6SblO5HeqTOLsAF/Sx+Kemyzk8C/wV8HLhf0uQWbhFhBW3UyzF5/ltJj0HYE/g08JikIyNiZZlxV0Gb35naOsaSng36QklhVk479SJpH+AnwC+B80iXqh8BDC0x5Epo8/vyT6QnlMwCngXeCXxV0taIuKW0oKvjCOBU4KekRqVmG5Y6d+6PiEE9AZcBLwGjC2XnAVuAfftYbhiwBvhcoWxnYDFwc7f36/U+tVEvI4EhdWXjSE8HuLjb+zUYplbrpm4d3wRmA/OAe7q9T4NhaqdegDmkZ7Pu2O39GGxTG//LxpKesTujrnw+8GC392swTMAOhde3AwubWKaj5/4qdBeeAjwQEcUHTf8jKaM9uY/l3gyMyPMCEBGbgLtJvzasPS3VS0SsjogtdWXPASuBfcsItIJa/c4AIOktwGmkX4HWOS3Vi6QRwOmkE8TWckOspFa/Lzvlv2vqyteQbrBtbYqIl1tYrKPn/iokWROpe8h0RKwGnqfuodQNlqN+WeBp4ABJwzsVYEW1Wi/bkHQoMIZUN9a+lutG0o7Al4FrI+L5sgKsqFbr5WjSL/HNkuZL2pzHDV2fn/Vq7WmpXiJiKenZvLMkHS5pN0mnkxKzr5QXrvWjo+f+KiRZo4DVDcpXAaP7WW5jpOcj1i+n/Lm1rtV6eRWlx6d/CfgN6bmV1r526uZjwK7AjR2OyVqvl7H579eBx0kn8RuBmcDVnQuvstr5vrwXWAE8SRondwdwUUR8t5MB2oB09Nw/6Ae+26B3JfB24B0RsbbLsVSapDGkk/Zf5uZ1e22o/Zh+ICIuzq/nStoNuETS1RGxvkuxVVb+gXgbcAhwBqnl6yTgJkmrIuI73YzPOqMKSdYqYPcG5aOA/2tQXlxuqKRhdRntKNJgxVWdC7GSWq2XV0g6F/gM8OGIeLCDsVVdq3VzNelKnIcljcxlQ4Ah+f1L9ePpbEDa+V8G6Qq4ogeBTwETgF+0HV11tVovpwLTgaMionb85+UfKzcATrK6o6Pn/ip0Fy6irl9c0u7APmzb51q/HMBhdeUTgWf9y69trdZLbd73AF8FPhMRt5YSYXW1WjcTgbeS/gnVphOAP8uvp5URbIW0Wi9P9bPeYW3GVXWt1svhwFag/t5NC4B9Je3SySCtaR0991chyboXmFb4ZQ3p18PLpEGHvXmE1Ec+vVaQB4m+F/hh58OsnFbrBUlTSOOvbomIa0qKr8parZuZwNS66QnS/cymAo+VEGuVtFQvEbGE1FJVn+SeBKyn/yTM+tbq92UJsCNwVF35McALEbGuk0Fa0zp77u/2fSy2w30yRpEGRc8jDfg8m/Sr+st18z0I/Kqu7JPABuBC4ETgrnzwD+72fr3ep1brBZhEGmT6C9KltscVpjd2e78Gw9TOd6bBuubh+2R1vV6Ad5FO+jeRkqtZwCbgs93er9f71Mb/st1IidYzwAdJY0uvJ7VuXd7t/RoME+mGsH+Rp7mkG77W3u/VqF5yWcfO/V0/CNvpQE8CHgDWka7k+AKwc90884DFdWUi3WhuaT7gjwLHd3t/BsvUSr0AM0j94o2m27u9T4NlavU702A9TrJeI/UCvJ/UNbWRdGPFywB1e58Gw9TGOWYCcCewDFib6+dCfNPYTtXLgX2cL6b0US8dO/crr9DMzMzMOqgKY7LMzMzMtjsnWWZmZmYlcJJlZmZmVgInWWZmZmYlcJJlZmZmVgInWWZmZmYlcJJlZmZmVgInWWZmZmYlcJJlNghIul1S9DEdOMD1Lc7LzSsn4l632yj2NZLmSnpnidt95fgVykZKujJPU+rmP7AQ35VlxdVLrFMaHKNNuc6+JmlMG+uemfd3RgdDNqusId0OwMysHyOAKcAUSWdGxB3babsjgSsK7+dtp+22YidgPPBXwPGSjo6IrS2sZ2Zez3zg9o5FZ1ZRbskyG3ymRoTqpsXdDmqAlkSEgGHAJYXy68rYWETMqB2rJudfXDi2V5YRU5Nm55gPBX6dy44iPTzdzLrMSZZZReTur29JelrSakmbJS2XdJekI5pY/hhJ9+RlNua/cyV9pG6+t0u6T9KqPN8vJV0uaaeBxhwRG4EvAmty0QGS9srb2UHSBZIWSFonaa2kx+q7uiRNkPQdSctyPCslPSLpssI8r+ouzF2Avy6s5opC19yURt2Fkp7M7/+zbvtnFeY9JZdJ0vmSHs9xr5P0qKTTB3qM8nF6BvheoWj/wvbfkevjOUnrJW2QtEjSNZKG53mm5H0fnxd7W6PuUEnTJT0s6cW8nickfVRSU8mpWdW4u9CsOkYCZ9SV7Q28D5gqaVJEvNBoQUm7AvcBe9QtuzewFvh6nm8GcCvpKfY1hwLXAMdJele09lT6Rifx2cAH68r+CLhN0uER8Xe57AfAxMI8e+ZpBJ1tGZuT1/cmSRMi4le5vJY4LQfuz69vBWbULf8nwJ2SxkfEF1rYfvEYFevxOODkunkPAy4HDmLbY9h45dIVwJV1xUcBNwNHAh8fQKxmleCWLLPBZ27doOif5/JVpIRqf1I33BuAc/Nno9k2ASuaSE+C9T5gZ2Ac8OekJAZJbwBuIp3s783b2QWYlZc7FRjQ4HVJQ4GLSQkRwNKIWCnprfQkBz/JsRwCLMpll0g6TNIe9CRYnwCGAmNJScc3e9tu7gI8qFB0VaF7cF4vi30LeDm/np7jHwlMy2Xfjoitkt5CT4J1LbA7KemrtURdneNumqRDgPfktyuAfy98/K+k7sO9SGO39gF+mD87Q9LoiJiXux2X5PL5xe5QpQsnPp0/uw0YQ6qTr+Syj0k6ciAxm1WBW7LMKiIi1uST5eWk1qVd62Y5rI/FlwFbgR1JLRYTgCeB/4iI3+V53kxKGABOAZY2WM+JpJN+f8arcKVfQe1Ef0qh7NqIWAYg6QbgFlKidzKpleVFUkJwBmmfnwQejYgfNRFH0yJiqdLVmCeSWq+uA04jJaSQWrrg1Ynmp/JUNIx0LH/QxGbPknRW4f0i4EMRsaFQtgz4LCnZG0tKtGpESk5/2s92TibVPcDZeao3FVjYRMxmleGWLLPBp37g+2QASRcBNwBvYtsEC2B4byuMiOXA35DGRp0IXA/cAyzP3UiQWkr6M7rpvejxe+DHwGkRMTuX7Vn4fGkvr/fKV9idTWrdOZbUbXk3sEzSLS3E0p9aIjVZ0gRyixawMCIW1OJqYj2tHCdILYev/HiWtAOpns4mtSw2GhfXa70XlBmz2aDlJMusOmon/A2k8T9DgD9oduGIuJl0sv1j4ExSi9QQ0qDwccDKwuyXNbjCUcA5TW5uSWG5ERHxtoj4fuHz3xZejyu83r9+noi4G9gXmExqYZpDasH5iKQT+trlJmMt+i6wLr8+Dzgpv55TmKd4nI5vcIx2KCST/ZlNSpymA1uAA4DvSap1r04gJdUADwB7523c0Mv6etvnYswf6CXmq5qM2awynGSZVcfQ/DdIrUMj2XYgc0OS9pb0eeBo4H9JycQjtY9JLUuP0HMV4CckTZU0VNIYSadL+jE9V6+1698Kr2dJ2k/SwaRxV5D28f4c+98Dfwo8D3yfnsHn0HcLzarC64nNXB0ZEb8H/jm/vYiUAL1MGq9Vc2/h9RclTZK0s6SDJf01KRlqWkRsiYi7SF2jkLoE/za/HlqYdSOwXtKxwId6WV1tnw+QtHuh/H5SdzHAVZKOzTGPk3QOsAAz24aTLLPqqI3xGQ48RWrpmdzkssOBS4FH83IbSIO2IXXRPRURL5ESiyAlLw/l+VYAd5ISnY6IiPnAt/PbE4DngP8BJuWyGyOiNgj+AtKNRFeQEo1aq9KavD+9beNF4L/z2/cDm/KFBP2NZa2tvzbfQ7UxY3m9D9Nzo8/jSXWxMcf/JeCN/ay/N58jXekJcGEePL8IqF3leCppfNrPSEl2Iz/Lfw8CVuf9nZbvs3ZN/uzQPN9GUt1/A/jDFmM2G9ScZJlVx3Wkq/9eAF4C7gI+0OSyvyMlAAtIrR2bSQOq7wCmRcQmgIi4jdRFdl+ebxPwLOlqtnOB33RmV4B0deFM4AlSMrceeBz4cERcXJjvetLA7t/muJcD/5LjXt7PNs4iJRTrBxDXj/I2auY0mOcc4Py87nV5eibP+9EBbOsVEbGCVEcAuwGXRsRm4N3AXFICtpR0teY/9LKaK0jHZnWD9V9F6m59mJSkbaCnVfPMVmI2G+zU2i1rzMzMzKwvbskyMzMzK4GTLDMzM7MSOMkyMzMzK4GTLDMzM7MSOMkyMzMzK4GTLDMzM7MSOMkyMzMzK4GTLDMzM7MSOMkyMzMzK4GTLDMzM7MSOMkyMzMzK4GTLDMzM7MSOMkyMzMzK8H/A+tjlSEZaazYAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "params = {\n", - " 'max_depth': np.arange(3, 8),\n", - " 'min_samples_leaf': np.arange(50, 100, 20),\n", - " 'n_estimators': np.arange(100,200,50),\n", - " 'criterion': [\"gini\", \"entropy\"],\n", - "}\n", - "\n", - "clf = RandomForestClassifier(max_features=\"sqrt\", random_state= 10)\n", - "cv = StratifiedKFold(n_splits=5,shuffle= True, random_state= 10).split(X_train, y_train)\n", - "clf = GridSearchCV(clf, params, scoring='roc_auc', cv=cv, n_jobs = -1, verbose=4)\n", - "\n", - "clf.fit(X_train, y_train)\n", - "y_pred = clf.predict(X_test)\n", - "\n", - "print(f\"Best score in train: {clf.best_score_}\")\n", - "print(f\"Count estimators {len(clf.best_estimator_.estimators_)}\")\n", - "print(\"AUC-ROC score sobre test: \", \"%0.16f\" % roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]))\n", - "print(\"AUC-ROC score sobre train: \", \"%0.16f\" % roc_auc_score(y_train, clf.predict_proba(X_train)[:, 1]))\n", - "print(\"Accuracy sobre test: \", \"%0.16f\" % accuracy_score(y_pred, y_test))\n", - "print(\"Los mejores hiperpametros elegidos: \", clf.best_params_)\n", - "print(classification_report(y_test, y_pred, target_names=[\"Bajo valor\", \"Alto valor\"]))\n", - "graficar_matriz_confusion(y_test, y_pred)\n", - "plot_roc_curves(clf, X_test, y_test, X_train, y_train)\n" - ] - }, - { - "cell_type": "markdown", - "id": "a66982f4", - "metadata": {}, - "source": [ - "## Por chusmear veo la importancia de features" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "d5251e3e", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[('estado_marital_matrimonio_civil', 0.25157653788161055),\n", - " ('suma_declarada_bolsa_argentina', 0.19673053930691922),\n", - " ('anios_estudiados', 0.12272604315803647),\n", - " ('educacion_alcanzada', 0.08578352889150961),\n", - " ('estado_marital_sin_matrimonio', 0.06890244170150309),\n", - " ('edad', 0.06730162272621419),\n", - " ('horas_trabajo_registradas', 0.04191294425044905),\n", - " ('genero_mujer', 0.030794419126328725),\n", - " ('trabajo_directivo_gerente', 0.02996433783800399),\n", - " ('rol_familiar_registrado_sin_familia', 0.02633306889242443),\n", - " ('rol_familiar_registrado_con_hijos', 0.0227540344921777),\n", - " ('trabajo_profesional_especializado', 0.02091918508529266),\n", - " ('rol_familiar_registrado_soltero_a', 0.00724911095825276),\n", - " ('trabajo_otros', 0.006788697797161547),\n", - " ('categoria_de_trabajo_responsable_inscripto', 0.004287633042869826),\n", - " ('trabajo_limpiador', 0.0019596423813570112),\n", - " ('categoria_de_trabajo_monotibutista', 0.0019476299555639335),\n", - " ('trabajo_inspector', 0.0018404584584186265),\n", - " ('rol_familiar_registrado_otro', 0.0013687919916185996),\n", - " ('trabajo_ventas', 0.001264889048865667),\n", - " ('trabajo_reparador', 0.001203894401448858),\n", - " ('trabajo_sector_primario', 0.0010890325288218361),\n", - " ('categoria_de_trabajo_empleado_publico', 0.0010169745605990944),\n", - " ('categoria_de_trabajo_relacion_de_dependencia', 0.0008533524504054183),\n", - " ('estado_marital_separado_a', 0.0007535131708387161),\n", - " ('trabajo_entretenimiento', 0.000700637021492847),\n", - " ('trabajo_soporte_tecnico', 0.0005580834946495699),\n", - " ('religion_judaismo', 0.00046758672704725555),\n", - " ('religion_cristianismo', 0.0003917931247515826),\n", - " ('estado_marital_viudo_a', 0.0002575974074858374),\n", - " ('trabajo_transporte', 0.00012753400004844945),\n", - " ('estado_marital_pareja_no_presente', 8.16984480280715e-05),\n", - " ('trabajo_seguridad', 7.620467668648021e-05),\n", - " ('religion_budismo', 1.6541003118240295e-05),\n", - " ('estado_marital_matrimonio_militar', 0.0),\n", - " ('trabajo_ejercito', 0.0),\n", - " ('trabajo_servicio_domestico', 0.0),\n", - " ('categoria_de_trabajo_sin_trabajo', 0.0),\n", - " ('categoria_de_trabajo_trabajo_voluntariado', 0.0),\n", - " ('religion_otro', 0.0)]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sorted(list(zip(X_train.columns, clf.best_estimator_.feature_importances_)), key=lambda x: -x[1])" - ] - }, - { - "cell_type": "markdown", - "id": "7b09417f-7329-4a66-86c7-1f3a9d65d606", - "metadata": {}, - "source": [ - "# Segundo Preprocesamiento: reduccion_rfecv()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "1f9a0d4f-00f7-4bb8-8b01-cf6b8bd54b05", - "metadata": {}, - "outputs": [], - "source": [ - "from preprocessing import obtener_datasets\n", - "from preprocessing import aplicar_preparacion\n", - "from preprocessing import conversion_numerica\n", - "from preprocessing import plot_roc_curves\n", - "from preprocessing import graficar_matriz_confusion\n", - "from preprocessing import get_dataframe_polynomial\n", - "from preprocessing import reduccion_rfecv\n", - "from preprocessing import aplicar_preparacion_generalizado\n", - "from preprocessing import conversion_numerica_generalizada" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "1242119a-ff74-49a7-aa2c-b56ab7fac46f", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Aplicando 'conversion_numerica' en las variables categóricas.\n" - ] - } - ], - "source": [ - "from sklearn import preprocessing, tree\n", - "\n", - "df, df_for_prediction = obtener_datasets()\n", - "X_df, y_df = aplicar_preparacion(df)\n", - "X_df_numerico = conversion_numerica(X_df) \n", - "\n", - "\n", - "clf = tree.DecisionTreeClassifier(random_state=10, criterion = 'gini', max_depth = 7, min_samples_leaf =50)\n", - "\n", - "X_reducido = reduccion_rfecv(\n", - " estimator=clf,\n", - " X_df = X_df_numerico,\n", - " y_df = y_df,\n", - " min_features_to_select=30,\n", - " step=10,\n", - " n_jobs=-1,\n", - " scoring=\"roc_auc\",\n", - " cv=10\n", - ")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "bba11fe2-0059-4e41-8e25-a6a75dc55e54", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
anios_estudiadosedadeducacion_alcanzadasuma_declarada_bolsa_argentinahoras_trabajo_registradasgenero_mujerestado_marital_matrimonio_civilestado_marital_matrimonio_militarestado_marital_pareja_no_presenteestado_marital_separado_a...categoria_de_trabajo_sin_trabajocategoria_de_trabajo_trabajo_voluntariadoreligion_budismoreligion_cristianismoreligion_judaismoreligion_otrorol_familiar_registrado_con_hijosrol_familiar_registrado_otrorol_familiar_registrado_sin_familiarol_familiar_registrado_soltero_a
01739521744000000...0001000010
11750501301000...0001000000
21338404000000...0001000010
31153304001000...0000100000
41728504011000...0000100000
..................................................................
325561627503811000...0001000000
325571340404001000...0001000000
325581358404010000...0001000001
325591322402000000...0001001000
3256013524150244011000...0001000000
\n", - "

32561 rows × 30 columns

\n", - "
" - ], - "text/plain": [ - " anios_estudiados edad educacion_alcanzada \\\n", - "0 17 39 5 \n", - "1 17 50 5 \n", - "2 13 38 4 \n", - "3 11 53 3 \n", - "4 17 28 5 \n", - "... ... ... ... \n", - "32556 16 27 5 \n", - "32557 13 40 4 \n", - "32558 13 58 4 \n", - "32559 13 22 4 \n", - "32560 13 52 4 \n", - "\n", - " suma_declarada_bolsa_argentina horas_trabajo_registradas \\\n", - "0 2174 40 \n", - "1 0 13 \n", - "2 0 40 \n", - "3 0 40 \n", - "4 0 40 \n", - "... ... ... \n", - "32556 0 38 \n", - "32557 0 40 \n", - "32558 0 40 \n", - "32559 0 20 \n", - "32560 15024 40 \n", - "\n", - " genero_mujer estado_marital_matrimonio_civil \\\n", - "0 0 0 \n", - "1 0 1 \n", - "2 0 0 \n", - "3 0 1 \n", - "4 1 1 \n", - "... ... ... \n", - "32556 1 1 \n", - "32557 0 1 \n", - "32558 1 0 \n", - "32559 0 0 \n", - "32560 1 1 \n", - "\n", - " estado_marital_matrimonio_militar estado_marital_pareja_no_presente \\\n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 \n", - "... ... ... \n", - "32556 0 0 \n", - "32557 0 0 \n", - "32558 0 0 \n", - "32559 0 0 \n", - "32560 0 0 \n", - "\n", - " estado_marital_separado_a ... categoria_de_trabajo_sin_trabajo \\\n", - "0 0 ... 0 \n", - "1 0 ... 0 \n", - "2 0 ... 0 \n", - "3 0 ... 0 \n", - "4 0 ... 0 \n", - "... ... ... ... \n", - "32556 0 ... 0 \n", - "32557 0 ... 0 \n", - "32558 0 ... 0 \n", - "32559 0 ... 0 \n", - "32560 0 ... 0 \n", - "\n", - " categoria_de_trabajo_trabajo_voluntariado religion_budismo \\\n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 \n", - "... ... ... \n", - "32556 0 0 \n", - "32557 0 0 \n", - "32558 0 0 \n", - "32559 0 0 \n", - "32560 0 0 \n", - "\n", - " religion_cristianismo religion_judaismo religion_otro \\\n", - "0 1 0 0 \n", - "1 1 0 0 \n", - "2 1 0 0 \n", - "3 0 1 0 \n", - "4 0 1 0 \n", - "... ... ... ... \n", - "32556 1 0 0 \n", - "32557 1 0 0 \n", - "32558 1 0 0 \n", - "32559 1 0 0 \n", - "32560 1 0 0 \n", - "\n", - " rol_familiar_registrado_con_hijos rol_familiar_registrado_otro \\\n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 \n", - "... ... ... \n", - "32556 0 0 \n", - "32557 0 0 \n", - "32558 0 0 \n", - "32559 1 0 \n", - "32560 0 0 \n", - "\n", - " rol_familiar_registrado_sin_familia rol_familiar_registrado_soltero_a \n", - "0 1 0 \n", - "1 0 0 \n", - "2 1 0 \n", - "3 0 0 \n", - "4 0 0 \n", - "... ... ... \n", - "32556 0 0 \n", - "32557 0 0 \n", - "32558 0 1 \n", - "32559 0 0 \n", - "32560 0 0 \n", - "\n", - "[32561 rows x 30 columns]" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_reducido" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "06d0e5e3-0740-4431-b0d8-a28d0684c1e3", - "metadata": {}, - "outputs": [], - "source": [ - "X_train, X_test, y_train, y_test = train_test_split(X_reducido, y_df, random_state=10, test_size=0.20, stratify=y_df)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "a1ec5edb-5cdb-41fa-a7e5-3f00d1d44c97", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Fitting 5 folds for each of 60 candidates, totalling 300 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.\n", - "[Parallel(n_jobs=-1)]: Done 17 tasks | elapsed: 6.5s\n", - "[Parallel(n_jobs=-1)]: Done 90 tasks | elapsed: 29.2s\n", - "[Parallel(n_jobs=-1)]: Done 213 tasks | elapsed: 1.1min\n", - "[Parallel(n_jobs=-1)]: Done 300 out of 300 | elapsed: 1.7min finished\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Best score in train: 0.9058309860544312\n", - "Count estimators 150\n", - "AUC-ROC score sobre test: 0.9026554213697613\n", - "AUC-ROC score sobre train: 0.9074081987640730\n", - "Accuracy sobre test: 0.8464609243052357\n", - "Los mejores hiperpametros elegidos: {'criterion': 'entropy', 'max_depth': 7, 'min_samples_leaf': 50, 'n_estimators': 150}\n", - " precision recall f1-score support\n", - "\n", - " Bajo valor 0.95 0.86 0.90 5469\n", - " Alto valor 0.51 0.77 0.62 1044\n", - "\n", - " accuracy 0.85 6513\n", - " macro avg 0.73 0.82 0.76 6513\n", - "weighted avg 0.88 0.85 0.86 6513\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAG2CAYAAABmhB/TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABDrAAAQ6wFQlOh8AABjuElEQVR4nO3dd5gb1dnG4d/j3hvVppeAqYHQCb33TuiBhHwJSUgIndB76AklhNBCEno11bHpAWw6BgK2qaaa6t7b+/1xRrYsS7srr+yVdp/b11ySZs6cOZKlfeeUOaOIwMzMzGpfq6YugJmZmVWGg7qZmVkz4aBuZmbWTDiom5mZNRMO6mZmZs2Eg7qZmVkz4aBuZmbWTDiom5mZNRNtmroAZma1QNJmwHbAGODK8MxdVoUc1M3M6iFpaeABoDuwkwO6VSs3v1vNkPSMpJB0dlOXBUDSLVl5bmnqslQ7SStJuk3Sl5JmZJ/bM01YnsiWrRqQtg1wB7Ao8IuIeGoBF89svjmoNyN5QSa3rFxP+sUkTctL/0iFy7OVpLMlHVHJfK22SOoJPA8cDPQGxgFfA6OaslxlOB/YDDgrIv7V1IUxq4uDevN2eD3bDwHaLsDjbwWcBRxRofw+BYYD31UoP1s4DgKWJAXxVSKiV0QsGRH7NGGZhmfLpLoSSdoZOAm4JSLOXRgFM2sM96k3T58AywE/lXRmHf1/RxSkr2oR8dOmLoPNlzWzx6cj4v0mLUkmIvo2MF1/XPmxGuIva/P0P2AIsCywdbEEktYBfkgK6M8urIJZi9Qxe5zQpKUwawEc1JuvW7LHI0psz63/F1ByJK+kTpIOlnSrpDclfSdpqqTPJd0taYsi+ywvKUhN7wBbFvT1zzVASdKIbN0RknpIuljSMEmTJI3JS1d0oFyRvEstc+3XEJK2kTRA0mhJEyS9Lul3khr025G0nqR/Zu9xiqSxkl6U9AdJHcotT0Hee0i6L/u/mCrpG0mvSrpA0qol9tlI0h15+3wv6SlJh5d6T4UDArPvwyBJ4ySNz57vV2S/Z7LvwRHZqsOLfQcaMuCwrjSS2kr6jaTnJI2SNF3St5Lezfbbvcg+dQ6Uk9Qr+xzfyv7fJ0p6R9IlkhYvsc9WuXyz16spDQ4cmX3WH0i6SFKXUu/TrNEiwkszWUiBPIBHgMWAaaTaUZeCdG2Bb4BZwEr5+xXJ84hsWwAzSf2ik/PWzQJOLNhnGeCr7NiRleOrgmXTvPQjsnQnAh9mz6eQBlSNyUv3TLbt7ILjFeZduESx/RrweR6Tt28Ao4EZ2fN78j63W0rsf1b2+eT2H5e3fwCvAYvOx/9zF+ChgrKNAcbnvZ6nTMAfi7yf6XmvBwCd6/he3QJclz2fAYwtyO/ogv3uzz7/3PdlcrHvQH2fY11pgNbAE0Xe17S81/8rkl9u21ZFtq1T8L2ZxJzvcpDGdGxUZL+t8tJsB0zM+7+ZmbdtMNC2qf9eeGmei2vqzVREfAv0BzoD+xds3pUU9J+PiA/ryWo0cCmwKekPfi+gE7A8cCUg4CJJG+Qd+7OIWBK4LFs1KNLAqPxlUJFjnUk64dgZ6BQR3YD1G/BeC/OevQBXZ8mmk/74N4ikTYE/Zy/7ActFRE/SdconAfsAe9Wx/6+Bs0mf3zHAItn76ZS9v/eBHzGnRaUc/wZ2JwXWM4ElI6JHRHQlnVD9Nss/vzz7ABdmL+8AlsneTzfgd6TPZwfgmjqOuwdp8OWvgW4R0R1YEfhvtv0SSb1yiSNin+z/4K5s1V0N+A6U62BgW9IJwxGk701PoAPQJyvv0w3NTFJ30gnTEsDHpODcOSK6AD8GhgKLAA+VqrFn7iadXK8QET1In3PupGpj4MgGv0OzcjT1WYWXyi0U1LiBvbPXzxak65et/3mx/co85k3ZvjcX2XZ2tu2ZevIYwZwa/Zp1pHuGMmrc2fuflf9ey3hfudrfK0CbItvPokStmPQHfCwpUG5SIv+VmFOT+1EZ5dox77gHN3AfAcOyff4DqEia3+Tlu3qJ71UAhxTZtw8wNdv+0zq+l7eUKF+d2+tKA1ybrb+uzP/fojV14FTm1M5XLvFex2RpLi7YtlVevgNLfM4PZ9ufKqe8Xrw0dHFNvXl7FPge2FzSipCuTQd2If3RuqcCx3g4e9ysAnn1j4j/VSCf3EDAf5MC2uURcXMZ+/YCtsleXhIRM4oku4JUOyxmP1JgfyEiBhdLEKmF5MXs5Q4NLRtz+qcHR8TtDdznh0Cuj/3ciIgiaf4OfJk9P7BEPp8C8xwzIr4EXs5erlm4fQEbmz32rlB+P8keb42IDwo3Zu/1uuzlQXXkc1GJz7lf9riwPydrIRzUm7GImEb6IywgdzlY7tr0+yNifEPykdQ7GzT0cjZgbGbegKAHsmR9KlDkogGwXJKWJDWhdiY1gZ5UZhbrkj4zSK0D88g+u1dL7L9p9rihpK9KLXnpli2jbJtkj4+Wsc962eNE5pxIzCUiZjKnmXq9YmmAV0sEKoAvsseeZZSrEh7LHveQ9Jikn0haYn4yktSOOcG2rq6a3LZlspPkYl4psb6pPidrIRzUm79/Zo8/lSTm1PRuacjOkn5Maro9FdgA6EEKDt+QZgUbnSXtXIGyftvYDLIR5f1IfctvAwdFxKwys8n9oZ4eaWxCKV+UWJ+rNXYk9c2WWnKj3zuVUbZcwPqkjH1y72dkPZ/F59ljqb7iuk4Cp2SPC3Iyo3lExHOkvurppLEKdwFfSfpQ0rWSSp2gFNOLNPAOSv/fwpzPCUp8VnWcMOc+J88RYguEg3ozFxGvka5bX4E0YOuHpGbUeuevVprz+nZSU/LrwE5A14joFhFLRBoEVTgIrzFmViCPG4GNSCcdu0dEU1wbnQsMN0WEGrAc0QRlbDYi4iLSGIUTSC0zo0gD+H4NvCrpwjp2N2tWHNRbhlxt/ZLs8V91NKPm24TUNDwT2CMiBhQJkvPV1LkgSDqV1L0wFdg7IsqpzebL1c7bSlq0jnRLlVj/dfZYTrN6Q32VPS5Xxj6599O7nuvrl84evym7VI2TG7NQ13X73evKINIVF5dHxO6kG69sxJyuoT9K2rwB5RjFnBPLUv+3MOdzgoX/WZnVyUG9ZbiV9Mcq1zT6zzrS5lsme/w2Iko1R25Xx/65pl7VkaYiJO1NuvEGpDtpNeZyqTeYMyHPliWO14XSfc+5Y/9YUo9GlKOuvHcrY59c339nUrCbRxbsty5Iv7DkunCWLrYx6zZqcDN6JC+TWpFyJ3ZbNWC/aaQuG0iXyZWS+85/Wk/3jNlC56DeAkTEV8BxwOXAKcVG9ZaQG1m8RLFrciWtRbpOuJRx2WOPBh5vvhSMdL8wIm5tTH4RMQp4Mnt5kqTWRZL9gdJ94feQ+p87ARfXdSxJnbMBWg11S/a4saS6Rl/ne4t08xKA07MgWego5gx2vLOM8lRCLpBuIKnYKPZDmHOCOZe6Prts8N/07GVDZ++7O3s8VNIKRY7XG/hV9vKOBuZpttA4qLcQEXFVRJwQEXUGmQIvkAbFCbhL2a1cs2k59wEep+75vHOXp60uqWgNsbGy5vHcSPf7gdMrlHXuOvQNgbslLZMdr5Ok44FzmHPSM5fspCA34v6XStPprp1X5jaS1pV0HvARpQemFcv7cdL7BPinpNPzT7gkLS3pJEln5u0TpIGOkC5n/JekpbL0HSUdDfwl235LRAxtaHkq5GHSJZbtgDtywTT7rH8F3MCc2nyhfpJukLSDpG65ldkVG1cCudsP929gWa4FPiOdkD0uaevcSZCkTUgnez1Ize6Xl/EezRYKB3UrKSLGACdnL7cC3pc0jhTI7yON5D2mjiyeIc1s1gZ4UWme8RHZsnGFirkmc2pxWwEj67iM7ISGZpo13x+bvdwH+FTSKFIgv4wUWPvVsf91pIFbM0nNwG8qzWX/Pelze510ArI4dcy9X8LhpEu52gLnAV9nlxqOJwWki0kDxfLLcz9wWvbyUOCz7P2MI82615Z0knZ0mWVptIgYTZoiGFJ3x0eSxpI+6+tI9yd4qMTunYBfkKa4HSNpTPY5fAn8PktzYUQ838CyjAX2JI2LWIk0oHSCpAmkro/VSH3ve7rp3aqRg7rVKSL+Svoj9xyp1t6GNH3mJaTruUte+pNN2rItqcn4U6AraYDXcjS8ObQcvaj7ErKybqQREVeS+k8fJwWYdqTWh98DBzRg/8uB1UlB811SgO9GCgrPARcA69QxXqFUvhNIfer7kUZ7f01qqZhIuj76/Czvwv0uJF0bfxcwkvR5jCedfP0M2CkiJpZTlkqJiGtJJ0+51qFWpLnxD4+IX9Wx6++AU0hB/UPS97MdqS/9LmDriDit9O5Fy/IGsAZpWt13stWtSJd2Xkaaca/o9f5mTU0NGwRtZmZm1c41dTMzs2bCQd3MzKyZcFA3MzNrJhzUzczMmgkHdTMzs2bCQd3MzKyZcFA3MzNrJhzUzczMmok2TV2AatJx3aM9E49VldGvXNPURTArqkObBX/3RWj83+XJb1yzUMpZLVxTNzMzayZcUzczs+ol1z3L4aBuZmbVSy2q9bzRHNTNzKx6uaZeFn9aZmZmzYRr6mZmVr3c/F4WB3UzM6tebn4vi4O6mZlVL9fUy+JTIDMzs2bCQd3MzKqXWjVuaezhpS6SPpcUktbPW/9Mtq5w6Vuwf3dJN0kaJWm8pHsl9S5ynE0lDZY0WdInkk6Wym+mcPO7mZlVr6Zvfj+D0rHyBeCEgnUjCl7fBawBHAVMAS4A+ktaPyJmAEhaGRgAPA6cDqwNXATMBC4rp7AO6mZmVr2acKBcVuv+LXA8cF2RJGMi4sU69t8E2BHYMSIGZuuGA0OBfYC7s6QnAt8DB0bENOBJSYsBp0m6OiKmNrTMbn43M7PqJTVuaZyrScF8+HzuvzMwhlQDByAihgNDgF0K0vXLAnrOnUAPYJNyDuigbmZmzZakbpKWLli6NWC//YC1gHPrSLalpImSpkh6VtIWBdv7AsMjovBOc0OzbUjqDCwDDCtIMwyIXLqGclA3M7Pq1fiBcscBnxUsx9V5SKkTcAVwakSMK5HsWeAYYCfgcKAT8ETW5J7Tk1RTLzQa6JU975E9zpUuq7VPykvXIO5TNzOz6tX4JvQrgBsL1pUK1DmnA18D/yiVICLOyn8t6RHgHdLAul2K7rQQOKibmVn1auRAuaymXV8Qn3M4aTnSwLi9ge7ZVWVdss1dJHWJiAlFjjNR0qPAfnmrR5Oa1gv1BEZlz8dkj90LytGOVPsfRRkc1M3MzOZYAWgHPFpk29PAS8DGDcxrGLCdJBX0q/cF3obZJwOfMW/f+aqAmLevvU7uUzczs+q18CefGQJsXbAcm207CvhN0WKmAW+7Aa/kre5PqpVvm5duFWBd4LGCdHtKapu37gBSLX5QOYV3Td3MzKpXq4U7+UxEjAGeyV+XN7HbaxHxuqTNSdeWP0CabKYPqcl+SWD/vLwGSxoA3CzpeOZMPvMWcH/eIS4FDgHukHQtadT9icBpBZe51ctB3czMqld13qVtJKmJ/kJgEWAiqUZ9VES8XJD2ANJgvetJMXcg8LvcbHIAEfGBpB2ydI8B3wJnAZeXWzAHdTMzszpExDOk/u3c6w9Il7I1ZN+xwJHZUle6QTS8r74kB3UzM6teTT/3e01xUDczs+pVnc3vVctB3czMqpdr6mVxUDczs+rlmnpZ/GmZmZk1E66pm5lZ9XLze1kc1M3MrHq5+b0sDupmZla9XFMvi0+BzMzMmgnX1M3MrHq5+b0sDupmZla93PxeFgd1MzOrXq6pl8WflpmZWTPhmrqZmVUv19TL4qBuZmbVy33qZXFQNzOz6uWaelkc1M3MrHq5pl4WnwKZmZk1E66pm5lZ9XLze1kc1M3MrHq5+b0sDupmZla15KBeFrdrmJmZNROuqZuZWdVyTb08DupmZla9HNPL4uZ3MzOrWpIatVTg+F0kfS4pJK1fsO1ISe9JmiLpTUm7Fdm/u6SbJI2SNF7SvZJ6F0m3qaTBkiZL+kTSyZqPN+CgbmZmVtoZFGnVlnQgcANwF7AzMBh4QNLGBUnvAnYAjgIOAVYF+ktqk5fXysAAYCSwG/AX4Fzg+HIL6+Z3MzOrWk3Zpy6pL/BbUnC9rmDzOcCdEXFG9vppSWsDZwK7ZPtvAuwI7BgRA7N1w4GhwD7A3dm+JwLfAwdGxDTgSUmLAadJujoipja0zK6pm5lZ1Wri5verScF8eEGZVgRWYU5QzrkT2FZS++z1zsAY4PFcgogYDgwhC/x56fplAT0/rx7AJuUU2EHdzMyqVlMFdUn7AWuRmsEL9c0ehxWsHwq0A1bISzc8IqJIur7ZcToDyxTJaxgQecdqEDe/m5lZ9WpkZVtSN6BbwepxETGujn06AVcAp0bEuCInBz2zxzEF60dnj73y0hWmyaXLpelRLK+ImCZpUl66BnFN3czMmrPjgM8KluPq2ed04GvgHwu2aJXnmrqZmVWtCvSLXwHcWLCurlr6cqSBcXsD3bPjd8k2d5HUhTk18u7AV3m752rwo7LH0aSm9UI989KMycsrvxztgE556RrEQd3MzKpWY4N61sxeMogXsQKpX/zRItueBl4CDs5e92XuQXR9gWnAR9nrYcB2klTQr94XeDsr30RJnzFv3/mqpM6Hwr72Orn53czMqlYTDJQbAmxdsBybbTsK+E1EfAS8B+xfsO8BwJN5o9j7k2rl2+a9n1WAdYHH8vbrD+wpqW1BXmOAQeUU3jV1MzOzTESMAZ7JX5d3cvBaRLyePT8buE3Sh6Qa/AHARsAWeXkNljQAuFnS8cAU4ALgLeD+vENcSpqY5g5J15JG3Z8InFZwmVu9HNTNzKxqVesNXSLijmyU/CnZMhzYOyIGFyQ9gNSvfz0p5g4EfhcRM/Ly+kDSDlm6x4BvgbOAy8stl4O6mZlVryqI6RHxDEVKEhE3ATfVs+9Y4MhsqSvdIKBwitmyOaibmVnVqtaaerVyUDczs6rloF4ej343MzNrJlxTNzOzquWaenkc1M3MrHo5ppfFQd3MzKqWa+rlcZ+6mZlZM+GaupmZVS3X1MvjoG5mZlXLQb08DupmZla1HNTL4z51MzOzZsI1dTMzq16uqJfFQb0Fu/+qo9h58zUB+PdDL/LLs26da/uhu2/EDece1uD8Vt3lDD4dOXqe9a1bt+KX+2/OwbtuwA+WW4LWrVvx0effct/AN7jq1qeYMnX6PPss27sXwx87t8HH/sWZ/+a2h19qcHqrfl+NHMmTTz7OKy+/xPBhQ/nu229p1bo1SyyxBOtvsBEHHXIoP/jBKvPsN2vWLPo9cB/v/O9thr77Lt999y2jR42iVevW9O7dmx+ttwEHHXwIP1hl1TqP//xzz3L/vffy9ttvMnrUKFq3aZOOvf6GHHjwIayyat8F9dYtj5vfy+Og3kL9ZKf1Zgf0UqZMnc5X342rM80i3TvTtm1rRn47li++GTvP9k4d2vHwtb9l03VXmp3nzFmzWHuVpVl7laU5cJf12eEXV/Ld6Alz7Tdr1qx6j921c3s6d2wPwOvvfFJnWqstX40cyU7bb01EzF7XqVMnZsyYwScjRvDJiBE8+MB9HH/SKRx8yNwnntOnT+ecM0+f/VoSXbt2Y+LECXz80Ud8/NFH9Lv/Xo4/8WQOOezweY4dEZx71hncf989cx17+vTps4/d74H7OOXU0/nJgQcvgHdv+RzUy+Og3gL17NaJS07YlzHjJzHy27GstmLvounuHfg69w58vWQ+XTq1Z8QTF9K2bWvuePRlZs6cNU+aK089gE3XXYmx4yfz2/Nu5/4nhhARbLNRX2487zBWW7E3//rTz9jlqKvn2u/zr8ewwvan1vk+Hr/pD2z2o5V59X8jGPrRVw1451YrZs6aSUSwyaabsceee7HRxpuwyKKLMnPmTIYNfZfLLrmI1197lYsvPJ/lllueH2+2+ex9W7VqxSGH/pQNNtqIvn1XZ7HFF6dNmzaz973mqr8w6IXnufTiP7H6Gmuy7o/Wm+vY/R64b3ZAP+DAgznyl0exxBJLMGvWLIYNfZdLLrqQN15/jYsuPJ/11t+QlVZeeaF+Ni2Ng3p5PFCuBbr4+H1YYpFunHn1Q3w7akL9O5Sw7w4/ml1T/tdDL86zfY2V+3DwrhsA8LsL7uS+x9+YXfN66qVhHHTCjQBsvdGqbL/pamUde8VlFmWzH61c8thW27p1686d9z7AdTfcxC677c4iiy4KQOvWrVljzbW4/sZ/sErWfH7LzTfOtW/btm056Y+nsfU229G7Tx/atGkz175XXvM3llp6aSKCB/vdP8+xH3noQQDW32BDTj3jLJZYYgkgnSysvsaaXH3t3+nUqRMzZ87kqScfX2Cfgdn8cFBvYbbeaFUO22NjXn7rY26894VG5fXTPTYG4KW3Pmb4x1/Ps/3AXdanVatWfPTZt9wz4LV5tr/01sc8+8p7ABy0ywZlHfuw3dOxJ0+Zxt39583balvXrl1ZbbXVS25v264du+6+BwDvvvO/svJu164dq/ZNJ5HffD3v9/a7774FYPU1indPde3aleWWXwGASZMmlXVsmw9q5NLCOKi3IB3at+Wa0w5k+vSZHH3BnXP1V5ZrpWUXm91P/q8Hi9eUt9ogDWIaOGhoyXwGvvAuAFtv1PBBR5I4ZLcNAXjo6bcYO2Fyg/e15qNd+9RKVKzbpy5Tpkxh2Lvpe7f00svMs32ppZYGSp8sjB8/nk9GfAzA6quvUdaxrXySGrW0NDUT1CV1kPSQpC2auiy16sxf78qKyyzGNbc/zdvvfdGovA7fcxMAJk2eVrQWDrDqCksC8O6HX5bM551s25KLdqNX984NOva2G/dlmd69APjng4MbXGZrXl59+WUAfrDKvCPgC0UEo0eP4qUXB/Pbo/6PL7/8gjZt2nDAQYfMk3a/nxyY8n/lZS487xy+zmrzEcHQd9/hd7/5FZMmTWL9DTZk2+13qOA7smIc1MtTMwPlImKKpC2BPzd1WWrROn2X5neHbM2nI0dx/nWPNSqvVq3m1JT7PTmE8ROnzJOma+cOdO3cAYAvi4yKz8nftuSi3Rg1dmK9x//pnqnp/dORo3jm5ffKKrs1D2+99SZPP/UEAHvvs1/JdDfdcD1X/eXyedYvtvjinHfBRUUHuW2z7XYce/yJXH3ln7nrztu5687bZ49+nz59Oostthj/98uj+OWvf0urVjVTL7IWota+kQMBnxqXqVUr8dczDqZNm9Yce9HdTJoyrVH5bbfJavRZvAdQuqbcpVP72c/rOl7+ttxJQF16dO3I7lutDaRr6xvThWC1aeyYMfzxpOOZNWsWa639Q/bce5+SaTt16sQiiyxKz549Z9faFltsMU48+Y9suNHGJfc74ue/4OLL/ky3bt2B1Hc+fXqaT2Hq1GlMmDiRqVOnVvBdWSmuqZenZmrqmX8Af5fUFXgM+BqY6696RJS+BquFOubQbfjR6svy4JNDeOy/5Q0qKiY3QO7jz7/jv6++3+j8yvGTndanQ/u2zJo1i38/5MlmWpopU6Zw7DFH8/lnn9GzZ08uvuwKWrduXTL9QYccykGHHArA1KlTeevNIVz1lys46fhj2WTTzbj8L1fSuXOXufaZNGkSp/3xJJ564nE23vTHHPXr37LyD1Zh6pQpvPnmEP5yxWXccdu/eeXll7jl37fTtWvXBfqeW7qWGJgbo9Zq6o8ASwG/yZ6/DLySLa9mjw0iqZukpfOXmNm4Gmw1Wn6pRTjtqF0YN2Eyx19yb6Pz69mtE7tuuRYA/3649KVkEybNqcV06tCuZLr8bcWa8Qvlmt7/++r7fPLl9/Wmt+Zj2rRpHHfM0bz26it07dqVv11/0+xBbQ3Rvn17NthwI26+5d+sseZaDB70PNdefdU86S6/9CKeeuJx1t9gQ667/ibW/dF6dO3alUUXW4xtt9ueW/59Oz179uSD99/j5huvr+RbtGI8+r0stRbUty5Ytslbcq8b6jjgs/xlxjdDKlnWqnDJ8fvQuWN7LvvH44wZP4nOHdvNtbRulb71bVq3mr2urjPjA3ZONeWZM2fVOS3r+IlTZgfpPot3L5kuf1t9M8itvlJv1ltjOcDXprc006dN4/g//J4Xnn+OTp068dfrbmC1+Rx53rZdOw7IZoJ74P65T3QnTpzAA/eldYcd/rOiv4VFFlmE3fbYC8DXqVvVqanm94h4toLZXQHMNWtFm8XX+ayC+VeFZfssAsC5v9uDc3+3R8l0B+26IQftmga/bXTAn3irxOj4n2aj3p955b2i87znG/7xV6y/5vKsvlKfkmnWyLZ99d24egfJHb5XOvbY8ZPp9+SQOtNa8zF9+nROOO4Y/vvs03To2JFr/nY9P1xn3UbluXg2oczEiRP5/vvvWWSR9Dv5ZMQIZs6cCcAyyyxbcv9ll0snl19+0birSKx+C7v5XdIuwMnA6kA34AugH3BORIzN0twCzDvHMOwcEf/Jy6sdcAFwGNAVGAQcHRHDC47ZF7ga2BQYD/wLOD0iym4+rqmgniNpDWAzoBcwCng+It4pJ4+IGAfMVTXsuO7RFStjc7TWKkux7mrput5/l7g2Pd/TL7/H+msuz/ablJ4tLjeT3NMvDaszrzZtWnFgNkHNvQNfZ/KUeW8CY83P9OnTOfH4P/DM00/RoUMHrrrmb6y3fnkTFRXz+edzzt87deo0+7nyRrOPHPlFySlgR32fun46d+lSdLtVThP0qfcCXgKuAr4H1gTOzh7zB2p/BBReE1k4KcdVwIGkluEvgNOAJyWtkXeC0BN4Cngf2IfUxXwF0AkoOyjVVFCX1B74N7AvqbdkKtAeCEn3AofNz5lNc7bxgRfVuX3ADcewxfo/KHqXtkK5AXKjx02i31ND6j32nY+9wvFHbMdKyy7Gvtuvy32PvzHX9g3WXI6tNkxTfd7+aN3DIXbebE0W75UGJP3L16a3CDNmzOCUE4/n6SefoF27dvz5qr+y0cabNGi/3NSwxUyePJk7b78NgDXWWJOOHTvO3rbCCivSvn17pk6dyt133sFmm285z/6TJk3i4Yf6AbD22j8s811ZuRZ2TI+Iwj+Ez0iaClwvqU9E5CbemBwRJWs3kpYGfgH8JiJuzta9AnwK/Aq4JEt6FKlFYO+IGJWlawNcK+nCvOM1SK31qV8I7Er6EHpEREegR/Z612y7LQBt2rTigF3WB+CeAa8xddqMevd598ORs4P1NWccxD7brTv7rHurDVfhzsv/D4CnXxrOE4NLzzoHcFg2QG7oRyN5+e0R8/s2rEbMnDmTU085kSceH5AF9GvY9MebNWjfq/9yBeeceTovv/QikybO6dKZMmUKzz/3LD/76SF88H6a3+BXv5m7ItShQwf22ntfAJ595mlOPeVEPvv0UyKC6dOnM+SN1/nFEYfx+Weppl/sLm9WWVVySVtuVG7pUb/z2oEUY2ff7i8L2gOBXfLS7Qw8kQvombuzfcu+hLumauqkZow/RsQNuRVZM/oNkjoBJwEnNFXhmrNdt1iLxXpmNeV+Da8pH3PhXay49KJsuu5K3HbpkUyeMo1ZEbNvBDP0o5H89I//qDOPxXt1Zacfp0FRDWn2t9o35I3XGdA/TZIUEZx5Wt137Lv9rntZsne62+D06dO5/757uP++e5BEly5daNWqNePHj2PWrDSlbIcOHTjplNPYcqut58nr2BNO4uOPP+Lll17k0Ycf4tGHH6JDx47MmD6dGTPSyWyrVq34w3EnNKjlwGqTpNZAW1Lf+pnAQxExIi/JypLGAh2Bt4HzIqJf3va+wDcRUTj4aChwZEG6m/MTRMQYSSOzbWWptaDeCyjV+Tos224LwGFZ0/s7H3zJa+9+2uD9Jk2Zxg7/dyW/+snmHLTLBqyy/BK0atWKt9/7gvsef50r//0UU6bW3T9+0K4b0LZta2bMmMntj77cqPdhtSEXfCEF6e+//67O9DNnzZz9/KBDDmPJ3n145eWXGDHiY0Z9/x0TJ06gW7duLL/8Cmy48Sbsve9+9OmzVNG8OnbsyN9v/Af9H3uE/o8+wtB332XMmDG0bt2aPn2WYt311uPAgw4pecMXq6zGVrYldSM1b+cbl1UI6/IJqX8b4D/AwXnb3iBdQv0OqbX418ADkvaPiNwlFT2BMUXyHc3csaqh6RpEtTQjl6Q3gP9FxGFFtv0bWDMi5ntYbMd1j66dD8NahNGvXNPURTArqkObhXMV+KonD2jU3+X3LtnpHOCsgtXnRMTZde0naW2gM7AGcDppYNz2ETGzSNpWpJHt3SJi9WzdDcDmEdG3IO0JwIUR0S57PR04IyIuKkj3P2BQRPyyoe8Vaq+mfh5wj6TlgftIM8otDuwHbALs33RFMzOzSqtAt/g8ly9TcOVTMRHxVvZ0cDbAbQiwNzDPLF4RMUvSfcAlkjpGxGRSTbvYJB09SVdt5TQ0XYPUVFCPiPsl7U0667qcNAI+yD7siHi4CYtnZmZVptjly/PhLWA6UPwax+KGAUtI6lnQr96XubuRh1HQdy6pO9Cb0t3NJdXa6Hci4qGIWI/UR7IMqbljPQd0M7Pmp1UrNWqpkI1Ig+Y+KrYxa37fH3gnq6VDGuU+i3QJdi5dT9KI9vxbZfYHtpPUI2/d/tm+A8staE3V1PNFxESg/vt0mplZzVrY16lLup90L5G3gMnAD4ETs9f9JC0H/BO4A/iA1Ez+a2B98gJ4RHwu6UbgUkkzSZPPnAqMBf6ed8jrgN9leV9IGpx3KXBdudeoQw0EdUnz3nGhtIiIYxZYYczMbKFqghnlXgYOAE4htWaPAG4ALouIaZLGkwLz6aQxXdNIJwE7R8SAgryOASYAF5GmiX0B2C43mxxARIyWtC1pmth+pGlibyTNPle2qg/qwO5lpA3Sh2hmZla2bBR6yak4s0li9mxgXlNJc6fUOX9KRAwFtiujmCVVfVCPiBWaugxmZtY0fDv18lR9UDczs5arCZrfa1pNBnVJKwOrAB0Kt0XE/Qu/RGZmtiA4qJenpoJ6Nt3fA8BWuVXZY/6MQ60XZpnMzGzBcUwvT61dp34xsCSwOSmg700K8DcBHwMbN1nJzMzMmlitBfWdgAtIN7AH+DIi/pvNjfsgcHyTlczMzCquSm69WjNqqvmddE3gZxExU9JEYJG8bY+R5oM3M7NmogXG5UaptZr6Z8Ci2fP3gT3ytm0CTFnoJTIzswXGNfXy1FpN/XHSBfoPAH8G/ilpI9KMPhuSbvJiZmbWItVaUD8Z6AQQEf+WNIF029WOwNHMPZ+umZnVuBZY2W6UmgrqETEJmJT3+gFSrd3MzJqhltiE3hg11acu6QVJv5G0WFOXxczMFjypcUtLU1NBHRgJXAZ8IWmApJ9K6trUhTIzswXDA+XKU1NBPSL2I13W9gtgBun2dF9Luk/SvpLaN2kBzczMmlBNBXWAiJgQEf+KiF2B3sCxQC/gTuDrJi2cmZlVlJvfy1NTA+UKRcT3kl4AlgNWBZZo4iKZmVkFtcQm9MaoyaAuaSXgwGxZnVRDvxu4oynLZWZmleWYXp6aCuqSjiMF8vWAsaRpYY8BnomIWU1ZNjMzs6ZWU0EdOBd4CDgP+E9ETG/i8piZ2QLk5vfy1FpQXzybgMbMzFoAx/Ty1FRQd0A3M2tZXFMvT81d0mZmZmbF1VRN3czMWhbX1MvjoG5mZlXLMb08bn43M7OqtbDnfpe0i6RnJX0raaqkjyRdIal7QbrdJb0paYqk9yT9rEhe7SRdKukrSRMlPS5p1SLp+mbbJmZpL5HUruzCU4M1daX/pV2AzUjTw44CngP6R0Q0ZdnMzKyymqCm3gt4CbgK+B5YEzg7e9whlUmbkW77fSPwB2Ab4CZJ4yPi3ry8riLNrXIc8AVwGvCkpDUiYmyWV0/gKeB9YB9gKeAKoBNwdLmFr6mgnr35x4CNgDGkmeSWAE4GXpS0S0SMabICmplZTYuIWwtWPSNpKnC9pD4R8SVwBvBSRByVpXk6m+n0XOBeAElLk24+9puIuDlb9wrwKfAr4JJs36OAbsDeETEqS9cGuFbShdnxGqzWmt8vA1YCdoyIXhGxWkT0AnbM1l/WpKUzM7OKqpJbr36fPbbL7ga6NXBPQZo7gdUkLZ+93oEUY2eny4L2QFJrc87OwBO5gJ65O9t3h3ILWmtBfQ/g5Ih4PH9l9vqPwJ5NUiozM1sgmuoubZJaS+og6UfAmcBDETGCVIFsCwwr2GVo9tg37/GbiBhdJF3fvNd9C/PKWpxHFqRrkJpqfgc6U/r2ql9l283MrJlo1cjatqRupObtfOMiYlw9u35C6t8G+A9wcPa8Z/Y4piB9Lnj3yktXmCaXrlfe64ama5Baq6m/ARwtqXX+SkmtgN8BrzdJqczMrFodB3xWsBzXgP12ATYF/g9YDXi4MPZUo1qrqf+R1B/xgaQHSbX2xYG9gCWZj/4HMzOrXhXoFr+CNEo9X321dCLirezp4GyA2xBgb+DdbH33gl1yNfhc3/joImly6fL7zxuarkFqKqhHxH8l/Zh0WcDBzHnTzwMXRIRr6mZmzUhjB7tlzez1BvF6vAVMB1YGHs6e9wUG5KXJ9X8Py3tcQlLPgn71wj70YRT0nWfXxPdm3n77etVa8zsR8VpE7BMRi0dE24hYIiL2dUA3M2t+WqlxS4VsRBoc91FETAWeBvYrSHMAMDQbTAepVXkWsG8uQXZZ9g6kS7Nz+gPbSeqRt27/bN+B5Ra0pmrqZmZmC5Kk+4FXSbXzycAPgROz1/2yZOeRrl+/lnT52dak1uMDcvlExOeSbgQulTSTNPnMqcBY4O95h7yONCasn6QLSYPzLgWuK/cadaiBoC7pIeD4iHg/e16XIDXHvwzcnJ1RmZlZjWqCG7q8TArOp5Bas0cANwCXRcQ0gIh4XtI+wPnAkaQJZX4REYXXrh8DTAAuAroCLwDb5WaTy/IaLWlb4GrSScN40hiA0+an8FUf1EkfRG7EYTdS4K7LUsAhpOaSIxZcsczMbEFb2DE9Ii4iBeH60j0E1FnRzCqWJ2RLXemGAtuVUcySqj6oR8TWec+3asg+kg4mnfWYmVkNE75NWzmqPqjPpydJc/CamVkNq+Bgtxah5oJ6NtHMNsAqQIfC7RFxRUR8DVy5sMtmZmbWlGoqqEtaEniGFNADZrfL5PezX7GQi2VmZgtIEwyUq2m1dp36FaS75SxDCugbAcuTboP3PinYm5lZM9FUN3SpVTVVUwe2AH5PunsNgCLiU+BCpdO5a0i3sTMzs2agsTd0aWlqrabeHfg2ImaRpv1bPG/bYGCzJimVmZlZFai1oP4xaT5cgHeAw/K27c18TH5vZmbVy83v5am15vdHSfPm3k2ayedBSd+QJtdfEji5CctmZmYV5oFy5ampoB4Rf8x73l/SpsA+pEvbHo+I/k1WODMzqzjH9PLUVFAvFBGvkibeNzMza/FqOqhLWh1YA/gO+G9EzGziIpmZWQV59Ht5yg7qks6s1MEjot6pXLNL1U4kNbO3Be4BLibdxeYI0vXqAbwjaZuI+K5S5TMzs6blkF6e+ampn039d0prqIbMz34C8CfgQdIt6U4H1iZdj34CMBRYi3SbujNJ17GbmVkz4IFy5ZmfoP5fKhfUG+JnwHkRcTaApPuAB4BjIuKaLM1/JM0AfouDuplZs+EbupSn7KDe0NufVtAKwNN5r58itci8VpDuVdL0sWZmZi1SLQyUaw9Mznudez61IN00auP9mJlZA7n5vTy1EgSLNfcvzC4AMzNrAo7p5amVoP60pFkF654rWFdrU96amVk9XFMvT0WDuqQOwH6kG6v0ATpT+oqEiIhtG5DtORUqnpmZWbNWsaAuaUvgDmAJ5lw7DnOCen5zuWhg83lEOKibmbVQHv1enooEdUkrAA8DXYB3gceBY4AJwF9IgX4bYCXS7G9/B2ZU4thmZtZ8ufm9PJWqqR9PCuj/AfaMiOmSjgEmRMTsGegk/RK4Blg3Inar0LHNzKyZckgvT6UGl21Hak4/PSKml0oUEdeTZn7bWdKvK3RsMzMzo3JBfWlgJvBG3rogXWNe6Lps208rdGwzM2umWkmNWsolaX9JD0r6XNJESUMk/Vx5/QCSnpEURZa+BXl1l3STpFGSxku6V1LvIsfcVNJgSZMlfSLp5PzjlaNSze+zgDERkT/4bSLQTVLr/LunRcR4SeOAVSt0bDMza6aaoEv9OGAEqVv5W2B74AbSjKX5A7dfIN1/JN+Igtd3ke4kehQwBbgA6C9p/YiYASBpZWAAaSxa7t4mF5EqypeVW/hKBfUvgBUkKS+wfwb0zQo4uwYvqTvQg3lnhDMzM5tLEwyU273gbp9PSVoEOE7SeRGRmx9lTES8WCoTSZsAOwI7RsTAbN1w0k3I9gHuzpKeCHwPHBgR04AnJS0GnCbp6ogoK1ZWqvn9PdJtUfNr3y9kj4VnMudlj+9X6NhmZtZMSY1bylXi9t1vAN1Ic6801M7AGFINPJf3cGAIsEtBun5ZQM+5k1T53aSM4wGVC+pPkgYp7py37m+kvvMDJb0t6TZJb5LupBbAPyp0bDMzswVpM+CLiBift27LrM99iqRnJW1RsE9fYHhBtzSkmnpfAEmdSc36wwrSDCPFyb6UqVLN73cD6wIdcisi4g1JxwGXk/oU1ihI/5cKHdvMzJqp+Rnslk9SN1ItO9+4iBjXwP03Aw4k9bHnPAv8i9Ti3IfUIv2EpC0jYnCWpieppl5oNNAre94je5wrXURMkzQpL12DVSSoR8RXpPueF66/StJA0tSxywBjgQER8WQljmtmZs1bBbrUjwPOKlh3DnB2/cfW0qTBbk8DV+XWR8RZBekeAd4BzmDupvWFboHf0CUihgHnL+jjmJlZ81OBgXJXADcWrKu3li6pB9CfNIht37wBcvOIiImSHiVVYHNGkyqzhXoCo7LnY7LH7gXHbgd0ykvXYLVyl7aFYugTZV89YLZAjRwzpamLYFbUCot2qD9RFcia2RvU1J4jqSPwCCnYbhIRY+fj0MOA7QquCoPUT/52VraJknJXiuVblTROrbCvvV4Vv12ppHUknSTpGkk3FWxrK6lPsYvvzczMCrVq5FIuSW1I475WA3aKiC8asE9nYDfglbzV/Um18m3z0q1CGn/2WEG6PSW1zVt3AKkWP6jc8lfyLm29gFuAXXOrSKP3jsxL1hZ4HVhU0roR8Xaljm9mZs1PE1ynfi0pQB9PmkBt47xtbwAbkq4tf4A02UyfLO2SwP65hBExWNIA4GZJxzNn8pm3gPvz8rwUOAS4Q9K1wFpZ/qcVXObWIJW6S1t7YCDpDGQy8CKwKQXTxEbEJEk3kOZ/35+sCcLMzKyYJrj16g7Z4+VFtq0AjATaARcCi5BmTx0EHBURLxekP4DUp389Kd4OBH6Xm00OICI+kLRDlu4x0ix2Z5U4fr0qVVM/CvgRaRKanSPiY0kjgcWLpL2PFNQLr+kzMzOby8IO6hGxfAOS7dTAvMaSWquPrCfdIGDjutI0VKX61A8kNbX/PiI+rift26Q5bcu+qN7MzMxKq1RNfTVSoH6qvoQRMVPSWNIAAjMzs5KaoE+9plUqqLcHJuX3E9SjI2nQgJmZWUlN0Kde0yrV/P4V0DW7WL9OktYiBfVPK3RsMzNrphb2DV1qXaWC+n+zx0MakPZ0Uv+7p4o1MzOroEoF9Suzx7MlbVgsgaRukv5GupRtJnBNhY5tZmbNVCupUUtLU6kburwu6VzStXXPSXqB7K44kq4HlgV+TJrLFuDkiPigEsc2M7Pmq+LTnjZzFZtRLiLOkfQN8Cdgq7xNR5JmlwMYD5wUEX+v1HHNzKz5aoGV7Uap6A1dIuJvkm4l3almU6A30Br4mjTjzj0RMRpSc3xD72drZmZm9av4XdoiYjzwj2yZR3bD+mOB35Om2DMzMyuqJfaLN8ZCu/VqXjA/hoJ7x5qZmRXjmF6eRgV1SdsDRwBrkMYzfAT8MyIeyEvTgRTMTyQFcwGTmPem9WZmZnPx5DPlme+gLulC4OTcy+xxDWB3SX+LiKOziWbuAX6QpRlDupTtyoj4fr5LbWZmLYKb38szX0Fd0hbAKdnL74CXSUF7Q1I/+a8lPQdcDSwKfANcBlwXERMaW2gzMzOb1/zW1H+ZPf4X2CsixgBI6gX0AzYD/gW0Ba4CTo2ISY0qqZmZtTiuqJdnfoP6xqSpXo/NBXSAiBgl6VjglSzvayLiD40tpJmZtUzuUy/P/Ab1JYEZwJAi297ItrUmNb+bmZnNF+GoXo75nYGvE/B9REThhoiYBeQGwX00vwUzMzOz8izQ69QjYuaCzN/MzJo3N7+XZ6FNPmNmZlYuB/XyNCao95L0VKltAHVsB4iI2LYRxzczs2ZOHv5elsYE9XbMfTe2YuraPk9/vJmZmc2/+Q3q/6xoKczMzIpw83t55iuoR8TPKl0QMzOzQm59L8/8XtJmZma2wLWSGrWUS9L+kh6U9LmkiZKGSPq5Cjr3JR0p6T1JUyS9KWm3Inl1l3STpFGSxku6V1LvIuk2lTRY0mRJn0g6ufB4DeWgbmZmVauVGrfMh+NIdxI9Htgd6A/cAJyZSyDpwGzdXcDOwGDgAUkbF+R1F7ADcBRwCLAq0F9Sm7y8VgYGACOB3YC/AOdmxy+biswf02KN+H6KPwyrKv55WrVaYdEOC6Vh/KrnP27Ur+D3m61QVjklLRoR3xWsux44AOgZEbMkDQdei4iD89IMAsZExC7Z602AQcCOETEwW7cqMBQ4MCLuztb9HdgRWCUipmXrLgR+DSwZEVPLKb9r6mZmVrWkxi3lKgzomTeAbkBnSSsCqwB3F6S5E9hWUvvs9c6k240/npf3cNL06rvk7bcz0C8X0PPy6gFsUm75HdTNzKxqtUKNWipkM+CLiBgP9M3WDStIM5R0qfcK2eu+wPAi06kPzeUhqTOwTJG8hpEu++5LmTyjnJmZVa3Gjn6X1I1Uy843LiLGNXD/zYADmdPH3TN7HFOQdHT22CsvXWGaXLpcmh7F8oqIaZIm5aVrMNfUzcysOTsO+KxgOa4hO0pamjTY7WngqgVVwEpyTd3MzKpWBSafuQK4sWBdvbV0ST1II9+/B/bN7kAKc2rk3YGv8nbJ1eBH5aVbpkjWPfPSjMnLK//Y7Uh3Qx1FmRzUzcysas3Pteb5smb2BjW150jqCDxCCrabRMTYvM25/u++wPC89X2Bacy55fgwYDtJKuhX7wu8nZVtoqTPmLfvfFVAzNvXXi83v5uZWdVa2KPfs2vI7wZWA3aKiC/yt0fER8B7wP4Fux4APJk3ir0/qVY++8ZlklYB1gUey9uvP7CnpLYFeY0hXRJXFtfUzczM5riWNAnM8UC3ggll3siuGz8buE3Sh6T+9gOAjYAtcgkjYrCkAcDNko4HpgAXAG8B9+fleSlpYpo7JF0LrAWcCJxWcJlbgziom5lZ1Wps8/t82CF7vLzIthWAERFxh6ROwCnZMhzYOyIGF6Q/gNSnfz0p3g4EfhcRM3IJIuIDSTtk6R4DvgXOKnH8enlGuTyeUc6qjX+eVq0W1oxyN7/yaaN+BT/fYNkWdUsY19TNzKxqeeBXeRzUzcysas3nzcpaLJ8EmZmZNROuqZuZWdVyPb08DupmZla1mmD0e01zUDczs6rlkF4e96mbmZk1E66pm5lZ1XLre3kc1M3MrGr5krbyOKibmVnVch9xeRzUzcysarmmXh6fBJmZmTUTrqmbmVnVcj29PA7qZmZWtdz8Xh4HdTMzq1ruIy6PPy8zM7NmwjV1MzOrWm5+L4+DupmZVS2H9PI4qJuZWdVyRb087lM3MzNrJlxTNzOzqtXKDfBlcVA3M7Oq5eb38jiom5lZ1ZJr6mVxUDczs6rlmnp5PFDOzMysmXBQNzOzqtUKNWqZH5JWlnSdpCGSZkj6X5E0z0iKIkvfgnTdJd0kaZSk8ZLuldS7SH6bShosabKkTySdrPmYecfN72ZmVrWaqPl9DWBX4CVS5bdUBfgF4ISCdSMKXt+V5XcUMAW4AOgvaf2ImAHpJAIYADwOnA6sDVwEzAQuK6fgDupmZla1miioPxwRD6bj6xZg/RLpxkTEi6UykbQJsCOwY0QMzNYNB4YC+wB3Z0lPBL4HDoyIacCTkhYDTpN0dURMbWjB3fxuZmaWJyJmVSirnYExpBp4Lu/hwBBgl4J0/bKAnnMn0APYpJwDOqibmVnVUmP/Sd0kLV2wdKtQ8baUNFHSFEnPStqiYHtfYHhERMH6odk2JHUGlgGGFaQZBkQuXUO5+b2F23HTHzY47WFH/ppDjzyq5Pa333iN/g/dx//efINRo76jQ4eOLLr4Eqy59rrsvMc+rLTK3N/NsWNG88KzTzHk1Zf44L2hfPfNN0QEvRZdlDXWWodd9/kJa6y1zvy+NWsGIoJnn/wPT/R/mA/fG8b4cWNp27YdS/Tuw7rrb8ye+x/Ekn2WLrn/Sy88y8P338X7w95l0qSJLLLoYqy/8WYccOjPWWyJJes9/qSJE3n4/jsZ/N+n+eLzT5kyZTI9ey7CciusxDobbMS+B/60km/XimjV+Ob344CzCtadA5zdyHyfBf4FvA/0IfWtPyFpy4gYnKXpSaqpFxoN9Mqe98ge50oXEdMkTcpL1yAO6i1cz16L1Ll96pQpTJo0EYAf9F29aJqZM2dy9aUX0P+h+2av69K1K5MnTeTjD97j4w/eo9cii84T1A/afTtmzpwx+3X7Dh2QxFdffsFXX37BUwMfY7+DD+cXvz12ft+e1bBpU6dy3mnH88rg52av69SpM1OnTmXERx8w4qMPeOzBeznlnIvZZPOt5tn/71deygN33wpAq1at6NCxE199+QWP3H8XTw98jHMvvZo11l635PGH/u8tzj/tOL7/7lsA2rZtS7v2Hfjm65F88/VIXntlsIP6QlCByWeuAG4sWDeusZlGxFwnCpIeAd4BzmDupvWFykG9hbvzkafq3H7Juafx5H8eodeii7H+xj8umuYvF53DwEcfpEvXrhz+y6PZavud6datO7NmzeLbr7/i5cHP02uReU8eZs6cwWpr/pAddt2T9TfalMWX7E1E8NknI7j5b1cy+Lmnuee2W+iz1DLsstd+FXm/Vjvu/NeNswP6oUf+mj32PZBu3Xswc+ZM3nnrDf56+YV88vGHXHruqfzjnkfp3qPn7H0HPtpvdkA/5OdHsd9Bh9OxUyc++2QEf/7TWbz79hDO/eOx3HjHg3Tt1n2eY4/46H1OO+7XTJo4gQ023oxDjzyKVVZbE0lMnjSJ94e/y6Bn6/7tWHWIiHFUIIg34DgTJT0K5P+xGk1qWi/UExiVPR+TPc71RZTUDuiUl65B3KduJU2aOJHnn3kCgG133JXWrVvPk2bQf59m4KMP0rZdOy6+6ob0hzf7I9mqVSuW6N2H3ff5CT/ectt59r3kmhv5y/X/Ypc992XxJdNlm5JYdvkVOOuiP88+ibj71n8sqLdoVezJAY8AsN3Oe3Doz4+iW/ceALRu3Zq1112fsy66EoBJkyby2kuDZu83Y8Z0/nn9NQDssud+HHbkr+nYqRMAyyy3POdccjU9F1mUsWNGc89t8363Zs2axWXnn8GkiRPYctsdOfeya1h19bXIXTLcsVMn1l53fY76w0kL7L3bHFLjliY2DFi1yPXmfbNtRMRE4DPm7TtflXQ7+cK+9jo5qFtJzz45gKlTpgCww657FU1z+y3XA7DX/gez8qqrlZX/D3+0Qcltkthxt3TMkV9+zvhxC/xE26rMqO+/A2CVEt0+fZZeZnYte/LkSbPXD3n15dlN5gf89Mh59uvarRu77rU/AE8NfIzCMUyvDH6OD4YPpV279vz2+FOZj/k/rIIaO1BuoZUzDXjbDXglb3V/Uq1827x0qwDrAo8VpNtTUtu8dQeQavGDKIODupU08NEHAVhtzR+y7PIrzLP90xEf8/6wdwHYevudK378du3azX4+a9bMiudv1W3J3ksB8F72HSv05eefMX7cWAB+sOqcwD/ktZcBWHb5FVliyT5F990gawX67puv+fzTEXNte2rAowCst9Gms1sHrOm0UuOW+SGpk6T9JO0HLAd0y72WtJikzSU9JOlnkraWdAjwHLAkcG4un2zA3ADgZkn7S9oduBd4C7g/75CXAosDd0jaRtIxpGvXLyi4zK1eNdOnLqkNaZadzyLi26YuT3P32ScjePftIQCza8yFhv4vbW/bti3Lr7gyTw/sz0P33cnHH74HwFJLL8vm2+zAXvsfRIeOncouw5uvvwpAr0UX8x/XFmiXPffj71ddyhP9H2LJPksV7VMH2Han3VhltTVm7/fpiA8BWH7FlUvmvVzetk8++pBllptz0vru/94EYOVV+vL9d99y283X8fLg5xg7ehRdu/Vg9bXXYZ8DD2P1NRt+5YjNvya6S9viwD0F63KvtwY+B9oBFwKLABNJNeqjIuLlgv0OIA3Wu54UcwcCv8vNJgcQER9I2iFL9xjwLWnE/uXlFrxmgjowC3iRNKrwiSYuS7M38NF+QBqRvuW2OxZN88VnnwLQpWs3/n7VZTx47x3Z665MnTKFD94bxgfvDeOpAY/ypyv/ziKLLtbg43898kse7Zd+QzvuupebQFugPfY7iG++Hkm/u2/j1pv+xq03/Y1OnbswdcoUZs6cQe8+S/N/Rx/H3gccNtd+uab3RRZbvGTeHTp0pEvXrkwYP55R38+pI0ybNo1vv/4KgAkTxvObw/dn7JjRtG3blvYdOjDq+295/unHeeGZJ/jV709kr58csgDeuTW1iBgB9Z5N7NTAvMYCR2ZLXekGARs3JM+61EzzezbDz0ek/glbgGbOnMmT/0mDlDbfens6de5cNN348amfe+yY0Tx47x1s9OMt+Oe9j3LfgOd54InBnHD6ebTv0CGNUD7v9AYff9q0aVx45klMnTKFJfssxU8O/Vnj35TVnNatW/N/Rx/P0SecRrt27QGYNHHC7Msgp0ydwoTx45k5c+6umSlZ/3r7Dh3rzL99+w4pz0lz+uMnjJ8zduPBe25n2tSpnHTmhdz/+GDu/c/z3HzXI6y30aZEBNdffRn/G/J649+o1anGB8otdDUT1DMXAmdIKt5RZhXx2kuDZtd2dth1z5LpYlYaYDRr1iyW6N2H0y+4fPZEIG3btmX7XfbgyF8fA8Abr7zI8HfnudHRPGbNmsXl55/BsHfepn37Dpx67iUlTyqseRsz+ntO+O3PuPrS89lki625+qY7eODxwfz7/gEcf9p5CHHHP2/g9ON+zcwZM+rPsAFi1pzZQWfNmsX//e54ttlxV9q2TeOX+iy9DGf+6c8sutjizJo1i7tuvbkix7XS1Milpam1oL4/sBjwkaSXJT2cDVbILQ82NKNiUweOH+8R1jBngFzvPkuz9rql7mPA7MuEAHbf54C5Brbl7Lr3/rTvkGpEb7z6Up3HjQj+ctE5PPPEf2jbti1nXHg5q66+5vy8BWsGLj3vdN59awjb7bQ7fzznYn7Qd3U6durEYkssyfa77MGfrvw7bdu1483XX+E/jzwwe7/c+I2pUybXmf/UqenKjk553+OOneacQHbq3IUdd9t7nv3at+/AbnsfAMBbb7wyT0uBVVYrqVFLS1NrQb0L6Zq9waSBCV2ArnlLOfP5Hke6NnD2ctO1V1W0sLVo3NgxvPj8MwBsv+sedfZl5/eRL7Pc8kXTtGnTlj5LpbkXcn2VxUQEV116PgMe6Ufr1m049dxL2GCTzcp/A9YsfDrio9nXnu978OFF0yy3wkpsuMnmAAz675yJYHLfy++//aZk/lOmTGbC+PEA9Fpkzve4U+fOdMoCe5+llyk6NwPA0tn3feqUKYwfN6YB78hs4ailgXJExNYVzG6eqQOP/M3vP6tg/jXpqQGPMn36dFq1asX2u5Rueoe6RxcXU9cJwjWXXchj/e6lVevWnHz2hWy65TZl5W3Ny6cffzT7ee+lSs/tvtQyywJpYGXOssuvxMuDnmPERx+U3O+TvG3LrbjSXNuWXWElhr3zVhmlbXm1wYXJn255aq2mXjERMS4iPs9funat1I17aleu6X2d9TZk8XpueLHmD9edPdjos09GFE0zY8Z0vvwinSst0bv4UIhrLr+QRx64m1atWnHCaeeWHG1vLYfyLjD+5quRJdONHvU9wFzjLtZZf0MAPvvk45L7vvriCwAsuvgSLL3s8nNt+9EGaQDyl59/VrKv/vPs+96pU2dfbrmguVO9LDUX1CWtK+keSSMlTc0e75ZU+s4M1iAfvjeMD98fDpS+Nj1fh46d2GyrNFHSw/ffxfTp0+dJ88j9d8+ela5Yc/rf/nwxD993F5I49o9ns+1OuzXiHVhzkX/zn0ceuLtomlHff8eg/z4NQN811p69fp31NmSRRRcjIri7yEC2CePH8Wi/ewHYZodd52lB2nqHXWnVujWTJk6Yq68+Z+rUKTzywF0ArLfxj2nVqub+jNaUWplRrlrU1LdR0uak/vQNgDuAM7PHDYBBktwJ2wi5WnqXrt3YdIuGNX//9P9+Q4eOHfl65Jecf9rxfPXl5wBMnz6dx/s/zM3XpXEKW22/8zzN9TdccwX97rkdSfzhlDPrHGlvLcuSvZdig6y//OH77uTvV106u4982tSpvPriC5z4258xccJ42rRpw+77HDh73zZt2nL4L48G4NF+93DbzdfNvszt809HcNZJv2fU99/SvUdP9j/kiHmOvcxyy7PLHvsCcOM1V/DUgEeZMSOdsI784nPOO/U4vvv2G9q2a8dBh//fAvsMzOaH5r13e/WS9AIwHtgtfzYeSa2BR4EuETHfgX3E91Nq58OosOnTp3PwHtsxbuwYdt/nAI4+4dQG7/vyoOc4//QTZtfIu3TtxtQpk2fX3Nf+0fqcc/FVczWRfvPVSA7bJ83d0Kp1a7rX04R5xp+uaJH3Vq+hn2fFjRn9PX/8w1F8/MF7s9d17NiJqVOnMCu79Kxtu3Ycd+q5Racpvu4vl9DvntuA9B3r2LETEyekwXGdOnfhvMuuKXnr1WnTpnHOKcfMHqzXtl072rfvMPs69nbt2nPCGeezxTY7VO4N15gVFu2wUKrBL380tlG/gg1X7N6iqus1NVCONAn+fvkBHSAiZkq6ijSnrs2HF59/lnFjxwB1X5tezIabbs51/7qXe277B6+9PJhR331L+w4dWHX1tdh2p93Ycdc9ad1m7q/arMi7HnjmzNl9o6XMKNK0b81bj56LcNWNtzPgkQd4/unH+fjD95kwfjxt27VjiSX7sM56G7LHfgfN0yeec9QfTmLdDTbi4fvv4v1h7zJp0kSW6N2HDTbejJ8c+vPZdwYspl27dpx/+bUMeOQBnuj/MCM++oCpUyazZJ+lWGe9jdj3oMNLXvFhldWiInIF1FpN/VvgxIi4pci2nwGXRETD5yIt0JJr6ladaujnaS3Mwqqpv/Jx42rqG6zQsmrqNdWnDjwMXCxpu/yV2es/AQ81SanMzGyB8EC58tRa8/vxwBrAAEnjgG9Id9PpRrqH7QlNWDYzM7MmVVNBPSJGS9qEdCP6zUg3dxkFPA88mt30xczMmokWONNro9RUUIfZd2t7CDe1m5k1e47p5an6oC6pVznpI2LUgiqLmZktZI7qZan6oA58B5Qz+rH4HRjMzMyauVoI6j+nvKBuZmbNREscwd4YVR/Ui12TbmZmLYMHypWn6oO6mZm1XI7p5am5oC5pC+CXwCpAh8LtEbH2PDuZmZm1ADU1o5ykHYGngEWB9YHPSAPpVgU6A682XenMzKzifD/1stRUUAfOAf4C7Jq9PiMitiHV2qeTAr6ZmTUTnia2PLUW1FcD+gOzSCPiOwNExCfA2cDpTVYyMzOrOKlxS0tTa0F9CtAq0q3lRgIr5W0bDyzTJKUyM7MFoila3yWtLOk6SUMkzZD0vxLpjpT0nqQpkt6UtFuRNN0l3SRplKTxku6VNM99fyVtKmmwpMmSPpF0slT+aUmtBfU3Sf3nAE8Cp0naLetrPx94u8lKZmZmzcUapG7eD4B3iyWQdCBwA3AXsDMwGHhA0sYFSe8CdgCOAg4hxbD+ktrk5bUyMIBUWd2N1M18LukmZmWptfup7wKsEBF/lbQU6Vas62SbPwf2jojX5jd/30/dqk0N/TythVlY91P/3xcTGvUrWHOpLmWXU1Kr3A3CJN0CrB8RaxakGQ68FhEH560bBIyJiF2y15sAg4AdI2Jgtm5VYChwYETcna37O7AjsEpETMvWXQj8GlgyIqY2tOw1VVOPiMci4q/Z8y+A9UhnPesAKzcmoJuZWfVpioFy9d3xU9KKpAHadxdsuhPYVlL77PXOwBjg8by8hwNDgF3y9tsZ6JcL6Hl59QA2KafsNRXUJW2f38cQyfsR8VbBh2FmZs1AlQ6U65s9DitYPxRoB6yQl254zNskPjSXh6TOpPFghXkNIw0I70sZam3ymQHA15LuBu6IiBebukBmZla9JHUDuhWsHhcR4xqRbc/scUzB+tHZY6+8dIVpculyaXoUyysipkmalJeuQWqqpg6sDdxMGsAwSNJHki6QtFYTl8vMzBaACox+P440UVn+ctzCewcLV00F9Yj4X0ScFhErAxsDDwKHA0MkvS3pj01bQjMzq6jGR/UrSM3b+csVjSxVrkbevWB9rgY/Ki9dYZpculyaMcXyktQO6JSXrkFqKqjni4iXI+JY0n/QXqQP6fwmLZSZmVVUYwfKRcS4iPi8YGlM0zvM6f8u7O/uC0wDPspLt2qR68375vKIiImk1oPCvFYlnZYU9rXXqWaDuqT2kvYD7iFdB7g4MLBpS2VmZpVUjQPlIuIj4D1g/4JNBwBP5g3c7k+qcG475/1oFWBd4LG8/foDe0pqW5DXGNIlcQ1WUwPlJLUmXct3ELAH0AV4gXSB/j0R8V0TFs/MzJoBSZ2Yc8nZckC3rBIJ8GxEfEuamvw2SR8CT5OC8EbAFrl8ImKwpAHAzZKOJ82KegHwFnB/3iEvJU1Mc4eka4G1gBOB08q9sqvWJp/5njRScAhwB3BnRHxeqfw9+YxVmxr6eVoLs7Amn3nvq0mN+hWssmSn+Zl8Znng4xKbt46IZ7J0RwKnAMsCw4FTI+KRgry6k/rw9yFVpAcCv4uILwvSbZqlWwf4FvgrcHGRy+HqLnuNBfWzSJeyvbcg8ndQt2pTQz9Pa2EWWlD/upFBfYnyg3otq6nm94g4p6nLYGZmC09LvH1qY9TsQDkzMzObW03V1M3MrGVpifdEbwwHdTMzq1qO6eVxUDczs+rlqF6Wmu1Tl9RRUm9JHZu6LGZmZtWg5oK6pN0kvQKMBz4Hxkt6RdIu9exqZmY1pinup17LaiqoS9qLdBOXaaS77BxMmk1uKvCQpD2brnRmZlZp1ThNbDWrtcln3gDeiYhDi2y7FVgjItad3/w9+YxVmxr6eVoLs7AmnxnxXeP+Li+/kMpZLWqqpk66i82/Smz7N/Pe5cbMzGpZBW6o3pLUWlAfRbodXTGrUuZ9Z83MzJqTWruk7S7gQkmTgXsjYkw2Wf7+pHup39CkpTMzs4pqiYPdGqPWgvofSbfBux74u6TpQFtSI8v9wKlNWDYzM6uwljjYrTFqKqhHxFRgX0lrAZuTbj4/Cng+It5u0sKZmVnFOaaXp6aCuqQtgNezAP52wbbOwHoR8d8mKZyZmVkTq7WBck8Dq5fY1jfbbmZmzYSvUy9PTdXUqbslpjMweWEVxMzMFoYWGJkboeqDuqSNgU3zVh0sabOCZB2APYGhC61gZma2wLXE2nZjVH1QB3YEzsqeB/D7ImmmkwL6bxZWoczMzKpNrU0TOwvYOCJeXhD5e5pYqzY19PO0FmZhTRP75ZhpjfoV9OnRrkXV9Wuhpj5bRNTawD4zM2sEN7+Xp+qDuqQflZM+Il5fUGUxM7OFyzPKlafqgzrwKqkvvT7K0rVesMUxM7OFxjG9LLUQ1Ldu6gKYmZnVgqoP6hHxbEPTSlphQZbFzMwWroVdUZd0BPCPIpsujohT8tIdCZwMLAsMB06LiEcK8uoOXAHsTbpPyQDgdxExcsGUvgaCen0kLQocABwMbIyb383Mmo0mHCi3EzA27/UXuSeSDiTdFfQC4ClSDHpA0uYR8WLePncBawBHAVOy9P0lrR8RMxZEoWsyqEvqRDrzORjYjnQG9AZwbFOWy8zMKqsJB8q9FhHfldh2DnBnRJyRvX5a0trAmcAuAJI2Ic2zsmNEDMzWDSfNqbIPcPeCKHTNXCImqbWkXSXdBnwN/AtYh3RicmBErBcRVzVlGc3MrHmTtCKwCvMG5TuBbSW1z17vDIwBHs8liIjhwBCywL8gVH1Ql/RjSX8FRgIPAzsAtwJbAWuSuly+arICmpnZgqNGLvPvHUkzJX0k6Y+Scl27fbPHYQXphwLtgBXy0g2PeWd4G5qXR8XVQvP7c6RL1Z4mDTgYmOuLyAYhmJlZM9XYxndJ3YBuBavHRcS4EruMJE1N/hIp9uwBnA8sBRwN9MzSjSnYb3T22Ct77FkkTS5dryLrK6IWgvrbwFrAlsBMYFFJD0TE+KYtlpmZLWgVGCh3HHPuH5JzDnB2scQRMYA0Sj1noKTJwLGSLmh0aRawqm9+j4gfkprZLwV+ANwCfCXpbtKd2Tw7tpmZlXIFsEzBckWZedxNurJqHebUyAtbinM1+FHZ4+giaXLpRhVZXxFVH9QBIuLdiDg1IlYENicF9i2zR4BjJG3RRMUzM7MFRI38FxHjIuLzgqVU03tD5PrSC/vF+wLTgI/y0q0qzdPW0Jd5++MrpiaCer6IeCEifgv0AXYDbge2J11S8FGdO5uZWU2RGrdUyIGk7t83IuIj4D1g/4I0BwBPRsS07HV/Uq182znvRasA6wKPVaxkBWqhT72oiJhJ+mAek9QR2As4qEkLZWZmNU3SANKEMm9nq/YAfglcGRG5K63OBm6T9CFpEPcBwEbA7BbjiBic5XWzpOOZM/nMW8D9C6z8tXQ/9QXN91O3auOfp1WrhXU/9TGTZzbqV9CjY+uyyinpStI15kuTWrPfA24Ers6/PC2bJvYU5kwTe2od08TuQ6pEDyRNE/vlfL+h+srvoD6Hg7pVG/88rVo116Be62q2+d3MzJo/30+9PA7qZmZWtZrwhi41yUHdzMyqlmN6eWrukjYzMzMrzjV1MzOrXq6ql8VB3czMqpYHypXHQd3MzKqWB8qVx33qZmZmzYRr6mZmVrVcUS+Pg7qZmVUvR/WyOKibmVnV8kC58jiom5lZ1fJAufL4hi5WcZK6AccBV0TEuKYujxn4e2ktg4O6VZykpYHPgGUi4vOmLo8Z+HtpLYMvaTMzM2smHNTNzMyaCQd1MzOzZsJB3RaEccA52aNZtfD30po9D5QzMzNrJlxTNzMzayYc1M3MzJoJB3UzM7NmwkHdzMysmXBQr3GSzpYUecsUSUMlnSSp7P9fSc9IemRBlHV+SRoh6ZqmLoc1jqQ3s+/o5kW2bZVtWz9v3dmSNl24payfpCOysi7a1GUxK+QbujQPk4Ftsucdga2Bi0gnbReVmddvgJmVK5oZSFoDWDt7eTDwXAN2OwuYAAxaUOUya24c1JuHWRHxYt7rpyWtBexDmUE9It6taMmqiKSOETG5qcvRQh0CzAKeBfaX9PuImN7EZWpSkloDrVr652CV5eb35ms80DZ/haSLJL0taYKkLyTdIal3QZp5mt8lbSFpkKTJkr6TdLOkXqUOLKmzpImSTiiy7V5Jg/PSXSNpuKRJWTP7dZK61/fmJO0jaUjW3fClpCskdcjbnmvO3TU75jjgnvrytcqTJOAg4CngCmARYKd69slNoHFpXtfSVtm2Dtn/95fZ//8QSXvXk9/ZkkZJKvxNrJnlvWP2eldJj0v6RtI4SS9JqrOs2X69st/Fd9nvZJCkLQrSPCPpEUmHSxoOTAV+WF/eZuVwUG8mJLXJlq6S9gD2Be4tSLY4cCGwK3AMsDzwrKSSLTaS1gMeJ50k7A+cDOwO9M9qGvOIiInAQ8CBBXl1zY59e7aqE9AaOA3YGTgd2BLoV8973SN7b+8CewGXAEcBtxZJfj3wIbA3cFld+doCsynpu3Y7MAD4ntQEX5dNssers+ebAK9n624DfkX6f9+L9D24L/telHIH0BPYsWD9QcA3wBPZ6xWAh4HDSL+hF4DHcicUxWS/g/6k38XJpN/JBODx7PeTb33gROBMYBfSXePMKicivNTwApwNRJHlTqB1Hfu1BpbK0u6Qt/4Z4JG81/cDnwBt89btkO23ex3575Gl+UHeup8CM4AlSuzTBvhxtt8qeetHANfkvX4dGFSw7y+z/dbKXm+Vvf5bU/8ftfQF+Ctp3Ef37PV1wESgS16a3P/X+nnrAjihIK+1s/W/Klg/CHitnnK8DtxWsO7D/O9WwbZW2XdyAHB73vojsjIsmr3Ofdd3zEvTNvvd3Je37hlgGunWr03+/+KleS6uqTcPk4ENsmUzUi18J+CG/ESSds6aBceSgmvuntKr1JH35sCDkdfvFxEDgTHZsUr5T5Ymv7Z+IPB0RHydV6bDJL0haQIwHXi+rjJJ6gKsw7ytEHdlj4VlerSOMtoClrUC7Q88FhFjs9W3k1pp6mwyLyE3cr6wK+UuYF1JnevY9w5gD0kds7JtCKyYrc+Vd2lJ/5T0Bek3Mp10Elvfb2RcRAzIrch+L/cz7/fxrYhw7dwWGAf15mFWRLyaLS9ExFXAucDPJK0JIGkDUpP4l6SmxU2AjbP9OxTLNNMT+LrI+q+Bkv3qETENuI8sqEtaBNieOU3vZP2g/wJeBn6SlSf3h75UmXoAKixTFjCmFilTsbLbwrMDsBjwsKQeknoAbwMjqb8JvpiewPSIGFWw/mvS96JHHfveCXQmNZNDanr/hGx0vdIloA+RAvGZpKtINiA1rdf3G/mmyPpivxF/H22B8uj35mto9rgG8D9SsBwL/CQiZgFIWq4B+Ywi9cUXWiLbVpc7gCMlrU06iZhJqr3k7A8MiYhf5VZI2rKePMeQmjrnKlM2uK59kTL5jkVNKxe4/5Et+RaTtHhEFAuIpYwC2krqGRGj89YvQfq/HlNqx4j4TNILwIGS7iWdSP47InLfkZWBdYG9IuLB3H65mn09ZWrob8TfR1ugXFNvvtbMHr/LHjuSmhLz/6gc0oB8ngf2yh9MJ2l7Uo3o+VI7ZZ4BviLViA4C+uc1webKNK1gnzrLFBETgCHAfgWbfpJXXqsCkjoBe5IGPm5dsBxEqlQcUEcW05m3hpz7/92/YP3+wBuRBmnW5Q7SALXdgD7kNb2Tvo+Q953MTnx/XE+ezwPdJO2Qt18b0om0v4+2ULmm3jy0kpRrSm8HrEcaSf4u8N9s/ePAH4CrJT1Aqjkf1oC8LyA1Tz4i6WpS7eMiUpP5Y3XtGBEzJd1NGli0OAWj4bMy/VXSGcBg0h/bbRtQprOBfpJuJY14X5U0qv++iHi7AfvbwrEn0AW4KiKeKdwo6SRSTf7qEvsPBfaU9BxpYN3wiHhL0v3AFVkNejhwKGmE/Z4NKNM9wJXA34B3I+LNvG3DSONMLspGtHch3X/9i3ryfJT0e7hV0imkJvbfAb1J30uzhcY19eahIykoDgaeJP1BuRXYOjfALSIeI11usyep33ALUm2lmNm1+Yh4jdQv2o3UR34p6Y/YzhHRkJnn7gCWBCYBhdPP/h24PCvv/cAyNKCfNSIeItXM1gIeBE4hXbp2aAPKYwvPwcCnpBabYv4JbCxppRLbf0v6G9UfeIV0sgrp//kG0v/7g6TvwX4R8XB9BYqIb0m/kcJaOhExlTRh01RS8D+XdFL7bD15ziSdkD5K+n3cR/q97JD9fswWGs3pTjIDSa8B/4uIw5u6LGZmVh7X1A0ASUtKOph0HfArTV0eMzMrn4O65RxImiTkTuCmJi6LmZnNBze/m5mZNROuqZuZmTUTDupmZmbNhIO6mZlZM+GgbmZm1kw4qJuZmTUTDupmVUjSCEkh6YiC9ctn60PS8gvyWGZWexzUrdmSdEteAMxfJkgaJukGST9s6nKamVWKg7q1BNNJN9nILR1IN4H5BfCqpKOasGzlmk66icnw7LmZ2WwO6tYSDIqIJXML0Il0k5oPSHcq/Gut1Ngj4ouI6Jst9d09zMxaGAd1a3EiYlpEPE66Y9100u+glmrrZmZFOahbixUR7wKvZi/XB5B0RNbvPiJ7vbOk/pK+kTRL0h/y85D0A0l/k/SepEmSxksaIuksSd1LHVvJryS9KmmipO8lPSFpp7rK3JCBcpI6SDpa0tOSvpU0VdJn2etjJC1SR/7tJZ0uaaikyZK+k9RP0jr1lKuXpAskvZWNWZgo6R1Jl0havK59zaxy2jR1Acya2OfZ4zwBWNLxwGWk+8uPBWYVbD8S+BvQNls1CWgP/DBbDpe0fUR8WLBfa9K9vPfPVs0k3cN7G2AbScfM75uR9APSfetXyVbNAsYAiwFLA1tl7+WWIrt3BZ4nneBMzfZdhNSisb2krSPi5SLHXAf4D7BEtmpytu/q2fJzSbtGxEvz+77MrGFcU7eWbrnscXTB+iWAi4Frgd4R0RPoAtwLIGkX4AZgBnAW0CciOpP6639MagFYAbhfUuHv7ETmBPRzgF4R0QtYihTsLycF4bJI6gEMIAX0r4HDgG4RsUhWrrWAC4q815xzgEWBnYDO2fvdgnTi0wm4qsgxuwMPkT6vj4HtgM4R0YX0OQwlnRg85Bq72UIQEV68NMuFVBsN4JkS2zcg1ZIDuDJbd0T2OoDbS+zXGvgwS7N/iTS9gC+zNPvkre9EqikH8Oci+wl4Mq8MRxRsXz5v2/IF2/6UrR8PrFLG5zQi228SsHKR7fvmHXPZgm2n1rNvH1JLQQAXN/V3wouX5r64pm4tjqQ+kg4j1TBbAdNI95IvdGmJLLYEVgQ+iYh7iiWIiFFA/+zlDnmbdgC6kZqnLy6yXwAXNuBtFHN49nh1RLw3H/vfGxEfFFn/ECkoA6xZsO0n2eOtxfaNiC+B67KXB81HmcysDO5Tt5ZgS0lRYtskUm24MAhOBt4ssc+m2WNvSV/Vcdwu2eOyeevWyx6HRUSpfZ8nNes3+PeZDZrrnb18tKH7FXil2MqImC7pG1ITe8+8Y7ZjTpB/oo58nwBOBpaRtFhEfDuf5TOzejioW0swHRiVPc81FX8OPAdcHxGfFtnn+4iYVWQ9zAme7ZgzOKwunfKe5/rKS15jHhFTJX0HLNmAvHPyy/FJGfvlG1/HtinZY9u8db1IXRFQx/thzmBEgMUBB3WzBcRB3VqCQRGxVZn7zKxjWy6QPRkR281fkczMKs996mbl+zp7XLbOVMXlaql9SiXImrUXLTPf/Kb85UqmqqxRzDn5WaqOdEvnPf9mwRXHzBzUzco3KHv8gaRV6kw5r9eyx76SSjXdb0aZrWgR8QlptD3AbmWWab5ExDTg7ezltnUkzbVmfOr+dLMFy0HdrHxPMaff+i/ZZDJFSWorqUveqoGkS9paAycVSS/gj/NZrluyx6Pn42Rjft2dPR4qaYXCjZJ6A7/KXt6xkMpk1mI5qJuVKSKmA78hXZa2MzBQ0ia5SWYktZK0uqRTgPeAdfL2nQRclL08VtKZkrpm+y0J/JN0ydyk+SjapaQJYLoAz0o6RFKnvDKtLekvkvaej7xLuRb4jDQY8HFJW2cnJkjahHTNfQ9Ss/vlFTyumRXhgXJm8yEiHpN0KHATaXrXQcBUSRNI16HnjxIvvJzuUtKlbfuRZnE7U9I4UvADOAY4njL7xiNiTDZ3/KPAysCtwExJY0iBvn2WdEg5+dZzzLGS9iRdk78SqRVjUnYJYecs2ShgTze9my14rqmbzaeIuAP4AanmPYQ0X3oP0qVhLwFXAJtFxAsF+80kTdpyFPA6afIbSAFx14i4uhFleg9YGzgWeAEYR5rT/RvgaeD3pMlkKiYi3gDWIE2a8062uhUwjDR3/uoR8WIlj2lmxSlNYGVmZma1zjV1MzOzZsJB3czMrJlwUDczM2smHNTNzMyaCQd1MzOzZsJB3czMrJlwUDczM2smHNTNzMyaCQd1MzOzZsJB3czMrJlwUDczM2smHNTNzMyaCQd1MzOzZsJB3czMrJlwUDczM2sm/h8UhQAdEO8BHQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAGoCAYAAAB13vBmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABDrAAAQ6wFQlOh8AACPlElEQVR4nOzdd1yV1R/A8c8B2QqKoqK4996aI0fOXKlpztSWufcqM0dpWWpWltpSs3LvvWfqT0vNvRe4EZC9z++PBxAQB1fgXuD77nVf997znPM83wsGX845zzlKa40QQgghhEhZVuYOQAghhBAiI5IkSwghhBAiFUiSJYQQQgiRCiTJEkIIIYRIBZJkCSGEEEKkAkmyhBBCCCFSgSRZQgghhBCpQJIsIYQQQohUIEmWEEIIIUQqkCRLCCGEECIVSJIlhBBCCJEKJMkSQphEGVoopf5USl1WSgUqpYKUUpeUUmuVUj2UUg7mjjO1KKUaKqV0Eo9wpdRtpdRmpVTn55yjmVJqsVLqmlIqOOZxLaas2XPa2iul3ldKbVBK3VJKhSqlfJVSZ5RSvyqlmqfsJxZCJJeSDaKFEMmllMoF/AU0fU7VRlrrPakfUdpTSjUEdr9A1Yla60mJ2joBvwMdntN2JdBTax2cqH1VYBlQ7FmNtdbqBeITQqQS6ckSQiSLUsoe2ELCBGs10BV4DegCzAMCUjEGKwvsJRsM1Ad6A7fjlY9UStkkqps4wfoNaBXzmB+v/M2YunGUUiWBHTxOsMKA74C2QGPgfWANEGXyJxFCpAyttTzkIQ95vPADGAPoeI9xT6nnBuSNed0wfptE9XrHO3Y9XnnhRNepCHwL3MJIIEbHOxYK5Eh03g7xjl/jcc/9LGAP4AkEAuHAHWAD0CoZX4eGieJrGO/YyETH8sY71iTRsZlJnPu7RHUaxzu2OV55RPzrJjpHBXP/W5GHPDL7Q3qyhBDJ1Tve6yvAF0lV0lo/0FrfTcHrrsDoLcqH0Qt/Edgbc8wOeCtR/bfjvf5Fax07N2II0ADwAJwAGyAvRi/SBqXUgBSMGSAEeBDvfZd4ryOBL5NoMzXmWII2Sqm8QPy5Vov0U4ZjtdanTAlWCJFyspg7ACFE+qGUcgRKxyvarrWOTqPLFwNmYAyV5cJI8H7GSJjASKrmxcSZA2gZUx5FwiG4z4HzgA8QjJGgVcNIbAA+U0rN01rHT3JeRAWlVBRGD9zQeOXfaK3jD91Vivf6ptb6fuITaa3vKqW8Ys4Vv01VIP48q63JjFEIkYYkyRJCJEeORO8fpuG1Z2mtR8YvUEpdAr7HiKuuUqqo1voqRq+WbUy1jVrr+HOkNgDDgFcwerDsEl0nB0YieTqZ8X2X6P094HOt9exE5dnjvX4iwUrUvnCiNub8+gshkkmGC4UQyeGb6H3ONLz2ysQFWutQYFG8otghwh7xyn6OfaGUagIcADoDhXgywYrl+lKRGnIDVZRSiX/O+iWq8zR5kmhjzq+/ECKZJMkSQrwwbSwlcC5eUROl1IssE5BgrRilVPxedLcXvPydp5T/FO91D6VUYaBuzHsvjInisUbzuAf/EtAd447AhonOacrPxkaAI9APiMYY1nsX40aB+E7Ge11QKfVEoqWUyoMxZyzWfzHPx0j4tXzmWlpCCPOSJEsIkVwL4r0uzpNJBGCspRUzURue7IGJn0C0fsHrJrmon9b6DHAoXjzf83je0m+J5kMVjPf6O631X1rr/aTQcgda6xCt9VwSfo3GJUqkFsd7nQUj8UvsIxJO51gSc/67GMtnxHpbKfVqUrEopconI3QhRCqQJEsIkVzfAf/Ge/+FUmqFUuqtmFXQOymlZgOXeTxJ/ioJ75b7QynVTym1GqMn6WX9HO91bNIWjbH+VHxX471+XynVWinVE2Nh1ZQ0GWN5BTDuYBwbe0BrvQNYG6/uCKXUz0qp12Mev2DcARlrjdZ6Z7z3Q3mctNoA25RS3yilWimlXlNK9VZKLQdOpOxHEkIkl6z4LoRINqWUG/AnyVjxXSk1B+ibRJ1TQIWY1ze01oVj6hfGWN8qVhGt9fWnxOOEsQCoc7ziLVrr1xPVawpsS+IUuzAWUn0i7qdJYsX3BG2UUr9iDBeCsYxDMa31nZhjWTG+fm2fdQ2MZKyH1jow0bVlxXch0gHpyRJCJJvW+gHGek0tMXqBrmIshxCCsbTCOqAn8L94zUYCczDWjAoDjmPMiZqZAvEE8WRv1M9J1NsOvIExtykEIzGbxfOTHVPEX+vKAWMIMDaOQK31Gxhfv6XADYwFVUNjXi8FWmqt2yVOsGLaHwPKAx8AmzDmq4UDjzDmzM0HWqTCZxJCJIP0ZAkhhBBCpALpyRJCCCGESAWSZAkhhBBCpAJJsoQQQgghUoEkWUIIIYQQqUCSLCGEEEKIVCBJlhBCCCFEKpAkSwghhBAiFWR5fpXMQSllh7Hq9ANSaB8zIYQQQlg8a4yN6k9prcNS8sSSZD1WAThq7iCEEEIIYRY1gH9S8oSSZD32AODIkSO4u7ubOxYhhBBCpIE7d+5Qs2ZNiMkDUpIkWY9FAbi7u+Ph4WHuWIQQQgiRtlJ8qpBMfBdCCCGESAWSZAkhhBBCpAJJsoQQQgghUoEkWUIIIYQQqUCSLCGEEEKIVCBJlhBCCCFEKpAkSwghhBAiFVhMkqWUKq6UmquUOqGUilRKnX7BdkopNVYpdVMpFaKUOqSUeiW14xVCCCGEeBaLSbKAckAr4DJwNhntxgCTgG+A1sAdYJtSqmiKRyiEEEII8YIsKclar7UuoLXuCBx7kQZKKXvgI2CG1vobrfVOoAvgA4xMvVCFEEIIIZ7NYpIsrXW0Cc3qAM7AsnjnCQdWAS1TKDQhhBBCiGSzmCTLRKVjns8nKj8HFFRKOaRxPEIIIYQQQPrfIDoHEKa1Dk1U7guomOMhSTVUSjlj9ILFypsqEQohRGbx8CH4+HA35AEBEUHcD3tIRHQk0ToaHfNftNZoHfs6tpy413FlV64QTWxduBHxgKxW9kQQRbiOJEJHEaojCIwOJZpotIZo4xXRWhvPCd4br/2igvGOCsDV2inumMaor+PV1RB3/dhzaSAwOpRbkT7ktnZBxfvoOtGXQj9RkqgsJARt9WQ/R+J2L3ZeU+o8SaMhLAxi4npqnfjvVVJ1XvBaqXUeDUTF7PWskjhPzLV0tBUR/9QAa98kzpwy0nuS9TKGAxPMHYQQQqSEsMgwAsMDCY4Ixi/Uj7CoMCKiIoiMjiTi/h0iQ4J4sGEpQVk0UTEpQ1TMIxpNlIomGggjkqvqEa7YE0E0kUQTQTTXoryxfRSAlY0dESqaSKWJCAnidI4IcoUoIqw04VbwyB5CbNLuc2eJAmsNVi/4AHhkB9lDwTXEKFM8Pq70k2VZ4r131pDNFuyiQnALShhL4jxBJZEVPFHniZKk6phwXlPrRMcUuuVKso3RLmFpknVeKJ6UOk8SdaKiwM4OXF2TroPi0N5yHDtcmsLFznOdi0lc/eWl9yTLF7BTStkn6s3KgZG8Pis9nQn8Eu99XuBoyocohBCgtSYwPJCgiCBuB9zG85EnoZGhRERHEB4VTkRUBBcfXiSrbVZCI0M5/eA0OexzEBEdQURURNxzQHgAD4MfPlHuF+pHlI56dhBOyYvZKRyyRINNTCJzLw+U9wnF1soWm2hFFjs7qjxUPMjtSM3IXNhGga2NM3mc81HYOhcOyoYooslt5YyVUqiYX6tWWMU8K1RMuVWiYyoyEquSpVH29igUGo2rjTN21rbYWtlgo7Jga2WDvbWdad8Qc7OxgTJlQCWVWojU4ucXSkhIBO7u2bh9O4CdO6/SsKErBQsuSZXrpfckK3YuVingv3jlpYGbWuskhwoBtNb+gH/seyX/0IUQyaC15n7QfbyDvTl57yQHPQ9y4t4JbK1tjd6jmF6k0MhQzj44i621LSGRT/2R9AQbKxsioiMobJcHG22FTXgUWYJDcIxQlI60w+aBDzZaYYM1NmERuARH4x4IjhGQLQwcIo3kKEs02ESDzcAhOCs7XN/qjZWDI9ZW1lgpK6yVdYLXVsoKW2tb7LKk0+RFiCRorVm69AzDhm2levV8rF/flXz5svH225Xw8vJKteum9yTrIEai1ImYJEspZQN0ADaZMS4hRDrhG+LL0dtH8fL3IjQylP/u/oeNtQ2hkaGc9z6PUorg8CD8g3257H+drNYORERFEEZkkufLoe0pTS6yoHDQ1uTACjcK4BhlQ2XykFM7EEokFcmD/dHj5NGO2PxzHNusLtgoa3KFWGEbDeqBd8wZ7z15kUqVQOWHu3ehdWvIBkRGQsuWUDRmiUB7eyhbVnpKRKZ3+bIPAwZsYtu2K1SokJuPPqqXZte2mCRLKeXI42UXCgHOSqmOMe/3aq0fKKV2AoW01sUBtNahSqkvgIlKqQfAKaA/kBOYnrafQAhhyYIjgvmf1/+4E3iH+0H3OXXvFJsvb+ZO4J0k6+eKsMU2LAIfe03dm5AvAkpYgX1kCAUfgV0kZA2H/AFGb1HNW1DyIVjpUOBpfxlfSrq4aFHInx9KlEhY7u0NjRtDsWLg5gaFCkHu3JI4CfGCli07Q8+eq7G2tuLrr5syZEgtbGys0+z6FpNkAbmB5YnKYt83AvYA1jwZ8zSMOW0jATfgBNBca301tQIVQlgm/zB/zj44y+5ru7kbeJdrftfwCfHhYchDznsnXOnFBTtK40b9Ozlp9M9D6t0E5zCwjzQmRFvrcChX7nFvkY2GGjVAa2MybYMGkDcFbkrOYkk/hoXIGCIjo8mSxYoaNfLRtm0ppk9vRsGCLmkeh9I6qZsiMx+llAfg6enpiYeHh7nDEUI8hdaau4F3ue53nSu+V9h3Yx+XfC5x9NZRgiIS3u5VMmdJcjq4kv1ROAWvPqTmGT8q+NqS99oDPPwT3XFkbw+ffgpOTuDoCO+9Jz1GQqQz9+8HMWrUdsLCIlmypOPzGwBeXl4UKFAAoIDWOkUnaMmfUEIIi+IT4sMF7wv8c/sfznmf40HwA07eO8ndwLvGXKioMKLjbRBhhaIYrtRWecmlnHjNqijlI3JQeccZHA4eSXjyEiWgYkUoZwedO0PTpkYiZW+fxp9SCJGSoqM1v/56jDFjduDvH8bQoa8QHa2xsjLvH0qSZAkhzCIsMozV51fzz+1/CAwL4Nitf/AN9ePyo4Qj/YXDHMjqF0JOR2sKBmWh+i0bXB6FUe4BuAVBjdsa+8iHwMOYFicTXqh0aShZEmbNgiJF0uKjCSHS0Pnz3rz33joOHvSkVq38zJvXmkqVLGN9cUmyhBCp6lHoIw55HWLl2ZX4hfiw/fwmHpF4kwbI5w/h1tDsDrS9AMV8oZYX5AiNWfagWGGoXh0cARcbGNvtcQ9U/vzg7p7whFmygIPsrCVERqe15vJlH+bMaUWfPtXM3nsVnyRZQogUExQeRGB4ICGRIWy+tJkfjszmjPfZBHWK+UDxUKj90AHnPIX40LcoHhEOWIWGQb16xr3B5WMq29hAly7GBPMktiARQmRO69df4MiRW3z22WuUKePGjRtDsbe3vJTG8iISQli8qOgobvpeZ8/eBay/u5dbgXc5EpL08gSv3oDuJ+G1a1DsldexyuEKgwZBrVppHLUQIr3z9HzE4MFbWLPmPCVL5mTs2Ho4OdlaZIIFkmQJIZ4hWkfz7+1/WX1uFUeu7CMkwIcbwXe4pR8lqGcVDR3PgVMEVLwHDhHGKuPtC79Ozhz5YOEwYzkEIYQwQWRkNN999z8+/XQ3ERHRTJzYgDFj6llschXLsqMTQqSJa77XuOJ9kUurf+G/6DvsibjEvXBf/LJEJKjnHApV7oJHFqh+G6o5FKVNlwnkcswFTbJBqVJGRVtbyJ497T+IECJDOnv2AaNGbadRo8L8+GMrSpbMae6QXogkWUJkItE6Gs9Hnpy+f5plZ5dx3e86+27sS7JuoUB45QE08Hai0dkQajmVhA8/hOaVjTv28uSRdaSEEKnGzy+UHTuu0rFjWSpWzMORI+9Ttap7utprWJIsITIwrTWn7p9iwYkF7Li6g1P3TyU47mhtT5uHuXC4403bC1DoERTfcoS8zvmMieZ580oiJYRIU1prFi8+zbBhW/HxCeGVVzzw8HCmWrV85g4t2STJEiIDCQgL4LDXYW48usG5B+dYfnY5nv6eccfL5CrDK/lr8eYNJ3JO/4FaXqGo2OUU3n4bfvtNtnkRQpjNxYsP6d9/Izt3XqNSpTysW9cFDw9nc4dlMvlpKkQ64x/mz81HN/Hy92L1udUcv3ucKB3FNd9r+Ib6Jqhbzq0cw2sOobN3XioFZ8Nu3q9wfMHjCgUKwPffQ5MmxnYyQghhJrdu+VOp0lysrRUzZjRj8OBaZMmSvpdukSRLCAv3KPQRe67v4bcTv+Hl78WxO8eeqFPWrSxtS7XFPas7ebLmoVmxZhTJXgSHLPZQuDDcvPm4cq5c4OICW7ZAsWIyHCiEMKvr1/0oXDg7+fM7M3NmM1q1KmmWzZxTgyRZQliYC94X2HhpI3+d+ot/7/yb4JiVsuKdyu9QKmcpSuYsiaONI02LNcVKJfprT2to3x7Wrn1ctmuXkVQVKCCJlRDC7O7dC2T48G0sX36G//7rS5kybvTrV8PcYaUoSbKEMLOAsABO3jvJ7uu7WXluJSfungCMob72pdtjpaxoUbwFncp2wsX+GX/dzZ4N8+fDsUQ9XW3awE8/GZPYhRDCzKKjNT/99C9jx+4gMDCc4cNrU6BAxui5SkySLCHS2AXvC8w4NINT909xO+A2Nx89Hsqr6l6Vzxp9RttSbamQu8LjW5W9vWHlBvDzgxMnIFs2o9zfH/bvh4AAuHPn8UXq1oWiRWHCBKP3SgghLEBQUDhNmizi8GEv6tQpwNy5rahQIY+5w0o1kmQJkQa01qy7sI7fTvzGugvr4srfLPMmvSr1opxbOV7xeIVCkU6wdy/cPgt//2xsgLxtG5w8+eRJbW0hPNx4XaQIDB4MQ4YYyZUQQliQ6GiNlZXCycmWSpXy8O67lXnvvaoWtZlzapAkS4hUEh4VzupzqznsdZhZ/5sVV967cm/er/I+dfK/gtqzB27fhXHfwrm+Rk/V07z5ptEzlT27Ma9KCCHSgTVrzjN27A42b+5OkSI5mDu3tblDSjOSZAmRCn459gsfrP8g7n0J1xK0LdmGT8JfIfv//oND62HrQGPoL1a1alC1qjG816KFMTm9bFlZt0oIkS7duOHH4MFbWLfuAqVK5cTHJ4QiRXKYO6w0JT+9hUghWmvOPDjDJ7s+Ye2FteTNmpf+1fszsOZAcvQbBoNnJmxQsCDMmwfVq4Ojo7Hvn9z1J4RI56KjNTNmHGTixL1ERUXz2WeNGDWqDnZ2mS/lyHyfWIgUorXmVsAtfvr3JxadXMR1v+uAsczC8Mr9mFxpGE7XvKBoWbh712jUtCl8+ilUqvR48roQQmQgSsGePTeoV68gP/zQkuLFXc0dktlIkiVEMoVFhvHN4W/4aOdHCcprulWhZkRu+k7ZSrkHc4A5CRveuGH0XgkhRAbj4xPChAm7+eijV8mXLxtLl3bEyckmXW3mnBokyRLiBe26tou/Tv3FhosbuBd0j4LWrjT0ykKHPfdpfA2yhh9/XLlIEejf37g7MG9eY9J6Jv9hI4TIeLTW/PHHSUaM2Ia3dzBVq7rzzjtVyJrV1tyhWQRJsoR4jis+V/h418csO7MMgNd8sjNzN3Q644NNdLyKs2YZidQrr0DNmmaJVQgh0sr5897067eRPXuuU6VKXjZs6EbNmvnNHZZFkSRLiKfYcnkLv//3OyvPrSQyKpLSD2D3QsibPw8Urwv5o+Dnn8HDw9yhCiFEmhsyZAv//HObWbOaM2BAzXS/mXNqkCRLiBjhUeEcvXWUhf8tZPHpxQSGBwLwjqrKhG+OUegRMH48TJ5s3kCFEMJMtm27QrVq7uTM6cicOa2wtbXGw8PZ3GFZLEmyRKYXERXBb8d/Y8yOMTwKewRAtihrhjwozEeLrpMnKGYvwOHDJcESQmRKd+4EMGzYVpYuPcPIkbX5+utmFC2auda8MoUkWSLTOux1mJ///ZnV51fjG+pLhVzlGLnkES0uQ+6gKHD2AfucUKYIbNkCrpn3NmQhROYUFRXNvHn/8tFHOwkOjuCjj+rxySf1zR1WuiFJlsh0znufp9vKbhy/a9wN2KlsJzoXaU27mr2w1hirru/fbywQKoQQmVi/fhv5+edj1KtXkLlzW1GuXG5zh5SuSJIlMo3tV7Yz63+z2HRpEwAudi5sbvkntT+ZB+t7Pa74v//JVjZCiEwrICAMpRRZs9rSt291XnnFg969K2f4zZxTg9wKIDI8nxAfWvzRgmZ/NGPH1R0MLvsuhx2H4DfHhdqVWsP69UbF7t1Ba0mwhBCZktaalSvPUqbMD4wbtxOAqlXdeffdKpJgmUh+m4gMyz/Mn9lHZjNu17i4skvfRFHQ57fHldq2hfbtoVcvWSxUCJFpXbvmy8CBm9m06RJlyuTizTfLmjukDEGSLJGhaK05fvc4C04s4Psj3wNQybYgYy/n5a35R7DSUcZCoW++CZ06GSuzCyFEJrZgwQn699+I1jB16muMGFEHW1trc4eVIUiSJTKMw16H6bGqB1d8rwDQPHcdOq08R6/dN8kSfdOo1LcvzJnzjLMIIUTmoLVGKUXx4q40bFiY2bNbyrIMKUxprc0dg0VQSnkAnp6ennjICt7pSlhkGG+teIt1F9bh6uDKB6W70eOD2ZS/H6/SyZNQvrwMCQohMj1v72DGjNlOvnzZ+Oyz18wdjtl5eXlRoEABgAJaa6+UPLf0ZIl0SWvN/279jy8PfMnaC2sBqFugLhu7bsDFzQOCgGLFYOpUeOst8wYrhBAWQGvNwoX/MXLkNnx9Qxk27BVzh5ThSZIl0pVrvtcYvGUw269sJywqDIAOZTrQukRrejrVwbpZGwgKgjfegDVrzBusEEJYiPPnvfnwww3s23eD6tXzsXVrK6pVy2fusDI8SbJEuhAZHcnEPROZsn8KCkX53OXpVLYTH1T7gLxZ88L338Pg0kblihVh8WLzBiyEEBbkxg0/Tpy4y/ffv06/ftWxtpYVnNKCJFnC4t18dJOuK7ty0PMg2WyzceDdA1TMU9E4+Ntv8N57jyt/8QWMHWueQIUQwoJs2XIZLy9/3n+/Ks2bF+f69SHkyOFg7rAyFUmyhEXbe30vrf5qRWR0JN+1+I4BNQdgpazA3x9efx0OHjQqli4Ny5ZBhQrmDVgIIczs9u0Ahg7dwvLlZylfPje9e1cmSxYrSbDMQJIsYbHWXVhHrzW9yG6fnc3dN1MhTwXw9TXmWr377uOKN25AwYJmi1MIISxBVFQ0P/54lHHjdhEaGsm4ca8ybtyrZMkiQ4PmIkmWsDihkaFM2D2Brw5+hauD6+MEy98fXF0fV/zuOxg4UJZlEEIIYMeOqwwevIUGDQoxZ04rypRxM3dImZ4kWcJiaK2pN78e/97+l7CoMKrkrcLGbhtxz+YON29CoUJGxcaN4dtvoVw58wYshBBm9uhRKCdO3KVBg8I0a1aMLVu606xZMZT88WkRpA9RWATPR540WdSEg54Hye2Umw1dN/Bvn3+NBOurrx4nWABbt0qCJYTI1LTWLFt2hjJlfuCNN5bg7x+GUormzYtLgmVBJMkSZrfi7Aoqzq3IIc9DTG44mSuDr9CqZCvjB4XW8PvvRsXFi4331rKnlhAi87p61ZeWLf+ic+cVuLo6sGFDN5yd7cwdlkiCDBcKs/rz5J/0WN2DSnkqsfjNxZRxK5OwwowZcOYMdO4MXbqYJ0ghhLAQp0/fp0aNn1EKpk1rwrBhr2BjI394WipJsoTZ/HP7H0bvGI2dtR0H3zuIo43j44NhYTBxIkybZryfMMEsMQohhCV4+DCYnDkdKVfOjREjavP++1UpXDi7ucMSzyHDhSLN3Q28y5vL3qTGzzW4HXCb1Z1XJ0ywgoKMOVdffgnduoG3N5Qp8/QTCiFEBvXgQRC9e6+hdOkf8PYORinF55+/JglWOiE9WSJNPQp9hPsMdwC6lu/KqDqjqOJe5XGFFSugUyfj9cCBxnY5QgiRyURHa+bPP87o0Tvw8wtlyJBa2NnJsGB6I0mWSBNaa5afXc7EPRMB+LLxl4ypNyZhpVatYNMm47W7O8ycmbZBCiGEBfD2DqZ9+6UcOHCTGjXyMW9ea6pUcTd3WMIEkmSJNLH6/Go6r+gMwPJOy+lYtuPjg8uXQ+/eEBxsvD97VoYHhRCZVo4c9jg62vDjjy3p06eabOacjlnMd04pVVoptV0pFaSUuquU+kopZfsC7XIqpeYqpW7GtD2tlOqbFjGL54uMjmTagWl0W9kN+yz2+I7xTZhg/fknvPWWkWBVrQqXLkmCJYTIdDZuvEjdur/h7x+GtbUVW7Z0p1+/GpJgpXMW0ZOllMoB7AIuAR2A/MBMwBEY+Jzmy4HSwMfATaAlMEcpFaW1/jnVghbP9Sj0EU0XNeXo7aPU9qjN8k7LyW6f3Tjo4wMbNkCvXsb7/fuhXj2zxSqEEObg5eXPkCFbWLXqHMWK5cDT8xHlyuWWBUUzCItIsoC+gDPQXmvtA6CUygL8qJSaqrW+nVQjpVReoBHwjtZ6QUzxLqVUDaALIEmWmQRHBNN6cWuO3TnGb21/o1flXlgpK2Mx0Q0bYPBguH4d7Oyga1dJsIQQmUpkZDSzZx9h/PjdhIVFMn58fT76qB4ODjbmDk2kIEvph3wd2BGbYMVYhhFfs2e0i/3X+ChR+SNA/gwwk/CocN5c9iYHbh7gtzd+450q7xgJVng49OkDbdvCgwfw+efG8/z55g5ZCCHSlNaaX389To0a+Th5sh+TJzeSBCsDspSerNLAb/ELtNZ+Sqk7MceSpLX2VEptAz5WSl0APDEStmZA91SMVzxFVHQUPVb1YMvlLXzX4jt6VuppHLh/Hzp0gL//hiFDYPJkcHY2b7BCCJGG/PxCmT79IB9//CqOjjbs3NkTNzdHGRrMwCwlycoB+CVR7gu4PqdtB2ApcCbmfRQwSGu98lmNlFLOGEOUsfK+UKTiqbTWfLjhQ5afXc5njT5jUK1BxoETJ4zeq3v34Lff4J13zBqnEEKkJa01S5eeYdiwrdy9G0j16vlo1640uXM7mTs0kcosJckyiTLS//lACaAbcAdoCsxSSvlqrZc8o/lwQPZqSSFaa0ZtH8Wvx39lRO0RjHt1nHEgdnmGbNlgzx6oXducYQohRJq6fNmHAQM2sW3bFSpUyM2qVW9Ru3YBc4cl0oilJFm+gEsS5TkAnyTKY7UCOgEVtdanYsr2KKVyAzOAZyVZM4Ff4r3PCxx94YhFAlP3T2XGoRm8V+U9vm76NUprY+/ByZOhWjVYswY8PMwdphBCpBmtNe3aLeHaNT++/ropQ4bUks2cMxlLSbLOk2julVLKBXCPOfY0ZTGGB08nKj8OvK+UctRaByfVUGvtD/jHu54JYQuA2Udm88nuT+hUthPzWs9DXbkCXbrAv/8az7/+Co6Ozz+REEJkAAcO3KRmzfzY2lqzYEE7cud2omDBpPoRREZnKXcXbgaaKKWyxyvrBEQD257R7gZgDVRMVF4NuP+0BEuknPUX1jNo8yBaFG/BHx3+wDo0DEqUMBKs0aPhr78kwRJCZAr37wfRs+dqXn11Pj/8cASA6tXzSYKViVlKT9ZcYBCwRik1FWMx0q+BufHXyFJK7QQKaa2LxxRtwliAdIVSahLGnKxmQG9kvlWqO3DzAL3W9KJkzpKsfGsltta20LObcbBSJZg2zbwBCiFEGoiO1vz66zHGjNmBv38YI0bU5oMPqpk7LGEBLCLJ0lr7KqUaA98Da4AAjPlS4xJVtSZezFrrgJh2U4BpQHbgGsak9tmpHngmtvXyVjou70hEVATzWs/D0cYRfH1hZcxNnf/+a94AhRAijXTpsoLly8/yyisezJ3bikqV5GZ1YbCIJAtAa30OaPKcOg2TKLsMdE6lsEQSPt39KZ/t+4yiOYqyuftmSuYsaRwYMcJ4XrkSrGVypxAi4woKCsfePgvW1la8/XZFGjcuwgcfVMPKSub3iscsZU6WSCfWX1jP1P1TKZ2rNP/2+fdxgrVggbFy+5AhxqKjQgiRQa1bd4GyZX/khx+MG9LbtCnFhx9WlwRLPEGSLPHC1l1YR7ul7chqm/XxZs9aw6uvPl5g9PPPzRqjEEKklps3H9Gu3RLeeGMJdnbWVKiQ29whCQtnMcOFwrJd8L5AlxVdKOhSkBMfnsDFPuZumR9+gAMHjNeLF0PWrOYLUgghUslPP/3L8OFbiYyMZtKkhoweXRd7e/kVKp5N/oWI54rW0by77l1srG3Y1G3T4wRrzRoYFLN1zs2bUEBWMRZCZEz29lmoXbsAP/7YkhIlcpo7HJFOmDxcqJSyVUr1U0otV0rtiCl7VSlVXykl3RkZyI9Hf+Sg50G+avIVZdzKGIX//gvt2xuvV62SBEsIkaH4+obQr98GFiw4AcDbb1dk27YekmCJZDGpJ0sp5QTsxlj0UwE65tBIoDUwGPghJQIU5nXz0U0+2vkRDQo14INqHzw+8PvvxvO+fcacLCGEyAC01vz11ymGD9/GgwdB5MjhAMiuIMI0pvZkTQSqYyRY8f0cU9bO9JCEpdBa03dDXyKjI/m5zc9YqZh/LlFRcOQI5MkjCZYQIsO4ePEhTZsuokeP1eTLl41Dh95j6tTG5g5LpGOmzsl6E6P3qiewKF753zHPpV4mKGEZ/jz1J5svb+bLxl9SImeJxwemTIHDh+Gnn8wXnBBCpLAdO65y+LAXM2c2Y9CgWmTJIjfgi5ejtNbPr5W4kVJhGAmaAxAKaK21tVLKAQgCwrXW9ikaaSpTSnkAnp6ennh4eJg7HLPzDvam3I/lyJctH0c/OEoWq5h8/O+/oX59Yz7W8uUgXehCiHRsx46rRERE8frrJYiKiubevSDy5ctm7rBEGvLy8qKAMa+4gNbaKyXPbWqa/ijmOXE20jzm2c/E8woLcM33GuV/LM+DoAd82fjLxwmWnx906wb58hm9WJJgCSHSqbt3A+nefRVNmy5i8uR9aK2xtraSBEukKFOTrJiFkVgaW6CU+hH4E2MYcf9LxiXMRGtN77W9CQgPYFXnVTQvHpM3R0bCwIHg5QV//gmuruYNVAghTBAdrZkz5yilS89m2bIzjB5dhx073paJ7SJVmDonawrQEqjK4zsLP8SY9B4OTH350IQ5LDm9hH039vFti29pV7qdUfjgAeSOWdm4Rw9juFAIIdKh33//j/79N1GnTgHmzm1FhQp5zB2SyMBMSrK01v8qpdoAPwLF4h26AvTTWh9PieBE2vrr1F90X9Wd8rnL0696v8cHevQwnmvUgMmTzROcEEKYKCAgjBs3HlG+fG66d6+AnZ01nTuXl70GRaozaeJ7ghMoVQJwAx5orS+lSFRmkNknvl/3u079+fV5EPyAS4Mu4eEc8zWIiIC8ecHHB0JCwD5d3c8ghMjEtNasWXOewYO3YGNjxYULA7GxsTZ3WMLCpObEd1MXI92FcUdh45jE6lK8Y5Njjk1IoRhFKtt/Yz/1F9THxsqGzd03P06wAHbsMBKsJUskwRJCpBs3bvgxcOBmNmy4SKlSOZk7t7UkWCLNmTonqyGP52Il9knMMUmy0gH/MH+aLmoKwNKOS2lcNGbhvYMHYfp0WL3aeN+mjZkiFEKI5Dlw4CbNm/9BdLTm888bMXJkHezsZKtekfZS9F+dUqpcSp5PpK7DXoep/WttALqU70L7MjF7EW7dCi1aGK+LFIFRo8DR0UxRCiHEiwkOjsDR0YZq1dzp2rU8H31Uj2LF5E5oYT4vnGQppSYAn8a81TFlUUlU1cCdlw9NpKbQyFB6rOqBQrGw3UK6V+xuHIiMfJxgbdwILVuaL0ghhHgBPj4hjBmznYMHvTh+/EMcHGz45Ze25g5LiGT3ZL3orRjLkhuISFszDs7giu8VVnRawZtl33x84NAh47lrV0mwhBAWTWvNokUnGTFiGw8fBjNgQA0iIqKwtZW5V8IyJCfJOgEsjHndC6PH6vd4xzXgCxxFkiyLduLuCT7b9xmtSrRKmGABTIiZSjdzZtoHJoQQL+jWLX969FjNnj3XqVrVnc2bu1O9ej5zhyVEAi+cZGmt1wJrAZRSvWLK3kmluEQqeRD0gM4rOuNs58zPbX5OePDGDdi9G0qWNJZtEEIIC+XsbMf9+0F8+20L+vevIZs5C4tk0r9KrbWV1lr6Y9MZrTU9Vvfgqu9V/uzwJ+7Z3B8f3LoVChc2Xg8ebJb4hBDiWbZtu0KnTsuJioomWzY7Tp7sy+DBtSTBEhbL5LsLlVI2wOtAKcAh8XGttSwNbmF+OPoD265sY0KDCTQtZizbgNbw7bcwYoTRg9WxI/TpY95AhRAinjt3Ahg2bCtLl56hcOHs3Lz5iCJFcmBtLcmVsGymLkbqAewGij6jmiRZFuTAzQMM2zqMJkWbML7++McHxo6Fr76C11+HxYvBxcV8QQohRDxRUdHMnfsPH3+8i+DgCD76qB6ffFIfR0cbc4cmxAsxtSfrMxLuWZjYy+3VI1LU7YDbdFreifzZ8rP4zcVYW1kbPVijRsGMGdCgAaxfD9YyAiyEsBz+/mFMmrSXSpXyMGdOK8qVy23ukIRIFlP7WhtjJFKTYt5roA3wN3AZaPXyoYmUEB4VTqflnfAL9WNV51XkcsxlHNi500iwypQxniXBEkJYAH//MGbNOkx0tCZHDgcOHXqPPXt6S4Il0iVTk6w8Mc/fxBZorTcCXYHigKwCZyGGbRnGQc+DzG01l6ruVY3CiAiYMsV4vX8/VKtmvgCFEALjxpyVK89SpswPDBu2lQMHbgJQrJgrVlYvukSjEJbF1CQrNOY5OPa1UqoEEB1T/tZLxiVeUrSOps/6Pvz4z48MqDGAXpV7GQfCw6FLF9izBz7/HHLmNGucQghx7ZovrVsvpmPH5bi42LF3b2/q1y9k7rCEeGmmzsm6D2QFXIFrQGlgDxC7zY7MyTKzXmt68cfJPwCY3my6URgWBp06GfOvvvjCmPQuhBBmFB4eRd26v+HrG8rUqa8xYkQdWbFdZBimJlknMCa+VwVWAeOAvDzedmfDS0cmTHbd7zp/nPwDVwdX7o+8b0x0f/gQunc31sOaMQOGDzd3mEKITOy//+5SsWIebG2t+eWXtpQunYuiRXOYOywhUpSpw4WjgUbAKYylGr4H7gI+GFvvDE2J4IRpBmwaAMCOt3cYCdb9+5Arl5FgffedJFhCCLPx9g7mvffWUrnyPFauPAdAy5YlJMESGZJJPVla62sYw4SxhsQ8hJnN/Wcumy5toluFblRxr2IUvhOz+1HnzjBokPmCE0JkWlprFi78j5Ejt+HrG8rgwTVp1uxZKwEJkf6ZvOL70yilmgCfaa1rp/S5xbOFR4UzdsdYauavyW9tf4PAQGjTxpjkDvD7789sL4QQqUFrTatWf7F582WqV8/H1q2tqFZNNnMWGV+ykiylVCGgB1AAY/L7Kq31iZhjNYGvgXopHKN4QXP/mcujsEd8VO8j7G7dhbp14dYt4+Dq1WBra94AhRCZSnh4FLa21iilaN26JC1blqBfv+qyHY7INF44yVJKVcG4gzBrvOKPlFK9AUfgR4w5Xgq5uzDNRetoFp9ejKONIy2vWsP7teHOHciWDe7eBUdHc4cohMhEtmy5TP/+G/n++9dp1aok/fvXMHdIQqS55Pw5MQHIhpFExT6sgVnA9JjXCjgKtEjRKMVz/XrsVw57HWbKK+OwbdXWSLD27gV/f0mwhBBp5vbtAN56azmvv/4nSimcnKQHXWReyRkurI3RQ7UB+BkjoXofYzsdAC9gsNZ6TUoGKJ7vdsBtRm0fRW2P2gx2aGgUfvgh1K9v1riEEJnL3Ln/MHr0dkJDI/nkk1f5+ONXcXCQzZxF5pWcJCt2afBeWms/AKXU34A3MXsXaq3/S9nwxIsYuGkgwRHB/NLmZ6zeHg4ODjBunLnDEkJkMnfuBFC1qjtz5rSiTBk3c4cjhNklZ7jQCiA2wYp57RPvtSRYZvDnyT9ZfX41414dR9mtx2DbNvjsMyhQwNyhCSEyuEePQhk8eDN79lwHYPz4Buze3UsSLCFiJHsJB6XU1Rco11prWQAlDXx98GsAxpZ6F96sbGz2PESWLBNCpB6tNcuXn2Xo0C3cuROIm5sjDRsWJksWuWtQiPhMWScr8a6dOlG53F2YRtZfWM9/9/7jy+pjsctXEKyt4ZdfIEuKL38mhBAAXLniw8CBm9my5TLlyrmxbFkn6tUraO6whLBIyf1trJ5fRaSVOf/MAaD/zP1GwVtvQeXK5gtICJHhzZv3L3v3XmfatCYMG/YKNjaymbMQT6O0lk4nAKWUB+Dp6emJh4eHucN5rofBD8n1dS5auzdg/Yd7jcLoaFCSBwshUtbevddxdrajShV3AgPD8fYOpnDh7OYOS4gU4eXlRQFjHnMBrbVXSp5bBtDTqRHbRgDwwcyYBKtzZ0mwhBAp6sGDIHr3XkPDhgv59NM9AGTNaisJlhAvSJKsdCgoPIiF/y2kTWhB2l6IKVyyxKwxCSEyjuhoza+/HqN06R9YtOgkw4a9wl9/dTB3WEKkOzJDOh2q8bOxPUXflTeNguhoM0YjhMhopk8/yJgxO6hZMz9z57aiShV3c4ckRLokSVY6c977POe8zwHQ8hKwY4cMEwohXlpQUDi+vqF4eDjzwQdVyZ7dnvfeqyKbOQvxEuT/nnTEJ8SHKvOqkEUrzs4GGjWCxo3NHZYQIp3buPEi5cr9SJcuK9BakyOHA336VJMES4iXJP8HpRPROpoaP9cgNDKUr7dqyrgUg127zB2WECId8/Ly5803l9G69WJsbKyZMKEBSnrGhUgxLzVcqJR6HXgNyKG1fl8pFbsi3W2tdeRLRyfirLuwjqu+V+l6LgtDD0fCsi/MHZIQIh3bsuUynTotJzw8ik8/rc9HH72Kvb3MIBEiJZn0f5RSKguwCmgVr/h9YBFQL+b1/JeOTsSZcWgGeR1yM3/FfWPrnE6dzB2SECIdioyMJksWKypXzkuTJkX58svGlCqVy9xhCZEhmTpcOAZojbECfPy+5R9i3if7Xl+lVGml1HalVJBS6q5S6iullO0Lts2vlFqolHqglApRSp1TSnVPbgyW6uS9kxy4eYCBG+5jFwVMmGDukIQQ6YyfXyj9+2+kbdvFaK3Jmzcrq1d3lgRLiFRkapL1Nsb+hB8nKt8d81w+OSdTSuUAdgG2GAnax0AfYOYLtHUHDgH5Ytq0BuYAdsmJwZL9dvw3FIoup4HChaFNG3OHJIRIJ7TWLF58itKlZzNnzj8UKOBMeHiUucMSIlMwdQC+cMzzLGBqvPJHMc95k3m+voAz0F5r7QNxQ5I/KqWmaq1vP6PtV4An0EJrHfuTY2cyr2+xTtw9wbf/+5Y3o0tTzPc8XD1u7pCEEOnE9et+9Omznu3br1KhQm5Wr+5M7doFzB2WEJmGqT1ZwTHPronK68Q8ByXzfK8DO2ITrBjLMOJr9rRGSiln4C3gx3gJVoYyee9kAD748zzY2UH27OYNSAiRblhZKf777x7Tpzfl33/7SIIlRBozNck6GvP8U2yBUmo0sARjGPFIMs9XGjgfv0Br7QfciTn2NFUxhhgjlFJ7lVIRMfO5pimlbJ51QaWUs1LKI/ZB8nvfUt3NRzdZd2EdRYPtaH4FGD3a3CEJISzcrl3XGDlyGwAFC7pw/foQRoyog42NtZkjEyLzMTXJ+irm+XWMpArgCyB3zPuvk3m+HIBfEuW+PNlbFl9sYvQL8A9Gr9c3wFBg8nOuORxjmDH2cfTZ1dOW1ppGCxsRpaP4868wo3DiRLPGJISwXPfvB/H226tp3Ph3li07w4MHxoCCg8Mz/94UQqQik5IsrfVO4D3An8d3GCqMOVnva613P6N5SoqNf4fWeoTWerfWehpGkjdMKeXwjLYzgQLxHjVSN9TkWX1+NVd9rzLkMLziBWzeDFaydqwQIqHoaM1PP/1LqVKzWbz4FCNH1ubs2QG4uTmZOzQhMj2TV57TWi9QSi3HmIflBjwADmqtkzsfC4weK5ckynMAPkmUx28Hxp2J8e0ExgHFgVNJNdRa+2MkiQAWtcqxl78Xvdb0ooxVHr7afg/mzIEWLcwdlhDCAl2/7segQZupWtWduXNbUamSxc18ECLTMnUx0i+AhVrr88D2FIjjPInmXimlXAB3Es3VSuTsc85r/5JxmcWco3MIDA9k0QYXbEuXgw8/NHdIQggLEhgYzoYNF+nSpTxFi+bg4MF3qVLFHSsry/ljUQjxcouRnlFK/aOUGqyUcnvJODYDTZRS2eOVdQKigW1Pa6S1voHRU9Uk0aGmQAjPT8IsjnewN78e/5V8kQ5U/ecWTJsGFtTLJoQwr7Vrz1O27A907bqSc+ceAFCtWj5JsISwQC8zyUdh3N33DXBLKbVBKdVZKWXKIqBzgQBgjVKqmVLqHYx5VXPjr5GllNqplLqcqO04oK1SapZSqqlS6mNgJDDTxKFLs/EJ8aH+/PrcC7rHb4tDUGPGQKtWz28ohMjwbt58RLt2S2jXbikODjbs3NmTMmVe9u9bIURqepnFSN/C6G2qEXOelhh3GwYopZZrrT940ZNprX2VUo2B74E1GAnXLxgJVHzWiWPWWq9XSnUFxgP9MJZ9mAB8mexPZWYjto3gnPc5pt2tQHO/2/CFbAIthDC2xKlYcQ6hoZFMmtSQMWPqYmcnmzkLYemU1vr5tZ51AqUKYSRbbwHVY4q11jpdLcoSs1aWp6enJx4eHml+/YCwAPLNzEczu7KsHHEE+vWDH39M8ziEEJbjxg0/ChXKDsCvvx6jfv1ClCiR07xBCZHBeHl5UaBAAYACWmuvlDx3SqwJ4I9xB6AvEJkC58uUFp1cRGB4IIO/i1nHdfLzlvkSQmRUvr4h9O27gWLFvuPIkVsAvPdeVUmwhEhnTL27MAfQHqMH67V451FAGLAuRaLLJI7eOsrIbSOp9siJ+jeCYOxYyJXL3GEJIdKY1pq//jrF8OHbePAgiH79qlOypCRWQqRXpg7q3yVhYqWBv4HfgeVa60dPayie9PGuj8kSHsny+RGoGTNg+HBzhySESGORkdG0bPkn27dfpXLlvKxb14VatdJ+6oIQIuWYmmTF7tNwCVgE/KG1vp4iEWUy/9z+hx1XdzBhHxTxA955x9whCSHSUHS0xspKkSWLFRUr5qFlyxIMHFiTLFlkhwch0jtTk6wfgUVa6/+lZDCZ0QfrPiBrGAw8Ajx4ADlymDskIUQa2b79CkOGbGHZsk6UL5+b6dObmTskIUQKMnXvwoGSYL28qw8ucu7uKep4Qq5xU2QelhCZxN27gXTrtpJmzf4gODgCX98Qc4ckhEgFL9yTpZTahbE0Q+OY18+itdaNXy60jC0kIoQGP9QgKjqKb3fawHf9zB2SECKVaa2ZN+9fxo7dQVBQBGPG1GX8+Po4OdmaOzQhRCpIznBhQ4wJ7olfJ6aecUzE2HhpI17Kn6m7ofSVR+DgYO6QhBCpTCnFgQM3KV8+N3PmtKJChTzmDkkIkYqSk2TdxNhLMPa1JFIv4bPt43ENhhEuLSTBEiIDCwgIY9KkvfTtW53ixV2ZN681Dg42stegEJnACydZWuvCSb0WyRccEcxJv/M0vw22739o7nCEEKlAa82aNecZPHgLXl7+eHg4M3ToKzI0KEQmYupipJ9izLv6LIljr2EcfN68rUzrz5N/AvDmWeD3N8wbjBAixd244cfAgZvZsOEipUvnYvfuXjRsWNjcYQkh0pipSzhMxBgufCLJAnZgDCvK7qVJ0Frz7YHpFPGFnjU/ACVDBkJkNGPG7GDHjqt8/nkjRo2qi61tutrKVQiRQlJ0tTullHPsy5Q8b0Zy+v5pzvhdZMhhsKtaw9zhCCFSyN9/38TLyx+A6dObcfp0P8aNqy8JlhCZWHKWcOgF9EpUlnhIsGDMs9/LhZVxrb2wFoB254Fq1cwbjBDipfn4hDBmzHZ++eU4771XhV9+aYuHh/PzGwohMrzkDOkVJuHSDQpokKhObA/WvpeKKgM7cvMQ+YKsKORWFKpUMXc4QggTaa1ZtOgkI0Zs4+HDYAYOrMHnn79m7rCEEBYkOUmWH3Aj5nUhjGTrZrzjGvAFjgITUiK4jGbdhXWsv7KJpneBvn1lPpYQ6dhHH+1k2rS/qVrVnc2bu1O9ej5zhySEsDDJWcLhW+BbAKVUdExZkVSKK8PRWjN572QAftgIzB9q1niEEMkXEhJBWFgU2bPb8+67VXB3z8qAAbKZsxAiaabeAdgoRaPIBN5b9x7/3vmXHv9BifrtwFomwwqRnmzdepn+/TdRr15BFi5sR8mSOSlZMqe5wxJCWLDkTHyvD6C13kfMvKzYsqTE1BPAuQfnmH9iPgC/rAMmyoR3IdKLO3cCGDZsK0uXnqFw4ex07lzO3CEJIdKJ5PRk7eHx+ld7ePa2OjqZ587QPts9EYBrs8AuChg50pzhCCFe0KpV53jnnbUEB0fw0Uf1+OST+jg62pg7LCFEOpHcREg95bV4imgdzd5zWyjiC4X9gBMnwN7ezFEJIZ5Fa41SiuLFXalePR/ffdeCcuVymzssIUQ6k5wk652nvBbPcPbeaW7jz1dHAX9/yJbN3CEJIZ7C3z+MTz/dTXS05rvvXqdixTzs3NnT3GEJIdKp5NxduDCp1+LZdnw3FOygcdHGkmAJYaG01qxceY4hQ7Zw+3YA779fJa43SwghTGXqBtF2gBMQprUOitlOZwDgBmzRWm9LwRjTr8uXWXZ/N8WcoMrsleaORgiRhOvX/RgwYBObNl2ibFk3lix5k1dfLWTusIQQGYCpi7vMBh4AsTO4twOfA0OAzUqpjikQW7p3tVdbDhWAN3RJlIuLucMRQiTh7t1A9u69zhdfNOb48Q8lwRJCpBhT7wCsFfO8QSlVBqgBRAGhGD1cQ4EVLx1dOjc11zkAuoz5w8yRCCHi27//BidO3GXQoFq88ooHnp7DyJHDwdxhCSEyGFN7sgrEPF8Cqsa8ngzUjHld6mWCyhC05rAHOEZZUyN/DXNHI4QAvL2DeffdtdSvv4AZMw4REhIBIAmWECJVmJpk2cU8RwDlMNbF+he4HFOe9SXjSvcud2nGmdwwOrTq8ysLIVKV1pr5849TuvRsFi78jyFDanHyZD8cHGTNKyFE6jF1uPA2UASYD9SLKTsL5I157f2ScaVvhw4xz3cHAD2H/GbmYIQQR4/e5t1311G9ej62bm1FtWqymbMQIvWZ2pO1FmMx0k5APuCU1vo6ELtfzOmXDy39uvl6HabXhYa6EEXylzd3OEJkSsHBEezadQ2AmjXzs3VrDw4ffk8SLCFEmjG1J2s84AjUBW7w+C7DEsBeYPHLh5Y+6UWL6NTJeD2o80zzBiNEJrVp0yUGDNjEnTsBXL8+lLx5s9KsWTFzhyWEyGRMSrK01sFAvyTKvwa+ftmg0rO1Cz/iyKswscYoOpTpYO5whMhUbt3yZ+jQraxYcZaiRXOwdm0X8ubN9FNEhRBmYvImzkqpLEAvoAXGIqTewGZgodY6MmXCS1+01nxd9C7OoTC66SRzhyNEpnLz5iPKl/+R0NBIPvnkVT7++FWZ2C6EMCtTV3y3B7ZhDBfG1x54RynVRGsd+rLBpTcXHl7gYP4opj6sjION3BIuRFrw8QnB1dWBggVdGDmyDm+9VY7SpXOZOywhhDB54vvHGHcVqiQetWOOZzpLTy8BoIVDBTNHIkTG9+hRKIMGbaJIkW/x9HwEwKefNpAESwhhMUxNst7CWBtrOcZkd/uY52UYidZbKRJdOrPp7DrsI6Bi1uLmDkWIDEtrzdKlpyld+gdmzz7KW2+VxcnJ1txhCSHEE0ydk1U45vlDrbVfzOsrSqm+GAlW4STaZGjXfK9x5MFxPjkI1t+2N3c4QmRIAQFhdOq0nK1br1C+fG5WrOhE3boFzR2WEEIkydSerJCY58T3RBdLdDzT2HNtFwDts5SHCjJcKERqyJrVFnv7LEyb1oRjx/pIgiWEsGim9mT9AzQGNiqlFgKegAfG3YaxW+xkKnsO/IFLKFTqNMjcoQiRoezZc51x43axenVncud2YvXqziilzB2WEEI8l6lJ1nTgNYylG0bGK1cYSdb0l4wrXdFa87vvHtrcAOuBrcwdjhAZwoMHQYwcuZ3ff/8PDw9nrl3zJXduJ0mwhBDphknDhVrrrcCHQAAJ7ywMAPpqrbekWITpwOW1xv6EZR4A+fObNxgh0rnoaM2vvx6jdOkf+PPPkwwf/gpnz/anVi0Pc4cmhBDJYvJipFrrX5RSS4A6QC6MxUgPaq0DUyq49OLSjHHQBGqMkm10hEgJv/56nOLFXZk3rzWVK+d9fgMhhLBAyU6ylFKFebwR9DGt9bYUjSi9iY5mvvs9AJrWf9fMwQiRPgUFhfP11wcZOvQVsme3Z+3aLri6OmBtbeq9OUIIYX4vnGQpYyLEHOB9jKHB2PL5wAdaa53y4Vm+0AW/sLMoVIl0w8XexdzhCJHubNhwkYEDN3HjxiMKFXLhnXeq4ObmZO6whBDipSXnz8RBQB+eXOH9HWBoikeWTmy+uBFfB5jc+HNzhyJEuuLl5U+HDktp02YxNjbWbN/+Nu+8U8XcYQkhRIpJTpIVOxYWDqwD1gNhGIlW75QNK5149IgN59ZhFwmN6nQ3dzRCpCtdu65k48ZLTJjQgFOn+tGkSVFzhySEECkqOXOySmIsz/C61noPgFKqEbATY0udTEf/9BO/VYWaj7LiZCvDG0I8z5EjtyhXzg0nJ1t++KEldnbWlColew0KITKm5PRk2QPEJlgxYl/bpVA86coZn/MAVG/8tpkjEcKy+fmF0r//Rl555RemTfsbgIoV80iCJYTI0Ey5u7AA8Sa+P61ca33z5UKzcFqz+OZGKAmj644xdzRCWCStNYsXn2b48K3cuxfEhx9WY9iwV8wdlhBCpAlT1sm6nui9TqJcm3ju9OPSJVbluMerqjCFshcydzRCWKT+/Tcyd+6/VKyYh9WrO1O7dgFzhySEEGnGlEVoEt9d+LRH8k6qVGml1HalVJBS6q5S6iullG0yzzFUKaWVUhuSe/3kur5vHefdoGWxFql9KSHSlbCwSMLCIgF4661yTJ/elH//7SMJlhAi00lOb9M+HvdapSilVA5gF3AJ6ADkB2YCjsDAFzxHXmACcD81Ykxs25HFkB9aNHw/LS4nRLqwa9c1+vXbSPfuFfj00wY0alSERo2KmDssIYQwixdOsrTWDVMxjr6AM9Bea+0DoJTKAvyolJqqtb79Auf4CmNpidQfu4uM5KjPKbK6Z6FiPlnXR4j794MYMWIbf/xxkgIFnKla1d3cIQkhhNlZyp4VrwM7YhOsGMsw4mv2vMZKqXpAO2BsqkSX2JQpnM4eQWmHAlgpS/kSCmEeS5eeplSp2SxefIpRo+pw9uwAWrcuae6whBDC7CwlQygNnI9foLX2A+7EHHsqpZQ1MBuYorW+k1oBxgkMJGLyRA4XgFKFqj23uhAZnaOjDWXK5OLYsQ/56qumZM2arKmUQgiRYVnKHYA5AL8kyn0B1+e07Q84Ad8k54JKKWeMIcpYeV+o4aFD7IhZmLqcR9XkXFKIDCEwMJyJE/dQsKALgwfXok2bUrRuXRJje1MhhBCxLKUnyyRKqdzAZGC41jo8mc2HA57xHkdfqNWRI/yTz3jZoUyHZF5SiPRt7drzlC37AzNmHOLcuQdx5ZJgCSHEkyylJ8sXcEmiPAfgk0R5rMnASWC/Uip7TFkWIEvM+0CtdeRT2s4Efon3Pi8vkmitXs2+suCeNS+lcpV6bnUhMoKbNx8xaNBm1q27QMmSOdm5syevvSZ3DQohxLNYSpJ1nkRzr5RSLoA7ieZqJVIaqI+RpCXmizGhfktSDbXW/oB/vOs9P0qtOXb7X3a0geHluz2/vhAZxN9/32Tr1stMntyQ0aPrYmdnKT86hBDCcpn8k1IplRMYDbwG5NBaF1dKdYs55xatdXLWq9oMfKyUyh4z4R2gExANbHtGu6FA9kRls4AQ4COMXq6U88UX/F4JbLQVY+ulzY2MQpjLoUOe3LkTSIcOZejSpTz16hWkQIGkOpyFEEIkxaQkK2Yu1GGMNakUjxcpbQF0x0hwvkrGKecCg4A1SqmpGIuRfg3Mjb9GllJqJ1BIa10cQGt9IonY/DCGCfck60O9iOXLOVUtC+XcSuPm5JbipxfCEvj6hjB27A5++ukYZcrkol270lhZKUmwhBAimUyd+P4ZUBiISlS+ACPpapOck2mtfYHGQCSwBvgSY77U8ERVrTHXEGdICJw+zYX89pTMU9YsIQiRmrTW/PHHSUqVms3PPx+jf//qHDz4HlZWMqldCCFMYWrC0gqj96o5sDNe+ZGY52LJPaHW+hzQ5Dl1Gr7AeZ5bxyReXvhbR3LLKpBSOWXCu8h41q+/yNtvr6Zy5bxs2NCNmjXzmzskIYRI10xNsmLHyv5+yvGcJp7Xcvn7czRm6YZKeSqZNxYhUkhoaCQXLnhTqVJeWrcuyR9/tKdz5/JkyZKuV3cRQgiLYOpPUu+Y58SrsXeNeU6TTZrT1OrVHIvZjq2WRy3zxiJECti+/QoVKsyhWbM/CAoKx8pK0b17RUmwhBAihZj60zR2iHBNbIFSahMwB2MYcWcSbdK3KVM47AE57V3Jn02GUUT6dfduIN26raRZsz+IiIjit9/a4uQkW+EIIURKM3W4cDLQFmPye+ydhc0xJr0/wpgYn3E8fIgG1pVWlMiaR1a3FunWyZP3qF9/PkFBEYwZU5fx4+tLgiWEEKnEpJ4srfVl4FVgF8ZaVirmeRdQX2t9JcUitATe3vzPAyKtNL0q9TJ3NEIkW0hIBABly7rx1lvlOHasD19+2UQSLCGESEUmL4egtT4FNFFKORCz/Y3WOjTFIrMkV6+yrJzx8q1yb5k3FiGSISAgjAkT9rBmzXlOnuxH1qy2/PRTslZYEUIIYaKXXnNKax2CscJ6xnX3btyk90LZC5k3FiFegNaa1avPM3jwZm7dCqB378pERCRe1k4IIURqMnXF9+f9tNZa6wyzuVn0/w5zsADUylcTKyV3XgnL5u0dTO/ea9i48RKlS+diz54ONGhQ2NxhCSFEpmNqIpSpZn6fPreXCHdoXryFuUMR4rmyZbPl1q0APv+8EaNG1cXW1trcIQkhRKZkapK1MNF7a6AIUAcIBpa/TFAWRWs2cgmA7hW7mzkYIZL29983mT79EIsXv4m9fRb++ecDrK2l11UIIczJpCRLa/1OUuVKqebAZuDYywRlUUJDuZktmqzYUsK1hLmjESKBhw+DGTt2B7/8chx396xcuvSQChXySIIlhBAWIEV/EmuttwKBwOCUPK9ZnTrFf3mhlFVuWR9LWAytNQsXnqB06R/49dfjDBxYg3PnBlChQh5zhyaEECKGqRPf6ydRbA+8DmQF3F8mKEsSPmsG/xaDPrkqmzsUIeKEhEQyYcIeChZ0YfPm7lSvns/cIQkhhEjE1DlZe3i80ntiGjhh4nktzqGAc4RngaqvdDB3KCKTCwmJ4Kef/mXAgJo4Otqwa1cvChZ0kb0GhRDCQr3MT2f1lIcn0P/lQ7MA0dEEXjgFgHu2DNM5J9KhrVsvU778HIYO3crGjRcBKFo0hyRYQghhwUztyUpq4nsYRoL1P611pOkhWZBbt7jpYrws6FLQvLGITOn27QCGDdvKsmVnKFIkOxs3dqNlS7kBQwgh0oNkJ1lKKTvAN+btIa31g5QNyYLs3s3R/JBdOVAmVxlzRyMymehozWuvLeTqVV8+/rge48bVx9HRxtxhCSGEeEHJTrK01mFKqRUYQ40Ze7bt2bNcdoUSecvJnYUizZw5c58yZdywslLMnt2SfPmyUbasm7nDEkIIkUymTui4jDH/KmNvhubjwxVXKJ5ThmdE6vP3D2PIkM1UrDiXX381lppr0qSoJFhCCJFOmZpkTYx5nqKUsk2hWCxOsN8DbmeDYjmKmTsUkYFprVmx4ixlyvzAd98doXfvSnToIMPTQgiR3pk68b0f8Aj4AOiklLoIhMQ7rrXWjV82OHM7bm1MNyshPVkiFfXsuYY//jhJ2bJuLFnyJq++WsjcIQkhhEgBpiZZDTDWw1JADqBmvGOKp6+hla7syeIJQOMi6T5fFBYmIiKKLFmsUErRtGlRypVzY/jw2rKZsxBCZCAvnGQppXpi9FAtAm6SQRKpZzkfcQeAvFnzmjkSkZHs23eDvn03MG7cq3TvXpGePSuZOyQhhBCpIDk9WQuAaGCR1rpwqkRjYc67RGCrrbG2kt4F8fK8vYMZPXo78+efIF++bLi42Js7JCGEEKkoucOFmWcdg6gormWHnDiYOxKRAfz550kGD96Cn18oQ4bUYvLkRjg725k7LCGEEKnI1DlZGV94OFmioZDKbu5IRAZw/34QRYvmYN681lStKls0CSFEZmDKiu+7XqBaur+7MPLQ39zLCp2i5ReiSL7g4Ag++2wvtWsXoG3bUgweXIvBg2thbS17DQohRGZhSk9Wg+cczxB3F/pcNjaGzlq4pJkjEenNpk2XGDBgE9ev+zFs2Cu0bVtKkishhMiETPnJr57zyBD+/W0KAKWL1XxOTSEMt27507HjMlq1+gtra8WWLd2ZObO5ucMSQghhJqb0ZBVJ8SgsTWgonpEPAahZKl2Peoo0tHDhf6xbd4Hx4+vz0Uf1cHCQzZyFECIzM2WD6BupEYhFuXePKzmMl0VzFjdvLMKiHT16i4iIaOrUKcCIEbV5880ylCqVy9xhCSGEsAAyUSQp165xyxkclS12WeQ2e/GkR49CGThwE7Vq/cLo0dsBsLPLIgmWEEKIOMnpybqJsRhpxnfjBtezg5UsQioS0VqzbNkZhg7dyt27gXzwQVW+/LKJucMSQghhgV44ycosq7wDcPkyEVZQzFWGCkVCv/56nA8+WE/58rlZufIt6tQpYO6QhBBCWChZjDQpXl7cymVF/TzlzR2JsABhYZHcvRtIoULZ6dq1PKGhkXz4YTVsbKSnUwghxNPJnKwkRN28wR3HaDycPcwdijCz3buvUanSXNq2XUJkZDROTrYMHFhTEiwhhBDPJUlWEgIunyHaCnLY5zB3KMJM7t8PolevNbz22u8EBUUwaVJDrK0zzDJwQggh0oAMFybm78+DwPsAREZHmjkYYQ5//32TNm0W4+8fxvDhrzBpUiOyZrU1d1hCCCHSGUmyEtu/n3tZjZdl3cqaNxaRpqKiorG2tqJ8+dy8+mohJk1qSOXKec0dlhBCiHRKhgsTCwnhrJvxsnxumfieGQQFhTNmzHYaNVpIdLTGxcWetWu7SIIlhBDipUiSlVh4OBdyQhaVhaI5ipo7GpHKNmy4SLlyP/LVVwcpWNCF4OAIc4ckhBAig5DhwsQuXuRUHijlUhQba9l7LqO6ezeQ/v03snr1eUqUcGXHjrdp3FiSaiGEEClHkqzEoqM5lRsaulc2dyQiFVlbKw4f9mLixAaMGVMPe3v5X0EIIUTKkt8sifj43+NuIajgXsncoYgU9r//efHHHyf57rvXcXNz4sqVwTg4SG+lEEKI1CFzshI5738VgAq5K5g5EpFS/PxC6d9/I7Vr/8qyZWe5efMRgCRYQgghUpX0ZCVy3tYfgAp5JMlK77TWLF58muHDt3LvXhAffliNL75oTI4cDuYOTQghRCYgSVYi5+2DyBaVhUIuhcwdinhJDx4E8+GHGyhaNAerV3emdm3ZzFkIIUTakSQrkXP2AZQPd0Up2UIlPQoLi2TlynN061aB3Lmd2Lu3NxUr5iFLFhkZF0IIkbbkN08iF3JEUzFrMXOHIUywc+dVKlacS/fuqzh0yBOAqlXdJcESQghhFvLbJ5EQG6hgK8NK6cm9e4H06LGKJk0WERoaydq1XWRoUAghhNlZTJKllCqtlNqulApSSt1VSn2llHrmrrxKKfeYeieUUgFKKS+l1F9KqZeaUFXc3v1lmos0FBoaSZUq81iy5DSjRtXh7Nn+tG1bytxhCSGEEJYxJ0splQPYBVwCOgD5gZmAIzDwGU2rxdT/DTgM5ALGA0eUUuW11g9MiSe7cjSlmUhDN28+omBBF+zts/DVV02pWDEPFSvmMXdYQgghRByLSLKAvoAz0F5r7QOglMoC/KiUmqq1vv2UdgeA0lrryNgCpdRB4CbQE5hhSjAuJWX5BksVGBjOxIl7mDXrMFu29KBJk6L06FHR3GEJIYQQT7CU4cLXgR2xCVaMZRjxNXtaI621X/wEK6bMC3gA5DM1GJeKNU1tKlLR2rXnKVv2B2bMOES3bhWk50oIIYRFs5SerNIYQ35xtNZ+Sqk7McdemFKqJJAbOGdqMC658pvaVKQCrTWdOi1n5cpzlCyZk507e/Laa0XMHZYQQgjxTJaSZOUA/JIo9wVcX/Qkyljc6jvgNrD4OXWdMYYoY+UFsNbgkEVWBLcE0dEaKyuFUory5XNTqVIeRo+ui52dpfyzFUIIIZ7OUoYLU8pEoDHQU2sd9Jy6wwHPeI+jANkirWUhUgtw8KAnVavO4+BBY72riRMbMn58A0mwhBBCpBuWkmT5Ai5JlOcAfJIof4JS6gPgU+BDrfXOF2gyEygQ71EDwDlKfombk49PCB9+uJ66dX/j7t1AHj0KNXdIQgghhEksJaM4T6K5V0opF8A95tgzKaXaA3OAT7XWvz2vPoDW2h/wj3cOALJlkeUbzOWvv04xdOgWvL2D6d+/OlOmNCZ7dntzhyWEEEKYxFKSrM3Ax0qp7Fprv5iyTkA0sO1ZDZVSDTHmX/2stf7sZQPJht3LnkKY6OBBT/Lnd2bDhm7UrCk3HwghhEjfLCXJmgsMAtYopaZiLEb6NTA3/hpZSqmdQCGtdfGY92WANRiLmC5SSr0S75wPtNZXkhuIc6S1yR9CJE9oaCRffLGf9u3LULlyXr76qim2ttay16AQQogMwSKSLK21r1KqMfA9RtIUAPwCjEtU1ZqEMdfCmMvlAvydqO5CoHdyY8nq4pbcJsIE27dfoX//TVy+7IPWULlyXhwdbcwdVqantcbb25vQ0FCioqLMHY4QQpjM2toae3t7cuXKZbYb2iwiyQLQWp8DmjynTsNE7xcAC1IyDmdrWb4hNd29G8jw4VtZvPg0hQq5sGFDV1q1KmnusARGgnXr1i0CAgKwtbXF2lp6dYUQ6Vd4eDiBgYGEhYWRP39+syRaFpNkWYps1jLxPTVNmrSH5cvPMmZMXcaPr4+T0zP3ABdpyNvbm4CAAHLnzk3OnDnNHY4QQry0hw8fcv/+fby9vXFzS/uRKkmyEsmWxcncIWQ4x4/fIVs2O4oXd2Xy5EYMGFCT8uVzmzsskUhoaCi2traSYAkhMoycOXPi5+dHaKh5lgOSGcaJONllM3cIGUZAQBjDhm2hevWfGTNmBwBubk6SYFmoqKgoGSIUQmQ41tbWZptjKj1ZiTh6FDZ3COme1ppVq84xZMgWbt0KoHfvynz11TOn2wkhhBAZjiRZiTjZOT+/knimr776m7Fjd1KmTC7+/LMDDRoUNndIQgghRJqT4cJEXOwlyTJFREQUPj4hAPToUZEvvmjMiRN9JcESZjFx4kSUUnGPnDlzUq9ePTZt2pRkfV9fX0aNGkWxYsWws7MjT548dO3alXPnziVZPzAwkEmTJlG+fHkcHR1xcnKiZs2azJw502xzP9LKN998Q8GCBbG2tqZdu3Ypfv7437enPRYsWPBS1zhx4gQTJ04kODj4hdt06tSJUaNGvdR106P169dTqVIl7O3tKVmyJPPnz3+hdufOnaNly5Y4OTmRI0cO3n77bby9vZ+od/78eZo2bYqTkxN58+Zl9OjRhIeHxx0PCAjA1dWVv/9OvEpT+iA9WYnY28gSDsl14MBN+vbdQNGiOVi7tgv58zszdmw9c4clMjkHBwd27doFwO3bt5k6dSpt2rRh//791KlTJ67e3bt3qV+/Pr6+vowbN44qVarg5eXF9OnTqVGjBps2baJ+/fpx9b29vWnUqBGenp4MHTqUevWMf+uHDh3iyy+/xNramiFDhqTth00jly5dYsSIEYwZM4Y2bdqQK1euFL/GoUOHEryvXbs2gwYNolu3bnFlxYoVe6lrnDhxgkmTJjFw4EAcHZ9/R/mxY8dYv349V69efanrpjcHDhygffv2vP/++8yaNYtdu3bx3nvvkS1bNjp27PjUdv7+/rz22mt4eHjw119/ERwczEcffUSrVq04dOgQVlZG/46vry+vvfYaJUqUYNWqVdy6dYvhw4cTHBzM7NmzAciWLRuDBg3i448/Zu/evWnyuVOU1loeWgN4AHrfvnVavBhv7yD93ntrNUzU7u7T9bJlp3V0dLS5wxImunbtmr527Zq5w0gREyZM0E5OTgnKvLy8tFJK9+nTJ0F5+/bttZ2dnT537lyC8sDAQF2mTBmdP39+HRISElfeqVMn7ejoqE+dOvXEdR8+fKj//vvvFPwkLy44ODjVr7F+/XoN6CtXrrz0uUJDQ3VUVNRz6wH666+/funrxTd//nwN6AcPHrxQ/Z49e+q2bdumyLXT4vuUUpo1a6br1KmToKxr1666TJkyz2z3xRdfaAcHB3337t24sqNHj2pAr1q1Kq5s6tSp2snJST98+DCubN68edra2lrfunUrruz69esa0CdOnDDpczzvZ5unp6cGNOChUzi3kOHCROxsZEPiF7F9+xVKl/6B+fNPMGhQTc6fH0inTuXMtqquEM+TP39+3NzcuHnzZlzZjRs3WLNmDT179qR06QR71OPk5MS4ceO4desWy5cvj6u/YsUK+vbtS/ny5Z+4hqura4JesqScO3eODh064OrqiqOjI5UqVWLx4sUAXL9+HaUUK1asSNBm6NChFC5cOO79ggULUEpx6NChuKGWUaNG0bBhQ1q3bv3ENWfPno2DgwOPHj0CjD+up0+fTsmSJbGzs6No0aJ88803z4y7d+/etGnTBjB6kuIP2924cYOOHTvi4uKCk5MTzZs359SpUwnaFy5cmIEDB/LVV19RqFAhHBwc8PHxeeY1n2bBggVUrFgRe3t78ufPz7hx4xLcPebn58cHH3xA/vz5sbe3p0CBAnTp0iWu7TvvvAOAm5sbSqkEX9vEgoKCWLly5RM9N4cOHaJt27bky5cPJycnKleuzKJFixLU2bNnD0opNm7cSMeOHXF2dqZTp05xMfbv3x93d3fs7OyoVq0a27Yl3Kp348aNNG3alNy5c+Ps7EytWrXYsmWLSV+z5AoLC2P37t1x8cbq0qUL586d4/r1609te/z4cSpVqkSePHniyqpXr07OnDlZv359XNnmzZtp0qQJrq6ucWVvvfUW0dHRCb4WhQoVombNmi89TGwOMlyYiF0WSbKeRWuNUopixVwpXToX33zTnOrV85k7LCGeKzAwEB8fH4oUKRJXtm/fPrTWcclDYrHl+/bt4+2332b//v1orWnRooVJMVy6dInatWtToEABvvvuO/Lmzcvp06cTJH7J0a1bN/r06cPHH3+Mo6MjJ06cYNCgQfj4+CT4xbV48WJatmyJi4sLAEOGDOGXX35h3Lhx1KpVi4MHDzJmzBgcHBzo27dvktcaP348ZcuWZcyYMaxatQp3d3eKFStGQEAADRs2xMrKirlz52Jvb8+UKVOoX78+J0+epECBAnHnWLlyJSVKlODbb7/F2toaJ6fkr0s4c+ZMRo8ezbBhw5gxYwbnzp2LS7K+/PJLAIYPH87mzZv58ssvKVy4MHfu3GHz5s0AtGrVik8++YTPP/+cLVu24OLigp2d3VOvd+jQIYKCgqhbt26C8hs3blC3bl369u2Lvb09f//9N++99x7R0dH06tUrQd0+ffrQo0cPVq9ejbW1NeHh4TRt2pR79+4xZcoU8ufPzx9//EGrVq04duwYFSpUAODatWu0adOGkSNHYmVlxebNm2nZsiW7du2iYcOGT41Za/1CSxZYW1s/9Q/jK1euEBER8cQfH2XKlAGMuVRPS05DQ0OT/Jra2dklmOd4/vx53n333QR1smfPjru7O+fPn09QXqdOHbZv3/7cz2RpJMlKxMUxh7lDsEghIRFMmbIfLy9/FixoR9GiOdi//x1zhyXSQr9+kKhXIk1VqABz5pjUNDIyEjDmZI0ePZps2bIlmC9169YtAAoWLJhke2dnZ7Jnz46Xl9cL1X+eiRMnYmtry99//42zs3GTTZMmpi9v0rdvX8aMGRP3vnjx4gwaNIiVK1fywQcfAEYycOjQIZYtWwYYvzxnz57N3Llz6dOnT1wMwcHBTJo0iT59+sTNmYmvWLFilCxpbIFVpUqVuF+w3333HTdu3ODMmTNxv4AbNGhAwYIFmTVrFjNmzIg7R0REBJs3bzYpuQJjEvSECRMYPXo0U6dOBaBp06bY2toyfPhwRo0aRc6cOTly5AjdunVLkOzE9mS5ubnFzemqVq3ac+eVHT16lKxZs1K0aNEE5bHnAyOpqV+/Pl5eXsybN++JJKtt27ZMmzYt7v38+fM5ceIE//33H2XLlgWgefPmXLp0ic8++yzuezVw4MC4NtHR0TRq1IgzZ87w008/PTPJ2rt3L40aNXrm5wLYvXv3U8/j6+sLGElPfDlyGL8jn9ULWaJECebPn09ISAgODsY855s3b3Lnzh2yZs2a4BqJzx97jcTnr1SpEt9++y0BAQFky5Z+1rOUJCsRa2vZpDixLVsuM2DAJq5e9aVTp7JERERhYyOLVgrLFhQUhI3N4/+fra2tWbt2LaVKlXrpc5s6LL5z5864YaOU0KpVqwTvc+bMSdOmTVmyZElckrV06VKyZs0aN4y4Y4exMPCbb74Zl4SCkWhNmzYNT09PChUq9MIx7N+/n/Lly8clWGAMmzZt2pQDBw4kqNuwYUOTEyyAgwcPEhgYSKdOnZ6IPSQkhNOnT9OgQQOqVq3KggULcHd3p0WLFkkO7b6oO3fuJJmI+fr6MmHCBNauXcutW7fieo6S2jEh8fdp27ZtVKhQgZIlSyb4HE2bNuWPP/6Ie+/l5cW4cePYsWMHd+7ciZ0/TLVq1Z4Zc7Vq1Th69OhzP1tK/L+QlA8++IBvv/2WDz/8kC+//JLg4OC45N3U/3dy5cqF1pp79+5JkpWeKVnxOs6dOwEMHbqVZcvOUKRIdjZt6sbrr5cwd1girZnYi2RuDg4O7Nu3j+joaC5dusTYsWPp2bMnp0+fxt3dHTDmaYHxV3alSpWeOEdAQAB+fn54eHg8UT+2Vyc5Hj58SL58KTe8Hn/OS6yuXbvSq1cv7t69S968eVm8eDHt27fH3t6YCuHt7Y3W+qk9OMlNsnx9fZOMI0+ePJw+ffq58SZH7BIAVatWTfK4p6cnAN9//z2urq7MmDGDUaNGUaBAAT766CP69euX7Gs+beird+/eHDx4kE8//ZRy5crh7OzMnDlzWLp06RN1E39ub29vjh8/nuCPgFixuy5ER0fTtm1bHj16xOTJkylevDhOTk58+umnzx1ezpo1K5UrV37uZ3vWDg+xPVax8/hixfZwxR+OTqxUqVL8+uuvDBkyJG6eWocOHWjZsiUBAQEJrpH4/LHXSHz+2O9BSEjIsz6SxZEkKzFb2bA4lo9PCBs2XOTjj+sxblx9HB2ll0+kH1ZWVlSvXh2AmjVrUqpUKWrVqsXkyZOZE5M41q9fP25iclLzsjZs2BBXL379rVu3mjTMlzNnTm7fvv3U47GJUPx1guDxL7bEkuoVeOONN7Czs2PZsmU0b96cEydO8MUXX8Qdd3V1RSnFgQMHsE3i511yezdcXV25cOHCE+X37t174hfly94YE3u+VatWJZjrFSt2vp2LiwuzZs1i1qxZnDp1im+//Zb+/ftTvnx5Xn311WRf08/PL0FZaGgoGzZsYObMmQwaNCiuPDo6OslzJP7crq6uVKxYkV9//fWp1718+TLHjx9nzZo1vPHGG3HlL5JkpMRwYbFixbCxseH8+fM0b948rjx2rlTiuVqJ9ezZky5dunDx4kVy5MhB/vz5KVeuHG3bto2rU7p06SfmXj169Ig7d+48cf7Y70F621tVkqzEkpiLkJn8++9tdu26xqhRdSlXLjeensNwdZW1w0T6V716dbp27cr8+fOZMGECefPmpVChQrRr146FCxcyfPjwBL1TwcHBTJkyBQ8Pj7g7rAoWLEjHjh2ZM2cO77zzTtx8mlh+fn6cO3eO2rVrJxlDkyZNWLFiBdOmTUtyyCN37tzY2NgkmBwcHh6erPWBsmXLRuvWrVm8eDE+Pj64ubklSAgbN24MGL1qT5vwnxz16tVjxYoVXLhwIS5B8/X1ZceOHXFzvlJK7dq1cXR0xMvLi/bt279QmwoVKvDNN9/w66+/cu7cOV599dW45PJFFo4tVaoUDx48ICgoKG6oMywsjOjo6ARJakBAAOvWrXuhmJo0acKmTZvIly/fU3s2Y5Op+Ne4ceMGf//993N7UVNiuNDOzo5GjRqxYsWKBPMYly5dSpkyZZ55R2YsW1vbuKHaXbt2cfHiRXr37h13/PXXX2fq1Kn4+fnFzc1avnw5VlZWNGvWLMG5rl+/jouLC3nz5n3udS1KSq8JkV4fxKyT5enp+dS1NDKyR49C9aBBm7SV1STt5vaV9vFJP2u5iJSR0dfJ0lrr8+fPa2traz1mzJi4sjt37ugSJUro3Llz61mzZum9e/fqv/76S1etWlU7OTnpvXv3JjjHgwcPdLly5XT27Nn1pEmT9I4dO/SOHTv0lClTdN68efWsWbOeGtfFixe1i4uLrlixov7jjz/0zp079ffff6+nTZsWV6dz5846e/bsesGCBXrDhg26RYsWumDBgrpQoUJxdZ63ztOqVas0oN3d3XX//v2fOD5w4EDt4uKiP//8c719+3a9adMmPWvWLP3GG288NXattV69erUGEvw78ff314ULF9bFihXTixcv1qtXr9bVq1fX2bNn1zdv3oyrV6hQIT1gwIBnnj8pJFona/r06dre3l6PHj1ab9q0SW/dulXPmTNHt2jRQgcFBWmtta5Tp47++uuv9ebNm/W2bdt0jx49tK2trT579qzWWutjx45pQI8dO1YfPnxYnzx58qnXv3Dhggb0/v37E5TXqFFDFyxYUC9fvlyvXr1a16pVSxcpUiTBv7vdu3drQB89ejRB29DQUF2tWjVdokQJPW/ePL179269evVq/emnn+qxY8fG1fHw8NAVK1bU69ev14sXL9YlS5bUhQsX1uXKlUv219EU+/fv19bW1rpfv3569+7d+tNPP9VKKb1s2bIE9aytrfW7774b9z4wMFCPHDlSr1u3Tm/btk1PnjxZOzg46M8//zxBOx8fH+3u7q4bNGigt27dqn/77TedPXv2JP+dvPXWW/r111836XOYc50ssyc3lvLIrElWdHS0XrbstHZ3n65hon7vvbXa2zvI3GEJM8gMSZbWWnfv3l07OztrPz+/uDIfHx89cuRIXaRIEW1jY6Pd3Nx0586d434pJ+bv768nTpyoy5Ytq+3t7bWjo6OuUaOG/uabbxIsXJqUM2fO6LZt22pnZ2ft6OioK1eurJcsWRJ3/P79+7pdu3ba2dlZ58+fX8+aNUsPGTIkWUlWaGiodnFxSTI50Nr4//7777/X5cuX17a2ttrV1VXXrl1bz5w585mxJ5VkaW0sFtmhQwedLVs27ejoqJs2bfpE4pJSSZbWWi9evFjXqFFDOzg4aGdnZ12lShU9fvx4HRERobXWetSoUbpChQo6a9as2tnZWdetW1dv3bo1wTkmTpyoPTw8tJWVVYKvbVIqVKigP/744wRlly5d0q+99pp2dHTUBQoU0F9//fUT/+6elmRprfWjR4/0sGHDdMGCBbWNjY12d3fXLVu21Bs2bIirc+TIEV2jRg1tb2+vS5QooRcuXKh79eqVZkmW1lqvXbtWV6hQQdva2urixYvrX3/99Yk6gO7Vq1fc++DgYN28eXOdM2dObWdnpytVqqTnz5+f5PnPnj2rGzdurB0cHHTu3Ln1yJEjdVhYWII64eHh2tXVNclrvwhzJllKGwlGpqeU8gA8PT094ya5ZgYXLnhTpswPlC3rxty5ralXz7Rb00X6F7u44IsMAwiRmXz//fd8++23XLp0SRZcNoONGzfSrVs3bt26lWAJiBf1vJ9tXl5esXP8CmitvUwONAmZewJSJhUeHsWOHcYeXKVK5WLr1h4cO/ahJFhCCJGE999/n5CQkASrlYu0M2PGDEaMGGFSgmVukmRlMvv23aBy5bk0b/4Hly49BKBp02LY2srSFUIIkRQHBwcWLFjwxF2fIvUFBgbSoEEDhg0bZu5QTCJ3F2YS3t7BjBq1nQULTpA/fzaWL+9E8eJPX+dECCHEY02bNjV3CJlS1qxZmTBhgrnDMJkkWZnAw4fBlC49G1/fUIYOrcXkyY3Ilu3pe3UJIYQQ4uVJkpWB+fiE4OrqQM6cjowcWYdmzYpRtaq7ucMSQgghMgWZk5UBBQdH8NFHOyhY8BsuXDC2oRg7tp4kWEIIIUQakp6sDGbTpksMGLCJ69f96NKlPC4u9uYOSQghhMiUJMnKIMLDo+jWbSUrV56jWLEcbN3ag2bNipk7LCGEECLTkiQrg7C1tcbOLgvjx9fno4/q4eAgmzkLIYQQ5iRzstKxo0dvUb/+fK5f9wPgjz/aM3lyI0mwhBBCCAsgSVY69OhRKAMHbqJWrV84f96bq1d9AWS7ByFiTJw4EaVU3CNnzpzUq1ePTZs2JVnf19eXUaNGUaxYMezs7MiTJw9du3bl3LlzSdYPDAxk0qRJlC9fHkdHR5ycnKhZsyYzZ84kNDQ0NT+a2X3zzTcULFgQa2tr2rVrl+Lnj/99e9pjwYIFJp+/YcOGtG7dOsXiPXXqFNmyZePBgwcpds704NGjR7z33nu4urqSLVs2OnbsyJ07d57bTmvNV199RZEiRbCzs6N8+fIsXbr0iXo//vgjrVu3xs3NDaUUK1aseKLOlClTLH79MhkuTEe01ixbdoahQ7dy924gH3xQlS+/bIKrq4O5QxPC4jg4OLBr1y4Abt++zdSpU2nTpg379++nTp06cfXu3r1L/fr18fX1Zdy4cVSpUgUvLy+mT59OjRo12LRpE/Xr14+r7+3tTaNGjfD09GTo0KHUq1cPgEOHDvHll19ibW3NkCFD0vbDppFLly4xYsQIxowZQ5s2bciVK1eKX+PQoUMJ3teuXZtBgwbRrVu3uLJixUyfb/rjjz9ibZ1yO1x88skn9O7dGzc3txQ7Z3rQuXNnzpw5w9y5c7G3t2fcuHG8/vrr/PPPP2TJ8vTU4uuvv2bcuHF88skn1K5dm3Xr1tG1a1ccHR1p06ZNXL3ff/8dgJYtW8a9TmzAgAF89dVX7N69m0aNGqXsB0wpKb3jdHp9AB6A9vT0fOpO3eYWHR2tW7T4Q5cv/6P++++b5g5HZDDP26k+PZkwYYJ2cnJKUObl5aWVUrpPnz4Jytu3b6/t7Oz0uXPnEpQHBgbqMmXK6Pz58+uQkJC48k6dOmlHR0d96tSpJ6778OFD/ffff6fgJ3lxwcHBqX6N9evXa0BfuXLlpc8VGhqqo6KinlsP0F9//fUz66TFZ0/KlStXtFJKHzt27KXPFRkZqcPDw1MgqtR38OBBDeitW7fGlZ0/f14rpfTSpUuf2i4sLExny5ZNDx8+PEF569atdcWKFROUxf7buHbtmgb08uXLkzznO++8o994441nxvu8n22enp4a0ICHTuHcQoYLLVxYWCRffLGfO3cCUEqxaFF7jh3rQ506BcwdmhDpSv78+XFzc+PmzZtxZTdu3GDNmjX07NmT0qVLJ6jv5OTEuHHjuHXrFsuXL4+rv2LFCvr27Uv58uWfuIarq2uCXrKknDt3jg4dOuDq6oqjoyOVKlVi8eLFAFy/fj3JoZGhQ4dSuHDhuPcLFixAKcWhQ4do2rQpTk5OjBo16qlDYbNnz8bBwYFHjx4Bxh/X06dPp2TJktjZ2VG0aFG++eabZ8bdu3fvuJ6GYsWKJRi2u3HjBh07dsTFxQUnJyeaN2/OqVOnErQvXLgwAwcO5KuvvqJQoUI4ODjg4+PzzGsmZeLEiWTNmpUjR45Qu3Zt7O3t+eGHHwAYO3YsFSpUIGvWrOTPn5+uXbs+MYSV+GsUe75Tp05Rr149HB0dKV++PFu3bn1uLL///jtFixalSpUqCcqTE8fChQspVaoUdnZ2/PfffwBs3LiRWrVq4eDggJubG/369SMoKCiubVBQEAMHDqRUqVI4OjpSuHBh+vbtG/f9TW2bN28me/bsCYbqSpUqReXKlZ86JA9w5coVAgICaNasWYLy5s2bc/LkyQT/b1pZvVh60qlTJzZu3Ii3t3cyP0XakOFCC7Z79zX69dvIhQsPsbW1ZsSIOuTK5WjusIRIlwIDA/Hx8aFIkSJxZfv27UNrnWCYIr7Y8n379vH222+zf/9+tNa0aNHCpBguXbpE7dq1KVCgAN999x158+bl9OnTCX65JEe3bt3o06cPH3/8MY6Ojpw4cYJBgwbh4+ODq+vjvUkXL15My5YtcXFxAWDIkCH88ssvjBs3jlq1anHw4EHGjBmDg4MDffv2TfJa48ePp2zZsowZM4ZVq1bh7u5OsWLFCAgIoGHDhlhZWcUNHU2ZMoX69etz8uRJChR4/AfhypUrKVGiBN9++y3W1tY4OTmZ9LnDw8Pp1q0bw4YNY+rUqeTMmROA+/fv8/HHH5MvXz4ePHjAjBkzaNCgAWfPnn3mEFZERATdu3dn8ODBjB8/nmnTpvHmm29y48aNuHMnZceOHUkm1S8axz///MP169eZPHkyOXLkoECBAqxYsYLOnTvzzjvvMGnSJO7cucPYsWPx9fVlyZIlAAQHBxMVFcWUKVNwc3PD09OTKVOm0K5dO3bv3v3Mr11UVFTs6M1TKaWeOaR6/vx5SpUq9cQ84DJlynD+/Pmntoudr2hnl3Bbt9j3586do2DBgs+MLbHatWsTFRXFnj176NixY7LapgVJsizQ/ftBjBy5jUWLTuLh4czq1Z1p16708xsKkQr6bejHqfunnl8xlVTIXYE5reeY1DYyMhIw5mSNHj2abNmyJZgvdevWLYCn/mB3dnYme/bseHl5vVD955k4cSK2trb8/fffODs7A9CkSROTzgXQt29fxowZE/e+ePHiDBo0iJUrV/LBBx8ARi/ToUOHWLZsGWD0JsyePZu5c+fSp0+fuBiCg4OZNGkSffr0SbIXoVixYpQsWRKAKlWqxPWsfffdd9y4cYMzZ85QpkwZABo0aEDBggWZNWsWM2bMiDtHREQEmzdvNjm5in+eKVOm0Llz5wTlv/32W9zrqKgoateujYeHB7t27Xqi9yS+8PBwvvzyS1q2bAkYvTJFihRh8+bN9OjRI8k2Wmv++eefJCf/v2gcPj4+HD16NC4R1VozcuRIOnfuzC+//BJXz93dnZYtWzJ+/HjKlSuHm5sbc+Y8/n8iMjKSIkWKUK9ePS5evBj3fUpK48aN2bt371OPg/H927Nnz1OP+/r6kj179ifKc+TI8czeydge0CNHjtCwYcO48sOHDwOY1LOZPXt2ChYsyP/+9z9JssSL+eCD9WzceJHhw19h0qRGZM1qa+6QhEh3goKCsLF5vJyJtbU1a9eupVSpUi99blPv5N25cycdO3aMS7BeVqtWrRK8z5kzJ02bNmXJkiVxSdbSpUvJmjVr3BDZjh07AHjzzTfjklAwEq1p06bh6elJoUKFXjiG/fv3U758+bgEC4xh06ZNm3LgwIEEdRs2bPjSCVasxJ8djGGszz77jDNnzuDv7x9XfvHixWcmWVZWVgmS3cKFC+Pg4BCXXCfF19eXsLCwJCe8v2gcFStWTNDTd/HiRW7cuMGsWbMSfG8aNGiAlZUV//zzD+XKlQNg0aJFzJw5k0uXLiUYSnxekjVv3jwCAgKeehwgW7ZszzxuKmdnZ3r06MG0adOoUKECr7zyCuvXr48bLjf1/6tcuXK90J2N5iBJloU4deoe+fM74+rqwFdfNWHSpIZUrpzX3GEJYXIvkrk5ODiwb98+oqOjuXTpEmPHjqVnz56cPn0ad3djH8/8+fMDcPPmTSpVqvTEOQICAvDz88PDw+OJ+s/6RfY0Dx8+JF++fKZ+pCfkyZPnibKuXbvSq1cv7t69S968eVm8eDHt27fH3t7YYsvb2xut9VPvDExukuXr65tkHHny5OH06dPPjdcUjo6OZM2aNUHZ0aNHadu2LW+88QZjx44ld+7cKKV45ZVXnrushoODA7a2Cf+YtbW1fWa7pw19JSeOxF+P2HlF7du3T/Kanp6eAKxevZqePXvSp08fpkyZQs6cOblz5w7t27d/7mctXrz4Cw0XPkuOHDniYonP19c3wTB1Ur755hvu3r0b12uYK1cuPvvsM0aOHBn3/2Vy2dnZERISYlLb1CZJlpkFBYUzefJeZs48TN++1fj++5aUKpXyt0ULkdlYWVlRvXp1AGrWrEmpUqWoVasWkydPjhtqqV+/PkopNm7cmOS8rA0bNsTVi19/69atJg3z5cyZk9u3bz/1eGwiFB4enqDc19c3yfpJ/TJ84403sLOzY9myZTRv3pwTJ07wxRdfxB13dXVFKcWBAweeSCyAZPf0ubq6cuHChSfK792798Qv3JRayy+p86xevRoXFxeWLVsWN9x548aNFLleUmI/m5+fn8lxJP4cseecPXs2tWrVeqJ+bIK+fPlyKleuzLx58+KOPW8IMFZKDBeWLl2aHTt2oLVO8BnOnz9PhQoVnnnunDlzsm3bNm7fvo2Pjw8lSpRg3bp12NraUrVq1Rf6DIn5+fnF9fBZGkmyzGj9+gsMHLiZmzcf0b17BT75pP7zGwkhTFK9enW6du3K/PnzmTBhAnnz5qVQoUK0a9eOhQsXMnz48AS9U8HBwUyZMgUPDw86deoEGHOxOnbsyJw5c3jnnXcoW7Zsgmv4+flx7tw5ateunWQMTZo0YcWKFUybNi3JIZncuXNjY2OTYBHU8PDwF/4FCsZQT+vWrVm8eDE+Pj64ubklSAgbN24MGL1qT5vwnxz16tVjxYoVXLhwIS5B8/X1ZceOHXFzvtJCSEgINjY2CX7p//nnn6l2PXt7ewoWLMi1a9dSLI7SpUvj4eHB1atXGTBgwFPrhYSEPJEgv+g1UmK48PXXX+ezzz5j586dcf+2Ll68yPHjxxPMEXyWfPnykS9fPqKiopgzZw6dO3c2aZgyOjqamzdv8u677ya7bVqQJMtMxo3bydSpByhRwpUdO96mceOi5g5JiAxv/PjxLFmyhFmzZvHll18CxuKU9evX59VXX+Xjjz+mSpUq3Lp1i+nTp3P9+nU2bdoU18MUW79hw4bUrVuXYcOGUbduXQD+97//8f333zN27NinJlkTJkxgw4YN1KtXj9GjR+Pu7s7Zs2cJDg5m9OjRWFlZ0aFDB2bPnk3x4sXJlSsXs2fPfqLH4Hm6du1Khw4duHHjBp06dUpwR1vJkiUZMGAAb7/9NqNGjaJWrVpERERw8eJFdu/ezZo1a5L1NX3nnXf45ptvaNWqFZ9//nnc3YVZsmRh6NChyTrXy2jatCmzZs1i0KBBtG/fnkOHDrFo0aJUvWbdunX5999/UywOpRQzZ86kW7duBAUF0apVK5ycnLhx4wYbN25k6tSplCxZkqZNmzJgwAA+++wzateuzaZNm9i5c+cLXSMl5iTWrl2b5s2b8+677zJjxoy4xUgrVqxIhw4d4upNnjyZyZMnc+XKlbgh6D///JOQkBCKFy/O7du3mTdvHteuXXsiSYy98zJ2Jf3YyfFubm40aNAgrt6FCxcIDAzk1VdffenPlSpSeuGt9PogDRYjjYiI0sHBxmJz//xzS0+cuFuHhESk2vWESI6MvhhprO7du2tnZ2ft5+cXV+bj46NHjhypixQpom1sbLSbm5vu3LmzPnv2bJLn8Pf31xMnTtRly5bV9vb22tHRUdeoUUN/8803CRYuTcqZM2d027ZttbOzs3Z0dNSVK1fWS5YsiTt+//593a5dO+3s7Kzz58+vZ82apYcMGaILFSoUV2f+/Pka0A8ePEjyGqGhodrFxUUDev/+/U8cj46O1t9//70uX768trW11a6urrp27dp65syZz4x99erVGnji38n169d1hw4ddLZs2bSjo6Nu2rSpPnnyZII6hQoV0gMGDHjm+ZNCosVIn/W9nTZtmvbw8IiL4eLFi0+0b9CggW7VqtVzz+fi4qInTJjwzNhWrlyp7e3ttb+//0vHEd+2bdt0gwYNtJOTk3ZyctLlypXTI0aMiPs3GxkZqUeMGKHd3Nx0tmzZdMeOHfXhw4efuWhnSvPz89Pvvvuuzp49u86aNavu0KGDvnXrVoI6EyZMeOLfy6JFi3Tp0qW1nZ2dzpkzp3777beT/L3bq1ev2AVCEzwaNGiQoN6MGTN0oUKFdHR09FNjNedipEo/ZwJcZqGU8gA8PT094ya5pqT//c+LDz/cQKNGhfnmG9PW2BEiNV2/fh0gwaKXQoini4iIoGDBgkybNo2ePXuaO5xMqUaNGrRp04ZPP/30qXWe97PNy8sr9i7PAlrrp99SagJZ8T2V+fqG0K/fBmrX/pU7dwKpUSO/uUMSQgiRAmxsbBg7dizffvutuUPJlPbt28eVK1cYPHiwuUN5KpmTlYo2brzIu++u48GDID78sBpTpzYmRw7ZzFkIITKKvn374u/vj7e3d6psmC2ezt/fn99//z3JhVEthSRZqShbNjvy5cvG2rVdeOWVlB+CFEIIYV52dnaMHz/e3GFkSknt02lpJMlKQaGhkUybdgBrays++aQ+9esX4t9/+2BllTJrwwghhBAi/ZAkK4Xs2HGV/v03cumSD2+9VS7ulmtJsIQQQojMSSa+v6R79wLp0WMVTZsuIiwsirVru7B0accUW9lYiLRibW1NVFSUucMQQogUFRUVhbW1tVmuLUnWSzp+/C5Llpxm1Kg6nD3bn7ZtX36hNyHMwd7envDwcB4+fGjuUIQQIkU8fPiQ8PDwBAsKpyUZLjTBf//d5cyZB3TrVoEWLYpz5cpgChXKbu6whHgpuXLlIiwsjPv37+Pn52e2v/yEECIlREVFER4eTrZs2cx256f0ZCVDYGA4I0duo1q1nxg9ejthYZEAkmCJDEEpRf78+cmVK1eSGwcLIUR6YmtrS65cucifP7/ZpvBYTE+WUqo08D1QBwgAfgc+0VqHP6edAsYA/QE34AQwTGt9OCXjW7PmPIMGbcbLy5+ePSvx9ddNsbOzmC+fEClCKYWbm5u5wxBCiAzBIrIEpVQOYBdwCegA5AdmAo7AwOc0HwNMAsYCJ4EBwDalVGWt9dWUiG///hu0b7+UUqVysmtXTxo1KpISpxVCCCFEBmYRSRbQF3AG2mutfQCUUlmAH5VSU7XWt5NqpJSyBz4CZmitv4kp2w9cBEZi9G6ZJCIiitOn71Olijv16hVk0aL2dOpUVnqvhBBCCPFCLGVO1uvAjtgEK8YyjPiaPaNdHYzkbFlsQczw4iqgpanBHDzoSbVqP9Gw4UK8vYNRStGjR0VJsIQQQgjxwiwlySoNnI9foLX2A+7EHHtWOxK3Bc4BBZVSyd4ocPTo7dSt+xsPHgTz00+tyZlT9hoUQgghRPJZStdMDsAviXJfwPU57cK01qFJtFMxx0OSaqiUcsboBYuVH2Dx4oP06vUqo0bVwcXFnlu3br3YJxBCCCFEunPnzp3Ylym+bo2lJFnmMByY8GTxLyxc+AsLF6Z5PEIIIYQwn8LAjZQ8oaUkWb6ASxLlOQCfJMrjt7NTStkn6s3KAeiY408zE/gl3vuCwN/AK4B0X1mOvMBRoAZw18yxiITke2OZ5PtimeT7YrnyA4cBz5Q+saUkWedJNPdKKeUCuPPkfKvE7QBKAf/FKy8N3NRaJzlUCKC19gf8410v9uUtrbXXC0cuUlW878td+b5YFvneWCb5vlgm+b5Yrnjfm2euy2kKS5n4vhloopTKHq+sExANbHtGu4MYiVKn2AKllA3GWlubUj5MIYQQQogXYylJ1lyMVd7XKKWaKaXeAb4G5sZfI0sptVMpdTn2fcwQ4RfASKXUEKXUa8BiICcwPU0/gRBCCCFEPBYxXKi19lVKNcbYVmcNRsL1CzAuUVVrnox5GsadhCN5vK3O/9u796i5qvKO498fBBJAIAm3AOFqgHApRaAtiNUEAUWWFrXgErQEFIpKSxBaLqLcRKQuhGUVXQsFYipKi1grlXJNkBYQWQ3UcLHYGgiRQLS5QK4Qnv6x95DDZN73nffMnEyY8/usddY7s+dcnnP2mvc8s/c+57ynxN3el5DuHL9kqBltnXK9rL9cN+sn18v6yfWy/qqsbhQR3V6nmZmZWe2tL92FZmZmZn3FSZaZmZlZBZxkmZmZmVXASZaZmZlZBWqRZEmaKOkuSUslzZf0d5I2bmM5STpP0rOSlkt6UNIh6yLmOihTL5K2z/M9KuklSc9JuknSLusq7joo+51pWsdUSSHptqrirJtO6kXSjpKmSVqQ/589KenEqmOugw7OMVtJ+lY+xyyVNFvS6esi5jqQNCEf30clvSppdpvLde3cv17cwqFKksYA9wJPk25SuiPpkTqbAmcMsfi5pMs6zwP+C/gMcKekA0rcIsIKOqiXg/L815Meg7A18HngYUn7RcSCKuOugw6/M411jCM9G/TFisKsnU7qRdL2wIPAr4DTSJeq7wuMrDDkWujw+/JPpCeUXAA8C7wP+Kak1RFxXWVB18e+wDHAz0mNSu02LHXv3B8RfT0B5wMvA2MLZacBrwI7DLLcKGAx8KVC2cbAHODaXu/Xm33qoF5GAyOaysaTng5wdq/3qx+msnXTtI7vAtOAmcBtvd6nfpg6qRdgOunZrBv2ej/6bergf9k40jN2pzSV3wfc0+v96ocJ2KDw+kZgdhvLdPXcX4fuwqOBuyOi+KDpfyRltEcNstzbgS3yvABExCrgVtKvDetMqXqJiEUR8WpT2XPAAmCHKgKtobLfGQAkvQM4lvQr0LqnVL1I2gI4nnSCWF1tiLVU9vuyUf67uKl8MekG29ahiHitxGJdPffXIcmaSNNDpiNiEfA8TQ+lbrEczcsCTwI7S9qkWwHWVNl6WYukPYFtSXVjnStdN5I2BL4OXB4Rz1cVYE2VrZcDSb/EX5F0n6RX8rihK/OzXq0zpeolIuaSns17gaR9JG0u6XhSYvaN6sK1IXT13F+HJGsMsKhF+UJg7BDLrYz0fMTm5ZQ/t/LK1ssbKD0+/WvAb0nPrbTOdVI3nwY2A67uckxWvl7G5b/fBh4hncSvBqYCl3YvvNrq5PvyIeAF4HHSOLmbgLMi4ofdDNCGpavn/r4f+G5972Lg3cB7I2Jpj2OpNUnbkk7af5Gb12390PgxfXdEnJ1fz5C0OXCOpEsjYnmPYqut/APxBmAP4ARSy9eRwDWSFkbED3oZn3VHHZKshcCWLcrHAP/Xory43EhJo5oy2jGkwYoLuxdiLZWtl9dJOhX4AvCJiLini7HVXdm6uZR0Jc79kkbnshHAiPz+5ebxdDYsnfwvg3QFXNE9wOeACcAvO46uvsrWyzHAccD+EdE4/jPzj5WrACdZvdHVc38dugufoqlfXNKWwPas3efavBzAXk3lE4Fn/cuvY2XrpTHvB4FvAl+IiOsribC+ytbNROCdpH9Cjekw4D359RFVBFsjZevliSHWO6rDuOqubL3sA6wGmu/dNAvYQdKm3QzS2tbVc38dkqzbgSMKv6wh/Xp4jTTocCAPkPrIj2sU5EGiHwJ+2v0wa6dsvSBpEmn81XURcVlF8dVZ2bqZCkxumh4j3c9sMvBwBbHWSal6iYhnSC1VzUnukcByhk7CbHBlvy/PABsC+zeVHwS8GBHLuhmkta275/5e38diHdwnYwxpUPRM0oDPk0m/qr/eNN89wK+bys4DVgBnAocDt+SDv3uv9+vNPpWtF2Bv0iDTX5IutT2kML211/vVD1Mn35kW65qJ75PV83oB3k866V9DSq4uAFYBX+z1fr3Zpw7+l21OSrSeBj5GGlt6Jal168Je71c/TKQbwv55nmaQbvjaeL9Nq3rJZV079/f8IKyjA703cDewjHQlx1eAjZvmmQnMaSoT6UZzc/MBfwg4tNf70y9TmXoBppD6xVtNN/Z6n/plKvudabEeJ1nrSb0AHyF1Ta0k3VjxfEC93qd+mDo4x0wAbgbmAUtz/ZyJbxrbrXrZdZDzxaRB6qVr537lFZqZmZlZF9VhTJaZmZnZOucky8zMzKwCTrLMzMzMKuAky8zMzKwCTrLMzMzMKuAky8zMzKwCTrLMzMzMKuAky8zMzKwCTrLM+oCkGyXFINOuw1zfnLzczGoiHnC7rWJfLGmGpPdVuN3Xj1+hbLSki/M0qWn+XQvxXVxVXAPEOqnFMVqV6+xbkrbtYN1T8/5O6WLIZrU1otcBmJkNYQtgEjBJ0okRcdM62u5o4KLC+5nraLtlbATsAvwlcKikAyNidYn1TM3ruQ+4sWvRmdWUW7LM+s/kiFDTNKfXQQ3TMxEhYBRwTqH8iio2FhFTGseqzfnnFI7txVXE1KZpOeY9gd/ksv1JD083sx5zkmVWE7n763uSnpS0SNIrkuZLukXSvm0sf5Ck2/IyK/PfGZI+2TTfuyXdIWlhnu9Xki6UtNFwY46IlcBXgcW5aGdJ2+TtbCDpDEmzJC2TtFTSw81dXZImSPqBpHk5ngWSHpB0fmGeN3QX5i7A3xRWc1Gha25Sq+5CSY/n9//ZtP2TCvMencsk6XRJj+S4l0l6SNLxwz1G+Tg9DfyoULRTYfvvzfXxnKTlklZIekrSZZI2yfNMyvu+S17sXa26QyUdJ+l+SUvyeh6T9ClJbSWnZnXj7kKz+hgNnNBUth3wYWCypL0j4sVWC0raDLgD2Kpp2e2ApcC383xTgOtJT7Fv2BO4DDhE0vuj3FPpW53EpwEfayr7I+AGSftExN/msp8AEwvzbJ2nLehuy9j0vL63SZoQEb/O5Y3EaT5wZ359PTClafk/AW6WtEtEfKXE9ovHqFiPhwBHNc27F3AhsBtrH8PWK5cuAi5uKt4fuBbYD/jMMGI1qwW3ZJn1nxlNg6IfzeULSQnVTqRuuLcAp+bPxrJ2AlY0kTUJ1oeBjYHxwJ+RkhgkvQW4hnSyvz1vZ1PggrzcMcCwBq9LGgmcTUqIAOZGxAJJ72RNcvBgjmUP4Klcdo6kvSRtxZoE67PASGAcKen47kDbzV2AuxWKLil0D84cYLHvAa/l18fl+EcDR+Sy70fEaknvYE2CdTmwJSnpa7REXZrjbpukPYAP5rcvAP9e+PhfSd2H25DGbm0P/DR/doKksRExM3c7PpPL7yt2hypdOPH5/NkNwLakOvlGLvu0pP2GE7NZHbgly6wmImJxPlleSGpd2qxplr0GWXwesBrYkNRiMQF4HPiPiPh9nuftpIQB4Ghgbov1HE466Q9lFxWu9CtonOiPLpRdHhHzACRdBVxHSvSOIrWyLCElBCeQ9vlx4KGIuKuNONoWEXOVrsY8nNR6dQVwLCkhhdTSBW9MND+Xp6JRpGP5kzY2e5KkkwrvnwI+HhErCmXzgC+Skr1xpESrQaTk9OdDbOcoUt0DnJynZpOB2W3EbFYbbsky6z/NA98PAJB0FnAV8DbWTrAANhlohRExH/hr0tiow4ErgduA+bkbCVJLyVDGtr0Xa7wE/Aw4NiKm5bKtC5/PHeD1NvkKu5NJrTsHk7otbwXmSbquRCxDaSRSB0iaQG7RAmZHxKxGXG2sp8xxgtRy+PqPZ0kbkOrpZFLLYqtxcQPWe0GVMZv1LSdZZvXROOGvII3/GQH8QbsLR8S1pJPtHwMnklqkRpAGhY8HFhRmP7/FFY4CTmlzc88UltsiIt4VET8ufP67wuvxhdc7Nc8TEbcCOwAHkFqYppNacD4p6bDBdrnNWIt+CCzLr08DjsyvpxfmKR6nQ1scow0KyeRQppESp+OAV4GdgR9JanSvTiAl1QB3A9vlbVw1wPoG2udizB8dIOZL2ozZrDacZJnVx8j8N0itQ6NZeyBzS5K2k/Rl4EDgf0nJxAONj0ktSw+w5irAz0qaLGmkpG0lHS/pZ6y5eq1T/1Z4fYGkHSXtThp3BWkf78yx/z3wp8DzwI9ZM/gcBm+hWVh4PbGdqyMj4iXgn/Pbs0gJ0Guk8VoNtxdef1XS3pI2lrS7pL8iJUNti4hXI+IWUtcopC7Bv8mvRxZmXQksl3Qw8PEBVtfY550lbVkov5PUXQxwiaSDc8zjJZ0CzMLM1uIky6w+GmN8NgGeILX0HNDmspsA5wIP5eVWkAZtQ+qieyIiXiYlFkFKXu7N870A3ExKdLoiIu4Dvp/fHgY8B/wPsHcuuzoiGoPgzyDdSPQFUqLRaFVanPdnoG0sAf47v/0IsCpfSDDUWNbG+hvz3dsYM5bXez9rbvR5KKkuVub4vwa8dYj1D+RLpCs9Ac7Mg+efAhpXOR5DGp/2C1KS3cov8t/dgEV5f4/I91m7LH+2Z55vJanuvwP8YcmYzfqakyyz+riCdPXfi8DLwC3AR9tc9vekBGAWqbXjFdKA6puAIyJiFUBE3EDqIrsjz7cKeJZ0NdupwG+7sytAurpwKvAYKZlbDjwCfCIizi7MdyVpYPfvctzzgX/Jcc8fYhsnkRKK5cOI6668jYbpLeY5BTg9r3tZnp7O835qGNt6XUS8QKojgM2BcyPiFeADwAxSAjaXdLXmPwywmotIx2ZRi/VfQupuvZ+UpK1gTavmiWViNut3KnfLGjMzMzMbjFuyzMzMzCrgJMvMzMysAk6yzMzMzCrgJMvMzMysAk6yzMzMzCrgJMvMzMysAk6yzMzMzCrgJMvMzMysAk6yzMzMzCrgJMvMzMysAk6yzMzMzCrgJMvMzMysAk6yzMzMzCrw/+n68d6Pfsc0AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "params = {\n", - " 'max_depth': np.arange(3, 8),\n", - " 'min_samples_leaf': np.arange(50, 100, 20),\n", - " 'n_estimators': np.arange(100,200,50),\n", - " 'criterion': [\"gini\", \"entropy\"],\n", - "}\n", - "\n", - "clf = RandomForestClassifier(max_features=\"sqrt\", random_state= 10)\n", - "cv = StratifiedKFold(n_splits=5,shuffle= True, random_state= 10).split(X_train, y_train)\n", - "clf = GridSearchCV(clf, params, scoring='roc_auc', cv=cv, n_jobs = -1, verbose=4)\n", - "\n", - "clf.fit(X_train, y_train)\n", - "y_pred = clf.predict(X_test)\n", - "\n", - "print(f\"Best score in train: {clf.best_score_}\")\n", - "print(f\"Count estimators {len(clf.best_estimator_.estimators_)}\")\n", - "print(\"AUC-ROC score sobre test: \", \"%0.16f\" % roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]))\n", - "print(\"AUC-ROC score sobre train: \", \"%0.16f\" % roc_auc_score(y_train, clf.predict_proba(X_train)[:, 1]))\n", - "print(\"Accuracy sobre test: \", \"%0.16f\" % accuracy_score(y_pred, y_test))\n", - "print(\"Los mejores hiperpametros elegidos: \", clf.best_params_)\n", - "print(classification_report(y_test, y_pred, target_names=[\"Bajo valor\", \"Alto valor\"]))\n", - "graficar_matriz_confusion(y_test, y_pred)\n", - "plot_roc_curves(clf, X_test, y_test, X_train, y_train)" - ] - }, - { - "cell_type": "markdown", - "id": "5fbcad23-1305-4389-91a4-2cf4cc6aecba", - "metadata": {}, - "source": [ - "# Tercer Preprocesamiento: conversion_numerica_generalizada()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "ca33f794-26b8-4f62-b9a6-ad484f8f4f1c", - "metadata": {}, - "outputs": [], - "source": [ - "from preprocessing import obtener_datasets\n", - "from preprocessing import aplicar_preparacion\n", - "from preprocessing import conversion_numerica\n", - "from preprocessing import plot_roc_curves\n", - "from preprocessing import graficar_matriz_confusion\n", - "from preprocessing import get_dataframe_polynomial\n", - "from preprocessing import reduccion_rfecv\n", - "from preprocessing import aplicar_preparacion_generalizado\n", - "from preprocessing import conversion_numerica_generalizada" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "bca39be1-5f96-4bd3-b8f6-6d3aac065390", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Aplicando 'conversion_numerica_generalizada' en las variables categóricas.\n" - ] - } - ], - "source": [ - "df, df_for_prediction = obtener_datasets()\n", - "X_df_2, y_df = aplicar_preparacion_generalizado(df)\n", - "X_df_numerico_2 = conversion_numerica_generalizada(X_df_2) " - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "af2f4872-c9f9-4b2f-b847-528316d1e778", - "metadata": {}, - "outputs": [], - "source": [ - "X_train, X_test, y_train, y_test = train_test_split(X_df_numerico_2, y_df, test_size=0.20, random_state=10,stratify=y_df)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "233c3959-fa92-4b5a-9dd6-1e50bd217435", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Fitting 5 folds for each of 60 candidates, totalling 300 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.\n", - "[Parallel(n_jobs=-1)]: Done 17 tasks | elapsed: 5.1s\n", - "[Parallel(n_jobs=-1)]: Done 90 tasks | elapsed: 29.7s\n", - "[Parallel(n_jobs=-1)]: Done 213 tasks | elapsed: 1.2min\n", - "[Parallel(n_jobs=-1)]: Done 300 out of 300 | elapsed: 1.8min finished\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Best score in train: 0.9069324233681838\n", - "Count estimators 150\n", - "AUC-ROC score sobre test: 0.9056724092569283\n", - "AUC-ROC score sobre train: 0.9095066791375879\n", - "Accuracy sobre test: 0.8473821587594043\n", - "Los mejores hiperpametros elegidos: {'criterion': 'gini', 'max_depth': 7, 'min_samples_leaf': 50, 'n_estimators': 150}\n", - " precision recall f1-score support\n", - "\n", - " Bajo valor 0.96 0.86 0.90 5499\n", - " Alto valor 0.51 0.78 0.62 1014\n", - "\n", - " accuracy 0.85 6513\n", - " macro avg 0.73 0.82 0.76 6513\n", - "weighted avg 0.89 0.85 0.86 6513\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAG2CAYAAABmhB/TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABDrAAAQ6wFQlOh8AABRZElEQVR4nO3dd5wURfrH8c+z5JwVzBgQs5wR9cwCZjGc+c4773eGM+czn3d65jOdCfVMJ+aACgIqqIhZMQJGFBXJC8gSluX5/VE9MAwzu9O7szthv29e/eqd7qrqmqF3n6nq6mpzd0RERKT4leW7AiIiIpIbCuoiIiIlQkFdRESkRCioi4iIlAgFdRERkRKhoC4iIlIiFNRFRERKhIK6iIhIiWia7wqIiBQDM9sJ2BMoB252zdwlBUhBXUSkBma2BvAM0AEYoIAuhUrd71I0zGy0mbmZXZ7vugCY2f1Rfe7Pd10KnZmtZ2b/M7OfzWxJ9LmNzmN9PFp2zSJtU2Aw0BX4s7u/Ws/VE6k1BfUSkhRkEsv6NaTvZmaLk9K/kOP67Gpml5vZcbksV4qLmXUCxgBHAT2AucBUYFY+6xXDP4GdgMvc/cF8V0akOgrqpe0PNew/GmhWj8ffFbgMOC5H5f0ATARm5Kg8aRhHAt0JQbyXu3d29+7ufnAe6zQxWiqqS2RmewPnAfe7+xUNUTGRutA19dL0PbA28Hszu7Sa63/HpaQvaO7++3zXQWpl02g9yt2/ymtNIu7eO8t0w1DjR4qITtbS9BkwDlgL2C1dAjPbEtiCENBfa6iKSaPUKlr/mtdaiDQCCuql6/5ofVyG/YntDwIZR/KaWWszO8rMHjazj81shpktMrMfzexxM9s5TZ51zMwJXe8Au6Rc619hgJKZTYq2HWdmHc3sGjObYGYVZlaelC7tQLk0ZWdaVsiXDTPb3cyGm9lsM/vVzD40s1PNLKvfHTPbysweiN7jQjObY2Zvm9kZZtYybn1Syj7AzJ6K/i8Wmdk0M3vfzK40sw0z5NnOzAYn5ZlpZq+a2R8yvafUAYHR+TDWzOaa2bzo50PT5BsdnQfHRZv+kO4cyGbAYXVpzKyZmZ1sZm+Y2SwzqzSz6Wb2RZRv/zR5qh0oZ2ado8/xk+j/fb6ZfW5m15rZKhny7JooN3q9kYXBgVOiz/prM7vazNpmep8idebuWkpkIQRyB14AugGLCa2jtinpmgHTgKXAesn50pR5XLTPgSrCddEFSduWAuem5FkT+CU6tkf1+CVl2SEp/aQo3bnAN9HPCwkDqsqT0o2O9l2ecrzUslMXT5cvi8/z9KS8DswGlkQ/P5H0ud2fIf9l0eeTyD83Kb8DHwBda/H/3BYYklK3cmBe0uuV6gT8Lc37qUx6PRxoU815dT9wZ/TzEmBOSnmnpOR7Ovr8E+fLgnTnQE2fY3VpgCbAy2ne1+Kk15+lKS+xb9c0+7ZMOW8qWH4uO2FMx3Zp8u2alGZPYH7S/01V0r63gGb5/nuhpTQXtdRLlLtPB4YBbYDDUnbvSwj6Y9z9mxqKmg1cB+xA+IPfGWgNrAPcDBhwtZltk3Tsye7eHbg+2jTWw8Co5GVsmmNdSvjCsTfQ2t3bA1tn8V5Ty162ALdGySoJf/yzYmY7AP+OXj4LrO3unQj3KZ8HHAwcVE3+k4DLCZ/f6UCX6P20jt7fV8BvWN6jEsdDwP6EwHop0N3dO7p7O8IXqr9G5SfX52DgqujlYGDN6P20B04lfD79gNuqOe4BhMGXJwHt3b0DsC7werT/WjPrnEjs7gdH/wePRZsey+IciOsoYA/CF4bjCOdNJ6AlsFpU31HZFmZmHQhfmFYFviME5zbu3hbYERgPdAGGZGqxRx4nfLnu6e4dCZ9z4kvV9sDxWb9DkTjy/a1CS+4WUlrcwMDo9Wsp6Z6Ntv8pXb6Yx7w3yntfmn2XR/tG11DGJJa36DetJt1oYrS4o/e/NPm9xnhfidbfe0DTNPsvI0OrmPAHfA4hUPbNUP56LG/J/SZGvfonHfeoLPMYMCHK8xJgadKcnFTuxhnOKweOTpN3NWBRtP/31ZyX92eoX7X7q0sD3B5tvzPm/2/aljpwIctb5+tneK/lUZprUvbtmlTuiAyf8/PR/lfj1FeLlmwXtdRL24vATOC3ZrYuhHvTgX0If7SeyMExno/WO+WgrGHu/lkOykkMBHyIENBucPf7YuTtDOwevbzW3ZekSXYjoXWYzqGEwP6mu7+VLoGHHpK3o5f9sq0by69Pv+Xuj2SZZwsgcY39Cnf3NGnuAn6Ofj4iQzk/ACsd091/Bt6NXm6aur+ezYnWPXJU3u+i9cPu/nXqzui93hm9PLKacq7O8Dk/G60b+nOSRkJBvYS5+2LCH2EDEreDJe5Nf9rd52VTjpn1iAYNvRsNGKtKGhD0TJRstRxUOW0AjMvMuhO6UNsQukDPi1lEH8JnBqF3YCXRZ/d+hvw7ROttzeyXTEtSurVi1K1vtH4xRp6tovV8ln+RWIG7V7G8m3qrdGmA9zMEKoCfonWnGPXKhaHR+gAzG2pmvzOzVWtTkJk1Z3mwre5STWLfmtGX5HTey7A9X5+TNBIK6qXvgWj9ezMzlrf07s8ms5ntSOi6vRDYBuhICA7TCLOCzY6StslBXafXtYBoRPmzhGvLnwJHuvvSmMUk/lBXehibkMlPGbYnWo2tCNdmMy2J0e+tY9QtEbC+j5En8X6m1PBZ/BitM10rru5L4MJoXZ+TGa3E3d8gXKuuJIxVeAz4xcy+MbPbzSzTF5R0OhMG3kHm/1tY/jlBhs+qmi/Mic9Jc4RIvVBQL3Hu/gHhvvWehAFbWxC6UWucv9rCnNePELqSPwQGAO3cvb27r+phEFTqILy6qMpBGfcA2xG+dOzv7vm4NzoRGO51d8tiOS4PdSwZ7n41YYzCOYSemVmEAXwnAe+b2VXVZBcpKQrqjUOitX5ttH6wmm7UZH0JXcNVwAHuPjxNkKxVV2d9MLMLCZcXFgED3T1OazZZonXezMy6VpNu9Qzbp0brON3q2folWq8dI0/i/fSo4f76NaL1tNi1qpvEmIXq7tvvUF0BHu64uMHd9yc8eGU7ll8a+puZ/TaLesxi+RfLTP+3sPxzgob/rESqpaDeODxM+GOV6Bp9oJq0ydaM1tPdPVN35J7V5E909Vo1aXLCzAYSHrwB4Uladbld6iOWT8izS4bjtSXztefEsXc0s451qEd1Ze8XI0/i2n8bQrBbSRTsd0tJ31ASl3DWSLczumyUdTe6B+8SepESX+x2zSLfYsIlGwi3yWWSOOd/qOHyjEiDU1BvBNz9F+As4AbggnSjejNIjCxeNd09uWa2GeE+4UzmRuuOWR6vVlJGul/l7g/XpTx3nwW8Er08z8yapEl2BpmvhT9BuP7cGrimumOZWZtogFa27o/W25tZdaOvk31CeHgJwMVRkEx1IssHOz4aoz65kAik25hZulHsR7P8C+YKqvvsosF/ldHLbGfvezxaH2NmPdMcrwdwQvRycJZlijQYBfVGwt1vcfdz3L3aIJPiTcKgOAMes+hRrtG0nAcDI6l+Pu/E7Wkbm1naFmJdRd3jiZHuTwMX56joxH3o2wKPm9ma0fFam9nZwN9Z/qVnBdGXgsSI+79YmE5386Q6NzWzPmb2D+BbMg9MS1f2SML7BHjAzC5O/sJlZmuY2XlmdmlSHicMdIRwO+ODZrZ6lL6VmZ0C3BTtv9/dx2dbnxx5nnCLZXNgcCKYRp/1CcAglrfmUz1rZoPMrJ+ZtU9sjO7YuBlIPH54WJZ1uR2YTPhCNtLMdkt8CTKzvoQvex0J3e43xHiPIg1CQV0ycvdy4Pzo5a7AV2Y2lxDInyKM5D29miJGE2Y2awq8bWGe8UnRsn2Oqrkpy1txuwJTqrmN7JxsC42678+MXh4M/GBmswiB/HpCYH22mvx3EgZuVRG6gT+2MJf9TMLn9iHhC8gqVDP3fgZ/INzK1Qz4BzA1utVwHiEgXUMYKJZcn6eBi6KXxwCTo/czlzDrXjPCl7RTYtalztx9NmGKYAiXO741szmEz/pOwvMJhmTI3hr4M2GK23IzK48+h5+B06I0V7n7mCzrMgc4kDAuYj3CgNJfzexXwqWPjQjX3g9U17sUIgV1qZa7/4fwR+4NQqu9KWH6zGsJ93NnvPUnmrRlD0KX8Q9AO8IAr7XJvjs0js5UfwtZrAdpuPvNhOunIwkBpjmh9+E04PAs8t8AbEwIml8QAnx7QlB4A7gS2LKa8QqZyv2VcE39UMJo76mEnor5hPuj/xmVnZrvKsK98Y8BUwifxzzCl68/AgPcfX6cuuSKu99O+PKU6B0qI8yN/wd3P6GarKcCFxCC+jeE87M54Vr6Y8Bu7n5R5uxp6/IRsAlhWt3Po81lhFs7ryfMuJf2fn+RfLPsBkGLiIhIoVNLXUREpEQoqIuIiJQIBXUREZESoaAuIiJSIhTURURESoSCuoiISIlQUBcRESkRCuoiIiIlomm+K1BIWvU5RTPxSEGZ/d5t+a6CSFotm9b/0xeh7n+XF3x0W4PUs1CopS4iIlIi1FIXEZHCZWp7xqGgLiIihcsaVe95nSmoi4hI4VJLPRZ9WiIiIiVCLXURESlc6n6PRUFdREQKl7rfY1FQFxGRwqWWeiz6CiQiIlIi1FIXEZHCpe73WBTURUSkcKn7PRYFdRERKVxqqceioC4iIoVLLfVY9BVIRESkRKilLiIihUvd77EoqIuISOFS93ssCuoiIlK41FKPRZ+WiIhIiVBLXURECpda6rEoqIuISOEq0zX1OBTURUSkcKmlHos+LRERkRKhlrqIiBQu3dIWi4K6iIgULnW/x6KgLiIihUst9VgU1EVEpHCppR6LPi0REZESoZa6iIgULnW/x6KgLiIihUvd77EoqIuISOFSSz0WfQUSEREpEWqpi4hI4VL3eywK6iIiUrjU/R6LgrqIiBQutdRj0aclIiJSItRSFxGRwqWWeiwK6iIiUrh0TT0WBXURESlcaqnHoqAuIiKFSy31WPQVSEREpESopS4iIoVL3e+xKKiLiEjhUvd7LArqIiJSsExBPRb1a4iIiJQItdRFRKRgqaUej4K6iIgULsX0WBTURUSkYKmlHo+uqYuIiGRgZm3N7EczczPbOmXf8Wb2pZktNLOPzWy/NPk7mNm9ZjbLzOaZ2ZNm1iNNuh3M7C0zW2Bm35vZ+VaLbzQK6iIiUrDMrE5LDlxCml5tMzsCGAQ8BuwNvAU8Y2bbpyR9DOgHnAgcDWwIDDOzpkllrQ8MB6YA+wE3AVcAZ8etrLrfRUSkYOWz+93MegN/JQTXO1N2/x141N0viV6PMrPNgUuBfaL8fYH+QH93HxFtmwiMBw4GHo/yngvMBI5w98XAK2bWDbjIzG5190XZ1lktdRERKVh5bqnfSgjmE1PqtC7Qi+VBOeFRYA8zaxG93hsoB0YmErj7RGAcUeBPSvdsFNCTy+oI9I1TYQV1EREpXFa3xczam9kaKUv7Gg9rdiiwGaEbPFXvaD0hZft4oDnQMyndRHf3NOl6R8dpA6yZpqwJgCcdKysK6iIiUsrOAianLGdVl8HMWgM3Ahe6+9w0STpF6/KU7bOjdeekdKlpEukSaTqmKytqtVckpcuKrqmLiEjBykEX+o3APSnb0gXqZBcDU4H/1vXgDU1BXUREClZdg3rU0q4piCcfb23CwLiBQIfo+G2j3W3NrC3LW+QdgF+Ssida8LOi9WxC13qqTklpypPKSq5Hc6B1UrqsKKiLiEjBysPo956E6+Ivptk3CngHOCp63ZsVB9H1BhYD30avJwB7mpmlXFfvDXwK4O7zzWwyK18735AwMiD1Wnu1dE1dRERkuXHAbinLmdG+E4GT3f1b4EvgsJS8hwOvJI1iH0Zole+RSGBmvYA+wNCkfMOAA82sWUpZ5cDYOJVXS11ERApWQ7fU3b0cGJ2hDh+4+4fRz5cD/zOzbwgt+MOB7YCdk8p6y8yGA/eZ2dnAQuBK4BPg6aRDXEeYmGawmd1OGHV/LnBRym1uNVJQFxGRwlWgU7+7++BolPwF0TIRGOjub6UkPZwwWO9uQswdAZzq7kuSyvrazPpF6YYC04HLgBvi1ktBXUREClYhPNDF3UeT5uuFu98L3FtD3jnA8dFSXbqxQOoUs7EpqIuISMEqhKBeTDRQTkREpESopS4iIgVLLfV4FNRFRKRwKabHoqAuIiIFSy31eHRNXUREpESopS4iIgVLLfV4FNRFRKRgKajHo6AuIiIFS0E9Hl1TFxERKRFqqYuISOFSQz0WBfVG7OlbTmTv324KwEND3uYvlz28wv5j9t+OQVccm3V5G+5zCT9Mmb3sddvWLdhvl83Yffve/GbjtVh7tS40a1rG9Fm/8v7n3/PfZ8Yy4s0vMpZ30Qn7cPGJ+1R7zF8rFtFtx7OzrqMUj1+mTOGVV0by3rvvMHHCeGZMn05ZkyasuuqqbL3Ndhx59DFssEGvlfK5Ox99+AGvvzaacR99yHfffsOvv/5K69ZtWHfdddltjz057PAjaNOmbbXHX7JkCY8/NpgXhjzH95O+o6pqKWuuuSb9BuzNsX/4Iy1btqyvty5J1P0ej4J6I/W7AVstC+iZLFxUyS8z5labpkuHNjRr1oQp0+fw07Q5K+x7a/D5rL/WKiuUt7iyijW6d2KN7p04aI8tGfziu/zfZQ9TVbU04zEWVy5h1pyKtPsqFiyqtn5SnH6ZMoUBe+2Guy/b1rp1a5YsWcL3kybx/aRJPPfMU5x93gUcdfSKXzzvuftObrvlpmWvy8rKaNO2LfPmzWXcuI8YN+4jHnv0EW6/cxA9110v7fErKio46S/HM+6j8JTN5s2bU9akCV9+OZEvv5zI0Bee594HHqZz5865f/OyAgX1eBTUG6FO7Vtz7TmHUD6vginT57DRuj3SpntyxIc8OeLDtPsgtMQnvXwVzZo1YfCL764UmJs1bcJnX/3MA8+O5aUxX/D1D9MAWLN7Jy74vwH86eAdOXLfbZn8y2wuu+35jMd5++Pv6P9/N9finUqxqlpahbvTd4edOODAg9hu+7506dqVqqoqJoz/guuvvZoPP3ifa676J2uvvQ477vTbZXmXLFlCu3bt2Ge/A+g/YG8223wLmjdvTkVFBSOGD+Pf11/Lzz/9xCknn8DTz71IixYtVjr+Vf/4O+M++pC2bdty6d//wV79BlBWVsZbY9/kkgvP59tvv+H8c85k0H0PNOTH0igpqMejgXKN0DVnH8yqXdpz6a1DmD7r11qXc0i/39CmVfiD+OCQt1fa/+dLH2Kb313FbY+MXhbQASb/Mpu//mMwg54cA8DJR+5Ki+b6finLtW/fgUeffIY7B93LPvvtT5euXQFo0qQJm2y6GXff81969doQgPvvu2eFvLvtvidDR7zKhRdfylZbb0Pz5s2B0NI/aOAh3PKfOwH4cfJkRgwfttKxv/pyIi88/xwAF192Bf0H7ENZWfhT2XeHHbnhplsBePedt3nzjdfr4d2L1J6CeiOz23YbcuwB2/PuJ99xz5Nv1qms3x8QHv37ziffMfG7qSvtH/PB19Xmf+CZsUBo8ffu2b1OdZHS0q5dOzbaaOOM+5s1b86++x8AwBeff7bCvt4bbUT79u0z5t1iyz6su976afMCvPjC87g7a6y5JgP2XnlMxxZb9mHrbbYF4IUXhtT8ZqRurI5LI6Og3oi0bNGM2y46gsrKKk658tEVrlfGtd5a3dihT7ge+eBzK7fSs7Fw8ZJlPzdpolNR4mkedZtXNx4jkxbV5H33nXA+77jjbzN2/e70250BeOett2IfW+IxszotjU3R9HmaWUvgceB6d1efVy1cetK+rLtmN/79wMt8+uVPdSrrDwf2BaBiwWKeGP5BrcrYeesNAFi0uJKvvp+WMd1G63XngycvoufqXVhStZQfpszi1bcn8J/Br/H9zzNrdWwpfu+/+y4AG/RaeQR8dWbPnsXXX32ZNq+789233wCw/gYbZCxj/WjU/cyZMygvn03Hjp1i1UGy1xgDc10UTfPI3RcCuwBN8l2XYrRl7zU49ejd+GHKLP5559A6lVVWZhy9X+h+fPaVccybvzB2Ge3atOTcP/UD4OmRH1VbRrdO7dhwnVVZsKiSVi2ascn6q3HqMbvz4ZMXcfiArWv3JqSoffLJx4x69WUABh58aKy8d/znNiorK2nbti39+g1YYd/8+fOpqAh3WqyyyqoZy0jeN3369FjHF6lPRdNSj4wA+gGj8l2RYlJWZvznkqNo2rQJZ179OBULF9epvD37bsRqq3QE4IHnatf9OOjvx9CjWwdmzZnPpbemvy75zQ/T+NuNzzBk9Md8//MsqqqW0qJ5U/bsuxFXnn4gG/bszqArjuXHabN588Nvavt2pMjMKS/nb+edzdKlS9ls8y04cODBWed95eWRPP7oIwCcctqZdOjYcYX9FRXzl/3cslWrjOW0bLX8HvWK+fMzppO6U0s9nmIL6v8F7jKzdsBQYCqwwoVhd898D1Yjdfoxu/ObjdfiuVfGMfT1lQcGxZUYIPfdjzN4/f2vYue/8vQDOXCPLamqWspfLnuYH6eWp0336LD3V9q2aPESXnztU9788GvGPHwe663VjX+ediC7HXdj7HpI8Vm4cCFnnn4KP06eTKdOnbjm+htp0iS7zrtPP/mEi/92Hu7OXv36c+TRx9RzbSUXFNTjKZru98gLwOrAydHP7wLvRcv70TorZtbezNZIXryqbi3YQrTO6l246MR9mPvrAs6+9sk6l9epfWv23WUzAB56Pv4Aub/9ZQBnHbcXS5cu5ZQrB/Pia5/Wqh7l8xZw7X3DAdh2s3Xo0rFNrcqR4rF48WLOOv0UPnj/Pdq1a8cdd9/L6quvkVXeCePHc/IJf6aiooLt++7AVddcnzZd69bLz6OFCxZkLG/hguWXi1q30blXrzT6PZZia6nvlsOyzgIuS96wZNo4mvXYNoeHyL9rzz6YNq1acOmtQyifV0GbVs1X2N+kLJz1TZuULdtXsbAy48j4w/fempYtmlFVtZT/Pf9OrLqc+6d+XHrSfgCcfe2T3P9M3UYOv/fpJCDMGLbOal2YWa5u0FJVuXgxZ59xGm+OeYPWrVvznzsHsdHGm2SV98uJEzjhz8cxd+4cttp6G2669fZl966natOmDa1bt6aiooJp01a+TTMheV+3bt3ivRmRelRUQd3dX8thcTcCK8xa0XSVLSfnsPyCsNZqXQC44tQDuOLUAzKmO3LfbTly3/CFZrvD/8UnGUbH/z4a9T76vS9XmOe9Jmcft+ey419w49Pc+ZhuYJDsVFZWcs5Zp/P6a6No2aoVt91xN1ts2ServF999SV/+fMfKS8vZ4st+3Db7XfRqppr5WZGz3XX4/PPPuXrrzJfWkqMnu/SpatGvtczdb/HU1RBPcHMNgF2AjoDs4Ax7v55nDLcfS6wwsTmrfqckrM6lqLNeq1On43WBOChGPemn3HsHvzz9IMAuOTWIdz80Ks5qc82m60DwNKlS/l+yqyclCmFpbKyknPPPoPRo16lZcuW3HLbHWy19TZZ5f3666/4y/HHMXvWLDbZdDNuv+uerLrKt9u+L59/9ilj3xyDu6cNKm+OeSOk7ds33huS2BTU4ymqoG5mLYCHgEMIV0sWAS0AN7MngWPdvfQujNfB9kdcXe3+4YNOZ+etN0j7lLZUiQFys+dW8Oyr47I6/qlH78a/zhoIwBV3vMD1943IKl9N2rddfkvce599z4zZtZ/uVgrTkiVLuODcsxn1yss0b96cf9/yH7bbPrsg+t233/CXPx3HrJkz2WjjTbhz0H20bVv9U9kS9tlvf/577yAmT/6BEcOH0X/AirPKffLJx7z3brj0tN/+B8Z7UxKbYno8xTZQ7ipgX+BEoKO7twI6Rq/3jfZLPWjatIzD9wn3hD8x/AMWJc0Gl8mJh+/MteccAsCVdw3lX3e/lPXxdtpqfV644xQOH7A1Pbp1WLa9ebOmDNhpE0bdfzbrr7UKS5ZUcfEtz8V8N1LoqqqquPCCc3l55PAooN/GDjvulFXe77+fxP/96Q/MnDmDDXtvxF2D7qt22thUG2zQa1mw/sfllzJi+DCWLg0zz73z9lucdXro0dt2u+1XeJCM1A/NKBdPUbXUgSOAv7n7oMSGqBt9kJm1Bs4DzslX5UrZvjtvRrdO7QB48NnsBrjdcN7ySUGOP2Qnjj8k8x/lc697coUnwhnGHtv3Zo/tewMwf8EiFiyspEPbVjRrFm5hmjd/ISdf8UiNc8xL8Rn30YcMHxYmSXJ3Lr3owmrTP/LYk3TvEZ42eO+gu5ZNCPPzTz8y8IB9M+bbok8f/n3zbSttv/CSy5g8+QfGffQh5551Bi1atMDKypaNiF933fW45vp/1+q9idSnYgvqnYEJGfZNiPZLPTg26nr//Ouf+eCLH7LKk3iyFUD3rtW3lFq2aLbC68+//pm/3fgMfbdcl43W60GXjm3o0LYV8yoW8s0P03n57fHc88QYfp4+J0OJUswSLWMI19VnzpxRbfqqpVXLfvaly+/cmDdvHjAvY765c9KfP61bt+be+x/isUcf4cXnhzDpu29ZutTZoFcv+vXfm98f9ydatmyZNq/kViNsbNeJ1eWhHg3NzD4CPnP3Y9PsewjY1N2zGxabRqs+pxTPhyGNwuz3Vm5FihSClk0b5i7wDc8fXqe/yxOv6d+ovhYUW0v9H8ATZrYO8BRhRrlVgEOBvsBh+auaiIjkmlrq8RRVUHf3p81sIGHSmBsII+AdGAcMdPfn81g9ERGRvCqqoA7g7kOAIWbWhjDyvdzdNZWYiEgJKitTUz2OogvqCVEgVzAXESlh6n6Pp+CDupndEiO5u/vp9VYZERFpUI3xXvO6KPigDuwfI60DCuoiItIoFXxQd/ee+a6DiIjkhxrq8RR8UBcRkcZL3e/xFGVQN7P1gV7ASlM6ufvTDV8jERGpDwrq8RRVUDez9sAzwK6JTdE6ecahJg1ZJxERqT+K6fEU21PargG6A78lBPSBhAB/L/AdsH3eaiYiIpJnxRbUBwBXAu9Er39299fd/S/Ac8DZeauZiIjknB69Gk9Rdb8T5nmf7O5VZjYf6JK0byhhPngRESkRjTAu10mxtdQnA12jn78CDkja1xdY2OA1EhGReqOWejzF1lIfCexJGCz3b+ABM9sOWAxsS3jIi4iISKNUbEH9fKA1gLs/ZGa/Eh672go4Bbgrj3UTEZEca4SN7TopqqDu7hVARdLrZwitdhERKUGNsQu9LorqmrqZvWlmJ5tZt3zXRURE6p9Z3ZbGpqiCOjAFuB74ycyGm9nvzaxdvislIiL1QwPl4imqoO7uhxJua/szsAS4B5hqZk+Z2SFm1iKvFRQREcmjogrqAO7+q7s/6O77Aj2AM4HOwKPA1LxWTkREckrd7/EU1UC5VO4+08zeBNYGNgRWzXOVREQkhxpjF3pdFGVQN7P1gCOiZWNCC/1xYHA+6yUiIrmlmB5PUQV1MzuLEMi3AuYQpoU9HRjt7kvzWTcREZF8K6qgDlwBDAH+Abzk7pV5ro+IiNQjdb/HU2xBfZVoAhoREWkEFNPjKaqgroAuItK4qKUeT9Hd0iYiIiLpFVVLXUREGhe11ONRUBcRkYKlmB6Put9FRKRgNfTc72a2j5m9ZmbTzWyRmX1rZjeaWYeUdPub2cdmttDMvjSzP6Ypq7mZXWdmv5jZfDMbaWYbpknXO9o3P0p7rZk1j115irClbuF/aR9gJ8L0sLOAN4Bh7u75rJuIiORWHlrqnYF3gFuAmcCmwOXRul+ok+1EeOz3PcAZwO7AvWY2z92fTCrrFsLcKmcBPwEXAa+Y2SbuPicqqxPwKvAVcDCwOnAj0Bo4JW7liyqoR29+KLAdUE6YSW5V4HzgbTPbx93L81ZBEREpau7+cMqm0Wa2CLjbzFZz95+BS4B33P3EKM2oaKbTK4AnAcxsDcLDx0529/uibe8BPwAnANdGeU8E2gMD3X1WlK4pcLuZXRUdL2vF1v1+PbAe0N/dO7v7Ru7eGegfbb8+r7UTEZGcKpBHr86M1s2jp4HuBjyRkuZRYCMzWyd63Y8QY5eli4L2CEJvc8LewMuJgB55PMrbL25Fiy2oHwCc7+4jkzdGr/8GHJiXWomISL3I11PazKyJmbU0s98AlwJD3H0SoQHZDJiQkmV8tO6dtJ7m7rPTpOud9Lp3allRj/OUlHRZKarud6ANmR+v+ku0X0RESkRZHVvbZtae0L2dbK67z60h6/eE69sALwFHRT93itblKekTwbtzUrrUNIl0nZNeZ5suK8XWUv8IOMXMmiRvNLMy4FTgw7zUSkRECtVZwOSU5aws8u0D7AD8H7AR8Hxq7ClExdZS/xvhesTXZvYcodW+CnAQ0J1aXH8QEZHClYPL4jcSRqknq6mVjrt/Ev34VjTAbRwwEPgi2t4hJUuiBZ+4Nj47TZpEuuTr59mmy0pRBXV3f93MdiTcFnAUy9/0GOBKd1dLXUSkhNR1sFvUzV5jEK/BJ0AlsD7wfPRzb2B4UprE9e8JSetVzaxTynX11GvoE0i5dh7dE9+Dla/b16jYut9x9w/c/WB3X8Xdm7n7qu5+iAK6iEjpKbO6LTmyHWFw3LfuvggYBRyakuZwYHw0mA5Cr/JS4JBEgui27H6EW7MThgF7mlnHpG2HRXlHxK1oUbXURURE6pOZPQ28T2idLwC2AM6NXj8bJfsH4f712wm3n+1G6D0+PFGOu/9oZvcA15lZFWHymQuBOcBdSYe8kzAm7Fkzu4owOO864M6496hDEQR1MxsCnO3uX0U/V8cJ3fHvAvdF36hERKRI5eGBLu8SgvMFhN7sScAg4Hp3Xwzg7mPM7GDgn8DxhAll/uzuqfeunw78ClwNtAPeBPZMzCYXlTXbzPYAbiV8aZhHGANwUW0qX/BBnfBBJEYcticE7uqsDhxN6C45rv6qJSIi9a2hY7q7X00IwjWlGwJU29CMGpbnREt16cYDe8aoZkYFH9Tdfbekn3fNJo+ZHUX41iMiIkXM0GPa4ij4oF5LrxDm4BURkSKWw8FujULRBfVoopndgV5Ay9T97n6ju08Fbm7ouomIiORTUQV1M+sOjCYEdIdl/TLJ19lvbOBqiYhIPcnDQLmiVmz3qd9IeFrOmoSAvh2wDuExeF8Rgr2IiJSIfD3QpVgVVUsd2Bk4jfD0GgBz9x+Aqyx8nbuN8Bg7EREpAXV9oEtjU2wt9Q7AdHdfSpj2b5WkfW8BO+WlViIiIgWg2IL6d4T5cAE+B45N2jeQWkx+LyIihUvd7/EUW/f7i4R5cx8nzOTznJlNI0yu3x04P491ExGRHNNAuXiKKqi7+9+Sfh5mZjsABxNubRvp7sPyVjkREck5xfR4iiqop3L39wkT74uIiDR6RR3UzWxjYBNgBvC6u1fluUoiIpJDGv0eT+ygbmaX5urg7l7jVK7RrWrnErrZmwFPANcQnmJzHOF+dQc+N7Pd3X1GruonIiL5pZAeT21a6pdT85PSspXN/OznAP8CniM8ku5iYHPC/ejnAOOBzQiPqbuUcB+7iIiUAA2Ui6c2Qf11chfUs/FH4B/ufjmAmT0FPAOc7u63RWleMrMlwF9RUBcRKRl6oEs8sYN6to8/zaGewKik168SemQ+SEn3PmH6WBERkUapGAbKtQAWJL1O/LwoJd1iiuP9iIhIltT9Hk+xBMF03f0NeQlARETyQDE9nmIJ6qPMbGnKtjdSthXblLciIlIDtdTjyWlQN7OWwKGEB6usBrQh8x0J7u57ZFHs33NUPRERkZKWs6BuZrsAg4FVWX7vOCwP6snd5UaW3efurqAuItJIafR7PDkJ6mbWE3geaAt8AYwETgd+BW4iBPrdgfUIs7/dBSzJxbFFRKR0qfs9nly11M8mBPSXgAPdvdLMTgd+dfdlM9CZ2V+A24A+7r5fjo4tIiIlSiE9nlwNLtuT0J1+sbtXZkrk7ncTZn7b28xOytGxRUREhNwF9TWAKuCjpG1OuMc81Z3Rvt/n6NgiIlKiyszqtDQ2uep+XwqUu3vy4Lf5QHsza5L89DR3n2dmc4ENc3RsEREpUY0wLtdJrlrqPxECePLHPzkqf/PkhGbWAegItMrRsUVEpESZWZ2WxiZXQf1LwmNRk1vfb0brc1LS/iNaf5WjY4uISIkyq9vS2OQqqL9CGKS4d9K2OwjXzo8ws0/N7H9m9jHhSWoO/DdHxxYRERFyd039caAP0DKxwd0/MrOzgBuATaIlOf1NOTq2iIiUqMY42K0uchLU3f0XwnPPU7ffYmYjCFPHrgnMAYa7+yu5OK6IiJQ2xfR46v2BLu4+AfhnfR9HRERKT2Mc7FYXxfKUtgYxfuT1+a6CyAqmlC/MdxVE0urZtWXNiaTB5Tyom9mWQD9gLaCVux+ftK8Z0I3whLYpuT62iIiUFj1TO55cPqWtM3A/sG9iE2GU+/FJyZoBHwJdzayPu3+aq+OLiEjpUfd7PDn5EmRmLYARhIC+ABgFrNRv6O4VwKDouIfl4tgiIlK6yqxuS2OTq56NE4HfECaU2czd9ySMdE/nqWi9c46OLSIiJUpBPZ5cBfUjCF3tp7n7dzWk/ZTw8JfeOTq2iIiIkLtr6hsRAvWrNSV09yozmwN0ytGxRUSkROmaejy5CuotgAp3X5Jl+lakueYuIiKSrDF2oddFrrrffwHamVnHmhKa2WaEoP5Djo4tIiIlSg90iSdXQf31aH10FmkvJlx/11SxIiIiOZSroH5ztL7czLZNl8DM2pvZHYRb2aqA23J0bBERKVFlZnVaGptcPdDlQzO7ArgMeMPM3gTaA5jZ3YTZ5XYEWkdZznf3r3NxbBERKV2aUS6enM0o5+5/N7NpwL+AXZN2HU+YXQ5gHnCeu9+Vq+OKiEjpaoSN7TrJ6dzv7n6HmT1MeNTqDkAPoAkwFRgLPOHusyF0x7v73FweX0REpDHL+QNd3H0e8N9oWYmZtQfOBE4DuuT6+CIiUjoa43XxumiwR68mBfPTgQ4NdVwRESleiunx1Cmom9lewHHAJoTxDN8CD7j7M0lpWhKC+bmEYG5ABXBPXY4tIiKlT5PPxFProG5mVwHnJ15G602A/c3sDnc/JZpo5glggyhNOeFWtpvdfWatay0iIo2Cut/jqVVQN7OdgQuilzOAdwlBe1vCdfKTzOwN4FagKzANuB64091/rWulRUREZGW1ban/JVq/Dhzk7uUAZtYZeBbYCXgQaAbcAlwYPUtdREQka2qox1PboL49YarXMxMBHcDdZ5nZmcB7Udm3ufsZda2kiIg0TrqmHk9tg3p3YAkwLs2+j6J9TQjd7yIiIrViKKrHUdsZ+FoDM93dU3e4+1IgMQju29pWTEREROKp1/vU3b2qPssXEZHSpu73eBps8hkREZG4FNTjqUtQ72xmr2baB1DNfgB39z3qcHwRESlxpuHvsdQlqDdnxaexpVPd/pWux4uIiEjt1TaoP5DTWoiIiKSh7vd4ahXU3f2Pua6IiIhIKvW+x1PbW9pERETqXZlZnZa4zOwwM3vOzH40s/lmNs7M/mQpF/fN7Hgz+9LMFprZx2a2X5qyOpjZvWY2y8zmmdmTZtYjTbodzOwtM1tgZt+b2fmpx8uWgrqIiBSsMqvbUgtnEZ4kejawPzAMGARcmkhgZkdE2x4D9gbeAp4xs+1TynoM6AecCBwNbAgMM7OmSWWtDwwHpgD7ATcBV0THj83SzB/TaE2asVAfhhQUnZBSqHp2bdkgHeO3jPmuTr8Gp+3UM1Y9zayru89I2XY3cDjQyd2XmtlE4AN3PyopzVig3N33iV73BcYC/d19RLRtQ2A8cIS7Px5tuwvoD/Ry98XRtquAk4Du7r4oTv3VUhcRkYJlVrclrtSAHvkIaA+0MbN1gV7A4ylpHgX2MLMW0eu9CY8bH5lU9kTC9Or7JOXbG3g2EdCTyuoI9I1bfwV1EREpWGVYnZYc2Qn4yd3nAb2jbRNS0own3OrdM3rdG5iYZjr18YkyzKwNsGaasiYQOup6E5NmlBMRkYJV19HvZtae0MpONtfd52aZfyfgCJZf4+4UrctTks6O1p2T0qWmSaRLpOmYrix3X2xmFUnpsqaWuoiIlLKzgMkpy1nZZDSzNQiD3UYBt9RXBXNJLXURESlYOZh85kbgnpRtNbbSzawjYeT7TOCQ6AmksLxF3gH4JSlLogU/KyndmmmK7pSUpjyprORjNyc8DXUWMSmoi4hIwarNvebJom72rLraE8ysFfACIdj2dfc5SbsT1797AxOTtvcGFrP8keMTgD3NzFKuq/cGPo3qNt/MJrPytfMNAWPla+01Uve7iIgUrIYe/R7dQ/44sBEwwN1/St7v7t8CXwKHpWQ9HHglaRT7MEKrfNmDy8ysF9AHGJqUbxhwoJk1SymrnHBLXCxqqYuIiCx3O2ESmLOB9ikTynwU3Td+OfA/M/uGcL39cGA7YOdEQnd/y8yGA/eZ2dnAQuBK4BPg6aQyryNMTDPYzG4HNgPOBS5Kuc0tKwrqIiJSsOra/V4L/aL1DWn29QQmuftgM2sNXBAtE4GB7v5WSvrDCdf07ybE2xHAqe6+JJHA3b82s35RuqHAdOCyDMevkWaUS6IZ5aTQ6ISUQtVQM8rd994Pdfo1+NM2azWqR8KopS4iIgVLA7/iUVAXEZGCVcuHlTVa+hIkIiJSItRSFxGRgqV2ejwK6iIiUrDyMPq9qCmoi4hIwVJIj0fX1EVEREqEWuoiIlKw1Psej4K6iIgULN3SFo+CuoiIFCxdI45HQV1ERAqWWurx6EuQiIhIiVBLXURECpba6fEoqIuISMFS93s8CuoiIlKwdI04Hn1eIiIiJUItdRERKVjqfo9HQV1ERAqWQno8CuoiIlKw1FCPR9fURURESoRa6iIiUrDK1AEfi4K6iIgULHW/x6OgLiIiBcvUUo9FQV1ERAqWWurxaKCciIhIiVBLXURECpYGysWjoC4iIgVL3e/xKKiLiEjBUlCPR9fURURESoRa6iIiUrB0S1s8CuqNXP8dt8g67bHHn8Qxfzpx2esRLz7HDVddmnX+B58axqrdV6sx3eP/+y/33n4TAKt2X40HnxqW9TGkdAyIcW4ek3JuJvw6by7PPfEIY98YxZQfJ1O1tIpVu6/GdjvuzKFHHUeHjp1i1emJpHNzFZ2bDaJMMT0WBfVGrlPnLtXuX7RwIRUV8wHYoPfGK+xr3qJFjfnnzplDVdUSOnfpSteuq9RYn59/nMzD995ZYzopfXU5NwG+/+4bLjn7r0ybOgWAFi1b0qSsCT9M+pYfJn3LyKFDuOqmu1h3/V5Z1UfnZn6opR6Pgnoj9+jzr1a7/9p/XMQrL71A5y7d2Hq7HVfYt+ueA9h1zwEZ81bMn88RB+xOVdUS9ui/H02a1ny63XzdP1i0aCEbbbI54z//JLs3ISVpcA3n5nXVnJsLFy7gsvNOZdrUKfRYbQ3OuOAyNv/NNpgZ33w5gZuvvYIvx3/Opef8lbv/9yyt27SpsT63ROdm7002Z4LOTSlQGignGVXMn8+Y0S8DsMeAfWnSpEms/K+/OpxFCxcC0G/fA2tMP+LF5xj3/jvsvHs/ttpuh/gVlkajpnNz+PPP8MvPP1FWVsYl//o3W2y1LRYNo16vV2+uuO5WWrdpy4zp03jq0QdrPJ7Ozfwxq9vS2CioS0avvZIclA+KnX/E0OcA2GiTzVlrnXWrTVs+eyZ333YDrdu05cTTz4t9LGlcajo333t7DAB9ttk+bfd6x05d2HPv/QF4ediQao9VPnsmg6Jz8wSdmw3O6vivsVFQl4yWBeVNt2CttXvGyvvT5O/5/JNxQHat9DtuupZ5c+fwxxNOpUvXbrHrKo3LyKRzc8005+a0X8J19DXXynzeJr5oTp3yMz/+MCljusS5eZzOzbwos7otjU3RBHUza2pmvzEz/VY1gMnfT+KLT8cB0L8WrfThLzwLQIsWLdmlmuvuAO+MfZ3RL7/Ehhtvyn4Dfxf7WNK4JJ+bNfUgLV1alXlf1fJ933/3Tdo074x9ndd0buaVWurxFE1QB5YCbwPZ3+citTZi6LNAGDG8yx79Y+Wtqqri5ZeeB2CnXfegTZu2GdMuqKjgtuuvoqxJE04/9xLKyorplJR8GJnFublK9x5A5mANMOnbr5f9PHPG9JX2L6io4D/RuXmazk0pEkVzlrr7UuBbIN6NpRJbVVUVr7z0AgC/3XWvrEYGJ/vw3beW/ZGsqSV1/923Mm3qFA467CjW69W7VvWVxiPbczMxGv7jD99j/Gcrj1SfPvWXZeVAGHiXSudmYdBAuXiKJqhHrgIuMbOaZzCRWvvgnbFJQbnm6+GphkfXO7uvtjpb/GabjOkmfP4JQ556lG6rduf3x59cu8pKo5J8bu5VzbnZf7+BdFu1OwBXXHgmr738EvPn/8qiRQv54J2xXHjmiVRVLVmWvizl4uuEzz/h+ejcPFbnZl5ZHZfGptjuUz8M6AZ8a2afAFMBT9rv7p5VFDKz9kD75G2ffDuVdu3aZ8jReCQGyPVYbQ0277N1rLxz587h7TGjAdhr7wOW3UaUasmSSm665gqWLl3KyWdeQKvWretUZ2kcsj03W7Vuzd+vuYVLzvkrM2dM51+Xnb/C/qZNm3LSmRdw63X/BKBt0u+9zs3CUtYYm9t1UGxBvS0wIeV1bZ0FXJa84d47buGM8y6uQ5HFb+6c8uVBeZ/MQTmTUSOGUrl4MWVlZey1zwEZ0w156jG+++Yrtt5+R/pstR0LKipW2F9ZWQmAuy/b16x5M5o2bRarPlI65s4p553o3Nwzi3Nz3Q025K6Hn+aFZ57g/bfHMG3qL7Ro0YJeG23CwMOPoW3bdsvSrr7m2st+fv6px5gUnZtbpjk3l0TnJjo3pQAVVVB3991yWNyNwD3JG44/6bTJOSy/KL064kUqKyujoBy/633Ei88CsMVvtq12nvepU34G4P233+SgvfpmTDdt6pRl+0847VwOPvyY2HWS0pB8bvbL8txs2649R/z+eI74/fEr7Xtj1EggtNp79d5k2fbkc3NgDefmwKRzc6DOzXqhdno8RRXUc8nd5wJzk7dNmrEwT7UpHCNeDN2bW261LatE1ySz9c1XE/n6y9CRUptr8SLVGZl0bnaLeW6mM2rEiwDssPPu6mIvZIrqsRRdUDezPsCFwE5AZ2AW8AbwL3f/KJ91K3bffDmBb76aCED//Q6KnT/xhaBtu3bstMse1aY96YzzOOmMzLNzPXTvHTx83516SpsAK56b/WpxbqZ6641RjH19FGVNmnDYMX9aYd+JZ5zHiTWcm/+77049pa2BNMZ7zeuiqIK6mf0WGAn8AgwmDJRbFRgIjDWzvdx9TB6rWNQSg5DatmvPDr/dPVbeJUsqGTVyKAC77DGA5i1a5Lx+0njV5tx87KF76bH6mmzxm22WPWJ1xvSpvPT8Mzz2YLjydvQfT2CDDTeqn0qL5EFRBXXgamA0sJ+7L7sfxczOBV6M9u+Un6oVt8rKSl4dEYLybnvtHTsovz3mNeaUzwZq18oXyaSyspJR0bm5a4xz8/13xvLpR+8DYWbDJk2aLHtUa5MmTTn2zydz9B9PqJ9KS85o8Hs8xRbU+wCHJgd0AHevMrNbgCfzU63i9/aY15g7pxwg60FIyRItqbV7rseGG22ay6pJI/dOLc/Ngw47ii5du/HVhM+ZNWMGVUurWH3Nteiz9fbsO/B39Fxvg3qqseSSYno85u41pyoQZjYdONfd70+z74/Ate5e67nhJ81YWDwfhjQKOiGlUPXs2rJB4u17382p06/BNj07NKrvBcU2o9zzwDVmtmfyxuj1v4Dqn6EoIiJFRQ90iafYut/PBjYBhpvZXGAasAphZrj3gHPyWDcREZG8Kqqg7u6zzawvsB9hQFwnwi1tY4AXo4e+iIhIidBAuXiKKqjDsqe1DUFd7SIiJU8xPZ6CD+pm1jlOenefVV91ERGRBqaoHkvBB3VgBvEGATepr4qIiIgUsmII6n9Cd/aIiDRKjXEEe10UfFBPd0+6iIg0DhooF0/BB3UREWm8FNPjKbqgbmY7A38BegEtU/e7++YNXikREZECUFQzyplZf+BVoCuwNTCZMJBuQ6AN8H7+aiciIjlndVwamaIK6sDfgZuAfaPXl7j77oRWeyUh4IuISInQNLHxFFtQ3wgYBiwljIhvA+Du3wOXAxfnrWYiIpJzZnVbandMW9/M7jSzcWa2xMw+y5DueDP70swWmtnHZrZfmjQdzOxeM5tlZvPM7Ekz65Em3Q5m9paZLTCz783sfLP476DYgvpCoMzDo+WmAOsl7ZsHrJmXWomISL3IU+/7JoQe4a+BL9LWy+wIYBDwGLA38BbwjJltn5L0MaAfcCJwNOFy8TAza5pU1vrAcEJc24/QI30F4XknsRTbo1dHAEPc/TYzewDYATiT0PV+NbDI3VM/0Kzp0atSaHRCSqFqqEevfvbjr3X6Ndh0jbax62lmZYlniZjZ/cDW7r5pSpqJwAfuflTStrFAubvvE73uC4wF+rv7iGjbhsB44Ah3fzzadhfQH+jl7oujbVcBJwHd3X1RtnUvtpb6TSz/O3choXU+hNAl3wX4a36qJSIi9SIPTfWaHg5mZusSxnI9nrLrUWAPM2sRvd4bKAdGJpU9ERgH7JOUb2/g2URATyqrI9A3Tt2L6pY2dx+a9PNPZrYVsD7QCpiQ8oGIiEiRK9DBbr2j9YSU7eOB5kDPaF9vYKKv3CU+PlGGmbUhXDpOLWsCoRHbGxidbcWKKqib2V7Ay4kPKFp/ld9aiYhIfanrjHJm1h5on7J5rrvPrUOxnaJ1ecr22dG6c1K61DSJdIk0HdOV5e6LzawiKV1Wiq37fTjws5ndnGYwgoiISKqzCHOaJC9n5bVG9ajYgvrmwH2EUYljzexbM7vSzDbLc71ERKQe5OCS+o2E7u3k5cY6VivRIu+Qsj3Rgp+VlC41TSJdIk15urLMrDnQOildVooqqLv7Z+5+kbuvD2wPPAf8ARhnZp+a2d/yW0MREcmpOkZ1d5/r7j+mLHXpeofl1797p2zvDSwGvk1Kt2Ga+817J8pw9/mE3oPUsjaM3kXqtfZqFVVQT+bu77r7mYRvXQcRvvn8M6+VEhGRnCrEGeXc/VvgS+CwlF2HA68kDdoeRohNeyx7P2a9gD7A0KR8w4ADzaxZSlnlhFvislZUA+WSRbcM7A8cQbg1oCkwIq+VEhGRnMrHo1fNrDXLbzlbG2hvZodGr19z9+mEWUz/Z2bfAKMIQXg7YOdEOe7+lpkNB+4zs7MJE6hdCXwCPJ10yOsIE9MMNrPbgc2Ac4GL4t7VVWyTzzQh3KB/JHAA0BZ4ExgMPOHuM+pSviafkUKjE1IKVUNNPjPxl4o6/Rps2L11bSafWQf4LsPu3dx9dJTueOACYC1gInChu7+QUlYHwjX8g1ne+DzV3X9OSbdDlG5LYDrwH+CaNLfDVV/3IgvqMwnD/8cRAvmj7v5jrspXUJdCoxNSClVDBfUv6xjUe9UiqBezYut+vwUY7O5f5rsiIiLSABpVSK67ogrq7v73fNdBREQaToHOKFewinb0u4iIiKyoqFrqIiLSuORj9HsxU1AXEZGCpZgej4K6iIgULkX1WIr2mrqZtTKzHmbWKt91ERERKQRFF9TNbD8zew+YB/wIzDOz98xsnxqyiohIkSnEaWILWVEFdTM7iPAQl8WER+cdBZwNLAKGmNmB+audiIjkmlndlsam2GaU+wj43N2PSbPvYWATd+9T2/I1o5wUGp2QUqgaaka5uv5dXqeB6lkoiqqlTng03YMZ9j3Eyo+uExGRYpaDB6o3JsUW1GcRnjGbzobEfJi8iIhIKSm2W9oeA64yswXAk+5eHj0B5zDCs9QH5bV2IiKSU41xsFtdFFtQ/xvh2bZ3A3eZWSXQjNDJ8jRwYR7rJiIiOdYYB7vVRVEFdXdfBBxiZpsBvwU6Ebrcx7j7p3mtnIiI5JxiejxFFdTNbGfgwyiAf5qyrw2wlbu/npfKiYiI5FmxDZQbBWycYV/vaL+IiJQI3aceT1G11Km+J6YNsKChKiIiIg2hEUbmOij4oG5m2wM7JG06ysx2SknWEjgQGN9gFRMRkXrXGFvbdVHwQR3oD1wW/ezAaWnSVBIC+skNVSkREZFCU2zTxC4Ftnf3d+ujfE0TK4VGJ6QUqoaaJvbn8sV1+jVYrWPzRtXWL4aW+jLuXmwD+0REpA7U/R5PwQd1M/tNnPTu/mF91UVERBqWZpSLp+CDOvA+2fVCWpSuSf1WR0REGoxieizFENR3y3cFREREikHBB3V3fy3btGbWsz7rIiIiDUsN9XgKPqjXxMy6AocDRwHbo+53EZGSoYFy8RRlUDez1sBAQiDfk/Ckto+AM/NZLxERyS0NlIunaIK6mTUBBhAC+QFAa+AXwns4wt0fz2P1RERE8q7gg7qZ7UgI5IcBXYGZwMPAI8Bn0etf8lZBERGpP2qox1LwQR14g3Cr2ijgRmCEuy8BMLMO+ayYiIjUL8X0eIohqH8KbAbsAlQBXc3sGXefl99qiYhIfdNAuXgKftpVd98C2BS4DtgAuB/4xcweJzyZTdNji4iIUGQPdIEVrrEfCnQjBPVngZvd/fW6lK0Hukih0QkphaqhHugya35VnX4NOrdp0qja+kUX1BOi0fD9gSMJLfY2wPfuvm5ty1RQl0KjE1IKVUMF9dkVdQvqnVo3rqBeDNfU03L3KmAoMNTMWgEHEQK8iIhIo1S0LfX6oJa6FBqdkFKoGqqlXr6gbi31jq0aV0u94AfKiYiISHaKtvtdRERKn6aJjUdBXURECpbuU49HQV1ERAqWYno8uqYuIiJSItRSFxGRwqWmeiwK6iIiUrA0UC4eBXURESlYGigXj66pi4iIlAi11EVEpGCpoR6PgrqIiBQuRfVYFNRFRKRgaaBcPArqIiJSsDRQLh49pU1yzszaA2cBN7r73HzXRwR0XkrjoKAuOWdmawCTgTXd/cd810cEdF5K46Bb2kREREqEgrqIiEiJUFAXEREpEQrqUh/mAn+P1iKFQuellDwNlBMRESkRaqmLiIiUCAV1ERGREqGgLiIiUiIU1EVEREqEgnqRM7PLzcyTloVmNt7MzjOz2P+/ZjbazF6oj7rWlplNMrPb8l0PqRsz+zg6R3+bZt+u0b6tk7ZdbmY7NGwta2Zmx0V17Zrvuoik0gNdSsMCYPfo51bAbsDVhC9tV8cs62SgKndVEwEz2wTYPHp5FPBGFtkuA34FxtZXvURKjYJ6aVjq7m8nvR5lZpsBBxMzqLv7FzmtWQExs1buviDf9WikjgaWAq8Bh5nZae5emec65ZWZNQHKGvvnILml7vfSNQ9olrzBzK42s0/N7Fcz+8nMBptZj5Q0K3W/m9nOZjbWzBaY2Qwzu8/MOmc6sJm1MbP5ZnZOmn1PmtlbSeluM7OJZlYRdbPfaWYdanpzZnawmY2LLjf8bGY3mlnLpP2J7tx9o2POBZ6oqVzJPTMz4EjgVeBGoAswoIY8iQk0rku6tLRrtK9l9P/9c/T/P87MBtZQ3uVmNsvMUn8nNo3K7h+93tfMRprZNDOba2bvmFm1dY3ydY5+L2ZEvydjzWznlDSjzewFM/uDmU0EFgFb1FS2SBwK6iXCzJpGSzszOwA4BHgyJdkqwFXAvsDpwDrAa2aWscfGzLYCRhK+JBwGnA/sDwyLWhorcff5wBDgiJSy2kXHfiTa1BpoAlwE7A1cDOwCPFvDez0gem9fAAcB1wInAg+nSX438A0wELi+unKl3uxAONceAYYDMwld8NXpG61vjX7uC3wYbfsfcALh//0gwnnwVHReZDIY6AT0T9l+JDANeDl63RN4HjiW8Dv0JjA08YUinej3YBjh9+J8wu/Jr8DI6Pcn2dbAucClwD6Ep8aJ5I67ayniBbgc8DTLo0CTavI1AVaP0vZL2j4aeCHp9dPA90CzpG39onz7V1P+AVGaDZK2/R5YAqyaIU9TYMcoX6+k7ZOA25JefwiMTcn7lyjfZtHrXaPXd+T7/6ixL8B/COM+OkSv7wTmA22T0iT+v7ZO2ubAOSllbR5tPyFl+1jggxrq8SHwv5Rt3ySfWyn7yqJzcjjwSNL246I6dI1eJ871/klpmkW/N08lbRsNLCY8+jXv/y9aSnNRS700LAC2iZadCK3wAcCg5ERmtnfULTiHEFwTz5TuVU3ZvwWe86Trfu4+AiiPjpXJS1Ga5Nb6EcAod5+aVKdjzewjM/sVqATGVFcnM2sLbMnKvRCPRevUOr1YTR2lnkW9QIcBQ919TrT5EUIvTbVd5hkkRs6nXkp5DOhjZm2qyTsYOMDMWkV12xZYN9qeqO8aZvaAmf1E+B2pJHyJrel3ZK67D09siH5fnmbl8/ETd1frXOqNgnppWOru70fLm+5+C3AF8Ecz2xTAzLYhdIn/TOha7AtsH+Vvma7QSCdgaprtU4GM19XdfTHwFFFQN7MuwF4s73onug76IPAu8LuoPok/9Jnq1BGw1DpFAWNRmjqlq7s0nH5AN+B5M+toZh2BT4Ep1NwFn04noNLdZ6Vsn0o4LzpWk/dRoA2hmxxC1/v3RKPrLdwCOoQQiC8l3EWyDaFrvabfkWlptqf7HdH5KPVKo99L1/hovQnwGSFYzgF+5+5LAcxs7SzKmUW4Fp9q1WhfdQYDx5vZ5oQvEVWE1kvCYcA4dz8hscHMdqmhzHJCV+cKdYoG17VIUyc9sSi/EoH7v9GSrJuZreLu6QJiJrOAZmbWyd1nJ21flfB/XZ4po7tPNrM3gSPM7EnCF8mH3D1xjqwP9AEOcvfnEvkSLfsa6pTt74jOR6lXaqmXrk2j9Yxo3YrQlZj8R+XoLMoZAxyUPJjOzPYitIjGZMoUGQ38QmgRHQkMS+qCTdRpcUqeauvk7r8C44BDU3b9Lqm+UgDMrDVwIGHg424py5GERsXh1RRRycot5MT/72Ep2w8DPvIwSLM6gwkD1PYDViOp651wPkLSORl98d2xhjLHAO3NrF9SvqaEL9I6H6VBqaVeGsrMLNGV3hzYijCS/Avg9Wj7SOAM4FYze4bQcj42i7KvJHRPvmBmtxJaH1cTusyHVpfR3avM7HHCwKJVSBkNH9XpP2Z2CfAW4Y/tHlnU6XLgWTN7mDDifUPCqP6n3P3TLPJLwzgQaAvc4u6jU3ea2XmElvytGfKPBw40szcIA+smuvsnZvY0cGPUgp4IHEMYYX9gFnV6ArgZuAP4wt0/Tto3gTDO5OpoRHtbwvPXf6qhzBcJvw8Pm9kFhC72U4EehPNSpMGopV4aWhGC4lvAK4Q/KA8DuyUGuLn7UMLtNgcSrhvuTGitpLOsNe/uHxCui7YnXCO/jvBHbG93z2bmucFAd6ACSJ1+9i7ghqi+TwNrksV1VncfQmiZbQY8B1xAuHXtmCzqIw3nKOAHQo9NOg8A25vZehn2/5XwN2oY8B7hyyqE/+dBhP/35wjnwaHu/nxNFXL36YTfkdRWOu6+iDBh0yJC8L+C8KX2tRrKrCJ8IX2R8PvxFOH3pV/0+yPSYGz55SQRMLMPgM/c/Q/5rouIiMSjlroAYGbdzewown3A7+W7PiIiEp+CuiQcQZgk5FHg3jzXRUREakHd7yIiIiVCLXUREZESoaAuIiJSIhTURURESoSCuoiISIlQUBcRESkRCuoiBcjMJpmZm9lxKdvXiba7ma1Tn8cSkeKjoC4ly8zuTwqAycuvZjbBzAaZ2Rb5rqeISK4oqEtjUEl4yEZiaUl4CMyfgffN7MQ81i2uSsJDTCZGP4uILKOgLo3BWHfvnliA1oSH1HxNeFLhf4qlxe7uP7l772ip6elhItLIKKhLo+Pui919JOGJdZWE34Niaq2LiKSloC6Nlrt/AbwfvdwawMyOi667T4pe721mw8xsmpktNbMzksswsw3M7A4z+9LMKsxsnpmNM7PLzKxDpmNbcIKZvW9m881sppm9bGYDqqtzNgPlzKylmZ1iZqPMbLqZLTKzydHr082sSzXltzCzi81svJktMLMZZvasmW1ZQ706m9mVZvZJNGZhvpl9bmbXmtkq1eUVkdxpmu8KiOTZj9F6pQBsZmcD1xOeLz8HWJqy/3jgDqBZtKkCaAFsES1/MLO93P2blHxNCM/yPizaVEV4hvfuwO5mdnpt34yZbUB4bn2vaNNSoBzoBqwB7Bq9l/vTZG8HjCF8wVkU5e1C6NHYy8x2c/d30xxzS+AlYNVo04Io78bR8icz29fd36nt+xKR7KilLo3d2tF6dsr2VYFrgNuBHu7eCWgLPAlgZvsAg4AlwGXAau7ehnC9fkdCD0BP4GkzS/09O5flAf3vQGd37wysTgj2NxCCcCxm1hEYTgjoU4Fjgfbu3iWq12bAlWnea8Lfga7AAKBN9H53JnzxaQ3ckuaYHYAhhM/rO2BPoI27tyV8DuMJXwyGqMUu0gDcXYuWklwIrVEHRmfYvw2hlezAzdG246LXDjySIV8T4JsozWEZ0nQGfo7SHJy0vTWhpezAv9PkM+CVpDocl7J/naR966Ts+1e0fR7QK8bnNCnKVwGsn2b/IUnHXCtl34U15F2N0FPgwDX5Pie0aCn1RS11aXTMbDUzO5bQwiwDFhOeJZ/qugxF7AKsC3zv7k+kS+Dus4Bh0ct+Sbv6Ae0J3dPXpMnnwFVZvI10/hCtb3X3L2uR/0l3/zrN9iGEoAywacq+30Xrh9PldfefgTujl0fWok4iEoOuqUtjsIuZeYZ9FYTWcGoQXAB8nCHPDtG6h5n9Us1x20brtZK2bRWtJ7h7prxjCN36Wf9+RoPmekQvX8w2X4r30m1090ozm0boYu+UdMzmLA/yL1dT7svA+cCaZtbN3afXsn4iUgMFdWkMKoFZ0c+JruIfgTeAu939hzR5Zrr70jTbYXnwbM7ywWHVaZ30c+JaecZ7zN19kZnNALpnUXZCcj2+j5Ev2bxq9i2M1s2StnUmXIqAat4PywcjAqwCKKiL1BMFdWkMxrr7rjHzVFWzLxHIXnH3PWtXJRGR3NM1dZH4pkbrtapNlV6ilbpapgRRt3bXmOUmd+WvnTFVbs1i+Zef1atJt0bSz9PqrzoioqAuEt/YaL2BmfWqNuXKPojWvc0sU9f9TsTsRXP37wmj7QH2i1mnWnH3xcCn0cs9qkma6M34QdfTReqXgrpIfK+y/Lr1TdFkMmmZWTMza5u0aQThlrYmwHlp0hvwt1rW6/5ofUotvmzU1uPR+hgz65m608x6ACdELwc3UJ1EGi0FdZGY3L0SOJlwW9rewAgz65uYZMbMysxsYzO7APgS2DIpbwVwdfTyTDO71MzaRfm6Aw8QbpmrqEXVriNMANMWeM3Mjjaz1kl12tzMbjKzgbUoO5PbgcmEwYAjzWy36IsJZtaXcM99R0K3+w05PK6IpKGBciK14O5DzewY4F7C9K5jgUVm9ivhPvTkUeKpt9NdR7i17VDCLG6XmtlcQvADOB04m5jXxt29PJo7/kVgfeBhoMrMygmBvkWUdFyccms45hwzO5BwT/56hF6MiugWwjZRslnAgep6F6l/aqmL1JK7DwY2ILS8xxHmS+9IuDXsHeBGYCd3fzMlXxVh0pYTgQ8Jk99ACIj7uvutdajTl8DmwJnAm8Bcwpzu04BRwGmEyWRyxt0/AjYhTJrzebS5DJhAmDt/Y3d/O5fHFJH0LExgJSIiIsVOLXUREZESoaAuIiJSIhTURURESoSCuoiISIlQUBcRESkRCuoiIiIlQkFdRESkRCioi4iIlAgFdRERkRKhoC4iIlIiFNRFRERKhIK6iIhIiVBQFxERKREK6iIiIiVCQV1ERKRE/D+LgYbDUf1ZrAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAGoCAYAAAB13vBmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABDrAAAQ6wFQlOh8AACNmklEQVR4nOzdd3hUxdfA8e8kpJMACaGG3nvvLUhTmoAggopYQKr0IogURUEBUVFA8QUsP7qAdKQpUhQFpEuHhB6SkF533j82CUkIkGzK3STn8zz7ZHfuzL1ns5CczMydUVprhBBCCCFExrIxOgAhhBBCiJxIkiwhhBBCiEwgSZYQQgghRCaQJEsIIYQQIhNIkiWEEEIIkQkkyRJCCCGEyASSZAkhhBBCZAJJsoQQQgghMoEkWUIIIYQQmUCSLCGEEEKITCBJlhBCCCFEJpAkSwhhEWX2rFLqJ6XURaVUiFIqVCl1QSm1USn1ilLKyeg4M4tSylsppVN4RCmlbiqltimlej/lHO2VUiuUUleUUmFxjytxZe2f0tZRKfWWUmqzUuqGUipCKRWglDqtlPpOKdUhY9+xECKtlGwQLYRIK6VUQeB/QLunVG2ttd6X+RFlPaWUN7A3FVWnaa2nJ2vrAnwP9HhK23VAP611WLL2dYHVQLknNdZaq1TEJ4TIJNKTJYRIE6WUI7CdpAnWeqAP8AzwErAYCM7EGGyssJfsHaAl0B+4mah8rFLKLlnd5AnW/wGd4h5LE5W/EFc3gVKqIrCLhwlWJPAF0BVoA7wFbABiLX4nQoiMobWWhzzkIY9UP4AJgE70mPyYep5Akbjn3onbJKvXP9Gxq4nKSye7Tk3gc+AG5gRifKJjEUCBZOftkej4FR723M8H9gE+QAgQBdwCNgOd0vB98E4Wn3eiY2OTHSuS6FjbZMfmpXDuL5LVaZPo2LZE5dGJr5vsHDWM/rciD3nk9of0ZAkh0qp/oueXgI9TqqS1vqe1vp2B112LubeoGOZe+PPAb3HHHIAXk9V/NdHzJVrr+LkRI4BWgBfgAtgBRTD3Im1WSg3NwJgBwoF7iV6/lOh5DDArhTYfxR1L0kYpVQRIPNfqB/2Y4Vit9UlLghVCZJw8RgcghMg+lFLOQOVERb9qrU1ZdPlywFzMQ2UFMSd432JOmMCcVC2Oi7MA0DGuPJakQ3AfAucAfyAMc4JWD3NiA/CBUmqx1jpxkpMaNZRSsZh74EYmKv9Ma5146K5WoufXtdZ3k59Ia31bKeUbd67EbeoCiedZ7UhjjEKILCRJlhAiLQoke30/C689X2s9NnGBUuoC8CXmuJoppcpqrS9j7tWyj6u2RWudeI7UZmAU0BhzD5ZDsusUwJxInkpjfF8ke30H+FBrvSBZef5Ezx9JsJK1L52sjZHffyFEGslwoRAiLQKSvfbIwmuvS16gtY4AfkhUFD9E+Eqism/jnyil2gJ/AL2BUjyaYMVzT1ekZoWAOkqp5D9nA5PVeZzCKbQx8vsvhEgjSbKEEKmmzUsJnE1U1FYplZplApKsFaOUStyL7pnKy996TPk3iZ6/opQqDTSLe+2LeaJ4vPE87MG/ALyM+Y5A72TntORnY2vAGRgMmDAP672B+UaBxE4kel5SKfVIoqWUKox5zli8f+O+HiXp9/KJa2kJIYwlSZYQIq2WJXpenkeTCMC8llbcRG14tAcmcQLROZXXTXFRP631aeBQoni+5OG8pf9LNh+qZKLnX2it/6e13k8GLXegtQ7XWi8i6fdocrJEakWi53kwJ37JvUvS6Rwr485/G/PyGfFeVUq1SCkWpVT1NIQuhMgEkmQJIdLqC+CfRK8/VkqtVUq9GLcKei+l1ALgIg8nyV8m6d1yPyqlBiul1mPuSUqvbxM9j0/aTJjXn0rscqLnbymlOiul+mFeWDUjzcC8vAKY72CcGH9Aa70L2Jio7hil1LdKqefiHksw3wEZb4PWenei1yN5mLTaATuVUp8ppToppZ5RSvVXSq0BjmfsWxJCpJWs+C6ESDOllCfwE2lY8V0ptRAYlEKdk0CNuOfXtNal4+qXxry+VbwyWuurj4nHBfMCoG6JirdrrZ9LVq8dsDOFU+zBvJDqI3E/Tgorvidpo5T6DvNwIZiXcSintb4Vdywv5u9f1yddA3My9orWOiTZtWXFdyGyAenJEkKkmdb6Hub1mjpi7gW6jHk5hHDMSyv8AvQD/kzUbCywEPOaUZHAMcxzouZlQDyhPNob9W0K9X4Fnsc8tykcc2I2n6cnO5ZIvNaVE+YhwPg4QrTWz2P+/q0CrmFeUDUi7vkqoKPWulvyBCuu/VGgOjAA2Ip5vloU8ADznLmlwLOZ8J6EEGkgPVlCCCGEEJlAerKEEEIIITKBJFlCCCGEEJlAkiwhhBBCiEwgSZYQQgghRCaQJEsIIYQQIhNIkiWEEEIIkQkkyRJCCCGEyAR5nl4ld1BKOWBedfoeGbSPmRBCCCGsni3mjepPaq0jM/LEkmQ9VAM4YnQQQgghhDBEA+DvjDyhJFkP3QP466+/KFq0qNGxCCGEECIL3Lp1i4YNG0JcHpCRJMl6KBagaNGieHl5GR2LEEIIIbJWhk8VkonvQgghhBCZQJIsIYQQQohMIEmWEEIIIUQmkCRLCCGEECITSJIlhBBCCJEJJMkSQgghhMgEkmQJIYQQQmQCq0mylFLllVKLlFLHlVIxSqlTqWynlFITlVLXlVLhSqlDSqnGmR2vEEIIIcSTWE2SBVQDOgEXgTNpaDcBmA58BnQGbgE7lVJlMzxCIYQQQohUsqYka5PWuoTWuidwNDUNlFKOwLvAXK31Z1rr3cBLgD8wNvNCFUIIIYR4MqtJsrTWJguaNQXcgNWJzhMF/Ax0zKDQhBBCCCHSzGqSLAtVjvt6Lln5WaCkUsopi+MRQgghhACy/wbRBYBIrXVEsvIAQMUdD0+poVLKDXMvWLwimRKhEELkUlprNBqTNj3y3KRNaHSS5ynVC4kK4UrgFcKjwzEFBRIb/ABTXJtYbYr7Gosprs2VEF/c7PISo2OI1SZiTDHEhAYTG+jPuehbeNq6EXdlTHHX0mhzmdYJxzRgwoTWPDyeqN6ZqBsUy1Mgoa7WD9vpROfQsbHo0BC0rU2iYyR7nsJXBedtAvA0OWGbQn+IueZjvu+PO2CKRcfGglJpa/e066V8ulScM53X0xpi4wbBVCrOmSxObbIh+u8GYBvwhFbpk92TrPQYDUw1OgghhMgoQZFBBEcGE22KJjo2mmhTNH5hfsSaYomKjSLaFE1AeACBEYHY2doRa4o1JyFxj5vBN4nVsWituRd2j/CYcGJMMUTHRhMVG8XVwKvYaMgTEWVOamJjiI2OIlaZk49YpYlFE6CS/91rXTzCwEaD0ubfzSk9t4l7nfh54nr2wGmXO1T2S3SMh8dT/KrUk48n+1pZKQKcwikbkHIW84TcBpVStqHNhcrVFRwdU98u4XqPv+ITY3nSsSde7ymxaA3R0eDqCm5uqW8X59Bv1Th6uDKly53jKuef0Mpy2T3JCgAclFKOyXqzCmBOaJ+Uns4DliR6XQQ4kvEhCiFys+jYaCJjIxOSlRhTDOEx4QRGBBIVG0VkTCRXA69iZ2uXkMxcCriEUx4nImMjiYyJ5MTdE3g6exIZG0lUbBRh0WE8iHiQkDjdCblDQETG/TXuHAUuMQrnGMgXqbAzKexjoYwJbjnFUu0u2JnA1mROLmzjHjb6YZmfM1TwT5asmOISEgdHlKsrqnSZuOMKm7hffwrinitsABPgqu0oEuuMZ4QNNkWLYlu4KDYobLDBFoWNssEWm4Rz5Ldxxk7Zkgdb8sQds3V0RlWvnmHfozRxdYWycsO7NQgMjCA8PJqiRV25eTOY3bsv4+3tTsmSKzPletk9yYqfi1UJ+DdReWXgutY6xaFCAK11EBAU/1o9pvtUCCES3L2L/u03opWJQFMYQbFhROpoQs+e4PB/u4l1diLcJhb/PNHszeePf55orjtEYErHjxcbk3mYQysoH2iDQ6w54XGPtME+FuxNUCNWEWlrR5kgW0oH2eAYq7AzgV14FDZR0djHgmco2Meak6M8JnAPN3+Nf9jGfXWKMX/l7YFJA1GALRAFlCkAL75oLvfwgJIlLX+DQmQBrTWrVp1m1Kgd1K9fjE2b+lCsmCuvvloLX1/fTLtudk+yDmJOlHoRl2QppeyAHsBWA+MSQmQXsbFw6xbBUSEcPLWNf27/Q4w2cebGccIe+GFSEBkTwT95gwl43K00eTCv9JdI0Yg8eIXb89ytghSNsMNOg51JYacVeUyKCFtN2VB7HGIV6v59CjVsjbPOg722wR5b8pnscNZ5UpyPA5iTnuQ/wQvGPRIzmaBnTyhUKGm5jQ3UqAF5svuvASGe7OJFf4YO3crOnZeoUaMQ777bPMuubTX/u5RSzjxcdqEU4KaU6hn3+jet9T2l1G6glNa6PIDWOkIp9TEwTSl1DzgJDAE8gDlZ+w6EEFbn9m34809Cg/z4d/tyztn4c8sxmnsqnOPRPlwsaINLhInzyRMTMPfauEPlIAecUVQOsicm0o6irsWoVbEF9jZ2KBQlnQrjaGOPQ4nS1CvfClcHVxzzOGJva5/V71YIkczq1afp1289trY2fPppO0aMaISdnW2WXd9qkiygELAmWVn869bAPsw/9pLHPBvz33RjAU/gONBBa305swIVQlifiJgIrlw9xpGZQzkddYMbMf5sKB9DpC3E2AIVH9a10WAfq7ADlKMzLwR7ULBgSaraFqGhew1qVGqJs60jqnRpKFrUoHckhLBUTIyJPHlsaNCgGF27VmLOnPaULJkvy+NQWj/phsfcQynlBfj4+Pjg5eVldDhCiGQiYiI4ffc0vkE+nLryF8dO7OBKxC1CTZHcig4gyOHRn2VVIlxxtHemfdl2VC5UFa8K9ahRpBaFXArJPEwhcqC7d0MZN+5XIiNjWLmy59MbAL6+vpQoUQKghNY6QydoWVNPlhAiF4uIieCQzyF8g3w5dfcUvsG+XLx5ijshd7gWeSfFNoVCoIkv1IuCUq5euCgHKpVrSMPX36N40UrY2mTdsIAQwjgmk+a7744yYcIugoIiGTmyMSaTxsbG2D+mJMkSQhhCa83x28f58q8v2XBuQ4pLEDjEQOlAeOGu+XnVe1ANT8oVq0656i1w7tsNKlY0T952cMjy9yCEMN65c368+eYvHDzoQ6NGxVm8uDO1alnH+uKSZAkhsoRJm9hzZQ9rz6xl28VtXH9wPcnxGndgxGEo+QCq+EGxYLCpVRveegt6VIWaNc3LBQghRCJaay5e9Gfhwk4MHFjP8N6rxCTJEkJkuAcRDzh97zQ7Lu7g2O1j/HbtN4Iig5LUqRmSl2dOhjDwH6ji3RP8/aFFdXjnHfNkc2dng6IXQli7TZv+46+/bvDBB89QpYon166NxNHR+lIa64tICJGt3Au9xwX/Cxy7dYwtF7bwx/U/CI4KTlLH3SYvTUMK8Nx9d9rvvES9m2CrQ8wHFy+GgQNTOLMQQiTl4/OAd97ZzoYN56hY0YOJE5vj4mJvlQkWSJIlhEglkzZxJeAKG85tYPul7Ry9dRT/cP9H6jmZbHnZJx/1zj6g5h1o7Asu0XEJFQHmHqqSnjBggHkosHDhrH0jQohsJybGxBdf/Mn77+8lOtrEtGmtmDChudUmV/GsOzohhCFM2sSDiAfsvLSTAz4H2HR+E1cDryap4xabh3YB+Sj7wIaatzUVLgVS/S4UDYkFHkCjRubV7/p3hNBQ6NYNGjcGWTpBCJFGZ87cY9y4X2ndujRff92JihWzx/xMSbKEyKXuh93n+O3j3Ay+yam7p7j24Bpn/c5y4s6JR+qWDlRUjYJ6t6DDReh+DpyjY8AuDMqXN29+WzQQejWHtm2hdWuwleUThBCWCwyMYNeuy/TsWZWaNQvz119vUbdu0Wy1xp0kWULkAlprzt8/zw8nfmD/9f38fu33x9Yt7VyMOtejqXviHk7R0Ps0eAXFLfRZpw482xYm1YVnn4X8+bPmDQghcg2tNStWnGLUqB34+4fTuLEXXl5u1KtXzOjQ0kySLCFyoOjYaA76HGTJsSX4hfmx/eL2JMfru1amum8Ubf3zUf3EHQo4FaB4hD22Fy5C8M2HFT08YNI4aNcO6tbN4nchhMhtzp+/z5AhW9i9+wq1ahXml19ewsvLzeiwLCZJlhDZmNYa/3B//r75N6fvnebk3ZM8iHjA+nPrk9Tzdq1Jvn/PMXZfFM2ug+Jc0hPV8IAiBcGjIDx4AK+/bn7IAp9CiCxy40YQtWotwtZWMXdue955pxF58tgYHVa6SJIlRDZwyf8SlwIusf3idgIiArj+4Dp3Q+9y6u6pR+rmc8hHp1JtaeZSld7zf6XswbNA3DyrQoWgdTWoUgXat4dOncyrpQshhEGuXg2kdOn8FC/uxrx57enUqaIhmzlnBtkgOo5sEC2syUX/i/x89mduBN1gzZk13Aq5leR4lYJVKJ6nAF7BNuSNNFH1jqb23z7U/Pc2LhEmMJmSnnDoUGjTBrp3z8J3IYQQj3fnTgijR+9kzZrT/PvvIKpU8TQkDtkgWogcKDgymHVn1/Hv7X8JiQrBP8Kfu6F3+eP6H0nqVS5YmecrPU/D4g1pdTKIMq+NRHE25ZMWLgxv94WoKChe3LyvX5cuYG+fBe9ICCGezmTSfPPNP0ycuIuQkChGj25CiRI5o+cqOUmyhMhCETERrDq1irmH5nLy7smEcmc7Z4rmLYqniye9q/XGIY8Dr9Z8lTYeDVB37sCxYzBkPhw+bG5QpMjDpRJq14ZixcxlQghhxUJDo2jb9gcOH/aladMSLFrUiRo1cu6CxJJkCZEF7ofd59ODnzL7wGwA8trnpV+tfjQr0YwXqryAh7MHREbCb7/B+vXg4wP3pzxMquLZ28P27ebkSgghsgmTSWNjo3BxsadWrcK88UZt3nyzrlVt5pwZJMkSIpPEmmL58cSPDN4ymPCYcADK5C9Dt8rdmPnMTJzsnODaNejVD7ZuTfkkdetCvXrQpAk0aADVq2fhOxBCiPTbsOEcEyfuYtu2lylTpgCLFnU2OqQsI0mWEBlIa82m85vYcXEH/zv1PwIjAgF4pswzDG84nK6VumJz4SI82xn274fo6IeNK1WCli2ha1d47jlZMV0Ika1duxbIO+9s55df/qNSJQ/8/cMpU6aA0WFlKUmyhMgAJm1i2fFljP91PPfD7wNQKl8pniv/HJ+0+wQvNy84ehRsEiVOrq7Qty/07w/e3obELYQQGc1k0syde5Bp034jNtbEBx+0Zty4pjg45L6UI/e9YyEySIwphn1X97Hh3AbWnlnLndA7AIxsNJKp3lPJ75gf7t6FJq3hzJmkjdetgx49sj5oIYTIZErBvn3XaN68JF991ZHy5d2NDskwkmQJkUaHfQ8z//B8Vp1eBYC9rT1tSj/Dc+HFGbD9Ho4HTsNrlcDGBm7fftjwmWfgrbfgpZfMP4WEECKH8PcPZ+rUvbz7bguKFXNl1aqeuLjYZavNnDODJFlCpNKdkDs0XNKQ6w+uA1AxXzlerdiTd2Lr49a1V9LKVapA5crg4gKlSsGHHxoQsRBCZC6tNT/+eIIxY3bi5xdG3bpFef31OuTNK2vzgSRZQjzVrsu7mH94PlsubAGgToGq/DL/Dl5XLgGzH1asWRM2bQIvL3MvlhBC5GDnzvkxePAW9u27Sp06Rdi8uS8NGxY3OiyrIkmWEMnEmGI4ffc03x79lsO+h/nn1j8AtL0EYw7Bsxfj5lc5OcHMmebnxYvDiy8aFLEQQmS9ESO28/ffN5k/vwNDhzbM9ps5ZwZJskSup7XmSuAVVpxcwcrTK5NsuuxgsqH3GZi1C0oHxhVOmgRVq5rvDMzl8w2EELnLzp2XqFevKB4ezixc2Al7e1u8vNyMDstqSZIlcq0bQTcYsGkAh3wPJaxn5ensSeWClXljfyjP7fWh2l0TCuDbb83b2JQubWDEQghhjFu3ghk1agerVp1m7NgmfPppe8qWzV1rXllCkiyRq1z0v8gbG9/AL8yPs37mTZbdHNyY1WYWL1R9gfLTvoAvv3zYYOVK81ILdnYGRSyEEMaJjTWxePE/vPvubsLConn33ea8915Lo8PKNiTJEjladGw0y/9dzvpz69l6IenWNe+3fJ/25drTrEgDmDwZujcBPz/zwQoV4PffZdNlIUSuNnjwFr799ijNm5dk0aJOVKtWyOiQshVJskSOFBUbxZKjSxi6dShg7q1qWaolznbODKk/hM4VO6MCA+Gnn2B484cNixeHQ4egRAljAhdCCIMFB0eilCJvXnsGDapP48Ze9O9fO8dv5pwZJMkSOYrWml/++4Vh24bhG+QLQI8qPfipx0845nE0V7p3D1q1Mu8dGM/TE65cMa9rJYQQuZDWmp9/PsuIEdt54YUqfP75c9StW5S6dYsaHVq2JUmWyBFiTbHMPTSXCbsmJJT1q9WPrzt+jYudM8TGwsCB5gnsiT3zDKxaBQULZnHEQghhPa5cCWDYsG1s3XqBKlUK8sILVY0OKUeQJEtka+fvn2fhkYWsOLUiYe/ASh6V2P7KdkqTH8ZMhAULHm04aRKMGwf582dpvEIIYW2WLTvOkCFb0Bo++ugZxoxpir297dMbiqeSJEtkW/fD7tP0u6bcD79P9ULVGdJgCBPqvoPDjyvg+dfME9fjtWxpHiKcPBkcHIwLWgghrITWGqUU5cu74+1dmgULOsqyDBlMkiyRLf114y/a/9CeB5EPGNd0HJ+0+wT++APckv2AeOUVeO89qFTJmECFEMLK+PmFMWHCrxQr5soHHzxD8+Yl2br1ZaPDypFkDXyRrcSaYplzcA7ey7xxc3Bjxys7zAlWaCgMG2au1LUrXLwIkZHwww+SYAkhBOaeq2XLjlO58gKWLfuX8PAYo0PK8aQnS2QbR24cYcT2ERzyPURVz6rsfGUnxaMczJPX9+59WHHdOsgj/7SFECLeuXN+vP32Zn7//Rr16xdjx45O1KtXzOiwcjz5TSSs3pWAKwzaMoidl3YCMKvZVMap5ti8Pda8IjvAgAHm5RfGj5cESwghkrl2LZDjx2/z5ZfPMXhwfWxtZSArKyittdExWAWllBfg4+Pjg5eXl9HhCMxDg8/+9Cy7Lu8CIK9yYO8aF+qf8k9acdAgWLjQgAiFEMJ6bd9+EV/fIN56qy4AAQHhFCjgZHBU1sfX15cS5gWoS2itfTPy3JLKCqsUGRNJ/W/rJyRY+07VJ3hq5MMEq08f+Pdf0FoSLCGESOTmzWBefHENzz33E59//icxMSYASbAMIOMqwuqYtIkic4sQGBFI/zMO/N/qSBR/mw+eOycT2YUQIgWxsSa+/voIkyfvISIihsmTWzB5cgvy5JH+FKPId15YFZM20XJpSwIjAnmlZGeWro5EAezaBbduSYIlhBCPsWvXZd55Zzt16xbl338H8eGHz+DkZGd0WLma9GQJq7H+7Hpe/vllwmPCaVqiKd8fL2M+sHo1tGljbHBCCGGFHjyI4Pjx27RqVZr27cuxffvLtG9fDqVkM2drID1Zwiq8t+c9eqzuQXhMOL2r9eb3PANRX3wJRYtCr15GhyeEEFZFa83q1aepUuUrnn9+JUFBkSil6NChvCRYVkSSLGGoWFMsb258k5n7Z9KsRDPuj7/Pyqiu2L7W31zhhRcMjU8IIazN5csBdOz4P3r3Xou7uxObN/fFzU22C7NGMlwoDHP+/nle2/Aah30PU9C5INte3obriXPwctz2Dhs3mldvF0IIAcCpU3dp0OBblILZs9syalRj7OxkM2drJT1ZwhAmbeKNjW9w2Pcwc9vPxXeUL66bd0LDhuYKLVtKgiWEEHHu3w8DoFo1T8aMacKZM0MZP76ZJFhWTpIskeUu+l/Ee5k3B3wOMKbJGEbXHozDxs3Qs6e5wg8/wG+/GRukEEJYgXv3QunffwOVK3+Fn18YSik+/PAZSpfOb3RoIhVkuFBkGa01U/ZO4aP9H+Fs58yiTosYeLcEODubK7i4QPv28MorxgYqhBAGM5k0S5ceY/z4XQQGRjBiRCMcHKTXKruRJEtkid+v/c6oHaM4eusorUq14puSQ6k4a5V5M+dSpWDoUHjnHXCQyZtCiNzNzy+M7t1X8ccf12nQoBiLF3emTp2iRoclLCBJlsh0W85v4fmVz+OYx5E5rT9m1KjV2Bx90Xzw7bdh3ryHvVlCCJHLFSjgiLOzHV9/3ZGBA+vJZs7ZmNV8ckqpykqpX5VSoUqp20qpT5RS9qlo56GUWqSUuh7X9pRSalBWxCye7q8bf/Hi2hep4FGBS/W/Z0yrd7E5esx88M8/YdEiSbCEELneli3nadbs/wgKisTW1obt219m8OAGkmBlc1bx6SmlCgB7AHugBzAJGAjMS0XzNUBX4H2gC7AdWKiUGpA50YrUunD/Ap3+1wl3R3d+DexK4Y4vgpOTeXPngICHdxIKIUQu5esbxAsvrKZz5xXcuROCj88DAFlQNIewluHCQYAb0F1r7Q+glMoDfK2U+khrfTOlRkqpIkBr4HWt9bK44j1KqQbAS8C3mR65SNGdkDs8+9OzxMREs/23snht+QSefx6++w48PIwOTwghDBUTY2LBgr+YMmUvkZExTJnSknffbS57DeYwVtGTBTwH7IpPsOKsxhxf+ye0i//X+CBZ+QNA/gwwQKwplm/++Qbv5d7cCLjOLys01Xb9C199BevXS4IlhBCY77b+7rtjNGhQjBMnBjNjRmtJsHIga+nJqgz8X+ICrXWgUupW3LEUaa19lFI7gUlKqf8AH8wJW3vg5UyMV6QgNCqUfhv68fPZnykaasPajSZaBDjAkT+gRg2jwxNCCEMFBkYwZ85BJk1qgbOzHbt398PT01mGBnMwa0myCgCBKZQHAO5PadsDWAWcjnsdCwzXWq97UiOllBvmIcp4RVIVqUjRqbun6LOuD6funmLifvjoeH5UK2/z8GD+/EaHJ4QQhtFas2rVaUaN2sHt2yHUr1+Mbt0qU6iQi9GhiUxmLUmWRZQ5/V8KVAD6AreAdsB8pVSA1nrlE5qPBqZmfpQ53zf/fMPbm98GYP1K6HYO+HY2vPWWsYEJIYTBLl70Z+jQrezceYkaNQrx888v0qRJCaPDElnEWpKsACBfCuUFAP8UyuN1AnoBNbXWJ+PK9imlCgFzgSclWfOAJYleFwGOpDpiAcCCvxYwfNtwAPYuA++rwPTpkmAJIXI9rTXduq3kypVAPv20HSNGNJK9BnMZa0myzpFs7pVSKh9QNO7Y41TFPDx4Kln5MeAtpZSz1jospYZa6yAgKNH1LAg7d/v6yNcM3zaccvnLsv+9yxQNAUJDZd0rIUSu9scf12nYsDj29rYsW9aNQoVcKFkypX4EkdNZy92F24C2Sqn8icp6ASZg5xPaXQNsgZrJyusBdx+XYIn0m/n7TIZuHUr7cu359zt7c4JVurQkWEKIXOvu3VD69VtPixZL+eqrvwCoX7+YJFi5mLX0ZC0ChgMblFIfAcWBT4FFidfIUkrtBkpprcvHFW0FrgNrlVLTMc/Jag/0R+ZbZZoR20bwxV9f0KViF9b8WRKHkzuhaFG4eNHo0IQQIsuZTJrvvjvKhAm7CAqKZMyYJgwYUM/osIQVsIokS2sdoJRqA3wJbACCMc+Xmpysqi2JYtZaB8e1mwnMBvIDVzBPal+Q6YHnQvMOzeOLv76gbIGyrPurNHaff2k+8McfYCtzDYQQuc9LL61lzZozNG7sxaJFnahVS25WF2ZWkWQBaK3PAm2fUsc7hbKLQO9MCksk8u6ud5l1YBbFHTw5MfYydtFxCdb330PZssYGJ4QQWSg0NApHxzzY2trw6qs1adOmDAMG1MPGRub3ioesJskS1m3Q5kEs/mcxtR44sfm7e7hExx24eBHKlTM0NiGEyEq//PIfw4dvY8yYJrzzTiO6dKlkdEjCSlnLxHdhpcKjw2m8pDGL/1lM/TwlObggHK/2PeGffyA6WhIsIUSucf36A7p1W8nzz6/EwcGWGjUKGR2SsHLSkyUe68D1A3Rf1Z17YfcYUnsAn/f4ljwm4OuvwdPT6PCEECLLfPPNP4wevYOYGBPTp3szfnwzHB3lV6h4MvkXIlIUEROB93JvXO1dWfHCCl567VPzghpdukiCJYTIdRwd89CkSQm+/rojFSrIRvcidSweLlRK2SulBiul1iildsWVtVBKtVRK5c24EIURpu+bTowphk/afcJL9nXh6FHzgfXrjQ1MCCGyQEBAOIMHb2bZsuMAvPpqTXbufEUSLJEmFvVkKaVcgL2YF/1UgI47NBboDLwDfJURAYqst+ToEmYdmEWXil14s86b5m1yABYulGUahBA5mtaa//3vJKNH7+TevVAKFHACZFcQYRlLe7KmAfUxJ1iJfRtX1s3ykISRtl7YyrCtwwD4quNXKJPpYZL15psGRiaEEJnr/Pn7tGv3A6+8sp5ixVw5dOhNPvqojdFhiWzM0iTrBcy9V68mKz8Q91XuZ82GxuwYQ6f/dSIyNpJjbx+jRJQj5IvbDqJTJ7CzMzZAIYTIRLt2XebwYV/mzWvPkSMDaNTIy+iQRDantNZPr5W8kVKRmIcanYAIQGutbZVSTkAoEKW1dszQSDOZUsoL8PHx8cHLK/f9x9r03ya6ruwKwNURVyl1NQDq1HlY4cwZqFLFoOiEECJz7Np1mejoWJ57rgKxsSbu3AmlWDFXo8MSWcjX15cSJUoAlNBa+2bkuS3tyXoQ9zV5NtIh7mughecVBlh1ahVdV3bF1d6VW2NuUWrukocJVrNm5vWwJMESQuQgt2+H8PLLP9Ou3Q/MmPE7WmtsbW0kwRIZytIlHP4AngdWxRcopb4GXsM8jLg//aGJrHD89nFeWvcSznbOHLZ9myJN2sGpU+aDvXrB6tXGBiiEEBnIZNIsXvw37767m9DQaMaPb8r777eSie0iU1iaZM0EOgJ1eXhn4duYJ71HAR+lPzSR2S75X6LO4jrY2dixep8nVX+dA/nzw6hR8M47ULq00SEKIUSG+v77fxkyZCtNm5Zg0aJO1KhR2OiQRA5mUZKltf5HKdUF+BpIvK/KJWCw1vpYRgQnMo9/uH/CHKxfvMbx7K9xefGdO2Bvb2BkQgiRsYKDI7l27QHVqxfi5Zdr4OBgS+/e1WUzZ5HpLF6MVGv9q9a6AuY7CZsDlbTWFbTWuzIsOpFpxuwcw39+/7G5z2ae3fKfufDiRUmwhBA5htaa9evPUrXq13TtuoLo6Fjs7Gzp06eGJFgiS1iUZCml9iildgNorS9orQ9qrS/EHZuhlJqekUGKjBNriuXdXe+y7PgyBtQdQKcdl2HdOhg9WjZ7FkLkGNeuBdK160p69FiNi4sd//d/z2NnJ4spi6xl6RIOJuKWbUjLMWuWW5ZwWPT3IgZvGUz1glXZHdaLQuOng4sL+PmBY7ZadUMIIVL0xx/X6dDhR0wmzXvvtWDs2KY4OMhWvSJlmbmEQ4b+q1NKVcvI84mMFRYdxoe/f0gNz+ocn34Hm7vToXZtWLFCEiwhRLYXFhaNs7Md9eoVpU+f6rz7bnPKlXM3OiyRi6V6uFApNVUpFauUiiXujsL414nKT8Qdu5U54Yr0+OzQZ9wIvsHce3WxuXsPBg40b/xcubLRoQkhhMX8/cMZMOAXGjT4lqioWJyc7FiypKskWMJwaZ2TpVL5kMWVrIxfmB/zDs/DO6YE7aZ9D126wOLFIGvDCCGyKa0133//L5UqLeC7747xzDOliY6ONTosIRKkZbjwOLA87nn8oqPfJzqugQDgCJJkWZXw6HD6rOvDg4gHzFrqby6cNcvYoIQQIh1u3AjilVfWs2/fVerWLcq2bS9Tv34xo8MSIolUJ1la643ARgCl1GtxZa9nUlwig2it6b+xP7su7+KTWuNodONTmDsXqlY1OjQhhLCYm5sDd++G8vnnzzJkSAPy5LF4RSIhMo2li5HKv+ZswKRNvLjmRdadXcek5pMYt9rPfCDxxs9CCJFN7Nx5iW+/PcrKlS/g6urAiRODsLWVX0fCell8d6FSyg54DvNipE7Jj2utZ6QjLpEBBm8ezLqz6+hVtRfTW0+Hme3NB7y9DY1LCCHS4tatYEaN2sGqVacpXTo/168/oEyZApJgCatnUZIVt6bUXqDsE6pJkmWgW8G3+OboN5TJX4aVPVdiExMLe/fCa6/JZHchRLYQG2ti0aK/mTRpD2Fh0bz7bnPee68lzs52RocmRKpY2pP1AUn3LEwu7SucigzVc01PAOa0n4ONBlxdzQdkuQYhRDYRFBTJ9Om/UatWYRYu7ES1aoWMDkmINLG0r7UN5kQqfvscDXQBDgAXgU7pD01YauGRhRz0OcjLNV6mR5Ue8P77EBlpPjhhgrHBCSHEEwQFRTJ//mFMJk2BAk4cOvQm+/b1lwRLZEuWJlmF475+Fl+gtd4C9AHKA13TGZew0L6r+xixfQQudi583elrCA6GmTPNB8+fl6FCIYRV0lqzbt0ZqlT5ilGjdvDHH9cBKFfOXTZzFtmWpUlWRNzXsPjnSqkKgCmu/MV0xiUsEB4dTr/1/Yg2RXN5xGXcdv4Gbm7mgyVLQoUKxgYohBApuHIlgM6dV9Cz5xry5XPgt9/607JlKaPDEiLdLJ2TdRfIC7gDV4DKwD4gfqldmZNlgPmH5+MT5MOaXmso9PVyGD/efKBxYzh40NjghBAiBVFRsTRr9n8EBETw0UfPMGZMU+ztbY0OS4gMYWmSdRzzxPe6wM/AZKAI5i11ADanOzKRJjeDbzJpzyTal2tPzzKdYLyz+cC9e1CwoLHBCSFEMv/+e5uaNQtjb2/LkiVdqVy5IGXLFjA6LCEylKXDheOB1sBJzEs1fAncBvwxb70zMiOCE6lj0ibe3vw2AO+1eA8WLjQf+PlnSbCEEFbFzy+MN9/cSO3ai1m37iwAHTtWkARL5EiWrvh+BfMwYbwRcQ9hgA4/dmDX5V10rNCRFq9Ngd9+g+rVoVs3o0MTQgjAPLF9+fJ/GTt2JwEBEbzzTkPat3/SSkBCZH8Wr/j+OEqptsAHWusmGX1u8ai1Z9ay6/IuGhVvxObDZeG3BeYDW7bInYRCCKugtaZTp/+xbdtF6tcvxo4dnahXTzZzFjlfmpIspVQp4BWgBObJ7z9rrY/HHWsIfAo0z+AYxWPcCr5Fn3V9KJK3CLtjXkZ9+Y75wLFj5rsJhRDCQFFRsdjb26KUonPninTsWIHBg+vLdjgi10h1kqWUqoP5DsK8iYrfVUr1B5yBrzHP8VLI3YVZYsT2EcSYYvi/Dl/jUqOHuXDHDqhd29C4hBBi+/aLDBmyhS+/fI5OnSoyZEgDo0MSIsul5c+JqYAr5iQq/mELzAfmxD1XwBHg2QyNUjxi9+XdrDmzhs4VO/Pcn/7mwnr1oH17YwMTQuRqN28G8+KLa3juuZ9QSuHiYm90SEIYJi3DhU0w91BtBr7FnFC9hXk7HQBf4B2t9YaMDFA8KiImgjd/eROAOe3mwKsjwd4eDh82NjAhRK62aNHfjB//KxERMbz3XgsmTWqBk5Ns5ixyr7QkWR5xX1/TWgcCKKUOAH7E7V2otf43Y8MTKRm9YzTXHlzji8YzqPTB17B9O0ydCnky/D4GIYRItVu3gqlbtygLF3aiShVPo8MRwnBK69RNn1JKmQCttbZNTXl2o5TyAnx8fHzw8vIyOpzH+vTAp4zfNZ7+tfqztPuyhwf+/Rdq1jQsLiFE7vPgQQRTpuylR48qeHuXJibGhK2tQsmdzSIb8fX1pUSJEgAltNa+GXnuNHd9KKUup6Jca61lAZQMduLOCcbvGo+bgxsLY58FlpkP3L4NhQs/qakQQmQYrTVr1pxh5Mjt3LoVgqenM97epcmTR+4aFCIxS8aXku/aqZOVy92FmSAoMohnf3wWG2XDxudX4tjGPCeLs2clwRJCZJlLl/wZNmwb27dfpFo1T1av7kXz5rJkjBApSWuSJX3ABum1phe3Qm7xy0u/4L31HNy6BXXqQKVKRocmhMhFFi/+h99+u8rs2W0ZNaoxdnbZeqaIEJkq1XOycjprnpPlH+6P1zwvwmPC0aMeQL585gPXrsmio0KITPfbb1dxc3OgTp2ihIRE4ecXRunS+Y0OS4gMkZlzsmQAPRtY8NcCwmPCWffiOti82Vw4frwkWEKITHXvXij9+2/A23s577+/D4C8ee0lwRIileSefyunteankz/RxKsJPcp3gar2YGMDH35odGhCiBzKZNIsXXqM8eN3ERgYwahRjZk+3dvosITIdqQny8ptvbCV8/fP86JDXfOCowBubmAnC/wJITLHnDkHeeutTZQv787ffw9g3rwOuLo6GB2WENmO9GRZuRm/z8De1p4ew74yF7z0Evzwg7FBCSFynNDQKAICIvDycmPAgLrkz+/Im2/Wkc2chUgH+d9jxfzC/Pjrxl9MtHuGkg+AsWNhxQpZ2V0IkaG2bDlPtWpf89JLa9FaU6CAEwMH1pMES4h0kv9BVmzlqZUAtNt7zVwwbZpxwQghchxf3yBeeGE1nTuvwM7OlqlTW8lq7UJkoHR1iSilngOeAQpord9SSsXf7nZTax2T7uhyMZM28d6e9yih3Wi68yy8+iq4uBgdlhAih9i+/SK9eq0hKiqW999vybvvtsDRUXrJhchIFv2PUkrlAX4GOiUqfgv4AWge93xpuqPLxdaeWcuDyAfM2QQ2Gvj0U6NDEkLkADExJvLksaF27SK0bVuWWbPaUKlSQaPDEiJHsnS4cALQGfMK8In7lr+Ke90jrSdUSlVWSv2qlApVSt1WSn2ilLJPZdviSqnlSql7SqlwpdRZpdTLaY3BmnzzzzeUcClG/+OAu7tsnSOESJfAwAiGDNlC164r0FpTpEhe1q/vLQmWEJnI0iTrVcz7E05KVr437mv1tJxMKVUA2APYY07QJgEDgXmpaFsUOAQUi2vTGVgIZNv7jS8HXGb3ld30dqxHHhPwySdGhySEyKa01qxYcZLKlRewcOHflCjhRlRUrNFhCZErWDoAXzru63zgo0TlD+K+Fknj+QYBbkB3rbU/JAxJfq2U+khrffMJbT8BfIBntdbxPzl2p/H6VmXJ0SUAdP9kk7ng2WcNjEYIkV1dvRrIwIGb+PXXy9SoUYj163vTpEkJo8MSItewtCcrLO6re7LypnFfQ9N4vueAXfEJVpzVmONr/7hGSik34EXg60QJVrb2IOIBH//xMeUiXWjiA8yeDcWLGx2WECIbsrFR/PvvHebMacc//wyUBEuILGZpknUk7us38QVKqfHASszDiH+l8XyVgXOJC7TWgcCtuGOPUxfzEGO0Uuo3pVR03Hyu2UqpJy6JrpRyU0p5xT9Ie+9bpvjqiHnR0Q82haLKljXvUSiEEKm0Z88Vxo7dCUDJkvm4enUEY8Y0xc7O1uDIhMh9LE2y4icJPYc5qQL4GCgU9zqtt8IVAAJTKA/g0d6yxOIToyXA35h7vT4DRgIznnLN0ZiHGeMfR55cPWusOr0KjzDocwrYts3ocIQQ2cTdu6G8+up62rT5ntWrT3PvnnlAwclJtuASwigWJVla693Am0AQD+8wVJjnZL2ltd77hOYZKT7+XVrrMVrrvVrr2ZiTvFFKKacntJ0HlEj0aJC5oT7d5YDLnLhzgraXgTffhIoVjQ5JCGHlTCbNN9/8Q6VKC1ix4iRjxzbhzJmheHrKunpCGM3ilee01suUUmswz8PyBO4BB7XWaZ2PBeYeq3wplBcA/FMoT9wOzHcmJrYbmAyUB06m1FBrHYQ5SQSwilWO39vzHgCDjwDLXzU2GCFEtnD1aiDDh2+jbt2iLFrUiVq1rGLmgxACyxcj/RhYrrU+B/yaAXGcI9ncK6VUPqAoyeZqJXPmKed1TGdcWSYiJoJfT2ygYDi0atATWrUyOiQhhJUKCYli8+bzvPRSdcqWLcDBg29Qp05RbGyM/2NRCPFQehYjPa2U+lsp9Y5SyjOdcWwD2iql8icq6wWYgJ2Pa6S1voa5p6ptskPtgHCenoRZjZm/z8TPJpwlvwBz5hgdjhDCSm3ceI6qVb+iT591nD17D4B69YpJgiWEFUrPBtEK8919nwE3lFKblVK9lVKWLAK6CAgGNiil2iulXsc8r2pR4jWylFK7lVIXk7WdDHRVSs1XSrVTSk0CxgLzLBy6zHLXH1znkwOfUCYAutTvC6VKGR2SEMLKXL/+gG7dVtKt2yqcnOzYvbsfVaqk9+9bIURmSs9ipC9i7m1qEHeejpjvNgxWSq3RWg9I7cm01gFKqTbAl8AGzAnXEswJVGK2yWPWWm9SSvUBpgCDMS/7MBWYleZ3ZYCo2CiqfFWFPFqx+X9g81Fro0MSQliZwMAIatZcSEREDNOnezNhQjMcHGQzZyGsnUX/S7XW14E5wBylVCnMydaLQH3MK7e/AaQ6yYo751keHfZLXsf7MeWrgFVpuZ61+OafbwiLDmPupXJUvXcJWrQwOiQhhJW4di2QUqXykz+/I3Pntqdly1JUqOBhdFhCiFRKz3BhvCDMdwAGADEZcL5c5ccTP1LJoxKjfrhkLihZ0tiAhBCGCwgIZ9CgzZQr9wV//XUDgDffrCsJlhDZjKV3FxYAumPuwXom0XkUEAn8kiHR5XBXAq7w540/mVZ3NIr/zBPenZ60tJcQIifTWvO//51k9Oid3LsXyuDB9alYURIrIbIrSwf1b5M0sdLAAeB7YI3W+sHjGoqHZvxuXpT+pQAvc0HjxgZGI4QwUkyMiY4df+LXXy9Tu3YRfvnlJRo18jI6LCFEOliaZMXv03AB+AH4UWt9NUMiykXO3z9PCbcSVFq7FxwcoH59o0MSQmQxk0ljY6PIk8eGmjUL07FjBYYNa0iePBkxm0MIYSRL/xd/DTTRWlfSWn8oCVbaRcdGc/TWUbqW7wSbNkGhQuZESwiRa/z66yWqV/+aU6fuAjBnTntGjmwsCZYQOYSlexcO01r/mdHB5Can750mIiaCel+uNRd8mtY9tYUQ2dXt2yH07buO9u1/JCwsmoCAcKNDEkJkglQPFyql9gBaa90m7vmTaK11m/SFlrPtvGReyL7FP37mghdfNDAaIURW0FqzePE/TJy4i9DQaCZMaMaUKS1xcbE3OjQhRCZIy5wsb8wT3JM/T0494ZiIs+r0KqrHeFDe/z5MmwZWsEG1ECJzKaX444/rVK9eiIULO1GjRmGjQxJCZKK0JFnXMe8lGP9cEikL7b68m6O3jjI+pBpwH8aONTokIUQmCQ6OZPr03xg0qD7ly7uzeHFnnJzsZK9BIXKBVCdZWuvSKT0XaXfI9xAAL646DT16gIuLwREJITKa1poNG87xzjvb8fUNwsvLjZEjG8vQoBC5iKWLkb6Ped7VBykcewbzwafN28qdYmLY/+0UChaFureAb74xOiIhRAa7di2QYcO2sXnzeSpXLsjeva/h7V3a6LCEEFnM0nWypmEeLnwkyQJ2YR5WlN1LUxDy7hj2lYYBR0H5+ICHrOYsRE4zYcIudu26zIcftmbcuGbY29saHZIQwgAZmggppdzin2bkeXOSXfePEFUKOn2yHrxkNWchcooDB65TqlR+vLzcmDOnPTNnPkO5cu5GhyWEMFBalnB4DXgtWVnyIcH43Y0D0xdWDhUby1y7IziZbPGu2MHoaIQQGcDfP5wJE35lyZJjvPlmHZYs6YqXl9vTGwohcry09GSVJunSDQpolaxOfA/W7+mKKoeK+eswRwvGUMqhKE52shG0ENmZ1poffjjBmDE7uX8/jGHDGvDhh88YHZYQwoqkJckKBK7FPS+FOdm6nui4BgKAI8DUjAgup5nyVU/CKsCYagOMDkUIkU7vvrub2bMPULduUbZte5n69YsZHZIQwsqkZQmHz4HPAZRSpriyMpkUV470j81tnKLhjS7vGx2KEMIC4eHRREbGkj+/I2+8UYeiRfMydKhs5iyESJmlE99bZ2gUuYA+epRfy8ErtwtjYyN3GgmR3ezYcZEhQ7bSvHlJli/vRsWKHlSsKHcHCyEeLy0T31sCaK1/J25eVnxZSuLqiTin/jcfXKF4PW+jQxFCpMGtW8GMGrWDVatOU7p0fnr3rmZ0SEKIbCItPVn7eLj+1T6evK2OTuO5c7awMPb88QM8B690fc/oaIQQqfTzz2d5/fWNhIVF8+67zXnvvZY4O9sZHZYQIptIayKkHvNcPIGpTm3+7xkoH2JPNU/5K1gIa6e1RilF+fLu1K9fjC++eJZq1QoZHZYQIptJS5L1+mOeiycJD2ebvsCJIvBt5wUoJbmpENYqKCiS99/fi8mk+eKL56hZszC7d/czOiwhRDaVlrsLl6f0XDzFP//wXV3z05drvmJsLEKIFGmtWbfuLCNGbOfmzWDeeqtOQm+WEEJYytINoh0AFyBSax0at53OUMAT2K613pmBMWZvS5YQYwMKJQuQCmGFrl4NZOjQrWzdeoGqVT1ZufIFWrQoZXRYQogcwNLFXRYA94Cxca9/BT4ERgDblFI9MyC27C8mhntrlrOjHHQs1dboaIQQKbh9O4TffrvKxx+34dixtyXBEkJkGEvvAGwU93WzUqoK0ACIBSIw93CNBNamO7rs7quveO8ZiMoD77QY+/T6QogssX//NY4fv83w4Y1o3NgLH59RFCggPc1CiIxlaU9WibivF4C4GUfMABrGPa+UnqByisv+l/imPrxUoQfty7U3Ohwhcj0/vzDeeGMjLVsuY+7cQ4SHRwNIgiWEyBSWJlkOcV+jgWqY18X6B7gYV543nXHlCK8Em+8PkF4sIYyltWbp0mNUrryA5cv/ZcSIRpw4MRgnJ1nzSgiReSwdLrwJlAGWAs3jys4AReKe+6Uzrmzvou8JDuULouMNF5qUaGJ0OELkakeO3OSNN36hfv1i7NjRiXr1ZDNnIUTms7QnayPmxUh7AcWAk1rrq0C9uOOn0h9a9rb625EATDO1MDYQIXKpsLBo9uy5AkDDhsXZseMVDh9+UxIsIUSWsbQnawrgDDQDrvHwLsMKwG/AivSHlo1pzWSbvThFQ4Mv1hkdjRC5ztatFxg6dCu3bgVz9epIihTJS/v25YwOSwiRy1iUZGmtw4DBKZR/Cnya3qCyuzuffQhAm5sO4OxscDRC5B43bgQxcuQO1q49Q9myBdi48SWKFJEpokIIY1i8ibNSKg/wGvAs5kVI/YBtwHKtdUzGhJc9fbHlfWgJY95ZaXQoQuQa168/oHr1r4mIiOG991owaVILmdguhDCUpSu+OwI7MQ8XJtYdeF0p1VZrHZHe4LKj4EP7+KgllAyyoVWt540OR4gcz98/HHd3J0qWzMfYsU158cVqVK5c0OiwhBDC4onvkzDfVahSeDSJO54rzd78LgADa78h+54JkYkePIhg+PCtlCnzOT4+DwB4//1WkmAJIayGpUnWi5jXxlqDebK7Y9zX1ZgTrRczJLpsZt2Zdcy0P0wlP5jw8kKjwxEiR9Jas2rVKSpX/ooFC47w4otVcXGxNzosIYR4hKVJVum4r29rrS9praO01peAQcmO5yof7ZgMwLJNtuSxsXi6mxDiMYKDI3nuuZ946aV1FCzozB9/vM6333bF3V1WbBdCWB9Lk6zwuK/J74kul+x4rnH+/nmOBv3HlN+g8eyfjA5HiBwpb157HB3zMHt2W44eHUizZiWNDkkIIR7L0u6Wv4E2wBal1HLAB/DCfLdh/BY7ucpHu6dhFwtvHQV69zY6HCFyjH37rjJ58h7Wr+9NoUIurF/fW+Y7CiGyBUuTrDnAM5iXbki8MZ/CnGTNSWdc2cqVgCv8eHYVA49CyV5vGR2OEDnCvXuhjB37K99//y9eXm5cuRJAoUIukmAJIbINi4YLtdY7gLeBYJLeWRgMDNJab8+wCLOBb/bNJRYTIw8DU6YYHY4Q2ZrJpPnuu6NUrvwVP/10gtGjG3PmzBAaNfIyOjQhhEgTi2dna62XKKVWAk2BgpgXIz2otQ7JqOCyi+UHvqJsNFRs2R1KyhwRIdLru++OUb68O4sXd6Z27SJPbyCEEFYozUmWUqo0DzeCPqq13pmhEWUz5+6c5pYrdL+QB37+2ehwhMiWQkOj+PTTg4wc2Zj8+R3ZuPEl3N2dsLW19N4cIYQwXqqTLGWeCLEQeAvz0GB8+VJggNZaZ3x41m/pmDZQAaY0Hm90KEJkS5s3n2fYsK1cu/aAUqXy8frrdfD0dDE6LCGESLe0/Jk4HBjIoyu8vw6MzPDIsoOoKOaWu0ORYKgzeIbR0QiRrfj6BtGjxyq6dFmBnZ0tv/76Kq+/XsfosIQQIsOkJcl6I+5rFPALsAmIxJxo9c/YsLKHG/OmEWsD9Z3Lga2t0eEIka306bOOLVsuMHVqK06eHEzbtmWNDkkIITJUWuZkVcS8PMNzWut9AEqp1sBuzFvq5DrLr/8ChWFa70VGhyJEtvDXXzeoVs0TFxd7vvqqIw4OtlSqJHsNCiFyprT0ZDkCxCdYceKfO2RQPNnKeqdr5IuAOlWfMToUIaxaYGAEQ4ZsoXHjJcyefQCAmjULS4IlhMjRLLm7sASJJr4/rlxrfT19oVm3B76X+NsthLd8C2Oj5A4oIVKitWbFilOMHr2DO3dCefvteowa1djosIQQIktYsk7W1WSvdQrl2sJzZw9as/il8tAOnmv0stHRCGG1hgzZwqJF/1CzZmHWr+9NkyYljA5JCCGyjCVdMMnvLnzcI20nVaqyUupXpVSoUuq2UuoTpZR9Gs8xUimllVKb03r9NHnwgN9KmZ926vdhpl5KiOwmMjKGyMgYAF58sRpz5rTjn38GSoIlhMh10tLb9DsPe60ylFKqALAHuAD0AIoD8wBnYFgqz1EEmArczYwYE9NXr/J7KXhZ1cLB3imzLydEtrFnzxUGD97Cyy/X4P33W9G6dRlaty5jdFhCCGGIVCdZWmvvTIxjEOAGdNda+wMopfIAXyulPtJa30zFOT7BvLREqcwL0+z6krmEeELD4g0z+1JCZAt374YyZsxOfvzxBCVKuFG3blGjQxJCCMNZy4zt54Bd8QlWnNWY42v/tMZKqeZAN2BipkSXzIbLWwCo3rxHVlxOCKu2atUpKlVawIoVJxk3rilnzgylc+eKRoclhBCGs5bJ6ZWB/0tcoLUOVErdijv2WEopW2ABMFNrfcu8+0/m0dHRTKsZAECjMi0y9VpCZAfOznZUqVKQRYs6U7NmYaPDEUIIq2EtSVYBIDCF8gDA/SlthwAuwGdpuaBSyg3zEGW8Iqlpd/WtngSWhS42VXCxl/3VRO4TEhLFtGn7KFkyH++804guXSrRuXNFMvsPHCGEyG6sZbjQIkqpQsAMYLTWOiqNzUcDPokeR57aQmu+vfELAONe+iKNlxMi+9u48RxVq37F3LmHOHv2XkK5JFhCCPEoa+nJCgDypVBeAPBPoTzeDOAEsF8plT+uLA+QJ+51iNY65jFt5wFLEr0uwlMSLX3tGquqmZ83Kef9pKpC5CjXrz9g+PBt/PLLf1Ss6MHu3f145hm5a1AIIZ7EWpKscySbe6WUygcUjTv2OJWBlpiTtOQCME+o355SQ611EBCU6HpPDfL3Yxu47A4THNqQx8ZavnVCZL4DB66zY8dFZszwZvz4Zjg4yL9/IYR4Got/UiqlPIDxwDNAAa11eaVU37hzbtdap2W9qm3AJKVUfq11YFxZL8AE7HxCu5FA/mRl84Fw4F3MvVwZZu2GmVAWhjUZkZGnFcIqHTrkw61bIfToUYWXXqpO8+YlKVEipQ5nIYQQKbEoyYqbC3UY85pUioeLlD4LvIw5wfkkDadcBAwHNiilPsK8GOmnwKLEa2QppXYDpbTW5QG01sdTiC0Q8zDhvjS9qVT4oUQAnqHg1bJzRp9aCKsREBDOxIm7+Oabo1SpUpBu3SpjY6MkwRJCiDSydOL7B0BpIDZZ+TLMSVeXtJxMax0AtAFigA3ALMzzpUYnq2qLQUOcB/9axwO7WLoGFgaZ5CtyIK01P/54gkqVFvDtt0cZMqQ+Bw++iY2N/HsXQghLWJqwdMLce9UB2J2o/K+4r+XSekKt9Vmg7VPqeKfiPE+tY4mDh9cAMK7oC5lxeiEMt2nTeV59dT21axdh8+a+NGxY3OiQhBAiW7M0yfKM+3rgMcc9LDyvddKaA8c24lUAKr79jtHRCJFhIiJi+O8/P2rVKkLnzhX58cfu9O5dnTx5svXqLkIIYRUs/UnqF/c1+WrsfeK+ZvomzVnqzz85ni+CBnlKoipVMjoaITLEr79eokaNhbRv/yOhoVHY2ChefrmmJFhCCJFBLP1pGj9EuCG+QCm1FViIeRhxdwptsi3t68v1fFCiUgOjQxEi3W7fDqFv33W0b/8j0dGx/N//dcXFxd7osIQQIsexdLhwBtAV8+T3+DsLO2Ce9P4A88T4HMP3nz2YHKGYeymjQxEiXU6cuEPLlksJDY1mwoRmTJnSUhIsIYTIJBb1ZGmtLwItgD2Y17JScV/3AC211pcyLEIr8HOeCwDUqvaMwZEIYZnw8GgAqlb15MUXq3H06EBmzWorCZYQQmQii5dD0FqfBNoqpZyI2/5Gax2RYZFZEd/Q25APWpZpbXQoQqRJcHAkU6fuY8OGc5w4MZi8ee355ps0rbAihBDCQulec0prHY55hfUc678Hlyht54CznbPRoQiRKlpr1q8/xzvvbOPGjWD6969NdHTyZe2EEEJkJktXfH/aT2uttc4Rm5tFxkSyt0g4PW4VMDoUIVLFzy+M/v03sGXLBSpXLsi+fT1o1aq00WEJIUSuY2kilGuWgP778h+E2ENj9xpGhyJEqri62nPjRjAfftiaceOaYW9va3RIQgiRK1maZC1P9toWKAM0BcKANekJyprc27kegBLVmhociRCPd+DAdebMOcSKFS/g6JiHv/8egK2trHclhBBGsijJ0lq/nlK5UqoDsA04mp6grMm/IRcBaP5Mf2MDESIF9++HMXHiLpYsOUbRonm5cOE+NWoUlgRLCCGsQIb+JNZa7wBCgByz98yRS/txD4P8niWMDkWIBFprli8/TuXKX/Hdd8cYNqwBZ88OpUaNwkaHJoQQIo6lE99bplDsCDwH5AWKpicoaxFrimWLVxjdzwLOcmehsB7h4TFMnbqPkiXzsW3by9SvX8zokIQQQiRj6ZysfTxc6T05DRy38LxWZf/1/QB4l/Y2NhAhMC8o+s03/zB0aEOcne3Ys+c1SpbMJ3sNCiGElUrPMguPu8PwOjAkHee1Gpcv/w1AwxgZghHG2rHjIkOGbOXy5QBKl87P889XpmxZWVZECCGsmaVJVkoT3yMBH+BPrXWM5SFZj4jbNwAoXk9WehfGuHkzmFGjdrB69WnKlMnPli196dixgtFhCSGESIU0J1lKKQcgIO7lIa31vYwNyXrcP38cFOSv1dDoUEQuZDJpnnlmOZcvBzBpUnMmT26Js7Od0WEJIYRIpTQnWVrrSKXUWsx3Jubo2baXIm/jYQLX0pWMDkXkIqdP36VKFU9sbBQLFnSkWDFXqlb1NDosIYQQaWTpjNmLmOdk5ejN0M7pu5QLtJE7C0WWCAqKZMSIbdSsuYjvvjMvNde2bVlJsIQQIpuyNMmaFvd1plLKPoNisSpaa/508scrJNfsICQMorVm7dozVKnyFV988Rf9+9eiR48qRoclhBAinSyd+D4YeAAMAHoppc4D4YmOa611m/QGZyTfIF8AKmp3gyMROV2/fhv48ccTVK3qycqVL9CiRSmjQxJCCJEBLE2yWmFeD0sBBYDEM8MVj19DK9s4de0vANrYyp1cIuNFR8eSJ48NSinatStLtWqejB7dRDZzFkKIHCTVSZZSqh/mHqofMK+Fle0TqSc5dXIPANXLNjY4EpHT/P77NQYN2szkyS14+eWa9OtXy+iQhBBCZIK09GQtA0zAD1rr0pkSjRU5dfckHmFQ+MW+Rocicgg/vzDGj/+VpUuPU6yYK/nyORodkhBCiEyU1uHCXDML/FKIDxXugyol82NE+v300wneeWc7gYERjBjRiBkzWuPm5mB0WEIIITJRerbVydHuRz2gQoQNeHgYHYrIAe7eDaVs2QIsXtyZunVzxP7pQgghnsKSFd/3pKJatr+7MMQUjqudC6hc03knMlBYWDQffPAbTZqUoGvXSrzzTiPeeacRtraymbMQQuQWlvRktXrK8Rxxd2GwiiKvg/RiibTbuvUCQ4du5erVQEaNakzXrpUkuRJCiFzIkiQrx3ftRMdG88DOREFnSbJE6t24EcSIEdtZt+4s5coVYPv2l+nQobzRYQkhhDCIJUlWmQyPwsrc97sOgKdrEYMjEdnJ8uX/8ssv/zFlSkvefbc5Tk6ymbMQQuRmlmwQfS0zArEm904cAsDDIb+xgQird+TIDaKjTTRtWoIxY5rwwgtVqFSpoNFhCSGEsAIyUSQF/53+HYDylZsZHImwVg8eRDBs2FYaNVrC+PG/AuDgkEcSLCGEEAnS0pN1HfNipDnenoizAFSr0sLgSIS10VqzevVpRo7cwe3bIQwYUJdZs9oaHZYQQggrlOokKzes8h7vZmwAAG4exQ2ORFib7747xoABm6hevRDr1r1I06YljA5JCCGElZLFSFPgGxtIy6uAg6zILSAyMobbt0MoVSo/ffpUJyIihrffroednWzmLIQQ4vFkTlYKfGP8KRYCOMrecrnd3r1XqFVrEV27riQmxoSLiz3DhjWUBEsIIcRTSZKVjNaaO7bhFLMvKD1Zudjdu6G89toGnnnme0JDo5k+3Rtb2xy/RJwQQogMJMOFyTyIeABAhJuTwZEIoxw4cJ0uXVYQFBTJ6NGNmT69NXnz2hsdlhBCiGxGkqxkgi+cAqCqc2ljAxFZLjbWhK2tDdWrF6JFi1JMn+5N7dqyIK0QQgjLyHBhMmf3rAbAtUwlgyMRWSU0NIoJE36ldevlmEyafPkc2bjxJUmwhBBCpIskWcmcunkMgI4vTjY4EpEVNm8+T7VqX/PJJwcpWTIfYWHRRockhBAih5DhwmT8b1/FuQwU9CxldCgiE92+HcKQIVtYv/4cFSq4s2vXq7RpU9bosIQQQuQgkmQl4+sGXrEuoOROspzM1lZx+LAv06a1YsKE5jg6yn8FIYQQGUt+syRz0R1q2RczOgyRCf7805cffzzBF188h6enC5cuvYOTk53RYQkhhMihZE5WMtfzQUVbT6PDEBkoMDCCIUO20KTJd6xefYbr183LdEiCJYQQIjNJT1YyWkExV+nJygm01qxYcYrRo3dw504ob79dj48/bkOBArIGmhBCiMwnSVYKPDxk09+c4N69MN5+ezNlyxZg/freNGkin6sQQoisI0lWCjwKljQ6BGGhyMgY1q07S9++NShUyIXffutPzZqFyZNHRsaFEEJkLUmyUuBRoqLRIQgL7N59mSFDtnL+/H3KlMlPkyYlqFu3qNFhCSGEyKXkz/sUeBQtZ3QIIg3u3AnhlVd+pm3bH4iIiGHjxpdkaFAIIYThrCbJUkpVVkr9qpQKVUrdVkp9opR64q68SqmicfWOK6WClVK+Sqn/KaXStZJoIVfZTiW7iIiIoU6dxaxceYpx45py5swQunaVLZGEEEIYzyqGC5VSBYA9wAWgB1AcmAc4A8Oe0LReXP3/Aw4DBYEpwF9Kqepa63tpjcU5GvI55ktrM5HFrl9/QMmS+XB0zMMnn7SjZs3C1KxZ2OiwhBBCiARWkWQBgwA3oLvW2h9AKZUH+Fop9ZHW+uZj2v0BVNZax8QXKKUOAteBfsDctAbiEms1nXsiBSEhUUybto/58w+zffsrtG1blldeqWl0WEIIIcQjrCWjeA7YFZ9gxVmNOb72j2uktQ5MnGDFlfkC9wCLFrtysnW0pJnIAhs3nqNq1a+YO/cQffvWkJ4rIYQQVs1aerIqYx7yS6C1DlRK3Yo7lmpKqYpAIeCsJYHki5VVwK2N1ppevdawbt1ZKlb0YPfufjzzTBmjwxJCCCGeyFqSrAJAYArlAYB7ak+ilFLAF8BNYMVT6rphHqKMVwQgf6y1fEuEyaSxsVEopahevRC1ahVm/PhmODjIZySEEML6WctwYUaZBrQB+mmtQ59SdzTgk+hxBCCvS/5MDE+k1sGDPtStu5iDB30AmDbNmylTWkmCJYQQItuwliQrAEjplr4CgH8K5Y9QSg0A3gfe1lrvTkWTeUCJRI8GAOHEpuZyIpP4+4fz9tubaNbs/7h9O4QHDyKMDkkIIYSwiLV0C5wj2dwrpVQ+oGjcsSdSSnUHFgLva63/72n1AbTWQUBQonMAUMlWJlMb5X//O8nIkdvx8wtjyJD6zJzZhvz55UYEIYQQ2ZO1JFnbgElKqfxa68C4sl6ACdj5pIZKKW/M86++1Vp/kN5A7K2mcy/3OXjQh+LF3di8uS8NGxY3OhwhhBAiXawlyVoEDAc2KKU+wrwY6afAosRrZCmldgOltNbl415XATZgXsT0B6VU40TnvKe1vpTWQJxdUz3PXqRTREQMH3+8n+7dq1C7dhE++aQd9va2spmzEEKIHMEqkiytdYBSqg3wJeakKRhYAkxOVtWWpDE3wjyXKx9wIFnd5UD/tMbint+i5bVEGv366yWGDNnKxYv+aA21axfB2VmWzzCa1ho/Pz8iIiKIjZX5iUKI7MvW1hZHR0cKFiyYMCUoq1lFkgWgtT4LtH1KHe9kr5cByzIyjgIFvTLydCKZ27dDGD16BytWnKJUqXxs3tyHTp0qGh2WwJxg3bhxg+DgYOzt7bG1tTU6JCGEsFhUVBQhISFERkZSvHhxQxItq0myrEUBN5n4npmmT9/HmjVnmDChGVOmtMTF5Yl7gIss5OfnR3BwMIUKFcLDw8PocIQQIt3u37/P3bt38fPzw9PTM8uvL0lWMh6OMicrox07dgtXVwfKl3dnxozWDB3akOrVCxkdlkgmIiICe3t7SbCEEDmGh4cHgYGBREQYsxyQzDBOxsneyegQcozg4EhGjdpO/frfMmHCLgA8PV0kwbJSsbGxMkQohMhxbG1tDZtjKj1ZyTjkkXWZ0ktrzc8/n2XEiO3cuBFM//61+eSTJ063E0IIIXIcSbKScbF3MTqEbO+TTw4wceJuqlQpyE8/9aBVq9JGhySEEEJkORkuTMbGVvJOS0RHx+LvHw7AK6/U5OOP23D8+CBJsIQhpk2bhlIq4eHh4UHz5s3ZunVrivUDAgIYN24c5cqVw8HBgcKFC9OnTx/Onj2bYv2QkBCmT59O9erVcXZ2xsXFhYYNGzJv3jzD5n5klc8++4ySJUtia2tLt27dMvz8iT+3xz2WLVuWrmscP36cadOmERYWluo2vXr1Yty4cem6bna0adMmatWqhaOjIxUrVmTp0qWpanf27Fk6duyIi4sLBQoU4NVXX8XPzy9JnYsXLzJo0CBq165Nnjx5qF69+iPnCQ4Oxt3dnQMHkq/SlD1IRpGMra2s1ZRWf/xxnUGDNlO2bAE2bnyJ4sXdmDixudFhiVzOycmJPXv2AHDz5k0++ugjunTpwv79+2natGlCvdu3b9OyZUsCAgKYPHkyderUwdfXlzlz5tCgQQO2bt1Ky5YtE+r7+fnRunVrfHx8GDlyJM2bm/+tHzp0iFmzZmFra8uIESOy9s1mkQsXLjBmzBgmTJhAly5dKFiwYIZf49ChQ0leN2nShOHDh9O3b9+EsnLlyqXrGsePH2f69OkMGzYMZ2fnp9Y/evQomzZt4vLly+m6bnbzxx9/0L17d9566y3mz5/Pnj17ePPNN3F1daVnz56PbRcUFMQzzzyDl5cX//vf/wgLC+Pdd9+lU6dOHDp0CBsbc//O6dOn2bJlC40aNcJkMmEymR45l6urK8OHD2fSpEn89ttvmfZeM43WWh5aA3gB+tqpk1qkjp9fqH7zzY0apumiRefo1atPaZPJZHRYwkJXrlzRV65cMTqMDDF16lTt4uKSpMzX11crpfTAgQOTlHfv3l07ODjos2fPJikPCQnRVapU0cWLF9fh4eEJ5b169dLOzs765MlHf1bcv39fHzhwIAPfSeqFhYVl+jU2bdqkAX3p0qV0nysiIkLHxsY+tR6gP/3003RfL7GlS5dqQN+7dy9V9fv166e7du2aIdfOis8po7Rv3143bdo0SVmfPn10lSpVntju448/1k5OTvr27dsJZUeOHNGA/vnnnxPKEn/+r732mq5WrVqK57t69aoG9PHjxy15G0/92ebj46MBDXjpDM4tZLgwGRkuTJ1ff71E5cpfsXTpcYYPb8i5c8Po1auaYavqCvE0xYsXx9PTk+vXryeUXbt2jQ0bNtCvXz8qV06yRz0uLi5MnjyZGzdusGbNmoT6a9euZdCgQSkObbi7uyfpJUvJ2bNn6dGjB+7u7jg7O1OrVi1WrFgBwNWrV1FKsXbt2iRtRo4cSenSpRNeL1u2DKUUhw4dol27dri4uDBu3Di8vb3p3LnzI9dcsGABTk5OPHjwADD/cT1nzhwqVqyIg4MDZcuW5bPPPnti3P3796dLly6AuScp8bDdtWvX6NmzJ/ny5cPFxYUOHTpw8uTJJO1Lly7NsGHD+OSTTyhVqhROTk74+/s/8ZqPs2zZMmrWrImjoyPFixdn8uTJSe4eCwwMZMCAARQvXhxHR0dKlCjBSy+9lND29ddfB8DT0xOlVJLvbXKhoaGsW7fukZ6bQ4cO0bVrV4oVK4aLiwu1a9fmhx9+SFJn3759KKXYsmULPXv2xM3NjV69eiXEOGTIEIoWLYqDgwP16tVj586kW/Vu2bKFdu3aUahQIdzc3GjUqBHbt2+36HuWVpGRkezduzch3ngvvfQSZ8+e5erVq49te+zYMWrVqkXhwg/Xnaxfvz4eHh5s2rQpoSy+R+tpSpUqRcOGDdM9TGwEySiSS+WHnltprVFKUa6cO5UrF+SzzzpQv75sRSSsX0hICP7+/pQpUyah7Pfff0drnZA8JBdf/vvvv/Pqq6+yf/9+tNY8++yzFsVw4cIFmjRpQokSJfjiiy8oUqQIp06dSpL4pUXfvn0ZOHAgkyZNwtnZmePHjzN8+HD8/f1xd3+45t+KFSvo2LEj+fLlA2DEiBEsWbKEyZMn06hRIw4ePMiECRNwcnJi0KBBKV5rypQpVK1alQkTJvDzzz9TtGhRypUrR3BwMN7e3tjY2LBo0SIcHR2ZOXMmLVu25MSJE5QoUSLhHOvWraNChQp8/vnn2Nra4uKS9huN5s2bx/jx4xk1ahRz587l7NmzCUnWrFmzABg9ejTbtm1j1qxZlC5dmlu3brFt2zYAOnXqxHvvvceHH37I9u3byZcvHw4ODo+93qFDhwgNDaVZs2ZJyq9du0azZs0YNGgQjo6OHDhwgDfffBOTycRrr72WpO7AgQN55ZVXWL9+Pba2tkRFRdGuXTvu3LnDzJkzKV68OD/++COdOnXi6NGj1KhRA4ArV67QpUsXxo4di42NDdu2baNjx47s2bMHb2/vx8astU7VkgW2traP/cP40qVLREdHP/LHR5UqVQA4d+7cY5PTiIiIFL+nDg4Oj53n+DRNmzbl119/taitkSTJSk56YlIUHh7NzJn78fUNYtmybpQtW4D9+183OiyRFQYPhmS9ElmqRg1YuNCipjExMYB5Ttb48eNxdXVNMl/qxo0bAJQsWTLF9m5ubuTPnx9fX99U1X+aadOmYW9vz4EDB3BzcwOgbVvLlzcZNGgQEyZMSHhdvnx5hg8fzrp16xgwYABgTgYOHTrE6tWrAfMvzwULFrBo0SIGDhyYEENYWBjTp09n4MCBKfYwlCtXjooVzVtg1alTJ+EX7BdffMG1a9c4ffp0wi/gVq1aUbJkSebPn8/cuXMTzhEdHc22bdssSq7APAl66tSpjB8/no8++giAdu3aYW9vz+jRoxk3bhweHh789ddf9O3bN0myE9+T5enpmTCnq169ek+dV3bkyBHy5s1L2bJlk5THnw/MSU3Lli3x9fVl8eLFjyRZXbt2Zfbs2Qmvly5dyvHjx/n333+pWrUqAB06dODChQt88MEHCZ/VsGHDEtqYTCZat27N6dOn+eabb56YZP3222+0bt36ie8LYO/evY89T0BAAAD58+dPUl6gQAGAJ/ZCVqhQgaVLlxIeHo6Tk3ntyevXr3Pr1i3y5s371LhSUqtWLT7//HOCg4NxdXW16BxGkCQrOUmyHrF9+0WGDt3K5csB9OpVlejoWOzsZNFKYd1CQ0Oxs3t4I4utrS0bN26kUqVK6T63pcPiu3fvThg2ygidOnVK8trDw4N27dqxcuXKhCRr1apV5M2bN2EYcdcu88LAL7zwQkISCuZEa/bs2fj4+FCqVKlUx7B//36qV6+ekGCBedi0Xbt2/PHHH0nqent7W5xgARw8eJCQkBB69er1SOzh4eGcOnWKVq1aUbduXZYtW0bRokV59tlnUxzaTa1bt26lmIgFBAQwdepUNm7cyI0bNxJ6jlLaMSH557Rz505q1KhBxYoVk7yPdu3a8eOPPya89vX1ZfLkyezatYtbt27Fzx+mXr16T4y5Xr16HDly5KnvLSP+L6RkwIABfP7557z99tvMmjWLsLCwhOTd0v87BQsWRGvNnTt3JMnK1p7QbZzb3LoVzMiRO1i9+jRlyuRn69a+PPdcBaPDElnNwl4kozk5OfH7779jMpm4cOECEydOpF+/fpw6dYqiRYsC5nlaYP4ru1atWo+cIzg4mMDAQLy8vB6pH9+rkxb379+nWLGMG15PPOclXp8+fXjttde4ffs2RYoUYcWKFXTv3h1HR/NCy35+fmitH9uDk9YkKyAgIMU4ChcuzKlTp54ab1rELwFQt27dFI/7+PgA8OWXX+Lu7s7cuXMZN24cJUqU4N1332Xw4MFpvubjhr769+/PwYMHef/996lWrRpubm4sXLiQVatWPVI3+fv28/Pj2LFjSf4IiBe/64LJZKJr1648ePCAGTNmUL58eVxcXHj//fefOrycN29eateu/dT39qQdHuJ7rOLn8cWL7+FKPBydXKVKlfjuu+8YMWJEwjy1Hj160LFjR4KDg58aV0riP4Pw8HCL2htFkqzkpCcrgb9/OJs3n2fSpOZMntwSZ2dZ3kJkHzY2NtSvXx+Ahg0bUqlSJRo1asSMGTNYGJc4tmzZMmFickrzsjZv3pxQL3H9HTt2WDTM5+Hhwc2bNx97PD4RioqKSlIe/4stuZR6BZ5//nkcHBxYvXo1HTp04Pjx43z88ccJx93d3VFK8ccff2Bv/+gG7Wnt3XB3d+e///57pPzOnTuP/CJO740x8ef7+eefk8z1ihc/3y5fvnzMnz+f+fPnc/LkST7//HOGDBlC9erVadGiRZqvGRgYmKQsIiKCzZs3M2/ePIYPH55QntISBPDo+3Z3d6dmzZp89913j73uxYsXOXbsGBs2bOD5559PKE9NkpERw4XlypXDzs6Oc+fO0aFDh4Tyc+fOATwyVyu5fv368dJLL3H+/HkKFChA8eLFqVatGl27dn1qXCmJ/wyy296qkmSJJP755yZ79lxh3LhmVKtWCB+fUbi7y36OIvurX78+ffr0YenSpUydOpUiRYpQqlQpunXrxvLlyxk9enSS3qmwsDBmzpyJl5dXwh1WJUuWpGfPnixcuJDXX389YT5NvMDAQM6ePUuTJk1SjKFt27asXbuW2bNnpzjkUahQIezs7JJMDo6KikrT+kCurq507tyZFStW4O/vj6enZ5KEsE2bNoC5V+1xE/7Tonnz5qxdu5b//vsvIUELCAhg165dCXO+MkqTJk1wdnbG19eX7t27p6pNjRo1+Oyzz/juu+84e/YsLVq0SEguU7NwbKVKlbh37x6hoaEJQ52RkZGYTKYkSWpwcDC//PJLqmJq27YtW7dupVixYo/t2YxPphJf49q1axw4cOCpvagZMVzo4OBA69atWbt2bZJ5jKtWraJKlSpPvCMznr29fcJQ7Z49ezh//jz9+/d/aruUXL16lXz58lGkSBGL2htFkiwBQFBQJO+9t4evvjqCh4cTb71VlwIFnCTBEjnKlClTWLlyJfPnz0+4E+3rr7+mZcuWtGjRgkmTJlGnTh1u3LjBnDlzuHr1Klu3bk3oYYqv7+3tTbNmzRg1alTCXWd//vknX375JRMnTnxskjV16lQ2b95M8+bNGT9+PEWLFuXMmTOEhYUxfvx4bGxs6NGjBwsWLKB8+fIULFiQBQsWJNzVm1p9+vShR48eXLt2jV69epEnz8Mf9RUrVmTo0KG8+uqrjBs3jkaNGhEdHc358+fZu3cvGzZsSNP39PXXX+ezzz6jU6dOfPjhhwl3F+bJk4eRI0em6VxPkz9/fmbMmMH48ePx9fXF29sbW1tbLl++zMaNG1m3bh3Ozs40a9aM7t27U716dWxtbfn++++xt7dP6MWKnz/21Vdf0a1bN5ydnRPu6EuuWbNmmEwmjh07lrDwbL58+WjQoAGzZs3C09OTPHnyMGvWLPLly8fdu3ef+j769evH4sWL8fb2ZuzYsVSsWJHAwECOHTtGVFQUH3/8MZUrV8bLy4uJEycSGxtLSEgIU6dOTRiyfhJXV9eEXtz0mDJlCt7e3gwZMoQXX3yRvXv38r///e+RIdE8efLw2muvJfTMhYaGMm3aNFq2bImjoyOHDx/m448/Ztq0aUkSu7CwsIRdGK5du0ZQUFDC8iWtWrXC09Mzoe7ff/9N06ZNU73sg9XI6IW3suuDuMVIfXx8HrtgWU5kMpn06tWndNGiczRM02++uVH7+YUaHZYwQE5fjDTeyy+/rN3c3HRgYGBCmb+/vx47dqwuU6aMtrOz056enrp37976zJkzKZ4jKChIT5s2TVetWlU7OjpqZ2dn3aBBA/3ZZ58lWbg0JadPn9Zdu3bVbm5u2tnZWdeuXVuvXLky4fjdu3d1t27dtJubmy5evLieP3++HjFihC5VqlRCnactphkREaHz5cunAb1///5HjptMJv3ll1/q6tWra3t7e+3u7q6bNGmi582b98TY169fr4FH/p1cvXpV9+jRQ7u6umpnZ2fdrl07feLEiSR1SpUqpYcOHfrE86eEFBYjXbFihW7QoIF2cnLSbm5uuk6dOnrKlCk6Ojpaa631uHHjdI0aNXTevHm1m5ubbtasmd6xY0eSc0ybNk17eXlpGxubJN/blNSoUUNPmjQpSdmFCxf0M888o52dnXWJEiX0p59++si/u71792pAHzly5JFzPnjwQI8aNUqXLFlS29nZ6aJFi+qOHTvqzZs3J9T566+/dIMGDbSjo6OuUKGCXr58+RMX7cwMGzdu1DVq1ND29va6fPny+rvvvnukDqBfe+21hNdhYWG6Q4cO2sPDQzs4OOhatWrppUuXPtLuypUr8YuAPvLYu3dvQr2oqCjt7u6e4rVTw8jFSJWOu1sht1NKeQE+Pj4+CZNcc4P//vOjSpWvqFrVk0WLOtO8uWW3povsL35xwdQMAwiRm3z55Zd8/vnnXLhwQRZcNsCWLVvo27cvN27csGgJiKf9bPP19Y2f41dCa+1rcaApyGb9biIjREXFsmuXeQ+uSpUKsmPHKxw9+rYkWEIIkYK33nqL8PDwJKuVi6wzd+5cxowZY/EaW0aSJCuX+f33a9SuvYgOHX7kwoX7ALRrVw57e1n3SgghUuLk5MSyZcseuetTZL6QkBBatWrFqFGjjA7FIjLxPZfw8wtj3LhfWbbsOMWLu7JmTS/Kl3/8OidCCCEeateundEh5Ep58+Zl6tSpRodhMUmycoH798OoXHkBAQERjBzZiBkzWuPqKouuCiGEEJlJkqwczN8/HHd3Jzw8nBk7tint25ejbt2iRoclhBBC5AoyJysHCguL5t13d1Gy5Gf89595G4qJE5tLgiWEEEJkIenJymG2br3A0KFbuXo1kJdeqk6+fI5PbySEEEKIDCdJVg4RFRVL377rWLfuLOXKFWDHjldo376c0WEJIYQQuZYkWTmEvb0tDg55mDKlJe++2xwnJ9nMWQghhDCSzMnKxo4cuUHLlku5ejUQgB9/7M6MGa0lwRJCCCGsgCRZ2dCDBxEMG7aVRo2WcO6cH5cvBwDIdg9CxJk2bRpKqYSHh4cHzZs3T9iMNrmAgADGjRtHuXLlcHBwoHDhwvTp04ezZ8+mWD8kJITp06dTvXp1nJ2dcXFxoWHDhsybN4+IiIjMfGuG++yzzyhZsiS2trZ069Ytw8+f+HN73GPZsmUWn9/b25vOnTtnWLwnT57E1dWVe/fuZdg5s4MHDx7w5ptv4u7ujqurKz179uTWrVtPbae15pNPPqFMmTI4ODhQvXr1RzacBvNG7J07d8bT0xOlVMLG0YnNnDnT6tcvk+HCbERrzerVpxk5cge3b4cwYEBdZs1qi7u7k9GhCWF1nJyc2LNnDwA3b97ko48+okuXLuzfv5+mTZsm1Lt9+zYtW7YkICCAyZMnU6dOHXx9fZkzZw4NGjRg69attGzZMqG+n58frVu3xsfHh5EjR9K8eXMADh06xKxZs7C1tWXEiBFZ+2azyIULFxgzZgwTJkygS5cuFCxYMMOvcejQoSSvmzRpwvDhw+nbt29CWblyls83/frrr7G1zbgdLt577z369++Pp6dnhp0zO+jduzenT59m0aJFODo6MnnyZJ577jn+/vtv8uR5fGrx6aefMnnyZN577z2aNGnCL7/8Qp8+fXB2dqZLly4J9b7//nsAOnbsmPA8uaFDh/LJJ5+wd+9eWrdunbFvMKNk9I7T2fUBeAHax8fnsTt1G81kMulnn/1RV6/+tT5w4LrR4Ygc5mk71WcnU6dO1S4uLknKfH19tVJKDxw4MEl59+7dtYODgz579myS8pCQEF2lShVdvHhxHR4enlDeq1cv7ezsrE+ePPnIde/fv68PHDiQge8k9cLCwjL9Gps2bdKAvnTpUrrPFRERoWNjY59aD9CffvrpE+tkxXtPyaVLl7RSSh89ejTd54qJidFRUVEZEFXmO3jwoAb0jh07EsrOnTunlVJ61apVj20XGRmpXV1d9ejRo5OUd+7cWdesWTNJWfy/jStXrmhAr1mzJsVzvv766/r5559/YrxP+9nm4+OjAQ146QzOLWS40MpFRsbw8cf7uXUrGKUUP/zQnaNHB9K0aQmjQxMiWylevDienp5cv349oezatWts2LCBfv36Ubly5ST1XVxcmDx5Mjdu3GDNmjUJ9deuXcugQYOoXr36I9dwd3dP0kuWkrNnz9KjRw/c3d1xdnamVq1arFixAoCrV6+mODQycuRISpcunfB62bJlKKU4dOgQ7dq1w8XFhXHjxj12KGzBggU4OTnx4MEDwPzH9Zw5c6hYsSIODg6ULVuWzz777Ilx9+/fP6GnoVy5ckmG7a5du0bPnj3Jly8fLi4udOjQgZMnTyZpX7p0aYYNG8Ynn3xCqVKlcHJywt/f/4nXTMm0adPImzcvf/31F02aNMHR0ZGvvvoKgIkTJ1KjRg3y5s1L8eLF6dOnzyNDWMm/R/HnO3nyJM2bN8fZ2Znq1auzY8eOp8by/fffU7ZsWerUqZOkPC1xLF++nEqVKuHg4MC///4LwJYtW2jUqBFOTk54enoyePBgQkNDE9qGhoYybNgwKlWqhLOzM6VLl2bQoEEJn29m27ZtG/nz508yVFepUiVq16792CF5gEuXLhEcHEz79u2TlHfo0IETJ04k+b9pY5O69KRXr15s2bIFPz+/NL6LrCHDhVZs794rDB68hf/+u4+9vS1jxjSlYEFno8MSIlsKCQnB39+fMmXKJJT9/vvvaK2TDFMkFl/++++/8+qrr7J//3601jz77LMWxXDhwgWaNGlCiRIl+OKLLyhSpAinTp1K8sslLfr27cvAgQOZNGkSzs7OHD9+nOHDh+Pv74+7+8O9SVesWEHHjh3Jly8fACNGjGDJkiVMnjyZRo0acfDgQSZMmICTkxODBg1K8VpTpkyhatWqTJgwgZ9//pmiRYtSrlw5goOD8fb2xsbGJmHoaObMmbRs2ZITJ05QosTDPwjXrVtHhQoV+Pzzz7G1tcXFxcWi9x0VFUXfvn0ZNWoUH330ER4eHgDcvXuXSZMmUaxYMe7du8fcuXNp1aoVZ86ceeIQVnR0NC+//DLvvPMOU6ZMYfbs2bzwwgtcu3Yt4dwp2bVrV4pJdWrj+Pvvv7l69SozZsygQIEClChRgrVr19K7d29ef/11pk+fzq1bt5g4cSIBAQGsXLkSgLCwMGJjY5k5cyaenp74+Pgwc+ZMunXrxt69e5/4vYuNjY0fvXkspdQTh1TPnTtHpUqVHpkHXKVKFc6dO/fYdvHzFR0ckm7rFv/67NmzlCxZ8omxJdekSRNiY2PZt28fPXv2TFPbrCBJlhW6ezeUsWN38sMPJ/DycmP9+t5061b56Q2FyASDNw/m5N2TT6+YSWoUqsHCzgstahsTEwOY52SNHz8eV1fXJPOlbty4AfDYH+xubm7kz58fX1/fVNV/mmnTpmFvb8+BAwdwc3MDoG3bthadC2DQoEFMmDAh4XX58uUZPnw469atY8CAAYC5l+nQoUOsXr0aMPcmLFiwgEWLFjFw4MCEGMLCwpg+fToDBw5MsRehXLlyVKxYEYA6deok9Kx98cUXXLt2jdOnT1OlShUAWrVqRcmSJZk/fz5z585NOEd0dDTbtm2zOLlKfJ6ZM2fSu3fvJOX/93//l/A8NjaWJk2a4OXlxZ49ex7pPUksKiqKWbNm0bFjR8DcK1OmTBm2bdvGK6+8kmIbrTV///13ipP/UxuHv78/R44cSUhEtdaMHTuW3r17s2TJkoR6RYsWpWPHjkyZMoVq1arh6enJwoUP/0/ExMRQpkwZmjdvzvnz5xM+p5S0adOG33777bHHwfz57du377HHAwICyJ8//yPlBQoUeGLvZHwP6F9//YW3t3dC+eHDhwEs6tnMnz8/JUuW5M8//5QkS6TOgAGb2LLlPKNHN2b69NbkzWtvdEhCZDuhoaHY2T1czsTW1paNGzdSqVKldJ/b0jt5d+/eTc+ePRMSrPTq1KlTktceHh60a9eOlStXJiRZq1atIm/evAlDZLt27QLghRdeSEhCwZxozZ49Gx8fH0qVKpXqGPbv30/16tUTEiwwD5u2a9eOP/74I0ldb2/vdCdY8ZK/dzAPY33wwQecPn2aoKCghPLz588/McmysbFJkuyWLl0aJyenhOQ6JQEBAURGRqY44T21cdSsWTNJT9/58+e5du0a8+fPT/LZtGrVChsbG/7++2+qVasGwA8//MC8efO4cOFCkqHEpyVZixcvJjg4+LHHAVxdXZ943FJubm688sorzJ49mxo1atC4cWM2bdqUMFxu6f+rggULpurORiNIkmUlTp68Q/Hibri7O/HJJ22ZPt2b2rWLGB2WEBb3IhnNycmJ33//HZPJxIULF5g4cSL9+vXj1KlTFC1q3sezePHiAFy/fp1atWo9co7g4GACAwPx8vJ6pP6TfpE9zv379ylWrJilb+kRhQsXfqSsT58+vPbaa9y+fZsiRYqwYsUKunfvjqOjeYstPz8/tNaPvTMwrUlWQEBAinEULlyYU6dOPTVeSzg7O5M3b94kZUeOHKFr1648//zzTJw4kUKFCqGUonHjxk9dVsPJyQl7+6R/zNrb2z+x3eOGvtISR/LvR/y8ou7du6d4TR8fHwDWr19Pv379GDhwIDNnzsTDw4Nbt27RvXv3p77X8uXLp2q48EkKFCiQEEtiAQEBSYapU/LZZ59x+/bthF7DggUL8sEHHzB27NiE/5dp5eDgQHh4uEVtM5skWQYLDY1ixozfmDfvMIMG1ePLLztSqVLG3xYtRG5jY2ND/fr1AWjYsCGVKlWiUaNGzJgxI2GopWXLliil2LJlS4rzsjZv3pxQL3H9HTt2WDTM5+Hhwc2bNx97PD4RioqKSlIeEBCQYv2Ufhk+//zzODg4sHr1ajp06MDx48f5+OOPE467u7ujlOKPP/54JLEA0tzT5+7uzn///fdI+Z07dx75hZtRa/mldJ7169eTL18+Vq9enTDcee3atQy5Xkri31tgYKDFcSR/H/HnXLBgAY0aNXqkfnyCvmbNGmrXrs3ixYsTjj1tCDBeRgwXVq5cmV27dqG1TvIezp07R40aNZ54bg8PD3bu3MnNmzfx9/enQoUK/PLLL9jb21O3bt1UvYfkAgMDE3r4rI0kWQbatOk/hg3bxvXrD3j55Rq8917LpzcSQlikfv369OnTh6VLlzJ16lSKFClCqVKl6NatG8uXL2f06NFJeqfCwsKYOXMmXl5e9OrVCzDPxerZsycLFy7k9ddfp2rVqkmuERgYyNmzZ2nSpEmKMbRt25a1a9cye/bsFIdkChUqhJ2dXZJFUKOiolL9CxTMQz2dO3dmxYoV+Pv74+npmSQhbNOmDWDuVXvchP+0aN68OWvXruW///5LSNACAgLYtWtXwpyvrBAeHo6dnV2SX/o//fRTpl3P0dGRkiVLcuXKlQyLo3Llynh5eXH58mWGDh362Hrh4eGPJMipvUZGDBc+99xzfPDBB+zevTvh39b58+c5duxYkjmCT1KsWDGKFStGbGwsCxcupHfv3hYNU5pMJq5fv84bb7yR5rZZQZIsg0yevJuPPvqDChXc2bXrVdq0KWt0SELkeFOmTGHlypXMnz+fWbNmAebFKVu2bEmLFi2YNGkSderU4caNG8yZM4erV6+ydevWhB6m+Pre3t40a9aMUaNG0axZMwD+/PNPvvzySyZOnPjYJGvq1Kls3ryZ5s2bM378eIoWLcqZM2cICwtj/Pjx2NjY0KNHDxYsWED58uUpWLAgCxYseKTH4Gn69OlDjx49uHbtGr169UpyR1vFihUZOnQor776KuPGjaNRo0ZER0dz/vx59u7dy4YNG9L0PX399df57LPP6NSpEx9++GHC3YV58uRh5MiRaTpXerRr14758+czfPhwunfvzqFDh/jhhx8y9ZrNmjXjn3/+ybA4lFLMmzePvn37EhoaSqdOnXBxceHatWts2bKFjz76iIoVK9KuXTuGDh3KBx98QJMmTdi6dSu7d+9O1TUyYk5ikyZN6NChA2+88QZz585NWIy0Zs2a9OjRI6HejBkzmDFjBpcuXUoYgv7pp58IDw+nfPny3Lx5k8WLF3PlypVHksT4Oy/jV9KPnxzv6elJq1atEur9999/hISE0KJFi3S/r0yR0QtvZdcHWbAYaXR0rA4LMy829/ffN/S0aXt1eHh0pl1PiLTI6YuRxnv55Ze1m5ubDgwMTCjz9/fXY8eO1WXKlNF2dnba09NT9+7dW585cybFcwQFBelp06bpqlWrakdHR+3s7KwbNGigP/vssyQLl6bk9OnTumvXrtrNzU07Ozvr2rVr65UrVyYcv3v3ru7WrZt2c3PTxYsX1/Pnz9cjRozQpUqVSqizdOlSDeh79+6leI2IiAidL18+Dej9+/c/ctxkMukvv/xSV69eXdvb22t3d3fdpEkTPW/evCfGvn79eg088u/k6tWrukePHtrV1VU7Ozvrdu3a6RMnTiSpU6pUKT106NAnnj8lJFuM9Emf7ezZs7WXl1dCDOfPn3+kfatWrXSnTp2eer58+fLpqVOnPjG2devWaUdHRx0UFJTuOBLbuXOnbtWqlXZxcdEuLi66WrVqesyYMQn/ZmNiYvSYMWO0p6endnV11T179tSHDx9+4qKdGS0wMFC/8cYbOn/+/Dpv3ry6R48e+saNG0nqTJ069ZF/Lz/88IOuXLmydnBw0B4eHvrVV19N8ffua6+9Fr9AaJJHq1atktSbO3euLlWqlDaZTI+N1cjFSJV+ygS43EIp5QX4+Pj4JExyzUh//unL229vpnXr0nz2mWVr7AiRma5evQqQZNFLIcTjRUdHU7JkSWbPnk2/fv2MDidXatCgAV26dOH9999/bJ2n/Wzz9fWNv8uzhNb68beUWkBWfM9kAQHhDB68mSZNvuPWrRAaNChudEhCCCEygJ2dHRMnTuTzzz83OpRc6ffff+fSpUu88847RofyWDInKxNt2XKeN974hXv3Qnn77Xp89FEbChSQzZyFECKnGDRoEEFBQfj5+WXKhtni8YKCgvj+++9TXBjVWkiSlYlcXR0oVsyVjRtfonHjjB+CFEIIYSwHBwemTJlidBi5Ukr7dFobSbIyUEREDLNn/4GtrQ3vvdeSli1L8c8/A7GxyZi1YYQQQgiRfUiSlUF27brMkCFbuHDBnxdfrJZwy7UkWEIIIUTuJBPf0+nOnRBeeeVn2rX7gcjIWDZufIlVq3pm2MrGQmQVW1tbYmNjjQ5DCCEyVGxsLLa2toZcW5KsdDp27DYrV55i3LimnDkzhK5d07/QmxBGcHR0JCoqivv37xsdihBCZIj79+8TFRWVZEHhrCTDhRb499/bnD59j759a/Dss+W5dOkdSpXKb3RYQqRLwYIFiYyM5O7duwQGBhr2l58QQmSE2NhYoqKicHV1NezOT+nJSoOQkCjGjt1JvXrfMH78r0RGxgBIgiVyBKUUxYsXp2DBgiluHCyEENmJvb09BQsWpHjx4oZN4bGaniylVGXgS6ApEAx8D7yntY56SjsFTACGAJ7AcWCU1vpwRsa3YcM5hg/fhq9vEP361eLTT9vh4GA13z4hMoRSCk9PT6PDEEKIHMEqsgSlVAFgD3AB6AEUB+YBzsCwpzSfAEwHJgIngKHATqVUba315YyIb//+a3TvvopKlTzYs6cfrVuXyYjTCiGEECIHs4okCxgEuAHdtdb+AEqpPMDXSqmPtNY3U2qklHIE3gXmaq0/iyvbD5wHxmLu3bJIdHQsp07dpU6dojRvXpIffuhOr15VpfdKCCGEEKliLXOyngN2xSdYcVZjjq/9E9o1xZycrY4viBte/BnoaGkwBw/6UK/eN3h7L8fPLwylFK+8UlMSLCGEEEKkmrUkWZWBc4kLtNaBwK24Y09qR/K2wFmgpFIqzRsFjh//K82a/R/37oXxzTed8fCQvQaFEEIIkXbW0jVTAAhMoTwAcH9Ku0itdUQK7VTc8fCUGiql3DD3gsUrDrBixUFee60F48Y1JV8+R27cuJG6dyCEEEKIbOfWrVvxTzN83RprSbKMMBqY+mjxEpYvX8Ly5VkejxBCCCGMUxq4lpEntJYkKwDIl0J5AcA/hfLE7RyUUo7JerMKADru+OPMA5Ykel0SOAA0BqT7ynoUAY4ADYDbBscikpLPxjrJ52Kd5HOxXsWBw4BPRp/YWpKscySbe6WUygcU5dH5VsnbAVQC/k1UXhm4rrVOcagQQGsdBAQlul780xtaa99URy4yVaLP5bZ8LtZFPhvrJJ+LdZLPxXol+myeuC6nJaxl4vs2oK1SKn+isl6ACdj5hHYHMSdKveILlFJ2mNfa2prxYQohhBBCpI61JFmLMK/yvkEp1V4p9TrwKbAo8RpZSqndSqmL8a/jhgg/BsYqpUYopZ4BVgAewJwsfQdCCCGEEIlYxXCh1jpAKdUG87Y6GzAnXEuAycmq2vJozLMx30k4lofb6nSwYLX3IMwrxwc9raLIUvK5WC/5bKyTfC7WST4X65Vpn43SWmf0OYUQQgghcj1rGS4UQgghhMhRJMkSQgghhMgEkmQJIYQQQmQCSbKEEEIIITJBrkiylFKVlVK/KqVClVK3lVKfKKXsU9FOKaUmKqWuK6XClVKHlFKNsyLm3MCSz0UpVTSu3nGlVLBSylcp9T+lVKmsijs3sPT/TLJzjFRKaaXU5syKM7dJz+eilCqulFqulLoX9/PsrFLq5cyOOTdIx+8YD6XUorjfMaFKqVNKqUFZEXNuoJQqH/f9Pa6UilFKnUpluwz73W8VSzhkJqVUAWAPcAHzIqXFMW+p4wwMe0rzCZhv65wInACGAjuVUrUtWCJCJJKOz6VeXP3/w7wNQkFgCvCXUqq61vpeZsadG6Tz/0z8OYpg3hv0biaFmeuk53NRShUFDgH/AQMx36peDXDIxJBzhXT+f1mDeYeSScB1oCOwUCkVq7X+NtOCzj2qAZ2APzF3KqW2YynjfvdrrXP0A3gXCAHcE5UNBGKAYk9o5wg8AD5KVGYPXAW+Nvp9ZfdHOj6X/ECeZGVemHcH+P/27j/YjrK+4/j7A4EQkRBQAiK/DZBQi4jYgqgkGKiUsUVtcAQtAaVVayUI/gBRAoiUcRDGqu0MFoipKB3EWqkUBHMjLUVljIyAabGVGCIJqEkQ8pPw9Y/nOdxlc+695+45m6NnP6+ZnbvnOfvju/vMufs9z/PsnvP6fVyDMFWtm9I2vgQsAIaAW/t9TIMwdVMvwELSb7Nu3+/jGLSpi/9le5F+Y3duqXwxcFe/j2sQJmC7wvwNwAMdrNPTa38TugtPAu6MiOIPTf8LKaM9cZT1XgNMzssCEBGbgFtI3zasO5XqJSLWRMQzpbJHgSeAvesItIGqfmYAkPRa4BTSt0DrnUr1ImkycCrpArGl3hAbqernZYf8d22pfC3pAdvWpYh4tsJqPb32NyHJmk7pR6YjYg3wGKUfpW6zHuV1gZ8A+0ma1KsAG6pqvWxF0iHAVFLdWPcq142k7YHPAZdHxGN1BdhQVevlSNI38c2SFkvanMcNXZl/69W6U6leImI56bd5L5R0mKRdJJ1KSsw+X1+4NoaeXvubkGTtBqxpU74a2H2M9TZG+n3E8nrK71t1VevleZR+Pv2zwC9Iv1tp3eumbt4H7Axc3eOYrHq97JX/fhG4j3QRvxqYB1zau/Aaq5vPy1uAVcCDpHFyNwLnRsTXehmgjUtPr/0DP/DdBt584A3AGyPi6T7H0miSppIu2n+Zm9ftd0Pry/SdEXFenl8kaRfgfEmXRsT6PsXWWPkL4vXAwcBppJavE4BrJK2OiK/2Mz7rjSYkWauBXduU7wb8uk15cb2JknYqZbS7kQYrru5diI1UtV6eI+ls4BPAuyLirh7G1nRV6+ZS0p04d0uakssmABPy66fK4+lsXLr5XwbpDriiu4CPAdOAH3cdXXNVrZeTgTnA4RHROv9D+cvKVYCTrP7o6bW/Cd2FSyn1i0vaFXgJW/e5ltcDOLRUPh34ub/5da1qvbSWfTPwD8AnIuK6WiJsrqp1Mx14PemfUGs6FviTPD+7jmAbpGq9PDTGdnfqMq6mq1ovhwFbgPKzm5YAe0t6QS+DtI719NrfhCTrNmB24Zs1pG8Pz5IGHY7kHlIf+ZxWQR4k+hbgW70Ps3Gq1guSZpLGX10bEZfVFF+TVa2becCs0nQ/6Xlms4Dv1xBrk1Sql4hYRmqpKie5JwDrGTsJs9FV/bwsA7YHDi+Vvwp4PCLW9TJI61hvr/39fo7FNnhOxm6kQdFDpAGfZ5K+VX+utNxdwE9LZR8FNgDnAMcDN+eTf1C/j+v3fapaL8AM0iDTH5NutT26ML2s38c1CFM3n5k22xrCz8nqe70AbyJd9K8hJVcXApuAT/b7uH7fpy7+l+1CSrQeBt5BGlt6Jal166J+H9cgTKQHwv5FnhaRHvjaer1Hu3rJZT279vf9JGyjEz0DuBNYR7qT49PAjqVlhoBHSmUiPWhueT7h9wLH9Pt4BmWqUi/AXFK/eLvphn4f06BMVT8zbbbjJOt3pF6At5G6pjaSHqx4AaB+H9MgTF1cY6YBNwErgKdz/ZyDHxrbq3o5YJTrxcxR6qVn137lDZqZmZlZDzVhTJaZmZnZNucky8zMzKwGTrLMzMzMauAky8zMzKwGTrLMzMzMauAky8zMzKwGTrLMzMzMauAky8zMzKwGTrLMBoCkGyTFKNMB49zeI3m9oXoiHnG/7WJfK2mRpD+tcb/Pnb9C2RRJ8/M0s7T8AYX45tcV1wixzmxzjjblOvtHSVO72Pa8fLxzexiyWWNN6HcAZmZjmAzMBGZKOj0ibtxG+50CXFx4PbSN9lvFDsD+wF8Dx0g6MiK2VNjOvLydxcANPYvOrKHckmU2eGZFhErTI/0OapyWRYSAnYDzC+VX1LGziJjbOlcdLv9I4dzOryOmDi3IMR8C/CyXHU768XQz6zMnWWYNkbu/vizpJ5LWSNosaaWkmyX9QQfrv0rSrXmdjfnvIknvLi33Bkm3S1qdl/sfSRdJ2mG8MUfERuAzwNpctJ+kPfJ+tpP0fklLJK2T9LSk75e7uiRNk/RVSStyPE9IukfSBYVlntddmLsAf1bYzMWFrrmZ7boLJT2YX/+wtP8zCsuelMsk6T2S7stxr5N0r6RTx3uO8nl6GPh6oWjfwv7fmOvjUUnrJW2QtFTSZZIm5WVm5mPfP692XLvuUElzJN0t6cm8nfslvVdSR8mpWdO4u9CsOaYAp5XK9gTeCsySNCMiHm+3oqSdgduBF5XW3RN4GvhiXm4ucB3pV+xbDgEuA46W9Kao9qv07S7iC4B3lMpeDVwv6bCI+HAu+yYwvbDMi/M0md62jC3M23ulpGkR8dNc3kqcVgJ35PnrgLml9f8YuEnS/hHx6Qr7L56jYj0eDZxYWvZQ4CLgQLY+h+03Ll0MzC8VHw58AXg58DfjiNWsEdySZTZ4FpUGRf8ol68mJVT7krrhXgicnd/bna0TsKLpDCdYbwV2BPYB/pyUxCDphcA1pIv9bXk/LwAuzOudDIxr8LqkicB5pIQIYHlEPCHp9QwnB/+dYzkYWJrLzpd0qKQXMZxgfRCYCOxFSjq+NNJ+cxfggYWiSwrdg0MjrPZl4Nk8PyfHPwWYncu+EhFbJL2W4QTrcmBXUtLXaom6NMfdMUkHA2/OL1cB/1l4+99J3Yd7kMZuvQT4Vn7vNEm7R8RQ7nZclssXF7tDlW6c+Hh+73pgKqlOPp/L3ifp5eOJ2awJ3JJl1hARsTZfLC8itS7tXFrk0FFWXwFsAbYntVhMAx4E/isifpWXeQ0pYQA4CVjeZjvHky76Y9lfhTv9CloX+pMKZZdHxAoASVcB15ISvRNJrSxPkhKC00jH/CBwb0R8u4M4OhYRy5Xuxjye1Hp1BXAKKSGF1NIFz080P5anop1I5/KbHez2DElnFF4vBd4ZERsKZSuAT5KSvb1IiVaLSMnp98bYz4mkugc4M09ls4AHOojZrDHckmU2eMoD348AkHQucBXwSrZOsAAmjbTBiFgJfIA0Nup44ErgVmBl7kaC1FIylt07PophvwG+C5wSEQty2YsL7y8fYX6PfIfdmaTWnaNI3Za3ACskXVshlrG0EqkjJE0jt2gBD0TEklZcHWynynmC1HL43JdnSduR6ulMUstiu3FxI9Z7QZ0xmw0sJ1lmzdG64G8gjf+ZAPxhpytHxBdIF9s/Ak4ntUhNIA0K3wd4orD4BW3ucBRwVoe7W1ZYb3JEHBcR3yi8/8vC/D6F+X3Ly0TELcDewBGkFqaFpBacd0s6drRD7jDWoq8B6/L8XwEn5PmFhWWK5+mYNudou0IyOZYFpMRpDvAMsB/wdUmt7tVppKQa4E5gz7yPq0bY3kjHXIz57SPEfEmHMZs1hpMss+aYmP8GqXVoClsPZG5L0p6S/g44Evh/UjJxT+ttUsvSPQzfBfhBSbMkTZQ0VdKpkr7L8N1r3fqPwvyFkl4q6SDSuCtIx3hHjv3vgdcBjwHfYHjwOYzeQrO6MD+9k7sjI+I3wL/ml+eSEqBnSeO1Wm4rzH9G0gxJO0o6SNLfkpKhjkXEMxFxM6lrFFKX4Ify/MTCohuB9ZKOAt45wuZax7yfpF0L5XeQuosBLpF0VI55H0lnAUsws604yTJrjtYYn0nAQ6SWniM6XHcS8BHg3rzeBtKgbUhddA9FxFOkxCJIyct38nKrgJtIiU5PRMRi4Cv55bHAo8D/ATNy2dUR0RoE/37Sg0RXkRKNVqvS2nw8I+3jSeB/88u3AZvyjQRjjWVtbb+13HdaY8bydu9m+EGfx5DqYmOO/7PAy8bY/kg+RbrTE+CcPHh+KdC6y/Fk0vi0H5CS7HZ+kP8eCKzJxzs7P2ftsvzeIXm5jaS6/yfgFRVjNhtoTrLMmuMK0t1/jwNPATcDb+9w3V+REoAlpNaOzaQB1TcCsyNiE0BEXE/qIrs9L7cJ+DnpbrazgV/05lCAdHfhPOB+UjK3HrgPeFdEnFdY7krSwO5f5rhXAv+W4145xj7OICUU68cR17fzPloWtlnmLOA9edvr8vRwXva949jXcyJiFamOAHYBPhIRm4E/AxaRErDlpLs1/3mEzVxMOjdr2mz/ElJ3692kJG0Dw62ap1eJ2WzQqdoja8zMzMxsNG7JMjMzM6uBkywzMzOzGjjJMjMzM6uBkywzMzOzGjjJMjMzM6uBkywzMzOzGjjJMjMzM6uBkywzMzOzGjjJMjMzM6uBkywzMzOzGjjJMjMzM6uBkywzMzOzGjjJMjMzM6vBbwESYTY6JmvYYAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "params = {\n", - " 'max_depth': np.arange(3, 8),\n", - " 'min_samples_leaf': np.arange(50, 100, 20),\n", - " 'n_estimators': np.arange(100,200,50),\n", - " 'criterion': [\"gini\", \"entropy\"],\n", - "}\n", - "\n", - "clf = RandomForestClassifier(max_features=\"sqrt\", random_state= 10)\n", - "cv = StratifiedKFold(n_splits=5,shuffle= True, random_state= 10).split(X_train, y_train)\n", - "clf = GridSearchCV(clf, params, scoring='roc_auc', cv=cv, n_jobs = -1, verbose=4)\n", - "\n", - "clf.fit(X_train, y_train)\n", - "y_pred = clf.predict(X_test)\n", - "\n", - "print(f\"Best score in train: {clf.best_score_}\")\n", - "print(f\"Count estimators {len(clf.best_estimator_.estimators_)}\")\n", - "print(\"AUC-ROC score sobre test: \", \"%0.16f\" % roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]))\n", - "print(\"AUC-ROC score sobre train: \", \"%0.16f\" % roc_auc_score(y_train, clf.predict_proba(X_train)[:, 1]))\n", - "print(\"Accuracy sobre test: \", \"%0.16f\" % accuracy_score(y_pred, y_test))\n", - "print(\"Los mejores hiperpametros elegidos: \", clf.best_params_)\n", - "print(classification_report(y_test, y_pred, target_names=[\"Bajo valor\", \"Alto valor\"]))\n", - "graficar_matriz_confusion(y_test, y_pred)\n", - "plot_roc_curves(clf, X_test, y_test, X_train, y_train)\n" - ] - }, - { - "cell_type": "markdown", - "id": "571e48db-4225-43b1-baf4-6e53bb78745d", - "metadata": {}, - "source": [ - "# Cuarto Preprocesamiento: get_dataframe_polynomial()" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "4a010008-b6c0-4086-a956-4ee28f2387cb", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Aplicando 'conversion_numerica' en las variables categóricas.\n", - "Dataset inicial con 40 features...\n", - "Dataset nuevo con PolynomialFeature con 46 features...\n" - ] - }, - { - "data": { - "text/plain": [ - "(32561, 46)" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df, df_for_prediction = obtener_datasets()\n", - "X_df, y_df = aplicar_preparacion(df)\n", - "X_df_numerico = conversion_numerica(X_df) \n", - "\n", - "X_reduced_poly = get_dataframe_polynomial(X_df_numerico, 2, True)\n", - "X_reduced_poly.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "b6884811-d31f-45bc-a9c3-726eef33b4f9", - "metadata": {}, - "outputs": [], - "source": [ - "X_train, X_test, y_train, y_test = train_test_split(X_reduced_poly, y_df, test_size=0.20, random_state=10,stratify=y_df)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "22230b11-7b9d-4416-8580-7ff365fca0bd", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Fitting 5 folds for each of 60 candidates, totalling 300 fits\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.\n", - "[Parallel(n_jobs=-1)]: Done 17 tasks | elapsed: 5.3s\n", - "[Parallel(n_jobs=-1)]: Done 90 tasks | elapsed: 38.7s\n", - "[Parallel(n_jobs=-1)]: Done 213 tasks | elapsed: 1.6min\n", - "[Parallel(n_jobs=-1)]: Done 300 out of 300 | elapsed: 2.2min finished\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Best score in train: 0.9091595859257398\n", - "Count estimators 150\n", - "AUC-ROC score sobre test: 0.9068484193475166\n", - "AUC-ROC score sobre train: 0.9124230286401920\n", - "Accuracy sobre test: 0.8542914171656687\n", - "Los mejores hiperpametros elegidos: {'criterion': 'entropy', 'max_depth': 7, 'min_samples_leaf': 50, 'n_estimators': 150}\n", - " precision recall f1-score support\n", - "\n", - " Bajo valor 0.96 0.86 0.91 5482\n", - " Alto valor 0.53 0.80 0.63 1031\n", - "\n", - " accuracy 0.85 6513\n", - " macro avg 0.74 0.83 0.77 6513\n", - "weighted avg 0.89 0.85 0.87 6513\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAG2CAYAAABmhB/TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABDrAAAQ6wFQlOh8AABWp0lEQVR4nO3dd5gUVdbH8e8hM2QQBLNiQBEUM+aIOeuaw66+q64Zcw67uuZ1zXmNi2LCyGLEBCqKGAEDoqhkGHIYhvP+cauHpumemZrpmQ7z+/DUU9NVt27dbnrm1A11y9wdERERKXyNcl0AERERyQ4FdRERkSKhoC4iIlIkFNRFRESKhIK6iIhIkVBQFxERKRIK6iIiIkVCQV1ERKRINMl1AURECoGZbQ/sDpQC/3bN3CV5SEFdRKQKZrYa8CLQDthLAV3ylZrfpWCY2VAzczO7OtdlATCzR6PyPJrrsuQ7M+tuZk+Z2R9mtiT63IbmsDweLTtXI20TYACwEnCyu79Tx8UTqTEF9SKSFGQSy7pVpO9sZouT0r+a5fLsbGZXm9mJ2cxXCouZdQA+BI4GugGzgcnAjFyWK4Z/ANsDV7n747kujEhlFNSL2wlV7D8GaFqH598ZuAo4MUv5/QqMBaZlKT+pH0cBXQlBfH137+juXd39kByWaWy0zK8skZntDVwIPOru19ZHwURqQ33qxekXYE3geDO7spL+vxNT0uc1dz8+12WQGtk4Wr/r7j/ktCQRd+9RzXSDUeVHCoi+rMXpG2AUsAawS7oEZrYpsAkhoL9XXwWTBqlltJ6b01KINAAK6sXr0Wh9Yob9ie2PAxlH8ppZiZkdbWZPmtmXZjbNzBaZ2W9mNtDMdkxzzFpm5oSmd4CdUvr6lxugZGbjo20nmll7M7vRzMaY2XwzK01Kl3agXJq8My3LHVcdZrarmQ0xs5lmNtfMRprZmWZWrd8dM9vczB6L3uNCM5tlZh+b2Tlm1iJueVLyPsDMno/+LxaZ2RQz+8zMrjOzDTIcs7WZDUg6ZrqZvWNmJ2R6T6kDAqPvwzAzm21mc6KfD0tz3NDoe3BitOmEdN+B6gw4rCyNmTU1s7+Z2QdmNsPMysxsqpl9Fx23f5pjKh0oZ2Ydo8/xq+j/fZ6ZfWtmN5lZlwzH7JzIN3q9oYXBgROjz/pHM7vBzFpnep8itebuWopkIQRyB14FOgOLCbWj1inpmgJTgKVA9+Tj0uR5YrTPgXJCv+iCpG1LgQtSjlkdmBSd26NyTEpZtk1KPz5KdwHwU/TzQsKAqtKkdEOjfVennC8179TF0x1Xjc/z7KRjHZgJLIl+fjbpc3s0w/FXRZ9P4vjZScc78DmwUg3+n1sDL6eUrRSYk/R6hTIBl6R5P2VJr4cArSr5Xj0K3Bf9vASYlZLfGSnHvRB9/onvy4J034GqPsfK0gCNgbfSvK/FSa+/SZNfYt/OafZtmvK9mc+y77ITxnRsnea4nZPS7A7MS/q/KU/aNxxomuu/F1qKc1FNvUi5+1RgMNAKODxl976EoP+hu/9URVYzgZuBbQl/8DsCJcBawL8BA24wsy2Tzj3B3bsCt0SbhnkYGJW8DEtzrisJFxx7AyXu3hbYohrvNTXvigW4M0pWRvjjXy1mti3wr+jlIGBNd+9AuE/5QuAQ4KBKjj8NuJrw+Z0NdIreT0n0/n4ANmNZi0ocTwD7EwLrlUBXd2/v7m0IF1SnR/knl+cQ4Pro5QBg9ej9tAXOJHw+/YC7KjnvAYTBl6cBbd29HbAO8H60/yYz65hI7O6HRP8Hz0SbnqnGdyCuo4HdCBcMJxK+Nx2AFsAqUXnfrW5mZtaOcMG0MvAzITi3cvfWwHbAaKAT8HKmGntkIOHiem13b0/4nBMXVdsAJ1X7HYrEkeurCi3ZW0ipcQMHR6/fS0k3KNr+l3THxTznw9Gxj6TZd3W0b2gVeYxnWY1+40rSDSVGjTt6/0uT32uM95Wo/Y0AmqTZfxUZasWEP+CzCIGyb4b8u7OsJrdZjHLtmXTeo6t5jAFjomP+B1iaNH9LynejDN8rB45Jc+wqwKJo//GVfC8fzVC+SvdXlga4J9p+X8z/37Q1deBSltXO183wXkujNDem7Ns5Kd83MnzOr0T734lTXi1aqruopl7cXgOmAzuY2ToQ7k0H9iH80Xo2C+d4JVpvn4W8Brv7N1nIJzEQ8AlCQLvV3R+JcWxHYNfo5U3uviRNstsItcN0DiME9o/cfXi6BB5aSD6OXvarbtlY1j893N3/W81jNgESfezXurunSXM/8Ef085EZ8vkVWOGc7v4H8Gn0cuPU/XVsVrTulqX8/hStn3T3H1N3Ru/1vujlUZXkc0OGz3lQtK7vz0kaCAX1Iubuiwl/hA1I3A6WuDf9BXefU518zKxbNGjo02jAWHnSgKAXo2SrZKHIaQNgXGbWldCE2orQBHphzCz6ED4zCK0DK4g+u88yHL9ttN7KzCZlWpLSrRGjbH2j9Wsxjtk8Ws9j2YXEcty9nGXN1JunSwN8liFQAfwerTvEKFc2vB6tDzCz183sT2a2ck0yMrNmLAu2lXXVJPatHl0kpzMiw/ZcfU7SQCioF7/HovXxZmYsq+k9Wp2DzWw7QtPtpcCWQHtCcJhCmBVsZpS0VRbKOrW2GUQjygcR+pa/Bo5y96Uxs0n8oS7zMDYhk98zbE/UGlsS+mYzLYnR7yUxypYIWL/EOCbxfiZW8Vn8Fq0z9RVXdhG4MFrX5WRGK3D3Dwh91WWEsQrPAJPM7Cczu8fMMl2gpNORMPAOMv/fwrLPCTJ8VpVcMCc+J80RInVCQb3IufvnhPvW1yYM2NqE0Ixa5fzVFua8/i+hKXkksBfQxt3buvvKHgZBpQ7Cq43yLOTxELA14aJjf3fPxb3RicDwsLtbNZYTc1DGouHuNxDGKJxPaJmZQRjAdxrwmZldX8nhIkVFQb1hSNTWb4rWj1fSjJqsL6FpuBw4wN2HpAmSNWrqrAtmdimhe2ERcLC7x6nNJkvUzpua2UqVpFs1w/bJ0TpOs3p1TYrWa8Y4JvF+ulVxf/1q0XpK7FLVTmLMQmX37berLAMPd1zc6u77Ex68sjXLuoYuMbMdqlGOGSy7sMz0fwvLPieo/89KpFIK6g3Dk4Q/Vomm0ccqSZts9Wg91d0zNUfuXsnxiaZeqyRNVpjZwYQHb0B4klZtbpf6gmUT8uyU4Xytydz3nDj3dmbWvhblqCzv/WIck+j7b0UIdiuIgv0uKenrS6ILZ7V0O6Nuo2o3o3vwKaEVKXFht3M1jltM6LKBcJtcJonv/K9VdM+I1DsF9QbA3ScB/YFbgYvTjerNIDGyeOV09+SaWS/CfcKZzI7W7at5vhpJGel+vbs/WZv83H0G8Hb08kIza5wm2Tlk7gt/ltD/XALcWNm5zKxVNECruh6N1tuYWWWjr5N9RXh4CcDlUZBMdSrLBjs+HaM82ZAIpFuaWbpR7Mew7AJzOZV9dtHgv7LoZXVn7xsYrY81s7XTnK8bcEr0ckA18xSpNwrqDYS73+Hu57t7pUEmxUeEQXEGPGPRo1yjaTkPAd6k8vm8E7enbWRmaWuItRU1jydGur8AXJ6lrBP3oW8FDDSz1aPzlZjZecA1LLvoWU50UZAYcf9XC9Pp9k4qcxMz62NmfwfGkXlgWrq83yS8T4DHzOzy5AsuM1vNzC40syuTjnHCQEcItzM+bmarRulbmtkZwO3R/kfdfXR1y5MlrxBusWwGDEgE0+izPgV4kGW1+VSDzOxBM+tnZm0TG6M7Nv4NJB4/PLiaZbkHmEC4IHvTzHZJXASZWV/CxV57QrP7rTHeo0i9UFCXjNy9FLgoerkz8IOZzSYE8ucJI3nPriSLoYSZzZoAH1uYZ3x8tGyTpWJuzLJa3M7AxEpuIzu/uplGzffnRi8PAX41sxmEQH4LIbAOquT4+wgDt8oJzcBfWpjLfjrhcxtJuADpQiVz72dwAuFWrqbA34HJ0a2GcwgB6UbCQLHk8rwAXBa9PBaYEL2f2YRZ95oSLtLOiFmWWnP3mYQpgiF0d4wzs1mEz/o+wvMJXs5weAlwMmGK21IzK40+hz+As6I017v7h9UsyyzgQMK4iO6EAaVzzWwuoetjQ0Lf+4Fqepd8pKAulXL3uwl/5D4g1NqbEKbPvIlwP3fGW3+iSVt2IzQZ/wq0IQzwWpPqN4fG0ZHKbyGL9SANd/83of/0TUKAaUZofTgLOKIax98KbEQImt8RAnxbQlD4ALgO2LSS8QqZ8p1L6FM/jDDaezKhpWIe4f7of0R5px53PeHe+GeAiYTPYw7h4uvPwF7uPi9OWbLF3e8hXDwlWocaEebGP8HdT6nk0DOBiwlB/SfC97MZoS/9GWAXd78s8+Fpy/IF0JMwre630eZGhFs7byHMuJf2fn+RXLPqDYIWERGRfKeauoiISJFQUBcRESkSCuoiIiJFQkFdRESkSCioi4iIFAkFdRERkSKhoC4iIlIkFNRFRESKRJNcFyCftOxzhmbikbwyc8RduS6CSFotmtT90xeh9n+XF3xxV72UM1+opi4iIlIkVFMXEZH8Zap7xqGgLiIi+csaVOt5rSmoi4hI/lJNPRZ9WiIiIkVCNXUREclfan6PRUFdRETyl5rfY1FQFxGR/KWaeiy6BBIRESkSqqmLiEj+UvN7LArqIiKSv9T8HouCuoiI5C/V1GNRUBcRkfylmnosugQSEREpEqqpi4hI/lLzeywK6iIikr/U/B6LgrqIiOQv1dRj0aclIiJSJFRTFxGR/KWaeiwK6iIikr8aqU89DgV1ERHJX6qpx6JPS0REpEiopi4iIvlLt7TFoqAuIiL5S83vsSioi4hI/lJNPRYFdRERyV+qqceiT0tERKRIqKYuIiL5S83vsSioi4hI/lLzeywK6iIikr9UU49Fl0AiIiJFQjV1ERHJX2p+j0VBXURE8pea32NRUBcRkfylmnos+rRERESKhGrqIiKSv1RTj0VBXURE8pf61GNRUBcRkfylmnosCuoiIpK/VFOPRZdAIiIiRUI1dRERyV9qfo9FQV1ERPKXmt9jUVAXEZG8ZQrqsahdQ0REpEiopi4iInlLNfV4FNRFRCR/KabHoqAuIiJ5SzX1eNSnLiIikoGZtTaz38zMzWyLlH0nmdn3ZrbQzL40s/3SHN/OzB42sxlmNsfMnjOzbmnSbWtmw81sgZn9YmYXWQ2uaBTURUQkb5lZrZYsuII0rdpmdiTwIPAMsDcwHHjRzLZJSfoM0A84FTgG2AAYbGZNkvJaFxgCTAT2A24HrgXOi1tYNb+LiEjeymXzu5n1AE4nBNf7UnZfAzzt7ldEr981s97AlcA+0fF9gT2BPd39jWjbWGA0cAgwMDr2AmA6cKS7LwbeNrPOwGVmdqe7L6pumVVTFxGRvJXjmvqdhGA+NqVM6wDrsywoJzwN7GZmzaPXewOlwJuJBO4+FhhFFPiT0g2KAnpyXu2BvnEKrKAuIiL5y2q51PS0ZocBvQjN4Kl6ROsxKdtHA82AtZPSjXV3T5OuR3SeVsDqafIaA3jSuapFze8iIlK0zKwt0DZl82x3n13JMSXAbcCl7j47TY2/Q7QuTdk+M1p3TEqXmiaRLpGmfbq83H2xmc1PSlctqqmLiEjeykLze39gQsrSv4rTXg5MBv5Tl++tLqimLiIieSsL/eK3AQ+lbKuslr4mYWDcwUC76Pyto92tzaw1y2rk7YBJSYcnavAzovVMQtN6qg5JaUqT8kouRzOgJCldtSioi4hI3qptUI+a2TMG8TTWJvSLv5Zm37vAJ8DR0eseLD+IrgewGBgXvR4D7G5mltKv3gP4OirfPDObwIp95xsQRgWk9rVXSs3vIiIiy4wCdklZzo32nQr8zd3HAd8Dh6ccewTwdtIo9sGEWvluiQRmtj7QB3g96bjBwIFm1jQlr1JgWJzCq6YuIiJ5q77vU3f3UmBohjJ87u4jo5+vBp4ys58INfgjgK2BHZPyGm5mQ4BHzOw8YCFwHfAV8ELSKW4mTEwzwMzuIYy6vwC4LOU2tyopqIuISP7K06nf3X1ANEr+4mgZCxzs7sNTkh5B6Nd/gBBz3wDOdPclSXn9aGb9onSvA1OBq4Bb45ZLQV1ERPJWPjzQxd2Hkubywt0fBh6u4thZwEnRUlm6YUDqFLOxKaiLiEjeyoegXkg0UE5ERKRIqKYuIiJ5SzX1eBTURUQkfymmx6KgLiIieUs19XjUpy4iIlIkVFMXEZG8pZp6PArqIiKStxTU41FQFxGRvKWgHo/61EVERIqEauoiIpK/VFGPRUG9AXvhjlPZe4eNAXji5Y/561VPLrf/2P235sFrj6t2fhvscwW/TpxZ8XrNVTpxWL8+bN5zTXqs05WVOrSmfesS5sxfyJhxk3h16Fc88OwHzFuQ+SFEzZs14f8O255D+21Gj3W60rxpE/6YMos3h33Hvx5/a7nzSXGZNHEib7/9JiM+/YSxY0YzbepUGjVuzMorr8wWW27NUcccy3rrrV9pHl+M/JwnH3+MUV+MZNasUjp26sRWW23DiSedzLrrrldlGcoWL+b5557lzTf+x08//cjcOXPo0LEja665FlttvQ3Hn/gXWrRoka23LGmo+T0eBfUG6k97bV4R0DNZuKiMSdNmV5qmU7tWNG3amIlTZ/H7lFnL7dtj2w35x9kHVbxetLiMeQsX0bFdK7bt051t+3TntCN3Yv/T72bsz5NXyLtb53YMuus0eq+/WkV5Fiwqo/sanem+xk4cs//WHHneQ7zzyZhqvmspFJMmTmSvPXbB3Su2lZSUsGTJEn4ZP55fxo/npRef57wLL+boY9JfeD7x2KPcdsuNLF26FDOjdevWTJ40iVdeHsSQ/73OP2+8hd377ZmxDL/8Mp6zTj+V8T//DECTJk1oWVLClMmTmTJ5MiM+/YQDDzqEFl27ZvfNy3IU1ONRUG+AOrQt4abzD6V0znwmTp3Fhut0S5vuuTdG8twbI9PuA2hd0pzxb11P06aNGfDap5SXL11u/4+/TuGy2wcxfNQ4xvw8iZmz5wNQ0qIZB+y6CTf0P5jVu3Xk6Vv+j80Pv46lS3254wfccjK911+NqTPncPq1A3j9g28oL1/KOquvxK0XHs5e2/fk6VtPZvPDrmPCJNXYi0n50nLcnb7bbs8BBx7E1tv0pdNKK1FeXs6Y0d9xy003MPLzz7jx+n+w5pprsd32Oyx3/CcfD+fWm2/A3TnsT0dw5tnn0r59ByZPmsQ/r/877779FpdefAHrrr8+a6219grnnzp1CiedeBxTp0yh9yabcsZZ57DFllvRuHFjFi5cyA/ff89bbw6hWfNm9fWRNFgK6vFooFwDdON5h7Byp7ZceefLTJ0xt8b5HNpvM1q1bA7A4y9/vML+oZ9+z22PvcXwL8dVBHSA+QsX8/TrI/jLZY8D0GOdrmzTe/k/rPvsuDFbR9tOueopXhn6VcVFw7gJ0zii/4OM/30abVq14IrT9q3xe5D81LZtO55+7kXue/Bh9tlvfzqttBIAjRs3pufGvXjgof+w/vobAPDoIw+tcPy/b7sFd2e77XfgiquupX37DgCs3LUrN9/yL9Zdb30WLVrEPXfdkfb81/39GqZOmcJmm2/Bw48+wdbb9KVx48YAtGjRgl69e3PueRfQoUPHunj7IjWmoN7A7LL1Bhx3wDZ8+tXPPPTcR7XK6/gDwqN/P/nq57TN51UZ8c34ip9X6dJ+uX17bt8TgLE/T2LwB9+scOzisiXc+/T7AByyRx9atmga+/ySv9q0acOGG26UcX/TZs3Yd/8DAPju2+W/H+N/Hse30baT/u+UtMeecOJfABj6ztvMnzdvuf0//PA97779FgCXXXk1zZqpNp5TVsulgVFQb0BaNG/KXZcdSVlZOWdc9/Ry/ZVxdV+jM9v26Q7A4y+tWEuvjm37rFPx88+/TVtu3xrdQg3o+/GZLxbG/DwJgFYtm7Ptpt1rVAYpXM2ah1ai1G6fTz4eDkCrVq3YtM9maY/dbocdAVi0aBFfjPx8uX2vvfIyABts0KNag+mkbplZrZaGpmCCupm1MLOXzWzHXJelUF152r6ss3pn7vrvu3z9/e+1yuuEA/sCMH/BYp4d8nkVqZdp0qQRq3ftwMmHbc9D1x4PwLAvfuLz735Nm75Ro8xf0cZJ+zbqnn5cgBSvzz79FID11l9+BPxPP/0EwNrrdK9oMk/VqVMnOnQMF44//vTjcvu+HPUFAD022og5c+bwr1tuYt+9dmeLTTdm5x36csbfTuGD99/L6nuRzBTU4ymYgXLuvtDMdgL+leuyFKJNe6zGmcfswq8TZ/CP+16vVV6NGhnH7LcVAIPeHsWceQurPGbUC5ezwdorjhIe8tG3nHT54yts/3XiDAA2XCfzyOKe6y4L5N06t6uyDFI8vvrqS959JzSRH3zIYcvtmzp1CgBdVl650jy6dFmZmTNmMG3q1OW2//rLLxU/H3X4IUyY8CtNmjShpKQVpTNn8sF7Q/ngvaEcd8KfOf/Ci7PxdkSypmBq6pE3gH65LkShadTIuPuKo2nSpDHn3jCQ+Qsz3xdeHbv33bCiD/yxl4ZX65hpM+cyadpsZs9dULHttfe+5pLbXmR66bwV0r857DsA1lm9M4fvufkK+1u1bMbfjtq54nWbVrpXuKGYVVrKJReex9KlS+nVexMOPPiQ5fbPnx8GZVZ1/3jLaP+8lD712bPDrZmvvDSIiRP/4MKLL+XDjz/jg+Gf8ta7H7DfAQcC8MRj/+G1V1/OynuSzFRTj6dgauqR/wD3m1kb4HVgMrBcx7C7Z74Hq4E6+9hd2WyjNXjp7VG8/v6Kg87iSgyQ+/m3abz/2Q/VOmb3k26v+LlT+1YcufeWXPLXvfn0mUs4/+bnuX/g+8ulf+29b/j8u1/ZfKM1uPuKo2jTqgWD3h7F3PmL2Gyj1fnnuQfTrXM7ysrKadq0MUtrMT5ACsfChQs59+wz+G3CBDp06MCNt9yWsYm9phK3Vi5dupQ/n/R/HHPcCRX7VurcmX9cfyPjfvqR7779loceuJ999zsgq+eX5TXEwFwbhVZTfxVYFfhb9POnwIho+SxaV4uZtTWz1ZIXL69dDTYfrbVqJy47dR9mz13AeTc9V+v8OrQtYd+degHwxCs1GyA3vXQedw8YygGn3w3ArRcexiYbrLZcGnfnqPMeZPS4ibRp1YK7rziK34feyKxPb+fdR89jq15rccUdL1E6N9TKSpNumZPitHjxYvqffQaffzaCNm3acO8DD7PqqqutkK6kpAQIFwCVWRDtb9Wq1XLbk18fe/yJKxxnZhx3/J8BGPfTjxXN/VJHNPo9lkKrqe+Sxbz6A1clb1gyZRRNu22VxVPk3k3nHUKrls258s6XKZ0zn1Ytl789p3Gj8K1v0rhRxb75C8syjow/Yu8taNG8KeXlS3nqlU9qVbaR3/3KsFHj2HGL9TjhoL70v/HZ5fZPmDSTbY++iRMP6st+O/dmndVWYkn5Ur754Xfuffp9Pv5yHFeeth8AP/yiP6zFrGzxYs475yw++vADSkpKuPu+B9lwo55p03bu3AWAKZMrv81yypSwf6XOnZc/vksXZs0qpV279nTsmP4+9LXXWXbnxqSJkyrOKZJrBRXU3T2bQ05vA5abtaJJl00nZDH/vLDGKp0AuPbMA7j2zMzNhEftuxVH7RsuaLY+4p98lWF0/PHRqPehI77Pyrzrf0wpBWDt1VZKu3/hojLue+Z97nvm/RX2bbbRGjRtGppeP/nq51qXRfJTWVkZ5/c/m/ffe5cWLVty170PsMmmfTKm79493N7487ifKC8vT9s8P336dGbOCIMx1+2+7nL71l13PX784ftql0+tw3VLze/xFFrzOwBm1tPMTjGzS6J1+kv2Srj7bHf/LXmxxppkojK91l+VPhuuDsATNbw3PVUimM+bvyj2sUfuvQUAI74er5p6kSorK+OC885h6Lvv0KJFC+64614232LLSo/Zeptw4Tlv3ryK29NSDfvwAwCaN29On82WH4i5zbbbAjBrVikzosCf6udx4yp+7rbKqtV7M1IjGigXT0HV1M2sOfAEcCiht2QR0BxwM3sOOM7di69jvBa2OfKGSvcPefBsdtxivbRPaUuVGCA3c/Z8Br0zqspzN27caIWJQZJtt1l3ttx4TQA++PzHjOnS2XyjNfjrn8J83zc+PCTWsVIYlixZwsUXnMe7b79Fs2bN+Ncdd1cE7MqstfY69Oy5Md9++w2PPPQAm22+xXL7y8rKePzRRwDYZdfdKUnpU99ttz24+YbrmTdvHk889h/OPve85fa7O088/h8Aem7ci06dOtXmbUoVGmBcrpVCq6lfD+wLnAq0d/eWQPvo9b7RfqkDTZo04oh9wh/HZ4d8zqLFS6o8Zth/L+Tc43djg7VXXu6KuVvndpx93K688O9TadSoEb/8MZ0n0swdf9Kh23HM/lsvdw96p/atOP2onXntvjNp3qwpjw4axmvvfZ2Fdyj5pLy8nEsvviA8NKVZM/51x11su9321T7+7P7nY2Z88P57XHft1cwqLQVg8uTJXHR+f77/fizNmzfntDPOXOHYtu3a8X+nnAbA448+wlNPPl4x6G7a1KlccenFfPftt5gZp59xVq3fq1RONfV4CqqmDhwJXOLuDyY2uPts4EEzKwEuBM7PVeGK2b479qJzhzYAPD6oevemr9GtI9efezDXn3swi8uWMHvuQpo3a7LcPeWjx03k8HMfSHvv/Na91+a4qHVg4aIyFi4uo32bkor9Dzz7AefeMLA2b0vy1KgvRjJkcJgkyd258rJLK03/32eeo2u3ZZMRbb1NX/qffxG33XIjA58ZwLMDn6Z1mzbMmR0eJdysWTOuv+HmtE9oAzjxLyfz88/jeOnFF7jpn9dx28030qpVa2bPnoW706hRI86/8OKK6WZF8kWhBfWOQKaHZ4+J9ksdSATXb3/8I+OUrqmOvfARdtumB9v26c6qXdqzUofWuDu/TpzBl2N/4+V3vuSZwZ9RtqQ87fFPvvIJS5c6W/Zai1W6tKN50yaM/30aH3z+I/95YRjDvxyX9jgpfEuXLuu2KSsrY/r0aZWkDo9qTXX8iX9m4169ePLxx/hy1BfMmlXKyl27suVWW/Pnk/6v0nndzYxr//FPdtxpF54b+AxjRn/LnDlz6dylC5tvviXHnXAiPTfuVfM3KNXWACvbtWK1eahHfTOzL4Bv3P24NPueADZ298zDYqvQss8ZhfNhSIMwc8RduS6CSFotmtTPXeAbXDSkVn+Xx964Z4O6LCi0mvrfgWfNbC3gecKMcl2Aw4C+wOG5K5qIiGSbaurxFFRQd/cXzOxgwqQxtxJGwDswCjjY3V/JYfFERERyqqCCOoC7vwy8bGatCCPfS919xSeCiIhIwWvUSFX1OAouqCdEgVzBXESkiKn5PZ68D+pmdkeM5O7uZ9dZYUREpF41xHvNayPvgzqwf4y0Diioi4hIg5T3Qd3d088OISIiRU8V9XjyPqiLiEjDpeb3eAoyqJvZusD6QIvUfe7+Qv2XSERE6oKCejwFFdTNrC3wIrBzYlO0Tp5xaMWHJ4uISEFSTI+n0J7SdiPQFdiBENAPJgT4h4GfgW1yVjIREZEcK7SgvhdwHfBJ9PoPd3/f3f8KvAScl/FIEREpOHr0ajwF1fxOmOd9gruXm9k8oFPSvtcJ88GLiEiRaIBxuVYKraY+AVgp+vkH4ICkfX2BhfVeIhERqTOqqcdTaDX1N4HdCYPl/gU8ZmZbA4uBrQgPeREREWmQCi2oXwSUALj7E2Y2l/DY1ZbAGcD9OSybiIhkWQOsbNdKQQV1d58PzE96/SKh1i4iIkWoITah10ZB9amb2Udm9jcz65zrsoiISN0zq93S0BRUUAcmArcAv5vZEDM73sza5LpQIiJSNzRQLp6CCurufhjhtraTgSXAQ8BkM3vezA41s+Y5LaCIiEgOFVRQB3D3ue7+uLvvC3QDzgU6Ak8Dk3NaOBERySo1v8dTUAPlUrn7dDP7CFgT2ABYOcdFEhGRLGqITei1UZBB3cy6A0dGy0aEGvpAYEAuyyUiItmlmB5PQQV1M+tPCOSbA7MI08KeDQx196W5LJuIiEiuFVRQB64FXgb+DvzP3ctyXB4REalDan6Pp9CCepdoAhoREWkAFNPjKaigroAuItKwqKYeT8Hd0iYiIiLpFVRNXUREGhbV1ONRUBcRkbylmB6PgrqIiOQt1dTjKbg+dQv2NbN/mtn90Xof0/+8iEjRqe9pYqN48p6ZTTWzRWY2zsxuM7N2Ken2N7MvzWyhmX1vZn9Ok1czM7vZzCaZ2Twze9PMNkiTrke0b16U9iYzaxa/9AVWUzezDsDrwNZAKWEmuZWBi4CPzWwfdy/NWQFFRKTQdQQ+Ae4ApgMbA1dH634AZrY98CLhoWLnALsCD5vZHHd/LimvOwgTpvUHfgcuA942s57uPivKqwPwDvADcAiwKnAbUAKcEbfwBRXUCY9d7Q7s6e5vJjaa2R7Ak9H+k3NUNhERybL6boR19ydTNg01s0XAA2a2irv/AVwBfOLup0Zp3o2mL78WeA7AzFYjxKO/ufsj0bYRwK/AKcBN0bGnAm2Bg919RpSuCXCPmV0fna/aCq35/QDgouSADhC9vgQ4MCelEhGROpEnT2mbHq2bRY/43gV4NiXN08CGZrZW9LofIcZWpIuC9hvAPknH7Q28lQjokYHRsf3iFrTQauqtyPx41UnRfhERKRKNahmZzawtoSacbLa7z67iuMZAU8JDw64EXnb38Wa2UbR9TMoho6N1D2B8tJ7i7jPTpDsp6XUP4JHkBO5eamYTo32xFFpN/QvgjOjDrmBmjYAzgZE5KZWIiOSr/sCElKV/NY77BVgAfA5MBI6OtneI1qUp6RPBu2NSutQ0iXQdk15XN121FFpN/RJC08WPZvYSodbeBTgI6EoNmipERCR/ZaEJ/TbCgLZkldbSI/sQWn97ApcDr0Tjt/JaQQV1d3/fzLYjjCA8mnCFMwP4ELjO3VVTFxEpIrUdKBc1s1cniKce91X04/BogNso4GDgu2h7u5RDEjX4RN/4zDRpEumS+8+rm65aCiqoA7j754Rh/yIiUuQa5ccMJF8BZcC6wCvRzz2AIUlpEv3fY5LWK5tZh5R+9R4s3x8/hpS+8+ie+G6s2G9fpULrUxcREalvWxMGx41z90XAu8BhKWmOAEa7+/jo9RvAUuDQRILonvR+hPlWEgYDu5tZ+6Rth0fHvhG3oHlfUzezl4Hz3P2H6OfKOKG54lPgkejDFxGRAlXf96mb2QvAZ4Ta+QJgE+CC6PWgKNnfCfev30O4/WwXQpfwEYl83P03M3sIuNnMygmTz1wKzALuTzrlfYSB3oPM7HrC5DM3A/fFvUcdCiCoA22AxGj3toTAXZlVgWMIV1Yn1l2xRESkruVgAvBPCcH5YkJr9njgQeAWd18M4O4fmtkhwD8It6f9Cpzs7qn3rp8NzAVuIMSyj4DdE7PJRXnNNLPdgDsJFw1zCAP7LqtJ4c29qhhZeMzsaOBOd+8U57iWfc4ovg9DCtrMEXfluggiabVoQr2E2/3uH1Grv8uvnrJlfvTK15NCqKnXxNuE6fpERKSA5clAuYJRcEE9mmhmV2B9oEXqfne/zd0nA/+u77KJiIjkUkEFdTPrCgwlBHSHiuaf5OaZ2+q5WCIiUkf0VO14Cu2WttsIE+uvTgjoWwNrEZ6Y8wMh2IuISJHIkwe6FIyCqqkDOwJnEebhhTDQ71fgeguXc3cRnngjIiJFoLYPdGloCq2m3g6Y6u5LCdP+dUnaNxzYPielEhERyQOFFtR/JkydB/AtcFzSvoOpwTy5IiKSv9T8Hk+hNb+/RphibyDhpv+XzGwKYR7ersBFOSybiIhkmQbKxVNQQd3dL0n6ebCZbUt4uEsL4E13H5yzwomISNYppsdTUEE9lbt/RpijV0REpMEr6KBuZhsRHmA/DXjf3ctzXCQREckijX6PJ3ZQN7Mrs3Vyd69yKtfoVrULCM3sTYFngRsJE96fSLhf3YFvzWxXd5+WrfKJiEhuKaTHU5Oa+tVU/aS06qrO/OznA/8EXiI8veZyoDfhfvTzgdFAL8ITba4k3McuIiJFQAPl4qlJUH+f7AX16vgz8Hd3vxrAzJ4HXgTOdvfEI6z+Z2ZLgNNRUBcRKRp6oEs8sYO6u+9cB+WozNrAu0mv3yG0yHyeku4zwvSxIiIiDVIhDJRrDixIep34eVFKusUUxvsREZFqUvN7PIUSBNM199dnF4CIiOSAYno8hRLU3zWzpSnbPkjZVmhT3oqISBVUU48nq0HdzFoAhxEerLIK0IrMdyS4u+9WjWyvyVLxREREilrWgrqZ7QQMAFZm2b3jsCyoJzeXG9VsPnd3BXURkQZKo9/jyUpQN7O1gVeA1sB3wJvA2cBc4HZCoN8V6E6Y/e1+YEk2zi0iIsVLze/xZKumfh4hoP8PONDdy8zsbGCuu1fMQGdmfwXuAvq4+35ZOreIiBQphfR4sjW4bHdCc/rl7l6WKZG7P0CY+W1vMzstS+cWERERshfUVwPKgS+StjnhHvNU90X7js/SuUVEpEg1MqvV0tBkq/l9KVDq7smD3+YBbc2scfLT09x9jpnNBjbI0rlFRKRINcC4XCvZqqn/TgjgyR//hCj/3skJzawd0B5omaVzi4hIkTKzWi0NTbaC+veEx6Im174/itbnp6T9e7T+IUvnFhGRImVWu6WhyVZQf5swSHHvpG33EvrOjzSzr83sKTP7kvAkNQf+k6Vzi4iICNnrUx8I9AFaJDa4+xdm1h+4FegZLcnpb8/SuUVEpEg1xMFutZGVoO7ukwjPPU/dfoeZvUGYOnZ1YBYwxN3fzsZ5RUSkuCmmx1PnD3Rx9zHAP+r6PCIiUnwa4mC32iiUp7TVi9Fv3ZLrIogs5/eZC3JdBJG0unfWDUz5KOtB3cw2BfoBawAt3f2kpH1Ngc6EJ7RNzPa5RUSkuOiZ2vFk8yltHYFHgX0Tmwij3E9KStYUGAmsZGZ93P3rbJ1fRESKj5rf48nKRZCZNQfeIAT0BcC7wMLUdO4+H3gwOu/h2Ti3iIgUr0ZWu6WhyVbLxqnAZoQJZXq5++6Eke7pPB+td8zSuUVEpEgpqMeTraB+JKGp/Sx3/7mKtF8THv7SI0vnFhEREbLXp74hIVC/U1VCdy83s1lAhyydW0REipT61OPJVlBvDsx39yXVTN+SNH3uIiIiyRpiE3ptZKv5fRLQxszaV5XQzHoRgvqvWTq3iIgUKT3QJZ5sBfX3o/Ux1Uh7OaH/XVPFioiIZFG2gvq/o/XVZrZVugRm1tbM7iXcylYO3JWlc4uISJFqZFarpaHJ1gNdRprZtcBVwAdm9hHQFsDMHiDMLrcdUBIdcpG7/5iNc4uISPHSjHLxZG1GOXe/xsymAP8Edk7adRJhdjmAOcCF7n5/ts4rIiLFqwFWtmslq3O/u/u9ZvYk4VGr2wLdgMbAZGAY8Ky7z4TQHO/us7N5fhERkYYs6w90cfc5wH+iZQVm1hY4FzgL6JTt84uISPFoiP3itVFvj15NCuZnA+3q67wiIlK4FNPjqVVQN7M9gBOBnoTxDOOAx9z9xaQ0LQjB/AJCMDdgPvBQbc4tIiLFT5PPxFPjoG5m1wMXJV5G657A/mZ2r7ufEU008yywXpSmlHAr27/dfXqNSy0iIg2Cmt/jqVFQN7MdgYujl9OATwlBeytCP/lpZvYBcCewEjAFuAW4z93n1rbQIiIisqKa1tT/Gq3fBw5y91IAM+sIDAK2Bx4HmgJ3AJdGz1IXERGpNlXU46lpUN+GMNXruYmADuDuM8zsXGBElPdd7n5ObQspIiINk/rU46lpUO8KLAFGpdn3RbSvMaH5XUREpEYMRfU4ajoDXwkw3d09dYe7LwUSg+DG1bRgIiIiEk+d3qfu7uV1mb+IiBQ3Nb/HU2+Tz4iIiMSloB5PbYJ6RzN7J9M+gEr2A7i771aL84uISJEzDX+PpTZBvRnLP40tncr2r9AfLyIiIjVX06D+WFZLISIikoaa3+OpUVB39z9nuyAiIiKp1PoeT01vaRMREalzjcxqtcRlZoeb2Utm9puZzTOzUWb2F0vp3Dezk8zsezNbaGZfmtl+afJqZ2YPm9kMM5tjZs+ZWbc06bY1s+FmtsDMfjGzi1LPV10K6iIikrcaWe2WGuhPeJLoecD+wGDgQeDKRAIzOzLa9gywNzAceNHMtknJ6xmgH3AqcAywATDYzJok5bUuMASYCOwH3A5cG50/Nkszf0yDNX76Qn0YklfKl+orKfmpe+eW9dIwfseHP9fql+Cs7deOVU4zW8ndp6VsewA4Aujg7kvNbCzwubsfnZRmGFDq7vtEr/sCw4A93f2NaNsGwGjgSHcfGG27H9gTWN/dF0fbrgdOA7q6+6I45VdNXURE8pZZ7Za4UgN65AugLdDKzNYB1gcGpqR5GtjNzJpHr/cmPG78zaS8xxKmV98n6bi9gUGJgJ6UV3ugb9zyK6iLiEjeaoTVasmS7YHf3X0O0CPaNiYlzWjCrd5rR697AGPTTKc+OpGHmbUCVk+T1xjCbd89iEkzyomISN6q7eh3M2tLqGUnm+3us6t5/PbAkSzr4+4QrUtTks6M1h2T0qWmSaRLpGmfLi93X2xm85PSVZtq6iIiUsz6AxNSlv7VOdDMViMMdnsXuKOuCphNqqmLiEjeysLkM7cBD6Vsq7KWbmbtCSPfpwOHRk8ghWU18nbApKRDEjX4GUnpVk+TdYekNKVJeSWfuxnhaagziElBXURE8lZN7jVPFjWzV6upPcHMWgKvEoJtX3eflbQ70f/dAxibtL0HsJhljxwfA+xuZpbSr94D+Doq2zwzm8CKfecbAMaKfe1VUvO7iIjkrfoe/R7dQz4Q2BDYy91/T97v7uOA74HDUw49Ang7aRT7YEKtvOLBZWa2PtAHeD3puMHAgWbWNCWvUsItcbGopi4iIrLMPYRJYM4D2qZMKPNFdN/41cBTZvYTob/9CGBrYMdEQncfbmZDgEfM7DxgIXAd8BXwQlKeNxMmphlgZvcAvYALgMtSbnOrFgV1ERHJW7Vtfq+BftH61jT71gbGu/sAMysBLo6WscDB7j48Jf0RhD79Bwjx9g3gTHdfkkjg7j+aWb8o3evAVOCqDOevkmaUS6IZ5STfaEY5yVf1NaPcIyN+rdUvwV+2XKNBPRJGNXUREclbGvgVj4K6iIjkrRo+rKzB0kWQiIhIkVBNXURE8pbq6fEoqIuISN7Kwej3gqagLiIieUshPR71qYuIiBQJ1dRFRCRvqfU9HgV1ERHJW7qlLR4FdRERyVvqI45HQV1ERPKWaurx6CJIRESkSKimLiIieUv19HgU1EVEJG+p+T0eBXUREclb6iOOR5+XiIhIkVBNXURE8paa3+NRUBcRkbylkB6PgrqIiOQtVdTjUZ+6iIhIkVBNXURE8lYjNcDHoqAuIiJ5S83v8Sioi4hI3jLV1GNRUBcRkbylmno8GignIiJSJFRTFxGRvKWBcvEoqIuISN5S83s8CuoiIpK3FNTjUZ+6iIhIkVBNXURE8pZuaYtHQb2B23PbTaqd9riTTuPYk06tMt2kib9zyrGHsnDBAgBuuushNtlsyxXT/fEb7739Bt+P/pZfx49jVulM5s6ZQ8uSEtZcex367rAL+x38J1qWlFT/DUlRcXfef3sIbw1+hXE/jGHO7Fk0bdqMLt1Woc8WW3PAYUfTdZVVlzumfMkSRn3+KZ99/CGjv/mKPyb8woIFC2jVpg1rrbMuO+66J3vseyBNmzZNe86vRo7g4rP+r8qy3f7QU6zfo2dW3qdk1kgxPRYF9QauQ8dOle5ftHAh8+fPA2C9HhtVK887bvx7RUCvzGefDOORe/9d8bpp06a0aNmSuXNm8+1Xo/j2q1G89NwArv/Xvayx1jrVOrcUj8WLFnHd5ecxYviHFdtalrRi8aJF/DLuR34Z9yODX3qei665gW2237kizV23XseQV16seN2ocWNatmzJ7NKZfDVyBF+NHMHrgwZy7a330LHTSpWWobLfjyaN9eezPqimHo++lQ3c06++U+n+m669jLf/9yodV+rMFttsV2V+bw1+hc8/Hc6GPXsz+tuvKk276uprctLfzqFn701Zfa11aNu2HQALF8zno/fe4YE7b2Xq5Elce0l/7n/yeRo3blz9NyYF75knHq4I6Mf85VT2P/RI2rZrT3l5Od999QX33PZPfvn5J26+9jIeGfgq7dp3AEJNvUPHTuy+9wFsu9OurLv+hjRu0oS5c2Yz5JUXefKRexn34/dcd/l53HLPo5U+r/upl9+ul/cqki0aKCcZzZ83jw+HvgXAbnvuW2VQnVU6kwfuvJVWrdvw17POrzL/PltszZ+O/TM9e/epCOgALVqWsNte+3HhVdcDMOGXnxn9zZe1eCdSiN4Z8ioAu++9P8f85VTatmsPQOPGjenVZwuuvOF2ABbMn8fIT4dVHLfPQX/ikWdf48+nnc0GG/WicZNQd2ndpi2HHn0C51x8NQCjv/6Sb7/6ot7ej9SMWe2WhkZBXTJ67+0hLFq4EIB++x5UZfr7br+JWaUz+fMpZ9JxpcqbNaujR89eFT9Pmzql1vlJYZkxfRoA62Xot+626uq0iS4GF8xf1t3To2cvmjdvkTHfHXbtR8uSVgD8MObbbBVX6ojV8l9Do6AuGb3x2ksAbLjxJqyx1tqVpv3s4494543X6dGzF/sefHhWzv/tl8tqUd1WWS0reUrh6NotDIDLFHgn/j6BObNnAbBujw2rnW+jRo1oEtXel5YvrWUppa41stotDU3B9KmbWROgNzDB3afmujzFbsIv4/nu61EA7LnfQZWmXbhgPnfc/A8aN27CWRdeQaNGNb9WXLKkjBnTpvHp8A947IG7AejZe1M22GjjGucphWnvAw/lgTtu4a3Br7Byt1XT9qkD7LrnfrFGof/80w8VFwNrdV+v0rT9TzmeX37+KfTTd+rERr02ZZ8DD6fnJn1q/sYkloZY266NggnqwFLgY2Af4K0cl6XovfHaIACat2jBTrvtWWnaxx64m8kT/+DQo46n+3ob1Oh8Jx15IL/9On6F7Vtssx0XXnldjfKUwrb/oUcxZfIkXhr4FE89ch9PPXIfJa1as2jhQsrLl9B1ldU4+fT+HHTEsbHyffT+O4DQErDJ5iveaplszLdf0bp1G5bgTJ74B5Mn/sG7b7zOgYcfzV/PuqDSQXYiuVAwQd3dl5rZOKBDrstS7MrLy3n7f2GQ0g677EFJq1YZ034/+lsGPTeALit34/iTT6vxOdt16MC8uXOWu4Vu6+125C+nnV0xqlkalsaNG3Py6f1ZbfW1eOCOm1m8eBHz582t2L9o0ULmzp1DeXl5tVuHBg18khHDPgDglHMuokmTFe9Vb9WmDYcefQI77NqPNdfuTvPmLVi6dCk/jPmWpx65j88+/oiXnv0v7Tt05IjjT87Om5WMdN0UT8EE9cj1wBVm9pG7/5HrwhSrzz8ZxvRpoYej374HZkxXvmQJ/7rhGpaWl/O3/hfTomXNJ4m57d5HK36eVTqTd4a8zlP/uZ/TTvgTp51zIQccemSN85bCVDpzBv+4tD/ffT2KnXbbi0OOOp7V1liLuXNm8+XIT3n0vjt5+rEH+e7rUVx3270Vo9wz+fjDoTx0978AOOTI49l6ux3Tpuu+Xg+6r9djuW2NGjVig416cc3Nd3H9FRfw0dC3eOaJh9n34D/Ruk3b7LxhSUsxPZ5CGyh3ONAZGGdmn5rZK2b2ctLyUnUzMrO2ZrZa8jJnzuy6K3kBSQyQ67bKavTus0XGdM/99zHG/TCWbXfchb477Jy187dr34GDjziG6/91LwD3/utGfhw7Omv5S2G49e+X893Xo9htr/246JobWK/HRrQsKaHzyl3Zfe8DuP72+2jarBlfjRzBkFcHVZrXyE+H8c8rL2RpeTm77bUfJ51+bo3KZGb85bSzAVi4YAGjPv+0RvlI9TUyq9XS0BRaUG8NjAGGA/Oi122SljiXzP2BCcnLw/fckdXCFqLZs0r5+MOhAOyx7wEZ+wynT5vKk4/cT/PmLfjzqWezYP785ZbErXAQZgZbMH8+ixYtTJtXJutv2JONe/dh6dKlDIn6+KVh+HX8OD6P7j0/5KgT0qZZY+3ubNl3BwCGv595EqVRn33C3y/pT9nixey4256cc8k1teoL77bq6rSNuoQm/fFbjfMRqQsF1fzu7rtkMbvbgIeSN5z0t7MmZDH/gvTOkNcoKyujUaNG7LFP5qb30hnTWbx4EQD/d/RBleZ5+XmnA7DOehtw72MDY5WnU+cuAEz8XX88G5Jfx4+r+LnbqplvZ1x1tTUAmDwpfW/clyNHcM3FZ7No0UK23XFXLrjiOs1MWGAaXl27dgoqqGeTu88GlmtvHz89Xk2yGCWa3jfdfCu6rNw1x6WBSVEwr01/vRSeRrasEXHKpIkZ5/6fOXM6QNrBnF9/8RlXX3gmixYuZKttd+Tia2+sst+9Oib+/huzS2cCy+6llzqkqB5LwQV1M+sDXApsD3QEZgAfAP90d835WAs/fT+Gn34YC1R9b3r39XswZFjmqVsnTfydEw7dB8j8lLbyJUsq/SP79RefM+a7rwHo3WfzqoovRaT7+stujXx90LOces5FK6SZMX1aRbN7j569l9v3zZcjuSoK6JtvvR2X/eOWtCPd03H3Spvn/3NfeAhR8xYt2GTzrauVp9Sc7lOPp6D61M1sB0J/+pbAAODKaL0lMMzMts9h8Qpeopbeuk1btt1x1zo/3+l/OYpnn3qUX8ePY+nSZTN7TZ86hef++xhXXnAm7s7KXVeh3z4H1Hl5JH+s3G1Vtuwbfp1fef5pHrjzFqZPC1MFL160iM8+/ogLT/8L8+bOpUmTJux3yBEVx47+5kuuuuBMFi5YwGZb9eWK62+jabNm1T73qccdyqCBT/Lbr+MrvpfuzvdjvuWai87mw3ffBOCI406iTVuNfJf8Yu6e6zJUm5l9BMwB9nP3JUnbGwOvAa3dvcaBffz0hYXzYWRZWVkZRx+wO7NnlbL/IUdwxvmX1iq/6tTUD+m3PfPmzgGgSZMmlLRqTVnZYhbMn1+RZo211uHqG29n1dXXrFV5ClX50gb7laR05gwuO+dUfv7p+4ptLVuWsGjRwopg27RZM8695Bp23mPvijQXn/V/fDVyBABt2rarmBI2nR127bdCK8A+229a8XOTpk0padWahfPnV4whMTMOPuI4Tj6jf63fYyHr3rllvVShPx03q1a/BFut065BVfULrfm9D3BYckAHcPdyM7sDeC43xSp8H3/4HrNnlQKV35ueTZf9/SZGjviYb7/8gqlTJzOrdCaG0WXlbqyz3gZst9Ou7NJvH5o2rV6zqRSX9h06cvtDT/HGqy/y4dC3+PmnH5g3Zw5NmzWjS9dV2HTzrdj/0KNYbY3lL/g8qdUnMR1sJsmT2SScdeEVfPf1KH4YO5rSGdOZO2cOzZo1Y4211qFn7z7sdcChrNdjo+y8SalSg4rIWVBoNfWpwAXu/miafX8GbnL3zjXNvyHX1CU/NeSauuS3+qqpj/i5djX1LdduWDX1gupTB14BbjSz3ZM3Rq//Cbyck1KJiEid0KNX4ym05vfzgJ7AEDObDUwBuhAmnRkBnJ/DsomIiORUQQV1d59pZn2B/Qi3tHUg3NL2IfCau+vhyCIiRaQBzvRaKwUV1CE8rY3QzK6mdhGRIqeYHk/eB3Uz6xgnvbvPqKuyiIhIPVNUjyXvgzowDYgz+lETO4uISINUCEH9L8QL6iIiUiQa4gj22sj7oJ7unnQREWkYNFAunrwP6iIi0nAppsdTcEHdzHYE/gqsD7RI3e/uvVc4SEREpAEoqBnlzGxP4B1gJWALYAJhIN0GQCvgs9yVTkREss5quTQwBRXUgWuA24F9o9dXuPuuhFp7GSHgi4hIkcjFNLFmtq6Z3Wdmo8xsiZl9kyHdSWb2vZktNLMvzWy/NGnamdnDZjbDzOaY2XNm1i1Num3NbLiZLTCzX8zsIrP4IwoKLahvCAwGlhJGxLcCcPdfgKuBy3NWMhERyTqz2i011JNQefwR+C59uexI4EHgGWBvYDjwopltk5L0GaAfcCpwDKFlebCZNUnKa11gCDCRMGPq7cC1hKnRYym0PvWFQCN3dzObCHQHPoj2zQFWz1nJREQk63LUgv6Ku78EYGaPErp7U10DPO3uV0Sv3zWz3sCVwD7RsX2BPYE93f2NaNtYYDRwCDAwOvYCYDpwpLsvBt42s87AZWZ2p7svqm7BC62m/iXhKgfgbcIb3i/qa/8H8HXOSiYiIkWhqueImNk6hG7fgSm7ngZ2M7Pm0eu9gVLgzaS8xwKjiAJ/UrpBUUBPzqs90DdO2QstqN/OsoloLiXUzl8mNMl3Ak7PTbFERKRO5OdAuR7RekzK9tFAM2DtpHRj3T11ArXRiTzMrBWhlTk1rzGEeNeDGAqq+d3dX0/6+Xcz2xxYF2gJjEm5yhERkQJX2xnlzKwt4fHcyWa7++xaZNshWpembJ8ZrTsmpUtNk0iXSNM+XV7uvtjM5ielq5aCqqmb2R7JowE9+MHdv1JAFxEpPlkYKNefcPtz8tI/d++obhVUTZ0wOnCymQ0EBrj7x7kukIiI5LXbgIdSttWmlg7LauTtgElJ2xM1+BlJ6dIN4O6QlKY0Ka8KZtYMKElKVy0FVVMHegOPEG41GGZm48zsOjPrleNyiYhIHahtl7q7z3b331KW2gb1RP93an93D2AxMC4p3QZp7jfvkcjD3ecRWg9S89ogegupfe2VKqig7u7fuPtl7r4usA3wEnACMMrMvjazS3JbQhERyao8HCjn7uOA74HDU3YdAbyd1B08mFAr363i7ZitD/QBXk86bjBwoJk1TcmrFBgWp2y24qC8whJdAe0H3At0c/caP099/PSFhf1hSNEpX6qvpOSn7p1b1sst5GMmzq/VL0GPbiWxy2lmJSy75ex0wpwoiX7499x9qpkdBTwF/B14lxCETwZ2dPfhSXn9D9iIMJHMQuA6wgRqW7j7kijNuoTb3P4H3AP0Am4CLnP3W+KUvdD61CtE9wHuDxxJ+PCbAG/ktFAiIpJVOXr0ahfg2ZRtide7AEPdfUAU/C+OlrHAwckBPXIEoV//AZbFqTMTAR3A3X80s35RuteBqcBVwK1xC15QNXUza0yYneco4ACgNfARMAB41t2n1SZ/1dQl36imLvmqvmrqYyfVrqa+Qdf4NfVCVmg19SmEe/pGEZo8nnb333JZIBERqTsNKiJnQaEF9TsIt7J9n+uCiIhIPVBUj6Wggrq7X5PrMoiISP2p7YxyDU1B3dImIiIimRVUTV1ERBqWHI1+L1gK6iIikrcU0+NRUBcRkfylqB5Lwfapm1lLM+tmZi1zXRYREZF8UHBB3cz2M7MRwBzgN2COmY0ws32qOFRERAqM1fJfQ1NQQd3MDiI8xGUxYR7eownz6S4CXjazA3NXOhERybYsPE+9QSm0aWK/AL5192PT7HsS6OnufWqav6aJlXyjaWIlX9XXNLHjp9Xu7/JaK7VoUKG9oGrqhOfNPp5h3xOs+DxaEREpZHn46NV8VmhBfQbhwfHpbBDtFxERaZAK7Za2Z4DrzWwB8Jy7l5pZO8KD6v8BPJjT0omISFY1xMFutVFoQf0SYE3Cc2nvN7MyoCmhkeUF4NIclk1ERLKsIQ52q42CCuruvgg41Mx6ATsAHQhN7h+6+9c5LZyIiGSdYno8BRXUzWxHYGQUwL9O2dcK2Nzd389J4URERHKs0AbKvQtslGFfj2i/iIgUCd2nHk9B1dSpvCWmFbCgvgoiIiL1oQFG5lrI+6BuZtsA2yZtOtrMtk9J1gI4EBhdbwUTEZE61xBr27WR90Ed2BO4KvrZgbPSpCkjBPS/1VehRERE8k2hTRO7FNjG3T+ti/w1TazkG00TK/mqvqaJ/aN0ca1+CVZp36xB1fULoaZewd0LbWCfiIjUgprf48n7oG5mm8VJ7+4j66osIiJSvzSjXDx5H9SBzwh96VWxKF3jui2OiIjUG8X0WAohqO+S6wKIiIgUgrwP6u7+XnXTmtnadVkWERGpX6qox5P3Qb0qZrYScARwNLANan4XESkaGigXT0EGdTMrAQ4mBPLdCU9q+wI4N5flEhGR7NJAuXgKJqibWWNgL0IgPwAoASYR3sOR7j4wh8UTERHJubwP6ma2HSGQHw6sBEwHngT+C3wTvZ6UswKKiEjdUUU9lrwP6sAHhFvV3gVuA95w9yUAZtYulwUTEZG6pZgeTyEE9a+BXsBOQDmwkpm96O5zclssERGpaxooF0/eT7vq7psAGwM3A+sBjwKTzGwg4clsmhxbRESEAnugCyzXx34Y0JkQ1AcB/3b392uTtx7oIvlGD3SRfFVfD3SZMa+8Vr8EHVs1blB1/YIL6gnRaPg9gaMINfZWwC/uvk5N81RQl3yjoC75qr6C+sz5tQvqHUoaVlAvhD71tNy9HHgdeN3MWgIHEQK8iIhIg1SwQT2Zuy8ABkSLiIgUCQ2UiyfvB8qJiIhI9RRFTV1ERIqTpomNR0FdRETylprf41FQFxGRvKWYHo/61EVERIqEauoiIpK/VFWPRUFdRETylgbKxaOgLiIieUsD5eJRn7qIiEiRUE1dRETylirq8Sioi4hI/lJUj0VBXURE8pYGysWjoC4iInlLA+XiKdjnqUv+MrO2QH/gNnefnevyiIC+l9IwKKhL1pnZasAEYHV3/y3X5REBfS+lYdAtbSIiIkVCQV1ERKRIKKiLiIgUCQV1qQuzgWuitUi+0PdSip4GyomIiBQJ1dRFRESKhIK6iIhIkVBQFxERKRIK6iIiIkVCQb3AmdnVZuZJy0IzG21mF5pZ7P9fMxtqZq/WRVlryszGm9lduS6H1I6ZfRl9R3dIs2/naN8WSduuNrNt67eUVTOzE6OyrpTrsoik0gNdisMCYNfo55bALsANhIu2G2Lm9TegPHtFEwEz6wn0jl4eDXxQjcOuAuYCw+qqXCLFRkG9OCx194+TXr9rZr2AQ4gZ1N39u6yWLI+YWUt3X5DrcjRQxwBLgfeAw83sLHcvy3GZcsrMGgONGvrnINml5vfiNQdomrzBzG4ws6/NbK6Z/W5mA8ysW0qaFZrfzWxHMxtmZgvMbJqZPWJmHTOd2Mxamdk8Mzs/zb7nzGx4Urq7zGysmc2PmtnvM7N2Vb05MzvEzEZF3Q1/mNltZtYiaX+iOXff6JyzgWeryleyz8wMOAp4B7gN6ATsVcUxiQk0bk7qWto52tci+v/+I/r/H2VmB1eR39VmNsPMUn8nNo7y3jN6va+ZvWlmU8xstpl9YmaVljU6rmP0ezEt+j0ZZmY7pqQZamavmtkJZjYWWARsUlXeInEoqBcJM2sSLW3M7ADgUOC5lGRdgOuBfYGzgbWA98wsY4uNmW0OvEm4SDgcuAjYHxgc1TRW4O7zgJeBI1PyahOd+7/RphKgMXAZsDdwObATMKiK93pA9N6+Aw4CbgJOBZ5Mk/wB4CfgYOCWyvKVOrMt4bv2X2AIMJ3QBF+ZvtH6zujnvsDIaNtTwCmE//eDCN+D56PvRSYDgA7AninbjwKmAG9Fr9cGXgGOI/wOfQS8nrigSCf6PRhM+L24iPB7Mhd4M/r9SbYFcAFwJbAP4alxItnj7loKeAGuBjzN8jTQuJLjGgOrRmn7JW0fCrya9PoF4BegadK2ftFx+1eS/wFRmvWSth0PLAFWznBME2C76Lj1k7aPB+5Kej0SGJZy7F+j43pFr3eOXt+b6/+jhr4AdxPGfbSLXt8HzANaJ6VJ/H9tkbTNgfNT8uodbT8lZfsw4PMqyjESeCpl20/J362UfY2i7+QQ4L9J20+MyrBS9DrxXd8zKU3T6Pfm+aRtQ4HFhEe/5vz/RUtxLqqpF4cFwJbRsj2hFr4X8GByIjPbO2oWnEUIrolnSq9fSd47AC95Ur+fu78BlEbnyuR/UZrk2vqRwLvuPjmpTMeZ2RdmNhcoAz6srExm1hrYlBVbIZ6J1qlleq2SMkodi1qBDgded/dZ0eb/ElppKm0yzyAxcj61K+UZoI+Ztark2AHAAWbWMirbVsA60fZEeVczs8fM7HfC70gZ4SK2qt+R2e4+JLEh+n15gRW/j1+5u2rnUmcU1IvDUnf/LFo+cvc7gGuBP5vZxgBmtiWhSfwPQtNiX2Cb6PgW6TKNdAAmp9k+GcjYr+7ui4HniYK6mXUC9mBZ0ztRP+jjwKfAn6LyJP7QZypTe8BSyxQFjEVpypSu7FJ/+gGdgVfMrL2ZtQe+BiZSdRN8Oh2AMnefkbJ9MuF70b6SY58GWhGaySE0vf9CNLrewi2gLxMC8ZWEu0i2JDStV/U7MiXN9nS/I/o+Sp3S6PfiNTpa9wS+IQTLWcCf3H0pgJmtWY18ZhD64lOtHO2rzADgJDPrTbiIKCfUXhIOB0a5+ymJDWa2UxV5lhKaOpcrUzS4rnmaMumJRbmVCNz/iZZknc2si7unC4iZzACamlkHd5+ZtH1lwv91aaYD3X2CmX0EHGlmzxEuJJ9w98R3ZF2gD3CQu7+UOC5Rs6+iTNX9HdH3UeqUaurFa+NoPS1atyQ0JSb/UTmmGvl8CByUPJjOzPYg1Ig+zHRQZCgwiVAjOgoYnNQEmyjT4pRjKi2Tu88FRgGHpez6U1J5JQ+YWQlwIGHg4y4py1GESsURlWRRxoo15MT/7+Ep2w8HvvAwSLMyAwgD1PYDViGp6Z3wfYSk72R04btdFXl+CLQ1s35JxzUhXEjr+yj1SjX14tDIzBJN6c2AzQkjyb8D3o+2vwmcA9xpZi8Sas7HVSPv6wjNk6+a2Z2E2scNhCbz1ys70N3LzWwgYWBRF1JGw0dlutvMrgCGE/7Y7laNMl0NDDKzJwkj3jcgjOp/3t2/rsbxUj8OBFoDd7j70NSdZnYhoSZ/Z4bjRwMHmtkHhIF1Y939KzN7AbgtqkGPBY4ljLA/sBplehb4N3Av8J27f5m0bwxhnMkN0Yj21oTnr/9eRZ6vEX4fnjSziwlN7GcC3QjfS5F6o5p6cWhJCIrDgbcJf1CeBHZJDHBz99cJt9scSOg33JFQW0mnojbv7p8T+kXbEvrIbyb8Edvb3asz89wAoCswH0idfvZ+4NaovC8Aq1ONflZ3f5lQM+sFvARcTLh17dhqlEfqz9HAr4QWm3QeA7Yxs+4Z9p9O+Bs1GBhBuFiF8P/8IOH//SXC9+Awd3+lqgK5+1TC70hqLR13X0SYsGkRIfhfS7iofa+KPMsJF6SvEX4/nif8vvSLfn9E6o0t604SATP7HPjG3U/IdVlERCQe1dQFADPramZHE+4DHpHr8oiISHwK6pJwJGGSkKeBh3NcFhERqQE1v4uIiBQJ1dRFRESKhIK6iIhIkVBQFxERKRIK6iIiIkVCQV1ERKRIKKiL5CEzG29mbmYnpmxfK9ruZrZWXZ5LRAqPgroULTN7NCkAJi9zzWyMmT1oZpvkupwiItmioC4NQRnhIRuJpQXhITAnA5+Z2ak5LFtcZYSHmIyNfhYRqaCgLg3BMHfvmliAEsJDan4kPKnw7kKpsbv77+7eI1qqenqYiDQwCurS4Lj7Ynd/k/DEujLC70Eh1dZFRNJSUJcGy92/Az6LXm4BYGYnRv3u46PXe5vZYDObYmZLzeyc5DzMbD0zu9fMvjez+WY2x8xGmdlVZtYu07ktOMXMPjOzeWY23czeMrO9KitzdQbKmVkLMzvDzN41s6lmtsjMJkSvzzazTpXk39zMLjez0Wa2wMymmdkgM9u0inJ1NLPrzOyraMzCPDP71sxuMrMulR0rItnTJNcFEMmx36L1CgHYzM4DbiE8X34WsDRl/0nAvUDTaNN8oDmwSbScYGZ7uPtPKcc1JjzL+/BoUznhGd67Arua2dk1fTNmth7hufXrR5uWAqVAZ2A1YOfovTya5vA2wIeEC5xF0bGdCC0ae5jZLu7+aZpzbgr8D1g52rQgOnajaPmLme3r7p/U9H2JSPWopi4N3ZrRembK9pWBG4F7gG7u3gFoDTwHYGb7AA8CS4CrgFXcvRWhv347QgvA2sALZpb6e3YBywL6NUBHd+8IrEoI9rcSgnAsZtYeGEII6JOB44C27t4pKlcv4Lo07zXhGmAlYC+gVfR+dyRc+JQAd6Q5ZzvgZcLn9TOwO9DK3VsTPofRhAuDl1VjF6kH7q5FS1EuhNqoA0Mz7N+SUEt24N/RthOj1w78N8NxjYGfojSHZ0jTEfgjSnNI0vYSQk3ZgX+lOc6At5PKcGLK/rWS9q2Vsu+f0fY5wPoxPqfx0XHzgXXT7D806ZxrpOy7tIpjVyG0FDhwY66/E1q0FPuimro0OGa2ipkdR6hhNgIWE54ln+rmDFnsBKwD/OLuz6ZL4O4zgMHRy35Ju/oBbQnN0zemOc6B66vxNtI5IVrf6e7f1+D459z9xzTbXyYEZYCNU/b9KVo/me5Yd/8DuC96eVQNyiQiMahPXRqCnczMM+ybT6gNpwbBBcCXGY7ZNlp3M7NJlZy3dbReI2nb5tF6jLtnOvZDQrN+tX8/o0Fz3aKXr1X3uBQj0m109zIzm0JoYu+QdM5mLAvyb1WS71vARcDqZtbZ3afWsHwiUgUFdWkIyoAZ0c+JpuLfgA+AB9z91zTHTHf3pWm2w7Lg2Yxlg8MqU5L0c6KvPOM95u6+yMymAV2rkXdCcjl+iXFcsjmV7FsYrZsmbetI6IqASt4PywYjAnQBFNRF6oiCujQEw9x955jHlFeyLxHI3nb33WtWJBGR7FOfukh8k6P1GpWmSi9RS10lU4KoWXulmPkmN+WvmTFVds1g2cXPqpWkWy3p5yl1VxwRUVAXiW9YtF7PzNavNOWKPo/WPcwsU9P99sRsRXP3Xwij7QH2i1mmGnH3xcDX0cvdKkmaaM34Vf3pInVLQV0kvndY1m99ezSZTFpm1tTMWidteoNwS1tj4MI06Q24pIblejRan1GDi42aGhitjzWztVN3mlk34JTo5YB6KpNIg6WgLhKTu5cBfyPclrY38IaZ9U1MMmNmjcxsIzO7GPge2DTp2PnADdHLc83sSjNrEx3XFXiMcMvc/BoU7WbCBDCtgffM7BgzK0kqU28zu93MDq5B3pncA0wgDAZ808x2iS5MMLO+hHvu2xOa3W/N4nlFJA0NlBOpAXd/3cyOBR4mTO86DFhkZnMJ96EnjxJPvZ3uZsKtbYcRZnG70sxmE4IfwNnAecTsG3f30mju+NeAdYEngXIzKyUE+uZR0lFx8q3inLPM7EDCPfndCa0Y86NbCFtFyWYAB6rpXaTuqaYuUkPuPgBYj1DzHkWYL7094dawT4DbgO3d/aOU48oJk7acCowkTH4DISDu6+531qJM3wO9gXOBj4DZhDndpwDvAmcRJpPJGnf/AuhJmDTn22hzI2AMYe78jdz942yeU0TSszCBlYiIiBQ61dRFRESKhIK6iIhIkVBQFxERKRIK6iIiIkVCQV1ERKRIKKiLiIgUCQV1ERGRIqGgLiIiUiQU1EVERIqEgrqIiEiRUFAXEREpEgrqIiIiRUJBXUREpEgoqIuIiBQJBXUREZEi8f/fLAGj5na0wQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAGoCAYAAAB13vBmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABDrAAAQ6wFQlOh8AACO8klEQVR4nOzdd3hURRfA4d+kFwgkEGrovffeu9IEBAVUyqfSkd5FioqiCKgoWAFFQYqC0rtUFRWU3qSFHpKQXne+P24S0khZkuwmOe/z7LO7c2fuPZtAcjIzd0ZprRFCCCGEEBnLxtIBCCGEEELkRJJkCSGEEEJkAkmyhBBCCCEygSRZQgghhBCZQJIsIYQQQohMIEmWEEIIIUQmkCRLCCGEECITSJIlhBBCCJEJJMkSQgghhMgEkmQJIYQQQmQCSbKEEEIIITKBJFlCCLMow1NKqe+UUpeUUkFKqWCl1EWl1Cal1ItKKWdLx5lZlFKtlVI6mUeEUuqWUmqbUur5VM7RUSm1Wil1RSkVEvO4ElPWMZW2TkqpV5RSm5VSN5VSYUopP6XUaaXUV0qpThn7iYUQ6aVkg2ghRHoppQoC3wMdUqnaRmu9P/MjynpKqdbAvjRUna21npOorSvwDdArlbYbgAFa65BE7esCa4FyKTXWWqs0xCeEyCTSkyWESBellBOwnYQJ1k9AP6At0Bf4DAjMxBhsrLCX7DWgJTAIuBWvfKJSyj5R3cQJ1tdAl5jH8njlz8bUjaOUqgjs5lGCFQ58BHQH2gGvABuBaLM/iRAiY2it5SEPecgjzQ9gCqDjPWY8pp4nUCTmdev4bRLVGxTv2NV45aUTXacm8CFwEyOBmBzvWBjgnui8veIdv8KjnvvFwH7gBhAERAC3gc1Al3R8HVoniq91vGMTEx0rEu9Y+0THFiZz7o8S1WkX79i2eOWR8a+b6Bw1LP1vRR7yyO0P6ckSQqTXoHivLwPvJFdJa31fa30nA6+7HqO3qBhGL/wF4NeYY47Ac4nqvxTv9Zda69i5EWOAVoAX4ArYA0UwepE2K6VGZmDMAKHA/Xjv+8Z7HQW8m0ybeTHHErRRShUB4s+1+lY/ZjhWa33SnGCFEBnHztIBCCGyD6WUC1A5XtEurbUpiy5fDvgAY6isIEaC9wVGwgRGUvVZTJzuQOeY8mgSDsG9BZwDfIEQjAStHkZiA/CmUuozrXX8JCctaiilojF64MbGK1+ktY4/dFcr3uvrWut7iU+ktb6jlPKOOVf8NnWB+POsdqQzRiFEFpIkSwiRHu6J3j/Iwmsv1lpPjF+glLoIfIwRVzOlVFmt9X8YvVoOMdW2aK3jz5HaDIwDGmP0YDkmuo47RiJ5Kp3xfZTo/V3gLa31kkTl+eO9TpJgJWpfOlEbS379hRDpJMOFQoj08Ev0vkAWXntD4gKtdRjwbbyi2CHCF+OVfRH7QinVHjgEPA+UImmCFcvjiSI1FALqKKUS/5z1T1TncQon08aSX38hRDpJkiWESDNtLCVwNl5Re6VUWpYJSLBWjFIqfi+6Zxovf/sx5Z/He/2iUqo00CzmvTfGRPFYk3nUg38ReAHjjsDWic5pzs/GNoALMBwwYQzr/Q/jRoH4/o33uqRSKkmipZQqjDFnLNY/Mc9/k/BrmeJaWkIIy5IkSwiRXivivS5P0iQCMNbSipmoDUl7YOInEF3TeN1kF/XTWp8GjsaL52MezVv6OtF8qJLxXn+ktf5ea32QDFruQGsdqrVeRsKv0YxEidTqeK/tMBK/xKaRcDrHmpjz38FYPiPWS0qpFsnFopSqno7QhRCZQJIsIUR6fQT8Fe/9O0qp9Uqp52JWQe+jlFoCXOLRJPn/SHi33Cql1HCl1E8YPUlP6ot4r2OTNhPG+lPx/Rfv9StKqa5KqQEYC6tmpLkYyyuAcQfj1NgDWuvdwKZ4dScopb5QSj0d8/gS4w7IWBu11nvivR/Lo6TVHtiplFqklOqilGqrlBqklFoHnMjYjySESC9Z8V0IkW5KKU/gO9Kx4rtSaikwLJk6J4EaMa+vaa1Lx9QvjbG+VawyWuurj4nHFWMBULd4xdu11k8nqtcB2JnMKfZiLKSaJO7HSWbF9wRtlFJfYQwXgrGMQzmt9e2YY3kwvn7dU7oGRjL2otY6KNG1ZcV3IbIB6ckSQqSb1vo+xnpNnTF6gf7DWA4hFGNphZ+BAcDv8ZpNBJZirBkVDhzHmBO1MAPiCSZpb9QXydTbBTyDMbcpFCMxW0zqyY454q915YwxBBgbR5DW+hmMr98PwDWMBVXDYl7/AHTWWvdInGDFtP8bqA68CmzFmK8WATzEmDO3HHgqEz6TECIdpCdLCCGEECITSE+WEEIIIUQmkCRLCCGEECITSJIlhBBCCJEJJMkSQgghhMgEkmQJIYQQQmQCSbKEEEIIITKBJFlCCCGEEJnALvUquYNSyhFj1en7ZNA+ZkIIIYSwerYYG9Wf1FqHZ+SJJcl6pAZwzNJBCCGEEMIiGgB/ZuQJJcl65D7AH3/8QdGiRS0dixBCCCGywO3bt2nYsCHE5AEZSZKsR6IBihYtipeXl6VjEUIIIUTWyvCpQjLxXQghhBAiE0iSJYQQQgiRCSTJEkIIIYTIBJJkCSGEEEJkAkmyhBBCCCEygSRZQgghhBCZQJIsIYQQQohMYDVJllKqvFJqmVLqhFIqSil1Ko3tlFJqqlLqulIqVCl1VCnVOLPjFUIIIYRIidUkWUA1oAtwCTiTjnZTgDnAIqArcBvYqZQqm+ERCiGEEEKkkTUlWb9orUtorXsDf6elgVLKCZgGfKC1XqS13gP0BXyBiZkXqhBCCCFEyqwmydJam8xo1hRwA9bGO08E8CPQOYNCE0IIIYRIN6tJssxUOeb5XKLys0BJpZRzFscjhBBCCAFk/w2i3YFwrXVYonI/QMUcD02uoVLKDaMXLFaRTIlQCCFysWhTNMGRwQRFBGHSpkePwACi793FRGyZjnsdaYriYWQgodHh3A3zIcoUTbSOfZiM57BQou7eJkpHc977BIXt3dFoNMQ9m2JeGWUkf1wlf9yEJgoTF2z8KKrzYIopi455Nl6bMCmjLIxoLtv4U1S7olAQc57EEpckrpPa8cw7RwptTCZ0ZCTY2Dy+DqBV+q6RrnNERSV7PNnrpBZHzHFtsiHyzwZg65dMZBkjuydZT2I8MMvSQQghREYKigjiVuAtIqIjCI8K527wXaJN0cb76HCu+l/FwdaB0MhQHvrd4m7AHaJ0FFpr9MOHmO7eRptM6AcP0E6OMYmK8Ysp+dcaE3DeJYQCkfaE2ph4aBdFgG0U4TYmTMn8UsxwrsaTQ5Tx17XSYKMfvU7u2Uancizm1KF2cIP7eAWAbcx5bTTYmoyhIDsNDhrymBSudhrwp2jQow+d3MdXiX7rJ66T2nFz2iQ+nq5zmIwDytkZ8rgmaqOSb5OuONJwDpMJlAJPzyT1k7TRaTmn4uiv1fj7t8qULneOq1xIGlgGyO5Jlh/gqJRyStSb5Y6RvKaUni4Evoz3vghwLONDFEKIx9NaExYVRkR0BBHREYRFhXHqxp/cuHWWqKhIwq5d5lzkLdxsXIjQUUQGPeR28F2CbKJwwJZwoglUEfgRxiWb9P9Fnjcc8oclTUxsnEHZ2mJjZ/+oDJUoEVHYxBwrEmrLPYcI6ga44BLthEekHU7RNjhohb1JEWZjokSYAzZaYWMyGUlKpcrYeHlhgw02KGxQ2CrjdX4bF5yVA07KHjflhJOyxxYbbJWN8YzCzsYO29p1sXfNi0Plahn8nRE5kb9/GKGhkRQtmpdbtwLZs+c/Wrf2oGTJNZlyveyeZMXOxaoE/BOvvDJwXWud7FAhgNY6AAiIfa9UVvy5JYTIbsKiwvAP8497vuR7icu+l9FovAO8MWkTUaYoIk2RREZHcj/kPr6hvjjaOnLhwQVsbWxRKEyxw1yxQ18m4xEWnXi2w+M5RYJDNNiZwM8ZyvqBeyg4RkPFMGgaYtQr7Q8VI91wqNsAR2WHDYoiJhcctA0O2oa82oH82gEn3wBsGzeFPHmMhpGRUKUKtGgBdtn914MQj2it+eGH04wbt4P69Yvxyy/9KFYsLy+9VAtvb+9Mu252/190BCNR6kNMkqWUsgd6AVstGJcQwsppreOSp/DocIIjgvn10i6u3jlPYGQQO28e4G6oD8FRISmex0k54GLjiJ2ywT4mAQokgmLkoZbOw12CqOkdia2zC7baDlutsNUa2+s3sY0ZdnrgAlXvg0PhYjgEheJeqCQV3MtTpFI9nCJMODZqhpt9nkd/DBYuDF5eWfBVEiL7u3TJl5Ejt7Jz52Vq1CjEtGnNs+zaVpNkKaVceLTsQinATSnVO+b9r1rr+0qpPUAprXV5AK11mFLqHWC2Uuo+cBIYARQAFmTtJxBCZBmTCe7ehU2bMHnf4JZtCL4X/iHYFM5Fp2Ae2EVwxTGUKGUiGjju8hA7FBFKc88uHG+HsGQn0MZXzhcqhkPHy+AZDHkijB6jEg+hWCAUDQKXSHCIjgAikjlDKHD/0VvbQKgWM6SlNUTmBWdnaNYMpk2DYsUy5msjhIizdu1pBgz4CVtbG95/vwNjxjTC3t42y65vNUkWUAhYl6gs9n0bYD9gS9KY52NMEZgIeAIngE5a6/8yK1AhRBa4f5/QiGBOPjjLxYdXCDxznMOnt3HfLoLzpvuYFITYg0/sPNzKyZ8mf4QNztE2+DhG0/K+C0VM9lS2saVYqD2OJkXVAEccTTY4REPx+2HUrdsFz2oNjT/VAKo/Jj4XF6haNWm5lxcUSXSzslJgm3U/2IXI7aKiTNjZ2dCgQTG6d6/EggUdKVkyX5bHobRO7qbK3Ecp5QXcuHHjBl7SDS9EproffJ8z988QEhnCOZ9znL51nOv+17ELi+DKg8sEPLzHLbfHt2/wwImHToqGblVwKlGaPJ7FKZu/LCU9yuDp6kk593I42zvjau+KrY0kN0LkFvfuBTNp0i7Cw6NYs6Z36g0Ab29vSpQoAVBCa52hE7SsqSdLCJGDmLSJCw8ucO7CEf4+s5vfgy7gGxXIgzBfrkT7JNvG1gT1b4GDHbS664Rj1Zo0tytDXVsv8itn8tdpinubp7P4kwghrJ3JpPnqq7+ZMmU3AQHhjB3bGJNJY2Nj2ZvaJMkSQphFa82h64e48fA63md+4+i5XUSHh7HHwRvbyGgCHZNv1/Q69LgJ5X2h+kNHnPK6U7pwJQo1agturlC3PNSoAWVlj3chROrOnfPh5Zd/5siRGzRqVJzPPutKrVrWsb64JFlCiCSCIoK4HXgbnxCfuLWbjnn/zl/ex/jD+3d0YAC3HcITNlKAE5T1BVtbO4aedcDBqxRtbzpQtGE7yjfohIONvVG3YEGoUAGcnLL8swkhchatNZcu+bJ0aReGDKln8d6r+CTJEiIXexj2kD9v/cmWi1sIiwrjn7v/cOTGkRTb2EdDrfvQ/TbYOjnTLU89at2zocizA1G9ekHevDLJWwiRqX755Tx//HGTN99sS5Uqnly7NhYnJ+tLaawvIiFEhjNpE3uv7OXXq79y/M5xzvmcw0bZcMn3UoK9w4qaXCkVak+FO5F0u2Cs+VTGDxyr1cTJNR9Voj1wr9kQGhWGQYMkmRJCZKkbNx7y2mvb2bjxHBUrFmDq1Oa4ujpYZYIFkmQJkWNd9r3Mj2d/5MTdE3x/8vsEx/I65KVEvhKMztOWDsd8qRtRgKI/7UYRbFRo2BCKFoV586BcOXB8zAQrIYTIAlFRJj766HfeeGMfkZEmZs9uxZQpza02uYpl3dEJIdLEL9SP0/dP87v379wIuMFR76P8cfOPuOP13auRX7mwILotNWYvxaa4F5w5A5x5dBJXV7C3h2vXwC2F9ROEECKLnTlzn0mTdtGmTWk+/bQLFSsWSL2RFZAkS4hs5uKDi6w/s55d/+3iYfhDTt07RUR00hXHC4Xa8snxonTZ641z1OmY0pg90PMHQ5cucOsWrFqV/KKaQghhQf7+Yeze/R+9e1elZs3C/PHHK9StWzRb7TUsSZYQ2YBvqC87Lu3gnUPvcPLeybhyN0c32hVsSPSFc/Tf60PxQKh1BzxDAKKhTQVoVQlsbGDgQGMj4IoVjU2AhRDCCmmtWb36FOPG7cDXN5TGjb3w8nKjXr3st/WUJFlCWLErfld45ZdX2Htlb1zZ2HojGeDalOomT+zfWwA7dz5qsHAhdOpkrDElyyMIIbKZCxceMGLEFvbsuUKtWoX5+ee+eHll3+kLkmQJYSW01gSEB3Ds1jG2XdzG0j+XEhoVCkDf6n1p7dWC7gPnUXT2J8AnCRu/9RaMGWP0VAkhRDZ082YAtWotw9ZW8cEHHXnttUbY2dlYOqwnIkmWEBa26/Iu3j74Nv/c/Qf/MH8AFIpSIQ6UeGDD7P3Q9uo6iF7zqNHkyVC/Pjg4QOfOxoR1IYTIhq5e9ad06fwUL+7GwoUd6dKlokU2c84MkmQJYQE3A26y4ewGPvvrM87cN+7wq1OkDu0KN6b2j0dptekEXgExK6pPnPioYXAwLFgALi4WiFoIITLO3btBjB+/k3XrTvPPP8OoUsWT4cMbWDqsDCVJlhBZICQyhLWn1/L9ye+55HuJK/5XACiSpwiDaw9m9vF8lBy2GDj+qJGtLVy9Cl5elghZCCEyhcmk+fzzv5g6dTdBQRGMH9+EEiVyRs9VYpJkCZFJgiKC+Oafb1h+Yjln758lODKYPA55KOxamAlNJjCg1gBq7D+LemUU+PgYjeztYdw4mD/fssELIUQmCA6OoH37b/ntN2+aNi3BsmVdqFGjsKXDyjSSZAmRwY7dPMbHf3zMdye/w6RNAJR1L8uCDgt4plJ3bDZugmWrYH9r8PN71PDkSahe3TJBCyFEJjKZNDY2CldXB2rVKsz//lebl1+ua1WbOWcGSbKEyAAmbeLn8z+z8p+VbDy3EYC2ZdoyssFInir/FC6hUbBtG1SN919OKXjpJRg6FJo1s0zgQgiRyTZuPMfUqbvZtu0FypRxZ9myrpYOKctIkiXEEwiNDGX5ieXM2j8LnxBjyK9SgUp82e0Lmv98Ar45BocWwaFDCRseOQL16hl3BwohRA507Zo/r722nZ9/Pk+lSgXw9Q2lTBl3S4eVpSTJEiKdQiND2XF5B0dvHOWTY58QHGlsqjy03lAmNp1I2eeGYjO6ZdKGgwfDqFFQp47RiyWEEDmQyaT54IMjzJ79K9HRJt58sw2TJjXF0TH3pRy57xMLYSafEB+m7JrC1ye+jisr4VaC0Q1H82bbN7ELDU+4GOhTT8H69cbGy0IIkUsoBfv3X6N585J88klnypf3sHRIFiNJlhCpuB98n/mH5/PB0Q8AY65Vn6p9aFGyBdUKVTMqhYdDiRKPGvn4QIHssUu8EEI8KV/fUGbN2se0aS0oViwvP/zQG1dX+2y1mXNmkCRLiMcIjghm2JZh/Hj2R0IiQ/Bw9uCTzp/Qt3rfR5UOH4Z334XNmx+VRUcbGzILIUQOp7Vm1ap/mTBhJz4+IdStW5TBg+uQJ4/MNwVJsoRIIjI6khl7Z/D+kfcBaFmqJa+3eJ12Zdtho+IlT198AUOGPHrv7GwsHioJlhAiFzh3zofhw7ewf/9V6tQpwubN/WnYsLilw7IqkmQJESM8Kpy5v87l6xNfcyfoDvkc8/HhUx8ysPbAhBW1hilT4H0jCWP5chgwQJIrIUSuMmbMdv788xaLF3di5MiG2X4z58wgSZbI1bTWHLt1jEW/LWLNqUcbML/d9m2mNJuCrY3to8q//24kUxcuPCqbNQsGDcq6gIUQwoJ27rxMvXpFKVDAhaVLu+DgYIuXl5ulw7JakmSJXOuy72Ve/vllfr32a1zZO+3eYXyT8TjYxptPYDJBp06we/ejsqZN4aefoFChLIxYCCEs4/btQMaN28EPP5xm4sQmvP9+R8qWzV1rXplDkiyR65zzOUenVZ24/vA6AP2q92Nmy5lU8ayStPKhQ9CixaP3Q4fCp5/K0KAQIleIjjbx2Wd/MW3aHkJCIpk2rTmvv57MOoAiWZJkiVzjd+/f6flDT24H3QaggkcFvu35LY28GiWtHB0NNWvCmTPG+9Kl4ehRKFIk6wIWQggLGz58C1988TfNm5dk2bIuVKsmvffpIUmWyNFCIkOYf2g+n//9OXeC7gBQ2LUwv/T7hQbFGyRtoDV8/z28+OKjsoULYdy4LIpYCCEsKzAwHKUUefI4MGxYfRo39mLQoNo5fjPnzCBJlsix9vy3h6e+e4ooUxROdk60K9OOxU8tpnqh6kkraw3//ANvvQUbNjwqDw0FJ6esC1oIISxEa82PP55lzJjtPPtsFT788Gnq1i1K3bpFLR1atiVJlshx9l7ZS9/1fbkfch87GzuWdlnK0HpDU155uHFj+OOPR+/Xr4dnn838YIUQwgpcueLHqFHb2Lr1IlWqFOTZZ6taOqQcQZIskWOER4Uz59c5vHPoHQBervMyYxqNoUbhGik3LFcO/vvPeL16NbRvDwULZnK0QghhHVasOMGIEVvQGubNa8uECU1xcLBNvaFIlSRZItuLjI5k8q7JLP59cVzZok6LGNt4bMoNt2+Hnj0hLMx4f+IE1KqVWWEKIYRV0VqjlKJ8eQ9aty7NkiWdZVmGDCZJlsjWztw/Q6sVrfAJ8QFgbuu5zGg5I+H2N/FFR8PkyfDXX/Dro/WxOH0aqkr3uBAi5/PxCWHKlF0UK5aXN99sS/PmJdm69QVLh5UjSZIlsq11p9fx3PrnAOhYriNb+29NuEI7QGQkbN0KPXokPUHBgvDll9C9O+TyneKFEDmf1pqVK/9h4sSd+PmFMW5cY0uHlONJkiWylcDwQPZc2cOGsxtY9e8qnOycWNdnHV0rdk1a+fPPjaUXQkIelU2YAMHBMG8euEu3uBAidzh3zoehQzdz4MA16tcvxo4dXahXr5ilw8rxJMkS2UJAeABDfhnCD6d/iCvrXqk7n3b+lOJuiXZ9nzsX3n4bIiKM96VLG5s4t26dZfEKIYQ1uXbNnxMn7vDxx08zfHh9bG1l14qsIEmWsHo3A27itcgLAE8XT0Y0GMErdV/By83rUSWtYdUqYwPnWL16wSefyCrtQohcafv2S3h7B/DKK3Xp1Kk8V6+Owd3d2dJh5SqSZAmrdd7nPEv+WMKSY0sAGN1wNB89/VHSijdvgpdXwrKjR421r4QQIpe5dSuQsWO3s27dGapXL8SgQbWxs7ORBMsCJMkSVifKFMWza5/l5/M/A1ClYBXebf8u3St1T1jx9Glo3hz8/ROWyV2CQohcKDraxKefHmPGjL2EhUUxY0YLZsxogZ2dDA1aiiRZwqrs/m833VZ3IyzKWLvq91d+p2Hxhgkrff89vJDoduP33oOJE+UuQSFErrV793+89tp2WrUqxdKlXahSxdPSIeV6kmQJq2DSJvpv6B83sX1Gixm82ebNpFvheHs/SrBcXOCDD+Dll8HePosjFkIIy3v4MIwTJ+7QqlVpOnYsx/btL9CxY7mUtxETWUaSLGFxR28cpeOqjgRFBOHp4smRl49Q3qN88pXfeMN4njnTuItQCCFyIa0169adYezY7YSERHL9+jjc3Bzp1OkxPzuFRchArbCobRe30WJ5C4Iigni17qvcmnAr+QTLZIIXXzSWYgCYMSNrAxVCCCvx339+dO78Pc8/vx4PD2c2b+6Pm5ujpcMSyZCeLGERFx5cYPyO8Wy5uAWAVT1X8ULNZLZ1MJmgQIGEk9s3bABH+YEihMh9Tp26R4MGX6AUzJ/fnnHjGmNvL5s5WytJskSW01rTekVrbgfdplWpVnz/7PcUy5to5eGICFi4EKZNe1Q2aBAsWQKurlkarxBCWNqDByEUKOBCtWqeTJjQhFdeqUvp0vktHZZIhQwXiizlH+ZPvc/rcTvoNrNazWL/oP1JE6zx442eqtgEq3RpY2uc5cslwRJC5Cr37wczaNBGKlf+BB+fEJRSvPVWW0mwsglJskSW8Q/zp8iCIhy/c5xxjcfxRqs3Elb45hvw9IRFi4z3I0bApUtw5Qo4yyJ6Qojcw2TSfPXV31Su/AnffvsvL71UE0dHGRbMbmS4UGSJoIgg3OcbGzJPbjqZ+R3mJ6xw9CgMHPjo/Y4d0LFjFkYohBDWwccnhJ49f+DQoes0aFCMzz7rSp06RS0dljCD9GSJTBceFc5LP70EQK3CtRImWNu2GQuINm1qvF+yxJjsLgmWECKXcnd3wsXFnk8/7czRoy9LgpWNWU2SpZSqrJTapZQKVkrdUUq9p5RySEO7AkqpZUqp6zFtTymlhmVFzCJ1IZEhtFnZho3nNvJGyzc4MezEo4OrV0PnzsZrV1djWYbhw2XVdiFErrNlywWaNfuagIBwbG1t2L79BYYPb4CtrdX8mhZmsIrhQqWUO7AXuAj0AooDCwEXYFQqzdcBlYHpwHWgM7BUKRWttf4i04IWqQqOCKbF8hYcv3OcN9u8yestX09YoX9/4/mdd2Dq1KwPUAghLMzbO4AxY7bz449nKVfOnRs3HlKtWiFZsT2HsIokCxgGuAE9tda+AEopO+BTpdQ8rfWt5BoppYoAbYDBWusVMcV7lVINgL6AJFkW4h3gTanFpTBpE5ObTk6aYK1bZzw3bCgJlhAi14mKMrFkyR/MnLmP8PAoZs5sybRpzXF2li3CchJr6Yd8Gtgdm2DFWIsRX0qTc2L/NT5MVP4QkD8DLOT0vdPUXFoTkzYxov6IpJPcAVasMJ43bMjS2IQQwhporfnqq+M0aFCMf/8dzty5bSTByoGspSerMvB1/AKttb9S6nbMsWRprW8opXYC05VS54EbGAlbRyCZ5cNFZttwZgO91/UGYP/A/bQq3SpppRMnYOtW47WXV9YFJ4QQFuTvH8aCBUeYPr0FLi727NkzAE9PFxkazMGsJclyB/yTKfcDPFJp2wv4ATgd8z4aGK21TrGLRCnlhjFEGatImiIVj/X5X58zdPNQ7G3s2TtwL81LNk9a6fffoXFj4/X//pe1AQohhAVorfnhh9OMG7eDO3eCqF+/GD16VKZQIVlcOaezliTLLMpI/5cDFYD+wG2gA7BYKeWntV6TQvPxwKzMjzLn01qz6LdFTN41GVd7Vw7/7zC1itRKWMlkMtbCah6TeL3yCnwhU+aEEDnbpUu+jBy5lZ07L1OjRiF+/PE5mjQpYemwRBaxliTLD8iXTLk74JtMeawuQB+gptb6ZEzZfqVUIeADIKUkayHwZbz3RYBjaY5YAEaC9crPr/D1ia+pWKAiBwYdoHCewvErGEszzJ9vJFoAzz4rCZYQIsfTWtOjxxquXPHn/fc7MGZMI9nMOZexliTrHInmXiml8gFFY449TlWM4cFTicqPA68opVy01iHJNdRaBwAB8a5nRti523mf87RZ2YbbQbd5qeZLfP3M19jZxPyTunoVfv0VXn4ZoqONsjfeMBKsmjUtFrMQQmS2Q4eu07BhcRwcbFmxogeFCrlSsmRy/Qgip7OWuwu3Ae2VUvnjlfUBTMDOFNpdA2yBxL+16wH3HpdgiSe3+7/d1P28LkERQQyqPYgvun1hJFjR0TBuHJQpA4MGGe9tbODhQ5gzRxIsIUSOde9eMAMG/ESLFsv55JM/AKhfv5gkWLmYtfRkLQNGAxuVUvMwFiN9H1gWf40spdQeoJTWunxM0VaMBUjXK6XmYMzJ6ggMQuZbZZoPf/uQ8TvH4+Hswd4Be6lRuIZxQGuoWxf+/dd4P3gwTJ4MFSsaiZYQQuRAsZs5T5mym4CAcCZMaMKrr9azdFjCClhFkqW19lNKtQM+BjYCgRjzpWYkqmpLvJi11oEx7d4G5gP5gSsYk9qXZHrguUx4VDivbXuNz//+nFalWrGq1yq83GKWYAgPByenR5V9fKBAAcsEKoQQWahv3/WsW3eGxo29WLasC7Vqyc3qwmAVSRaA1vos0D6VOq2TKbsEPJ9JYYkYIZEhtPumHb95/8aQukNY0nkJ9rb2cO8eLF5sbI0T6949SbCEEDlacHAETk522Nra8NJLNWnXrgyvvloPGxuZ3ysekTEckSYTd07kN+/fmNN6Dp91+8xIsG7dgtatjQTL3h5atoSICPD0tHS4QgiRaX7++TxVq37KJ58YN6R361aJoUPrS4IlkpAkS6Tq5/M/s/TPpQysNZA3Wr1hzL16910oXhzOnoX33zeSq19/NZItIYTIga5ff0iPHmt45pk1ODraUqNGIUuHJKyc1QwXCut0zuccL/74IjUK1eCTzp/Axo3GSu1+fkaFnj1h4kSLxiiEEJnt88//Yvz4HURFmZgzpzWTJzfDyUl+hYqUyb8Q8VgPwx7SY00P7Gzs2Nh3I65z5sG8ecbBQYPgvfdkaFAIkSs4OdnRpEkJPv20MxUqyJxTkTZKa21eQ6UcgJeBtoC71rq9UqoFoIC/tdZBGRdm5lNKeQE3bty4gZdsWkxkdCQdV3XkwLUDbHthGx1vOECHDhAVBRcuQIUKlg5RCCEyjZ9fKNOn76FRIy8GDapN7O9KWbg65/H29qZEiRIAJbTW3hl5brN6spRSrsA+jEU/FRCbqU0EugKvAZ9kRIAi6wVFBNFmZRv+vPUnc1vPpeN/Cjq2gZIl4e+/5c5BIUSOpbXm++9PMn78Tu7fD8bd3RmQ5EqYx9zhwtlA/WTKvwC6AT2QJCtbijJF8fR3T/PnrT+Z1nwar7eYAbYxe219/bUkWEKIHOvChQeMGLGFPXuuULt2EX7+uS+NGsnIhjCfuXcXPovRe/VSovLDMc+VzI5IWExQRBC1ltXi0PVDzGk9h3nt5qEOHjQOdusG7dpZNkAhhMhEu3f/x2+/ebNwYUeOHXtVEizxxMztySoe87wO+DZeeVjMs9zXmg0N3TyUM/fPUKVgFWa2nGkUnovZn3vCBMsFJoQQmWT37v+IjIzm6acrMHRoPXr0qEyxYnktHZbIIcxNsh4CBYDEaX6nmGd/cwMSWe9+8H28FnkRER1B85LNOTj44KODU6caz7KxsxAiB7lzJ4gJE3by/fcnadzYi6eeKo+trY0kWCJDmTtceCjm+YfYAqXUp8B3GMOIB5NrJKxPeFQ4pRaXIiI6ghqFarCl/5ZHB318wN/feO3ubpH4hBAiI5lMmqVLj1G58hLWrj3N5MlN2b37JZnYLjKFuT1ZbwOdgbo8urNwKMadhhHAvCcPTWS2aFM0T3/3NKFRobxY80W+7fltwgrr1hnPixZlfXBCCJEJvvnmH0aM2ErTpiVYtqwLNWoUtnRIIgczK8nSWv+llOoGfAqUi3foMjBca308I4ITmSfKFMXAjQPZd3Ufg2oP4qvuXz06GBlp7Ec4a5bxfuBAywQphBAZIDAwnGvXHlK9eiFeeKEGjo62PP98ddlrUGQ6s1d811rvAioopSoAnsB9rfXFDItMZKoZe2bw/cnv6VqxK193/zphV/maNY8SrOefl6FCIUS2pLVm48ZzvPbaduztbTh/fhT29rb061fD0qGJXMLcxUj3Alpr3S4msboY79jcmGOzMihGkcHm/jqX9468R63CtdjUd1PSuQjffGM8HzkCTZpkfYBCCPGErl3zZ9SobWzefIFKlQqwbFlX7O1tLR2WyGXM7clqzaO5WIm9HnNMkiwrtOPSDmbtn0UFjwrsHbgXG5Xo3ocNG2D3buN1/eTWmxVCCOt26NB1OnVahcmkeeutNkyc2BRHR9mqV2S9DP1Xp5SqlpHnExnrp7M/0XdDX4rlLcbvr/yOu3OiYcBt26B3b+P1smVgb5/1QQohhJlCQiJxcbGnXr2i9OtXnWnTmlOunIelwxK5WJqXcFBKzVJKRSuloonpxYp9H6/835hjtzMnXGGuv279Re91vXFzdOPg4INJE6zISOjc2Xi9cCEMHZr1QQohhBl8fUN59dWfadDgCyIionF2tufLL7tLgiUsLr3rZKk0PtZmYIziCfmG+tJtdTdM2sSPz/1IWfeyCStoDQ4Oxuty5WDcuKwPUggh0klrzTff/EOlSkv46qvjtG1bmsjIaEuHJUSc9AwXngBWxrweiNFj9U284xrwA44hSZbVMGkTQ34Zwu2g28xsOZMWpVokrfRJvL28z5/PuuCEEMJMN28G8OKLP7F//1Xq1i3Ktm0vUL9+MUuHJUQCaU6ytNabgE0ASqmBMWWDMykukUEW/7aYDWc3MK7xOOa2mZu0wp07MHq08Xr3brCVu2+EENbPzc2Re/eC+fDDpxgxogF2duZuYCJE5jHrX6XW2kZrLb+Ns4GN5zZSuWBlPuj4QcIDWsP27VCypPH+iy+gXbusD1AIIdJo587L9OmzjuhoE3nzOvLvv8N47bVGkmAJq2X23YVKKXvgaaAS4Jz4uNY6mW4TkZWO3TzGwesHGdlgZNK1sL7+Gl55xXjdqNGj10IIYWVu3w5k3Lgd/PDDaUqXzs/16w8pU8YdW1tJroR1M3cxUi9gH1A2hWqSZFlQRHQEjb5shIu9C6+3fD1phffeM54PHIDmzbM2OCGESIPoaBPLlv3J9Ol7CQmJZNq05rz+ektcXGR5GZE9mNuT9SYJ9yxM7HELlYosMmPPDDSaN9u8SZE8RRIe/PlnuHABevaEFslMhBdCCCsQEBDOnDm/UqtWYZYu7UK1aoUsHZIQ6WJuX2s7jERqTsx7DXQDDgOXgC5PHpow14k7J1hwdAE9K/dkXONEyzFcvw7PPANOTvD555YJUAghHiMgIJzFi3/DZNK4uztz9OjL7N8/SBIskS2Zm2QVjnleFFugtd4C9APKA92fMC5hprtBd2n4RUPyOuRlUadFCedi/fMPlCplvH7pJShY0DJBCiFEIlprNmw4Q5UqnzBu3A4OHboOQLlyHtjYqFRaC2GdzE2ywmKeQ2JfK6UqAKaY8ueeMC5hpnbftCPSFMnMljMplb/UowPDh0Pt2sbrkiXh008tEp8QQiR25YofXbuupnfvdeTL58ivvw6iZctSqTcUwsqZOyfrHpAH8ACuAJWB/UDsUrsyJ8sC5h+az+n7p5nTeg6Tmk16dGDOHGMvQoDFi2HMGIvEJ4QQiUVERNOs2df4+YUxb15bJkxoioODrBAkcgZzk6wTGBPf6wI/AjOAIhhb6gBsfuLIRLqERoYydc9UiuQpwvgm4x8d2LwZZs82Xp86BdVkD28hhOX9888datYsjIODLV9+2Z3KlQtStqx76g2FyEbMHS6cDLQBTmIs1fAxcAfwxdh6Z2xGBCfSbs6vxj0Ir9R5hTwOeYzC4GDo1s14feaMJFhCCIvz8Qnh5Zc3Ubv2Z2zYcBaAzp0rSIIlciSzerK01lcwhgljjYl5CAvYcGYD8w/Pp2flno+2ztEa8sQkW337QpUqlgtQCJHraa1ZufIfJk7ciZ9fGK+91pCOHVNaCUiI7M/sFd8fRynVHnhTa90ko88tkoqMjmT4luEAjGk05tHdhFOnPqr03XcWiEwIIQxaa7p0+Z5t2y5Rv34xduzoQr16spmzyPnSlWQppUoBLwIlMCa//6i1PhFzrCHwPiDLh2eh709+z/2Q+3zQ8QNalW5lFK5c+WhF9/v3wUa2nhBCZL2IiGgcHGxRStG1a0U6d67A8OH1ZTsckWukOclSStXBuIMwT7ziaUqpQYAL8CnGHC+F3F2YZT7+42PyO+VneP3hjwrfeMN4/vZbWQtLCGER27dfYsSILXz88dN06VKRESMaWDokIbJcev6cmAXkxUiiYh+2wGJgQcxrBRwDnsrQKEWy1pxaw1+3/2JgrYE428fs0T1pkrGqe6NG8OKLlg1QCJHr3LoVyHPPrePpp79DKYWrq4OlQxLCYtIzXNgEo4dqM/AFRkL1CsZ2OgDewGta640ZGaBIXkB4ACO3jgRgduvZRuF338GCBcbrr76yTGBCiFxr2bI/mTx5F2FhUbz+egumT2+Bs7Ns5ixyr/QkWQVingdqrf0BlFKHAR9i9i7UWv+TseGJx5m4cyK+ob6s6rmK/E75jcJffjGeN26U5RqEEFnu9u1A6tYtytKlXahSxdPS4QhhcUrrtE2fUkqZAK21tk1LeXajlPICbty4cQMvLy9Lh5Oitw68xcx9M/F08eTWhFvY2djBO+/A9OnGsg2BgZYOUQiRCzx8GMbMmfvo1asKrVuXJirKhK2tSrhnqhBWztvbmxIlSgCU0Fp7Z+S5072Eg1LqvzSUa621LICSCR6GPWTmvpkA7B2410iw/v7bSLAAli61YHRCiNxAa826dWcYO3Y7t28H4enpQuvWpbGzk7sGhYjPnHWyEu/aqROVy92FmajVCmOZhm0vbKN6oerGSu716hkHFy2Sye5CiEx1+bIvo0ZtY/v2S1Sr5snatX1o3rykpcMSwiqlN8mSPmAL+vHsj/xz9x+al2zOU+WfSrhVTr9+MHasReMTQuR8n332F7/+epX589szblxj7O2z9UwRITJVmpMsrbX0A1vYx398DMCG5zYYBZMmGc+dO8P331soKiFETvfrr1dxc3OkTp2ivPFGK0aMaEDp0vktHZYQVk8Sp2xi1r5Z7L+6n+H1h1PItZDRi7V1q7HY6ObNlg5PCJED3b8fzKBBG2ndeiVvvLEfgDx5HCTBEiKNMnzvQpHxTNrEwt8WArCwk/HMtWvG86pVIHfyCCEykMmkWb78OJMn78bfP4xx4xozZ05rS4clRLYjSVY2MHHnRIIigpjWfBpOdk7GEg3dYtaALZX4PgQhhHgyCxYcYcqU3TRsWJxly7pQp05RS4ckRLYkSZaV235pO4t+W0Sj4o14o1XMnoRubsbzSy9B5cqWC04IkWMEB0fg5xeGl5cbr75al/z5nXj55TqymbMQT0D+91ixu0F36b+hP7bKlh0v7jB6sTp3flTh668tF5wQIsfYsuUC1ap9St++69Fa4+7uzJAh9STBEuIJyf8gK2XSJlosb4FfmB+Tm0wk374jMHw4bNtmVLh6FeykI1IIYT5v7wCefXYtXbuuxt7ellmzWslq7UJkoCf6La2UehpoC7hrrV9RSsWuSHdLax31xNHlYm8deIuLvheZ1HQS8yZshZPzHx1cvlzmYgkhnsj27Zfo02cdERHRvPFGS6ZNa4GTk/zhJkRGMut/lFLKDvgR6BKv+BXgW6B5zOvlTxxdLrb+zHoA5oU0gZPvG4W//gq1az+akyWEEOkUFWXCzs6G2rWL0L59Wd59tx2VKhW0dFhC5EjmDhdOAbpirAAfv2/5k5j3vdJ7QqVUZaXULqVUsFLqjlLqPaWUQxrbFldKrVRK3VdKhSqlziqlXkhvDNbiit8VTt47ybNVnsVu3ASjcPduaNlSEiwhhFn8/cMYMWIL3buvRmtNkSJ5+Omn5yXBEiITmZtkvYSxP+H0ROX7Yp6rp+dkSil3YC/ggJGgTQeGAAvT0LYocBQoFtOmK7AUcExPDNZkxYkVAEyuOxquXIHixaFdO8sGJYTIlrTWrF59ksqVl7B06Z+UKOFGRES0pcMSIlcwdwC+dMzzYmBevPKHMc9F0nm+YYAb0FNr7QtxQ5KfKqXmaa1vpdD2PeAG8JTWOvYnx550Xt9qREZHMvfAXKp6VqVB9Y5G4fPPWzYoIUS2dPWqP0OG/MKuXf9Ro0YhfvrpeZo0KWHpsITINcztyQqJefZIVN405jk4ned7Gtgdm2DFWIsRX8fHNVJKuQHPAZ/GS7CytaGbhwIwsszzqPAIo3D+/BRaCCFE8mxsFP/8c5cFCzrw119DJMESIouZm2Qdi3n+PLZAKTUZWIMxjPhHOs9XGTgXv0Br7Q/cjjn2OHUxhhgjlVK/KqUiY+ZzzVdK2ad0QaWUm1LKK/ZB+nvfMtype6dYfmI5rvauDO82xyicP1+WahBCpNnevVeYOHEnACVL5uPq1TFMmNAUe3tbC0cmRO5jbpL1Xszz0xhJFcA7QKGY9++n83zugH8y5X4k7S2LLzYx+hL4E6PXaxEwFpibyjXHYwwzxj6OpVw98206twmAdc0/QkWbYPBgmDzZwlEJIbKDe/eCeemln2jX7hvWrj3N/fvGgIKzc4p/bwohMpFZSZbWeg/wMhDAozsMFcacrFe01vtSaJ6RYuPfrbWeoLXep7Wej5HkjVNKOafQdiFQIt6jQeaGmrLLvpeZ/etsWpVqxVNTYjoI46/uLoQQyTCZNJ9//heVKi1h9eqTTJzYhDNnRuLp6Wrp0ITI9cweh9Jar1BKrcOYh+UJ3AeOaK3TOx8LjB6rfMmUuwO+yZTHbwfGnYnx7QFmAOWBk8k11FoHYCSJABZf5fiFH18gyhTFgsZvoAbH3EnYvr1FYxJCWL+rV/0ZPXobdesWZdmyLtSqZfGZD0KIGOYuRvoOsFJrfQ7YlQFxnCPR3CulVD6gKInmaiVyJpXzOj1hXFnibtBdfr/5OxOK9aZ+lZgE6/XXIX9+i8YlhLBOQUERbN58gb59q1O2rDtHjvyPOnWKYmMjW+IIYU2eZDHS00qpP5VSrymlPJ8wjm1Ae6VU/nhlfQATsPNxjbTW1zB6qhJ3+XQAQkk9CbMKbx54E4BubxurvNO2LcxNbUqZECI32rTpHFWrfkK/fhs4e/Y+APXqFZMESwgr9CQbRCuMu/sWATeVUpuVUs8rpcxZBHQZEAhsVEp1VEoNxphXtSz+GllKqT1KqUuJ2s4AuiulFiulOiilpgMTgYVmDl1mqSt+V/jk2Cc08oZW14CXX4Y9e0A2aRVCxHP9+kN69FhDjx4/4Oxsz549A6hS5Un/vhVCZKYnWYz0OYzepgYx5+mMcbdhoFJqndb61bSeTGvtp5RqB3wMbMRIuL7ESKDis00cs9b6F6VUP2AmMBxj2YdZwLvp/lQW8MKPxu4/H22LKVi2zHLBCCGskr9/GDVrLiUsLIo5c1ozZUozHB1laRchrJ3SWqdeK6UTKFUKI9l6DqgfU6y11tlqUZaYtbJu3LhxAy8vryy55vcnv+eFH1+g4yXY8Z0CkylLriuEyB6uXfOnVKn8AHz11d+0bFmKChUKWDYoIXIYb29vSpQoAVBCa+2dked+kuHCWAEYdwD6AVEZcL5cQWvN4t8WA7B8E/DnnxaNRwhhPfz8Qhk2bDPlyn3EH3/cBODll+tKgiVENmPu3YXuQE+MHqy28c6jgHDg5wyJLgc7eP0gx24d4/2dUCxvMahb19IhCSEsTGvN99+fZPz4ndy/H8zw4fWpWFESKyGyK3MH9e+QMLHSwGHgG2Cd1vrh4xoKw4IjC7A3KQad0HBiv6XDEUJYWFSUic6dv2PXrv+oXbsIP//cl0aNsmbqghAic5ibZMXu03AR+BZYpbW+miER5QJBEUH8cuEXnj0HBUOAChUsHZIQwkJMJo2NjcLOzoaaNQvTuXMFRo1qiJ1dRszmEEJYkrlJ1qfAt1rr3zMymNxi1r43AOh/ErmbUIhcbNeuy4wZs521a/tQvXohFizoaOmQhBAZyNy9C0dJgmWeqOhIvtv7IXnDoad3Hhg61NIhCSGy2J07QfTvv4GOHVcREhKJn1+opUMSQmSCNPdkKaX2YizN0C7mdUq01rrdk4WWM23YuoC7LiaWbgZ19ZqlwxFCZCGtNZ999hdTp+4mODiSKVOaMXNmS1xdHSwdmhAiE6RnuLA1xgT3xK8TUykcy93u32fy3um4usDzs9eBh4elIxJCZCGlFIcOXad69UIsXdqFGjUKWzokIUQmSk+SdR1jL8HY15JIpdMfTUtx/UUYcN0d9y69LR2OECILBAaGM2fOrwwbVp/y5T347LOuODvby16DQuQCaU6ytNalk3st0mjFCt6pF4qNCd5e+I+loxFCZDKtNRs3nuO117bj7R2Al5cbY8c2lqFBIXIRcxcjfQNj3tWbyRxri3EwtXlbuYrfO2+wsT8MKt4Vr3wlLB2OECITXbvmz6hR29i8+QKVKxdk376BtG5d2tJhCSGymLlLOMzGGC5MkmQBuzGGFWX30lgHDrDA6wYAvVsOs3AwQojMNmXKbnbv/o+33mrDpEnNcHDIVlu5CiEyiFkbRCulTCSzCbRSyg3wT+6Ytcu0DaJ9faFAAUqMA5UvH9dn+WfcuYUQVuPw4euUKpUfLy83vL0DCA+Polw5ublFCGuXmRtEp2cJh4HAwERliYcES8Y8+z9ZWDmEyQQFCvBVHfDOB2MbDbZ0REKIDObrG8qUKbv48svjvPxyHb78sjteXm6WDksIYQXSM6RXmoRLNyigVaI6sbfLHHiiqHKKP/5AA1M6QF6HvLzV9i1LRySEyCBaa7799l8mTNjJgwchjBrVgLfeamvpsIQQViQ9SZY/ELt6ZimMZOt6vOMa8AOOAbMyIrhsb+NGVtWEBy4wuvYgXB1cLR2RECKDTJu2h/nzD1O3blG2bXuB+vWLWTokIYSVSc8SDh8CH0LcnCy01mUyKa6cYedOfi1tvBzTaIxFQxFCPLnQ0EjCw6PJn9+J//2vDkWL5mHkSNnMWQiRPHPvAGyToVHkULdMD/mqLtQoVINyHuUsHY4Q4gns2HGJESO20rx5SVau7EHFigWoWLGApcMSQlix9Ex8bwmgtT5AzLys2LLkxNTLnYKDoVgxXu0aAMDSLkstHJAQwly3bwcybtwOfvjhNKVL5+f556tZOiQhRDaRnp6s/Txa/2o/KW+ro9N57pxl2TJ8ogLYWtF426xkM8vGI4Qwy48/nmXw4E2EhEQybVpzXn+9JS4u9pYOSwiRTaQ3EVKPeS1iPXgAEyfyv37G24+f/tiy8Qgh0k1rjVKK8uU9qF+/GB999BTVqhWydFhCiGwmPUnW4Me8FvEtXUq4LWyroPByK86ohqMsHZEQIo0CAsJ54419mEyajz56mpo1C7NnzwBLhyWEyKbSc3fhyuRei3i0hpkzWV0bomw0M1rMsHREQog00FqzYcNZxozZzq1bgbzySp243iwhhDCXuRtEOwKuQLjWOjhmO52RgCewXWu9MwNjzD6iogA4UC0PEETf6n0tG48QIlVXr/ozcuRWtm69SNWqnqxZ8ywtWpSydFhCiBzA3MVdlgD3gYkx73cBbwFjgG1Kqd4ZEFv28/33eLvBqvIhvFznZfI75bd0REKIVNy5E8Svv17lnXfacfz4UEmwhBAZxtw7ABvFPG9WSlUBGgDRQBhGD9dYYP0TR5fdzJvHxw0hUpmY2HRi6vWFEBZx8OA1Tpy4w+jRjWjc2IsbN8bh7u5s6bCEEDmMuT1ZJWKeLwJ1Y17PBRrGvK70JEFlS+++S/TFC6xoYEedInWoXLCypSMSQiTi4xPC//63iZYtV/DBB0cJDY0EkARLCJEpzE2yHGOeI4FqGOti/QVciinP84RxZS87d8K0aRwoBfcco+hXvZ+lIxJCxKO1Zvny41SuvISVK/9hzJhG/PvvcJydZc0rIUTmMXe48BZQBlgONI8pOwMUiXnt84RxZS+//ALA8glt4cFe+tWQJEsIa3Ls2C3+97+fqV+/GDt2dKFePdnMWQiR+cztydqEsRhpH6AYcFJrfRWoF3P81JOHlo0cOkSgA2wI+I1ahWvh5eZl6YiEyPVCQiLZu/cKAA0bFmfHjhf57beXJcESQmQZc5OsmcBnwGlgC/B8THkF4Fdg9ZOHlo2cOMGy+hASGcKHT31o6WiEyPW2br1ItWqf0rnzd9y5EwRAx47lsLU190eeEEKkn1nDhVrrEGB4MuXvA+8/aVDZys2baOCrtvlpUKwCrUq3snREQuRaN28GMHbsDtavP0PZsu5s2tSXIkVy1xRRIYT1MHsTZ6WUHTAQeApjEVIfYBuwUmsdlTHhZQPnzvFnMThv58+iGv0tHY0Qudb16w+pXv1TwsKieP31Fkyf3kImtgshLMrcFd+dgJ1As0SHegKDlVLttdZhTxqc1YuIgPbt2d/UeFujUA3LxiNELuTrG4qHhzMlS+Zj4sSmPPdcNSpXLmjpsIQQwuw5WdMx7ipUyTyaxBzP+W7fBmBtQ1cA2pRpY8lohMhVHj4MY/TorZQp8yE3bjwE4I03WkmCJYSwGuYmWc9hrI21DmOyu1PM81qMROu5DInO2t2/z9mC8Gf+YEY1GIWNkkm1QmQ2rTU//HCKypU/YcmSYzz3XFVcXR0sHZYQQiRh7pys0jHPQ7XW/jGvLyulhmEkWKWTaZPz/PMPX9cxXj5d4WnLxiJELhAYGE6fPuvYseMy1asXYv36PjRrVtLSYQkhRLLM7XoJjXkul6i8XKLjOVr46X/4qi60LtyIzhU6WzocIXK8PHkccHKyY/789vz99xBJsIQQVs3cJOtPjGHBLUqp+UqpUUqpd4HNPNpiJ8f7c9NS/Jyhd82+lg5FiBxr//6rNGv2NffuBaOU4qefnmfy5GbY29taOjQhhEiRucOFC4C2GEs3TIxXrjCSrAVPGJf1W7KEjeWMlSqertLdwsEIkfPcvx/MxIm7+Oabf/DycuPKFT8KFXJFKWXp0IQQIk3M6snSWu8AhgKBJLyzMBAYprXenmERWqsvvuCvYlDSsTBl3ctaOhohcgyTSfPVV39TufInfPfdv4wf35gzZ0bQqJFsVyWEyF7MXoxUa/2lUmoN0BQoiLEY6RGtdVBGBWfNQq5d4vAziqG1cseNlEJkpa++Ok758h589llXatcuknoDIYSwQulOspRSpXm0EfTfWuudGRpRdmAycTJPCBG20Lxkc0tHI0S2FxwcwfvvH2Hs2Mbkz+/Epk198fBwlr0GhRDZWpqTLGVMhFgKvIIxNBhbvhx4VWutMz48K/X99xyOuampSsEqlo1FiGxu8+YLjBq1lWvXHlKqVD4GD66Dp6erpcMSQognlp4/E0cDQ0i6wvtgYGyGR2bNzp/n50pQ0MmDaoWqWToaIbIlb+8AevX6gW7dVmNvb8uuXS8xeHAdS4clhBAZJj1J1v9iniOAn4FfgHCMRGtQxoZl3YLee4ujXvB89b6yyrsQZurXbwNbtlxk1qxWnDw5nPbt5QYSIUTOkp45WRUxlmd4Wmu9H0Ap1QbYg7GlTu5w/Tq/F4cIO2jk1djS0QiRrfzxx02qVfPE1dWBTz7pjKOjLZUqyV6DQoicKT3dME4AsQlWjNjXjhkUj/U7eZK9ZYyX5T3KWzYWIbIJf/8wRozYQuPGXzJ//mEAatYsLAmWECJHM+fuwhLEm/j+uHKt9fUnC81KXbnCFXfjZWPpyRIiRVprVq8+xfjxO7h7N5ihQ+sxbpz8vxFC5A7mrJN1NdF7nUy5NvPcVs+05GN2d4de5brJytNCpGLEiC0sW/YXNWsW5qefnqdJkxKWDkkIIbKMObO2E99d+LhH+k6qVGWl1C6lVLBS6o5S6j2llEM6zzFWKaWVUpvTe/00CQrieMAF7rtC56rPZMolhMjuwsOjCA83tpx67rlqLFjQgb/+GiIJlhAi10lPb9MBHvVaZSillDuwF7gI9AKKAwsBF2BUGs9RBJgF3MuMGAFYsYLtMdOwOpXvlGmXESK72rv3CsOHb+GFF2rwxhutaNOmDG3alLF0WEIIYRFpTrK01q0zMY5hgBvQU2vtC6CUsgM+VUrN01rfSsM53sNYWqJUpkWpNTvLQdV85fFyk33UhIh1714wEybsZNWqfylRwo26dYtaOiQhhLA4a1nk6Wlgd2yCFWMtRnwdU2uslGoO9ACmZkp0MUxBgRwoDXWL1M3MywiRrfzwwykqVVrC6tUnmTSpKWfOjKRr14qWDksIISzOWianVwa+jl+gtfZXSt2OOfZYSilbYAnwttb6dmZORv9j+1fQFioVkq10hIjl4mJPlSoFWbasKzVrFrZ0OEIIYTWsJclyB/yTKfcDPFJpOwJwBRal54JKKTeMIcpYRVJsoDVrXP4DoHfNvum5lBA5SlBQBLNn76dkyXy89lojunWrRNeuFeVuWyGESMRahgvNopQqBMwFxmutI9LZfDxwI97jWIq1z5/nn5g/0isXTLFzTYgca9Omc1St+gkffHCUs2fvx5VLgiWEEElZS0+WH5AvmXJ3wDeZ8lhzgX+Bg0qp/DFldoBdzPsgrXXUY9ouBL6M974IKSVaS5fi7wQVHIulEI4QOdP16w8ZPXobP/98nooVC7BnzwDatpW7BoUQIiXWkmSdI9HcK6VUPqBozLHHqQy0xEjSEvPDmFC/PbmGWusAICDe9VIM8MHmtZwYANPqvZhiPSFyosOHr7NjxyXmzm3N5MnNcHS0lh8dQghhvcz+SamUKgBMBtoC7lrr8kqp/jHn3K61Ts96VduA6Uqp/Fpr/5iyPoAJ2JlCu7FA/kRli4FQYBpGL1eGWFncB4CGJZpk1CmFsGpHj97g9u0gevWqQt++1WnevCQlSiTX4SyEECI5ZiVZMXOhfsNYk0rxaJHSp4AXMBKc99JxymXAaGCjUmoexmKk7wPL4q+RpZTaA5TSWpcH0FqfSCY2f4xhwv3p+lApOXCA9xtG4aYd6Fqxa4adVghr5OcXytSpu/n887+pUqUgPXpUxsZGSYIlhBDpZO7E9zeB0kB0ovIVGElXt/ScTGvtB7QDooCNwLsY86XGJ6pqiwWGOO/0786dvDCsTB/sbGSYRORMWmtWrfqXSpWW8MUXfzNiRH2OHHkZGxuZ1C6EEOYwN2PogtF71QnYE6/8j5jncuk9odb6LNA+lTqt03CeVOuki9b8nuchAJ1a/i9DTy2ENfnllwu89NJP1K5dhM2b+9OwYXFLhySEENmauUmWZ8zz4cccL2Dmea3P/fv8URyUhgbFGlg6GiEyVFhYFOfP+1CrVhG6dq3IqlU9ef756tjZZevVXYQQwiqY+5PUJ+Y58YJR/WKeM2+T5qwWEMCmylDWzpO8jnktHY0QGWbXrsvUqLGUjh1XERwcgY2N4oUXakqCJYQQGcTcn6axQ4QbYwuUUluBpRjDiHuSaZM9HTnCrbzgautk6UiEyBB37gTRv/8GOnZcRWRkNF9/3R1XVwdLhyWEEDmOucOFc4HuGJPfY+8s7IQx6f0hxsT4HCHsjekEDoC2JVpZOhQhnti//96lZcvlBAdHMmVKM2bObCkJlhBCZBKzerK01peAFsBejLWsVMzzXqCl1vpyhkVoYQdL2xBlCy3q9rB0KEKYLTQ0EoCqVT157rlq/P33EN59t70kWEIIkYnMXo9Aa30SaK+UciZm+xutdViGRWYlvi9hLCbfpERTC0ciRPoFBoYza9Z+Nm48x7//DidPHgc+/zxdK6wIIYQw0xMv+qS1DsVYYT3n0ZqAiCAAiuYtauFghEg7rTU//XSO117bxs2bgQwaVJvIyMTL2gkhhMhM5q74ntpPa621zv6rdgYFcdMNmoQWtHQkQqSZj08IgwZtZMuWi1SuXJD9+3vRqlVpS4clhBC5jrmJUK5YAjrq4nl+94LBDuleW1UIi8mb14GbNwN56602TJrUDAcHW0uHJIQQuZK5SdbKRO9tgTJAUyAEWPckQVmLf1bOBw+oUE4WIRXW7fDh6yxYcJTVq5/FycmOP/98FVtbWe9KCCEsyawkS2s9OLlypVQnYBvw95MEZS2uHvgZekDbpi9aOhQhkvXgQQhTp+7myy+PU7RoHi5efECNGoUlwRJCCCuQoT+JtdY7gCDgtYw8r0VERHDVOQKAUvlLWTgYIRLSWrNy5QkqV/6Er746zqhRDTh7diQ1ahS2dGhCCCFimDvxvWUyxU7A00AeIPvfivf331zND07alsKu8otLWJfQ0ChmzdpPyZL52LbtBerXL2bpkIQQQiRi7pys/Txa6T0xDZww87zWw9eXM55QyqEQSuWKef7CyoWGRvL5538xcmRDXFzs2bt3ICVL5pO9BoUQwko9yTILj8s8rgMjnuC81uHUKfaWhaZ5Clk6EiHYseMSI0Zs5b///ChdOj/PPFOZsmXdLR2WEEKIFJibZCU38T0cuAH8rrWOMj8k6xAWZixCmieP/CITlnPrViDjxu1g7drTlCmTny1b+tO5cwVLhyWEECIN0p1kKaUcAb+Yt0e11vczNiTrsDfiHNhDh0qdLR2KyKVMJk3btiv57z8/pk9vzowZLXFxsbd0WEIIIdIo3UmW1jpcKbUe487EHDvbdnHgbvCAPtWes3QoIpc5ffoeVap4YmOjWLKkM8WK5aVqVU9LhyWEECKdzJ0xewljTlaO3Qxtl4cfpfxl+QaRdQICwhkzZhs1ay7jq6+Mpebaty8rCZYQQmRT5iZZs2Oe31ZKOWRQLFbD+9pJAJr457VwJCI30Fqzfv0ZqlT5hI8++oNBg2rRq1cVS4clhBDiCZk78X048BB4FeijlLoAhMY7rrXW7Z40OEu57HsJgGcr97BsICJXGDBgI6tW/UvVqp6sWfMsLVpI76kQQuQE5iZZrTDWw1KAO9Aw3jHF49fQyhYu3j0LQEEb6ckSmSMyMho7OxuUUnToUJZq1TwZP76JbOYshBA5SJqTLKXUAIweqm8x1sLK1olUSkK8rwBQzrOihSMROdGBA9cYNmwzM2a04IUXajJgQC1LhySEECITpKcnawVgAr7VWpfOlGisxP0QY1WKQrWbWzgSkZP4+IQwefIuli8/QbFiecmXz8nSIQkhhMhE6R0uzBX7yzz46xB5i4Ojh9zVJTLGd9/9y2uvbcffP4wxYxoxd24b3NwcLR2WEEKITPQk2+rkWPcj/PEIBUqWtHQoIoe4dy+YsmXd+eyzrtStm/33TxdCCJE6c1Z835uGatn37kKTiaPFonF3LWDpSEQ2FhISyZtv/kqTJiXo3r0Sr73WiNdea4StrWzmLIQQuYU5PVmtUjmeve8u/PtvbrpB7ah8lo5EZFNbt15k5MitXL3qz7hxjenevZIkV0IIkQuZk2Tl6HlZPod2Ql4oVbaOpUMR2czNmwGMGbOdDRvOUq6cO9u3v0CnTuUtHZYQQggLMSfJKpPhUViRU/8dhVrQvfEgS4cispmVK//h55/PM3NmS6ZNa46zs2zmLIQQuZk5G0Rfy4xArMV1p3AAShYsZ+FIRHZw7NhNIiNNNG1aggkTmvDss1WoVKmgpcMSQghhBWSiSCKXH1xCaahQoIKlQxFW7OHDMEaN2kqjRl8yefIuABwd7STBEkIIESc9PVnXMRYjzdFu5LehTLADdjayuoVISmvN2rWnGTt2B3fuBPHqq3V59932lg5LCCGEFUpzJpHTV3mPdahQOD1tZKhQJO+rr47z6qu/UL16ITZseI6mTUtYOiQhhBBWSrprEgm1hwoReSwdhrAi4eFR3LkTRKlS+enXrzphYVEMHVoPe3vZzFkIIcTjyZysZOQvJj1ZwrBv3xVq1VpG9+5riIoy4erqwKhRDSXBEkIIkSpJspLh7igLkeZ29+4FM3DgRtq2/Ybg4EjmzGmNrW2OXiJOCCFEBpPhwmQ4V6xq6RCEBR0+fJ1u3VYTEBDO+PGNmTOnDXnyOFg6LCGEENmMJFnJcC5WytIhCAuIjjZha2tD9eqFaNGiFHPmtKZ27SKWDksIIUQ2JcOFySiQp5ClQxBZKDg4gilTdtGmzUpMJk2+fE5s2tRXEiwhhBBPRJKsZFQpXN3SIYgssnnzBapV+5T33jtCyZL5CAmJtHRIQgghcggZLkzEKRLyu3hYOgyRye7cCWLEiC389NM5KlTwYPful2jXrqylwxJCCJGDSJKVSOFgUEruIsvpbG0Vv/3mzezZrZgypTlOTvJfQQghRMaS3yyJhMvyRznW7797s2rVv3z00dN4erpy+fJrODvbWzosIYQQOZTMyUqkSnR+S4cgMpi/fxgjRmyhSZOvWLv2DNevPwSQBEsIIUSmkp6sRJyQrqycQmvN6tWnGD9+B3fvBjN0aD3eeacd7u7Olg5NCCFELiBJViKFIh0tHYLIIPfvhzB06GbKlnXnp5+ep0kT2cxZCCFE1pEkK5FSUa6WDkE8gfDwKDZsOEv//jUoVMiVX38dRM2ahbGzk5FxIYQQWUuSrEQi5cbCbGvPnv8YMWIrFy48oEyZ/DRpUoK6dYtaOiwhhBC5lPx5n0iZ6DyWDkGk0927Qbz44o+0b/8tYWFRbNrUV4YGhRBCWJzVJFlKqcpKqV1KqWCl1B2l1HtKqRR35VVKFY2pd0IpFaiU8lZKfa+UMnvzQU+TTIrOTsLCoqhT5zPWrDnFpElNOXNmBN27V7J0WEIIIYR1DBcqpdyBvcBFoBdQHFgIuACjUmhaL6b+18BvQEFgJvCHUqq61vp+emPxDE5vC2EJ168/pGTJfDg52fHeex2oWbMwNWsWtnRYQgghRByrSLKAYYAb0FNr7QuglLIDPlVKzdNa33pMu0NAZa11VGyBUuoIcB0YAHyQ3kA88srm0NYsKCiC2bP3s3jxb2zf/iLt25flxRdrWjosIYQQIglrGS58Gtgdm2DFWIsRX8fHNdJa+8dPsGLKvIH7QDFzArEtJL0h1mrTpnNUrfoJH3xwlP79a0jPlRBCCKtmLT1ZlTGG/OJorf2VUrdjjqWZUqoiUAg4a04gylYWI7U2Wmv69FnHhg1nqVixAHv2DKBt2zKWDksIIYRIkbUkWe6AfzLlfoBHWk+ijJ2dPwJuAatTqeuGMUQZqwgANpJkWQuTSWNjo1BKUb16IWrVKszkyc1wdLSWf7ZCCCHE41nLcGFGmQ20AwZorVObwj4euBHvcQxASZJlFY4cuUHdup9x5MgNAGbPbs3Mma0kwRJCCJFtWEuS5QfkS6bcHfBNpjwJpdSrwBvAUK31njQ0WQiUiPdoADJcaGm+vqEMHfoLzZp9zZ07QTx8GGbpkIQQQgizWEu3wDkSzb1SSuUDisYcS5FSqiewFHhDa/11avUBtNYBQEC8cxjPkmRZzPffn2Ts2O34+IQwYkR93n67HfnzO1k6LCGEEMIs1pJkbQOmK6Xya639Y8r6ACZgZ0oNlVKtMeZffaG1fvNJA5HhQss5cuQGxYu7sXlzfxo2LG7pcIQQQognYi1J1jJgNLBRKTUPYzHS94Fl8dfIUkrtAUpprcvHvK8CbMRYxPRbpVTjeOe8r7W+nN5AVJgMT2WVsLAo3nnnID17VqF27SK8914HHBxsZTNnIYQQOYJVJFlaaz+lVDvgY4ykKRD4EpiRqKotCWNuhDGXKx9wOFHdlcCg9MaiqldPbxNhhl27LjNixFYuXfJFa6hduwguLvaWDivX01rj4+NDWFgY0dHRlg5HCCHMZmtri5OTEwULFoybEpTVrCLJAtBanwXap1KndaL3K4AVGRmHcpK9CzPTnTtBjB+/g9WrT1GqVD42b+5Hly4VLR2WwEiwbt68SWBgIA4ODtjK/EQhRDYWERFBUFAQ4eHhFC9e3CKJltUkWdZCuSV3k6PIKHPm7GfdujNMmdKMmTNb4uqa4h7gIgv5+PgQGBhIoUKFKFCggKXDEUKIJ/bgwQPu3buHj48Pnp6eWX59SbISUR5pXvtUpNHx47fJm9eR8uU9mDu3DSNHNqR6ddkj0tqEhYXh4OAgCZYQIscoUKAA/v7+hFlovrXMME7MQuO2OVFgYDjjxm2nfv0vmDJlNwCenq6SYFmp6OhoGSIUQuQ4tra2FptjKj1ZiUmS9cS01vz441nGjNnOzZuBDBpUm/feS3G6nRBCCJHjSJKVmCRZT+y99w4zdeoeqlQpyHff9aJVq9KWDkkIIYTIcjJcKDJEZGQ0vr6hALz4Yk3eeacdJ04MkwRLWMTs2bNRSsU9ChQoQPPmzdm6dWuy9f38/Jg0aRLlypXD0dGRwoUL069fP86ePZts/aCgIObMmUP16tVxcXHB1dWVhg0bsnDhQovN/cgqixYtomTJktja2tKjR48MP3/879vjHitWrHiia5w4cYLZs2cTEhKS5jZ9+vRh0qRJT3Td7OiXX36hVq1aODk5UbFiRZYvX56mdmfPnqVz5864urri7u7OSy+9hI+PT4I6ly5dYtiwYdSuXRs7OzuqJ7OEUmBgIB4eHhw+nHiVpuxBerISk56sdDt06DrDhm2mbFl3Nm3qS/Hibkyd2tzSYYlcztnZmb179wJw69Yt5s2bR7du3Th48CBNmzaNq3fnzh1atmyJn58fM2bMoE6dOnh7e7NgwQIaNGjA1q1badmyZVx9Hx8f2rRpw40bNxg7dizNmxv/1o8ePcq7776Lra0tY8aMydoPm0UuXrzIhAkTmDJlCt26daNgwYIZfo2jR48meN+kSRNGjx5N//7948rKlSv3RNc4ceIEc+bMYdSoUbi4uKRa/++//+aXX37hv//+e6LrZjeHDh2iZ8+evPLKKyxevJi9e/fy8ssvkzdvXnr37v3YdgEBAbRt2xYvLy++//57QkJCmDZtGl26dOHo0aPY2Bj9O6dPn2bLli00atQIk8mEyWRKcq68efMyevRopk+fzq+//pppnzXTaK3loTWAF6Bv/PWXFmnj4xOsX355k4bZumjRBXrt2lPaZDJZOixhpitXrugrV65YOowMMWvWLO3q6pqgzNvbWyul9JAhQxKU9+zZUzs6OuqzZ88mKA8KCtJVqlTRxYsX16GhoXHlffr00S4uLvrkyZNJrvvgwQN9+PDhDPwkaRcSEpLp1/jll180oC9fvvzE5woLC9PR0dGp1gP0+++//8TXi2/58uUa0Pfv309T/QEDBuju3btnyLWz4vuUUTp27KibNm2aoKxfv366SpUqKbZ75513tLOzs75z505c2bFjxzSgf/zxx7iy+N//gQMH6mrVqiV7vqtXr2pAnzhxwpyPkerPths3bmhAA146g3MLGS5MTHqy0mTXrstUrvwJy5efYPTohpw7N4o+fapZbFVdIVJTvHhxPD09uX79elzZtWvX2LhxIwMGDKBy5QR71OPq6sqMGTO4efMm69ati6u/fv16hg0bluzQhoeHR4JesuScPXuWXr164eHhgYuLC7Vq1WL16tUAXL16FaUU69evT9Bm7NixlC5dOu79ihUrUEpx9OhROnTogKurK5MmTaJ169Z07do1yTWXLFmCs7MzDx8+BIw/rhcsWEDFihVxdHSkbNmyLFq0KMW4Bw0aRLdu3QCjJyn+sN21a9fo3bs3+fLlw9XVlU6dOnHy5MkE7UuXLs2oUaN47733KFWqFM7Ozvj6+qZ4zcdZsWIFNWvWxMnJieLFizNjxowEd4/5+/vz6quvUrx4cZycnChRogR9+/aNazt48GAAPD09UUol+NomFhwczIYNG5L03Bw9epTu3btTrFgxXF1dqV27Nt9++22COvv370cpxZYtW+jduzdubm706dMnLsYRI0ZQtGhRHB0dqVevHjt3Jtyqd8uWLXTo0IFChQrh5uZGo0aN2L59u1lfs/QKDw9n3759cfHG6tu3L2fPnuXq1auPbXv8+HFq1apF4cKF48rq169PgQIF+OWXX+LKYnu0UlOqVCkaNmz4xMPEliDDhYlJkpAirTVKKcqV86By5YIsWtSJ+vWLWTosIVIVFBSEr68vZcqUiSs7cOAAWuu45CGx2PIDBw7w0ksvcfDgQbTWPPXUU2bFcPHiRZo0aUKJEiX46KOPKFKkCKdOnUqQ+KVH//79GTJkCNOnT8fFxYUTJ04wevRofH198Yi35t/q1avp3Lkz+fIZiy2PGTOGL7/8khkzZtCoUSOOHDnClClTcHZ2ZtiwYclea+bMmVStWpUpU6bw448/UrRoUcqVK0dgYCCtW7fGxsaGZcuW4eTkxNtvv03Lli35999/KVGiRNw5NmzYQIUKFfjwww+xtbXF1dU13Z954cKFTJ48mXHjxvHBBx9w9uzZuCTr3XffBWD8+PFs27aNd999l9KlS3P79m22bdsGQJcuXXj99dd566232L59O/ny5cPR0fGx1zt69CjBwcE0a9YsQfm1a9do1qwZw4YNw8nJicOHD/Pyyy9jMpkYOHBggrpDhgzhxRdf5KeffsLW1paIiAg6dOjA3bt3efvttylevDirVq2iS5cu/P3339SoUQOAK1eu0K1bNyZOnIiNjQ3btm2jc+fO7N27l9atWz82Zq11mpYssLW1fewfxpcvXyYyMjLJHx9VqlQB4Ny5c49NTsPCwpL9mjo6Oj52nmNqmjZtyq5du8xqa0mSZCUmSVayQkMjefvtg3h7B7BiRQ/KlnXn4MHBlg5LZIXhwyFRr0SWqlEDli41q2lUVBRgzMmaPHkyefPmTTBf6ubNmwCULFky2fZubm7kz58fb2/vNNVPzezZs3FwcODw4cO4ubkB0L69+cubDBs2jClTpsS9L1++PKNHj2bDhg28+uqrgJEMHD16lLVr1wLGL88lS5awbNkyhgwZEhdDSEgIc+bMYciQIcn2MJQrV46KFY0tsOrUqRP3C/ajjz7i2rVrnD59Ou4XcKtWrShZsiSLFy/mgw8+iDtHZGQk27ZtMyu5AmMS9KxZs5g8eTLz5s0DoEOHDjg4ODB+/HgmTZpEgQIF+OOPP+jfv3+CZCe2J8vT0zNuTle9evVSnVd27Ngx8uTJQ9myZROUx54PjKSmZcuWeHt789lnnyVJsrp37878+fPj3i9fvpwTJ07wzz//ULVqVQA6derExYsXefPNN+O+V6NGjYprYzKZaNOmDadPn+bzzz9PMcn69ddfadOmTYqfC2Dfvn2PPY+fnx8A+fPnT1Du7u4OkGIvZIUKFVi+fDmhoaE4Oxtb1V2/fp3bt2+TJ0+eVONKTq1atfjwww8JDAwkb968Zp3DEiTJSkySrCS2b7/EyJFb+e8/P/r0qUpkZDT29rJopbBuwcHB2Ns/2nTc1taWTZs2UalSpSc+t7nD4nv27IkbNsoIXbp0SfC+QIECdOjQgTVr1sQlWT/88AN58uSJG0bcvdtYGPjZZ5+NS0LBSLTmz5/PjRs3KFWqVJpjOHjwINWrV49LsMAYNu3QoQOHDh1KULd169ZmJ1gAR44cISgoiD59+iSJPTQ0lFOnTtGqVSvq1q3LihUrKFq0KE899VSyQ7tpdfv27WQTMT8/P2bNmsWmTZu4efNmXM9RcjsmJP4+7dy5kxo1alCxYsUEn6NDhw6sWrUq7r23tzczZsxg9+7d3L59O3b+MPXq1Usx5nr16nHs2LFUP1tG/F9IzquvvsqHH37I0KFDeffddwkJCYlL3s39v1OwYEG01ty9e1eSrGxNkqw4t28HMnbsDtauPU2ZMvnZurU/Tz9dwdJhiaxmZi+SpTk7O3PgwAFMJhMXL15k6tSpDBgwgFOnTlG0aFHAmKcFxl/ZtWrVSnKOwMBA/P398fLySlI/tlcnPR48eECxYhk3vB5/zkusfv36MXDgQO7cuUORIkVYvXo1PXv2xMnJCTDujtRaP7YHJ71Jlp+fX7JxFC5cmFOnTqUab3rELgFQt27dZI/fuHEDgI8//hgPDw8++OADJk2aRIkSJZg2bRrDhw9P9zUfN/Q1aNAgjhw5whtvvEG1atVwc3Nj6dKl/PDDD0nqJv7cPj4+HD9+PMEfAbFid10wmUx0796dhw8fMnfuXMqXL4+rqytvvPFGqsPLefLkoXbt2ql+tpR2eIjtsYqdxxcrtofLI4Ut6CpVqsRXX33FmDFj4uap9erVi86dOxMYGJhqXMmJ/R6Ehoaa1d5SJMkSj+XrG8rmzReYPr05M2a0xMUl6Q8EIayVjY0N9evXB6Bhw4ZUqlSJRo0aMXfuXJbGJI4tW7aMm5ic3LyszZs3x9WLX3/Hjh1mDfMVKFCAW7duPfZ4bCIUERGRoDz2F1tiyfUKPPPMMzg6OrJ27Vo6derEiRMneOedd+KOe3h4oJTi0KFDODgk3aA9vb0bHh4enD9/Pkn53bt3k/wiftIbY2LP9+OPPyaY6xUrdr5dvnz5WLx4MYsXL+bkyZN8+OGHjBgxgurVq9OiRYt0X9Pf3z9BWVhYGJs3b2bhwoWMHj06rjy5JQgg6ef28PCgZs2afPXVV4+97qVLlzh+/DgbN27kmWeeiStPS5KREcOF5cqVw97ennPnztGpU6e48nPnzgEkmauV2IABA+jbty8XLlzA3d2d4sWLU61aNbp3755qXMmJ/R5kt71VJclKLI13O+RUf/11i717rzBpUjOqVSvEjRvj8PBwtnRYQjyx+vXr069fP5YvX86sWbMoUqQIpUqVokePHqxcuZLx48cn6J0KCQnh7bffxsvLK+4Oq5IlS9K7d2+WLl3K4MGD4+bTxPL39+fs2bM0adIk2Rjat2/P+vXrmT9/frJDHoUKFcLe3j7B5OCIiIh0rQ+UN29eunbtyurVq/H19cXT0zNBQtiuXTvA6FV73IT/9GjevDnr16/n/PnzcQman58fu3fvjpvzlVGaNGmCi4sL3t7e9OzZM01tatSowaJFi/jqq684e/YsLVq0iEsu07JwbKVKlbh//z7BwcFxQ53h4eGYTKYESWpgYCA///xzmmJq3749W7dupVixYo/t2YxNpuJf49q1axw+fDjVXtSMGC50dHSkTZs2rF+/PsE8xh9++IEqVaqkeEdmLAcHh7ih2r1793LhwgUGDRqUarvkXL16lXz58lGkSBGz2luKJFmJ5dLhwoCAcF5/fS+ffHKMAgWceeWVuri7O0uCJXKUmTNnsmbNGhYvXhx3J9qnn35Ky5YtadGiBdOnT6dOnTrcvHmTBQsWcPXqVbZu3RrXwxRbv3Xr1jRr1oxx48bF3XX2+++/8/HHHzN16tTHJlmzZs1i8+bNNG/enMmTJ1O0aFHOnDlDSEgIkydPxsbGhl69erFkyRLKly9PwYIFWbJkSdxdvWnVr18/evXqxbVr1+jTpw92do9+1FesWJGRI0fy0ksvMWnSJBo1akRkZCQXLlxg3759bNy4MV1f08GDB7No0SK6dOnCW2+9FXd3oZ2dHWPHjk3XuVKTP39+5s6dy+TJk/H29qZ169bY2try33//sWnTJjZs2ICLiwvNmjWjZ8+eVK9eHVtbW7755hscHBzierFi54998skn9OjRAxcXl7g7+hJr1qwZJpOJ48ePxy08my9fPho0aMC7776Lp6cndnZ2vPvuu+TLl4979+6l+jkGDBjAZ599RuvWrZk4cSIVK1bE39+f48ePExERwTvvvEPlypXx8vJi6tSpREdHExQUxKxZs+KGrFOSN2/euF7cJzFz5kxat27NiBEjeO6559i3bx/ff/99kiFROzs7Bg4cGNczFxwczOzZs2nZsiVOTk789ttvvPPOO8yePTtBYhcSEhK3C8O1a9cICAiIW76kVatWeHp6xtX9888/adq0aZqXfbAaGb3wVnZ9ELsY6Zkzj12wLCcymUx67dpTumjRBRpm65df3qR9fIItHZawgJy+GGmsF154Qbu5uWl/f/+4Ml9fXz1x4kRdpkwZbW9vrz09PfXzzz+vzzzm50FAQICePXu2rlq1qnZyctIuLi66QYMGetGiRQkWLk3O6dOndffu3bWbm5t2cXHRtWvX1mvWrIk7fu/ePd2jRw/t5uamixcvrhcvXqzHjBmjS5UqFVcntcU0w8LCdL58+TSgDx48mOS4yWTSH3/8sa5evbp2cHDQHh4eukmTJnrhwoUpxv7TTz9pIMm/k6tXr+pevXrpvHnzahcXF92hQwf977//JqhTqlQpPXLkyBTPnxySWYx09erVukGDBtrZ2Vm7ubnpOnXq6JkzZ+rIyEittdaTJk3SNWrU0Hny5NFubm66WbNmeseOHQnOMXv2bO3l5aVtbGwSfG2TU6NGDT19+vQEZRcvXtRt27bVLi4uukSJEvr9999P8u9u3759GtDHjh1Lcs6HDx/qcePG6ZIlS2p7e3tdtGhR3blzZ7158+a4On/88Ydu0KCBdnJy0hUqVNArV65McdHOzLBp0yZdo0YN7eDgoMuXL6+/+uqrJHUAPXDgwLj3ISEhulOnTrpAgQLa0dFR16pVSy9fvjxJuytXrsQuAprksW/fvrh6ERER2sPDI9lrp4UlFyNVOuZuhdxOKeUF3Lhx9ixeqYw15yTnz/tQpconVK3qybJlXWne3Lxb00X2F7u4YFqGAYTITT7++GM+/PBDLl68KAsuW8CWLVvo378/N2/eNGsJiNR+tnl7e8fO8SuhtfY2O9BkZLN+tyyQC/4DRUREs3u3sQdXpUoF2bHjRf7+e6gkWEIIkYxXXnmF0NDQBKuVi6zzwQcfMGHCBLPX2LIkSbISy+FJ1oED16hdexmdOq3i4sUHAHToUA4HB1n3SgghkuPs7MyKFSuS3PUpMl9QUBCtWrVi3Lhxlg7FLDLxPbEcmmT5+IQwadIuVqw4QfHieVm3rg/lyz9+nRMhhBCPdOjQwdIh5Ep58uRh1qxZlg7DbJJkJZYDk6wHD0KoXHkJfn5hjB3biLlz25A37+P36hJCCCHEk5MkK7HsdntoCnx9Q/HwcKZAARcmTmxKx47lqFu3qKXDEkIIIXKFnJNRZJRkVkDObkJCIpk2bTclSy7i/HljG4qpU5tLgiWEEEJkIenJymG2br3IyJFbuXrVn759q5Mvn1PqjYQQQgiR4STJyiEiIqLp338DGzacpVw5d3bseJGOHctZOiwhhBAi15IkK4dwcLDF0dGOmTNbMm1ac5ydZTNnIYQQwpJkTlY2duzYTVq2XM7Vq/4ArFrVk7lz20iCJYQQQlgBSbKyoYcPwxg1aiuNGn3JuXM+/PefH4Bs9yBEjNmzZ6OUinsUKFCA5s2bx21Gm5ifnx+TJk2iXLlyODo6UrhwYfr168fZs2eTrR8UFMScOXOoXr06Li4uuLq60rBhQxYuXEhYWFhmfjSLW7RoESVLlsTW1pYePXpk+Pnjf98e91ixYoXZ52/dujVdu3bNsHhPnjxJ3rx5uX//foadMzt4+PAhL7/8Mh4eHuTNm5fevXtz+/btVNtprXnvvfcoU6YMjo6OVK9ePcmG02BsxN61a1c8PT1RSsVtHB3f22+/bfXrl8lwYTaitWbt2tOMHbuDO3eCePXVurz7bns8PJwtHZoQVsfZ2Zm9e/cCcOvWLebNm0e3bt04ePAgTZs2jat3584dWrZsiZ+fHzNmzKBOnTp4e3uzYMECGjRowNatW2nZsmVcfR8fH9q0acONGzcYO3YszZs3B+Do0aO8++672NraMmbMmKz9sFnk4sWLTJgwgSlTptCtWzcKFiyY4dc4evRogvdNmjRh9OjR9O/fP66sXDnz55t++umn2Npm3A4Xr7/+OoMGDcLT0zPDzpkdPP/885w+fZply5bh5OTEjBkzePrpp/nzzz+xs3t8avH+++8zY8YMXn/9dZo0acLPP/9Mv379cHFxoVu3bnH1vvnmGwA6d+4c9zqxkSNH8t5777Fv3z7atGmTsR8wo2T0jtPZ9QF4AfrGjRuP3anb0kwmk37qqVW6evVP9eHD1y0djshhUtupPjuZNWuWdnV1TVDm7e2tlVJ6yJAhCcp79uypHR0d9dmzZxOUBwUF6SpVqujixYvr0NDQuPI+ffpoFxcXffLkySTXffDggT58+HAGfpK0CwkJyfRr/PLLLxrQly9ffuJzhYWF6ejo6FTrAfr9999PsU5WfPbkXL58WSul9N9///3E54qKitIREREZEFXmO3LkiAb0jh074srOnTunlVL6hx9+eGy78PBwnTdvXj1+/PgE5V27dtU1a9ZMUBb7b+PKlSsa0OvWrUv2nIMHD9bPPPNMivGm9rPtxo0bGtCAl87g3EKGC61ceHgU77xzkNu3A1FK8e23Pfn77yE0bVrC0qEJka0UL14cT09Prl+/Hld27do1Nm7cyIABA6hcuXKC+q6ursyYMYObN2+ybt26uPrr169n2LBhVK9ePck1PDw8EvSSJefs2bP06tULDw8PXFxcqFWrFqtXrwbg6tWryQ6NjB07ltKlS8e9X7FiBUopjh49SocOHXB1dWXSpEmPHQpbsmQJzs7OPHz4EDD+uF6wYAEVK1bE0dGRsmXLsmjRohTjHjRoUFxPQ7ly5RIM2127do3evXuTL18+XF1d6dSpEydPnkzQvnTp0owaNYr33nuPUqVK4ezsjK+vb4rXTM7s2bPJkycPf/zxB02aNMHJyYlPPvkEgKlTp1KjRg3y5MlD8eLF6devX5IhrMRfo9jznTx5kubNm+Pi4kL16tXZsWNHqrF88803lC1bljp16iQoT08cK1eupFKlSjg6OvLPP/8AsGXLFho1aoSzszOenp4MHz6c4ODguLbBwcGMGjWKSpUq4eLiQunSpRk2bFjc9zezbdu2jfz58ycYqqtUqRK1a9d+7JA8wOXLlwkMDKRjx44Jyjt16sS///6b4P+mTRoXBu/Tpw9btmzBx8cnnZ8ia8hwoRXbt+8Kw4dv4fz5Bzg42DJhQlMKFnSxdFhCZEtBQUH4+vpSpkyZuLIDBw6gtU4wTBFfbPmBAwd46aWXOHjwIFprnnrqKbNiuHjxIk2aNKFEiRJ89NFHFClShFOnTiX45ZIe/fv3Z8iQIUyfPh0XFxdOnDjB6NGj8fX1xcPj0d6kq1evpnPnzuTLlw+AMWPG8OWXXzJjxgwaNWrEkSNHmDJlCs7OzgwbNizZa82cOZOqVasyZcoUfvzxR4oWLUq5cuUIDAykdevW2NjYxA0dvf3227Rs2ZJ///2XEiUe/UG4YcMGKlSowIcffoitrS2urq5mfe6IiAj69+/PuHHjmDdvHgUKFADg3r17TJ8+nWLFinH//n0++OADWrVqxZkzZ1IcwoqMjOSFF17gtddeY+bMmcyfP59nn32Wa9euxZ07Obt37042qU5rHH/++SdXr15l7ty5uLu7U6JECdavX8/zzz/P4MGDmTNnDrdv32bq1Kn4+fmxZs0aAEJCQoiOjubtt9/G09OTGzdu8Pbbb9OjRw/27duX4tcuOjo6dvTmsZRSKQ6pnjt3jkqVKiWZB1ylShXOnTv32Hax8xUdHRNu6xb7/uzZs5QsWTLF2BJr0qQJ0dHR7N+/n969e6erbVaQJMsK3bsXzMSJO/n223/x8nLjp5+ep0ePyqk3FCITDN88nJP3TqZeMZPUKFSDpV2XmtU2KioKMOZkTZ48mbx58yaYL3Xz5k2Ax/5gd3NzI3/+/Hh7e6epfmpmz56Ng4MDhw8fxs3NDYD27dubdS6AYcOGMWXKlLj35cuXZ/To0WzYsIFXX30VMHqZjh49ytq1awGjN2HJkiUsW7aMIUOGxMUQEhLCnDlzGDJkSLK9COXKlaNixYoA1KlTJ65n7aOPPuLatWucPn2aKlWqANCqVStKlizJ4sWL+eCDD+LOERkZybZt28xOruKf5+233+b5559PUP7111/HvY6OjqZJkyZ4eXmxd+/eJL0n8UVERPDuu+/SuXNnwOiVKVOmDNu2bePFF19Mto3Wmj///DPZyf9pjcPX15djx47FJaJaayZOnMjzzz/Pl19+GVevaNGidO7cmZkzZ1KtWjU8PT1ZuvTR/4moqCjKlClD8+bNuXDhQtz3KTnt2rXj119/fexxML5/+/fvf+xxPz8/8ufPn6Tc3d09xd7J2B7QP/74g9atW8eV//bbbwBm9Wzmz5+fkiVL8vvvv0uSJdLm1Vd/YcuWC4wf35g5c9qQJ0/23+pHiKwWHByMvf2j5UxsbW3ZtGkTlSpVeuJzm3sn7549e+jdu3dcgvWkunTpkuB9gQIF6NChA2vWrIlLsn744Qfy5MkTN0S2e/duAJ599tm4JBSMRGv+/PncuHGDUqVKpTmGgwcPUr169bgEC4xh0w4dOnDo0KEEdVu3bv3ECVasxJ8djGGsN998k9OnTxMQEBBXfuHChRSTLBsbmwTJbunSpXF2do5LrpPj5+dHeHh4shPe0xpHzZo1E/T0XbhwgWvXrrF48eIE35tWrVphY2PDn3/+SbVq1QD49ttvWbhwIRcvXkwwlJhakvXZZ58RGBj42OMAefPmTfG4udzc3HjxxReZP38+NWrUoHHjxvzyyy9xw+Xm/r8qWLBgmu5stARJsqzEyZN3KV7cDQ8PZ957rz1z5rSmdu0ilg5LCLN7kSzN2dmZAwcOYDKZuHjxIlOnTmXAgAGcOnWKokWNfTyLFy8OwPXr16lVq1aScwQGBuLv74+Xl1eS+in9InucBw8eUKxYMXM/UhKFCxdOUtavXz8GDhzInTt3KFKkCKtXr6Znz544ORlbbPn4+KC1fuydgelNsvz8/JKNo3Dhwpw6dSrVeM3h4uJCnjx5EpQdO3aM7t2788wzzzB16lQKFSqEUorGjRunuqyGs7MzDon2rXVwcEix3eOGvtITR+KvR+y8op49eyZ7zRs3bgDw008/MWDAAIYMGcLbb79NgQIFuH37Nj179kz1s5YvXz5Nw4UpcXd3j4slPj8/vwTD1MlZtGgRd+7cies1LFiwIG+++SYTJ06M+3+ZXo6OjoSGhprVNrNJkmVhwcERzJ37KwsX/sawYfX4+OPOVKqU8bdFC5Hb2NjYUL9+fQAaNmxIpUqVaNSoEXPnzo0bamnZsiVKKbZs2ZLsvKzNmzfH1Ytff8eOHWYN8xUoUIBbt2499nhsIhQREZGg3M/PL9n6yf0yfOaZZ3B0dGTt2rV06tSJEydO8M4778Qd9/DwQCnFoUOHkiQWQLp7+jw8PDh//nyS8rt37yb5hZtRa/kld56ffvqJfPnysXbt2rjhzmvXrmXI9ZIT+9n8/f3NjiPx54g955IlS2jUqFGS+rEJ+rp166hduzafffZZ3LHUhgBjZcRwYeXKldm9ezda6wSf4dy5c9SoUSPFcxcoUICdO3dy69YtfH19qVChAj///DMODg7UrVs3TZ8hMX9//7gePmsjSZYF/fLLeUaN2sb16w954YUavP56y9QbCSHMUr9+ffr168fy5cuZNWsWRYoUoVSpUvTo0YOVK1cyfvz4BL1TISEhvP3223h5edGnTx/AmIvVu3dvli5dyuDBg6latWqCa/j7+3P27FmaNGmSbAzt27dn/fr1zJ8/P9khmUKFCmFvb59gEdSIiIg0/wIFY6ina9eurF69Gl9fXzw9PRMkhO3atQOMXrXHTfhPj+bNm7N+/XrOnz8fl6D5+fmxe/fuuDlfWSE0NBR7e/sEv/S/++67TLuek5MTJUuW5MqVKxkWR+XKlfHy8uK///5j5MiRj60XGhqaJEFO6zUyYrjw6aef5s0332TPnj1x/7YuXLjA8ePHE8wRTEmxYsUoVqwY0dHRLF26lOeff96sYUqTycT169f53//+l+62WUGSLAuZMWMP8+YdokIFD3bvfol27cpaOiQhcryZM2eyZs0aFi9ezLvvvgsYi1O2bNmSFi1aMH36dOrUqcPNmzdZsGABV69eZevWrXE9TLH1W7duTbNmzRg3bhzNmjUD4Pfff+fjjz9m6tSpj02yZs2axebNm2nevDmTJ0+maNGinDlzhpCQECZPnoyNjQ29evViyZIllC9fnoIFC7JkyZIkPQap6devH7169eLatWv06dMnwR1tFStWZOTIkbz00ktMmjSJRo0aERkZyYULF9i3bx8bN25M19d08ODBLFq0iC5duvDWW2/F3V1oZ2fH2LFj03WuJ9GhQwcWL17M6NGj6dmzJ0ePHuXbb7/N1Gs2a9aMv/76K8PiUEqxcOFC+vfvT3BwMF26dMHV1ZVr166xZcsW5s2bR8WKFenQoQMjR47kzTffpEmTJmzdupU9e/ak6RoZMSexSZMmdOrUif/973988MEHcYuR1qxZk169esXVmzt3LnPnzuXy5ctxQ9DfffcdoaGhlC9fnlu3bvHZZ59x5cqVJEli7J2XsSvpx06O9/T0pFWrVnH1zp8/T1BQEC1atHjiz5UpMnrhrez6IAsWI42MjNYhIcZic3/+eVPPnr1Ph4ZGZtr1hEiPnL4YaawXXnhBu7m5aX9//7gyX19fPXHiRF2mTBltb2+vPT099fPPP6/PnDmT7DkCAgL07NmzddWqVbWTk5N2cXHRDRo00IsWLUqwcGlyTp8+rbt3767d3Ny0i4uLrl27tl6zZk3c8Xv37ukePXpoNzc3Xbx4cb148WI9ZswYXapUqbg6y5cv14C+f/9+stcICwvT+fLl04A+ePBgkuMmk0l//PHHunr16trBwUF7eHjoJk2a6IULF6YY+08//aSBJP9Orl69qnv16qXz5s2rXVxcdIcOHfS///6boE6pUqX0yJEjUzx/cki0GGlK39v58+drLy+vuBguXLiQpH2rVq10ly5dUj1fvnz59KxZs1KMbcOGDdrJyUkHBAQ8cRzx7dy5U7dq1Uq7urpqV1dXXa1aNT1hwoS4f7NRUVF6woQJ2tPTU+fNm1f37t1b//bbbyku2pnR/P399f/+9z+dP39+nSdPHt2rVy998+bNBHVmzZqV5N/Lt99+qytXrqwdHR11gQIF9EsvvZTs792BAwfGLhCa4NGqVasE9T744ANdqlQpbTKZHhurJRcjVTqVCXC5hVLKC7hx48aNuEmuGen3370ZOnQzbdqUZtEi89bYESIzXb16FSDBopdCiMeLjIykZMmSzJ8/nwEDBlg6nFypQYMGdOvWjTfeeOOxdVL72ebt7R17l2cJrfXjbyk1g6z4nsn8/EIZPnwzTZp8xe3bQTRoUNzSIQkhhMgA9vb2TJ06lQ8//NDSoeRKBw4c4PLly7z22muWDuWxZE5WJtqy5QL/+9/P3L8fzNCh9Zg3rx3u7rKZsxBC5BTDhg0jICAAHx+fTNkwWzxeQEAA33zzTbILo1oLSbIyUd68jhQrlpdNm/rSuHHGD0EKIYSwLEdHR2bOnGnpMHKl5PbptDaSZGWgsLAo5s8/hK2tDa+/3pKWLUvx119DsLHJmLVhhBBCCJF9SJKVQXbv/o8RI7Zw8aIvzz1XLe6Wa0mwhBBCiNxJJr4/obt3g3jxxR/p0OFbwsOj2bSpLz/80DvDVjYWIqvY2toSHR1t6TCEECJDRUdHY2tra5FrS5L1hI4fv8OaNaeYNKkpZ86MoHv3J1/oTQhLcHJyIiIiggcPHlg6FCGEyBAPHjwgIiIiwYLCWUmGC83wzz93OH36Pv371+Cpp8pz+fJrlCqV39JhCfFEChYsSHh4OPfu3cPf399if/kJIURGiI6OJiIigrx581rszk/pyUqHoKAIJk7cSb16nzN58i7Cw6MAJMESOYJSiuLFi1OwYMFkNw4WQojsxMHBgYIFC1K8eHGLTeGxmp4spVRl4GOgKRAIfAO8rrWOSKWdAqYAIwBP4AQwTmv9W0bGt3HjOUaP3oa3dwADBtTi/fc74OhoNV8+ITKEUgpPT09LhyGEEDmCVWQJSil3YC9wEegFFAcWAi7AqFSaTwHmAFOBf4GRwE6lVG2t9X8ZEd/Bg9fo2fMHKlUqwN69A2jTpkxGnFYIIYQQOZhVJFnAMMAN6Km19gVQStkBnyql5mmtbyXXSCnlBEwDPtBaL4opOwhcACZi9G6ZJTIymlOn7lGnTlGaNy/Jt9/2pE+fqtJ7JYQQQog0sZY5WU8Du2MTrBhrMeLrmEK7phjJ2drYgpjhxR+BzuYGc+TIDerV+5zWrVfi4xOCUooXX6wpCZYQQggh0sxakqzKwLn4BVprf+B2zLGU2pG4LXAWKKmUSvdGgZMn76JZs6+5fz+Ezz/vSoECstegEEIIIdLPWrpm3AH/ZMr9AI9U2oVrrcOSaadijocm11Ap5YbRCxarOMDq1UcYOLAFkyY1JV8+J27evJm2TyCEEEKIbOf27duxLzN83RprSbIsYTwwK2nxl6xc+SUrV2Z5PEIIIYSwnNLAtYw8obUkWX5AvmTK3QHfZMrjt3NUSjkl6s1yB3TM8cdZCHwZ731J4DDQGJDuK+tRBDgGNADuWDgWkZB8b6yTfF+sk3xfrFdx4DfgRkaf2FqSrHMkmnullMoHFCXpfKvE7QAqAf/EK68MXNdaJztUCKC1DgAC4l0v9uVNrbV3miMXmSre9+WOfF+si3xvrJN8X6yTfF+sV7zvTYrrcprDWia+bwPaK6XyxyvrA5iAnSm0O4KRKPWJLVBK2WOstbU148MUQgghhEgba0mylmGs8r5RKdVRKTUYeB9YFn+NLKXUHqXUpdj3MUOE7wATlVJjlFJtgdVAAWBBln4CIYQQQoh4rGK4UGvtp5Rqh7GtzkaMhOtLYEaiqrYkjXk+xp2EE3m0rU4nM1Z7D8BYOT4gtYoiS8n3xXrJ98Y6yffFOsn3xXpl2vdGaa0z+pxCCCGEELmetQwXCiGEEELkKJJkCSGEEEJkAkmyhBBCCCEygSRZQgghhBCZIFckWUqpykqpXUqpYKXUHaXUe0ophzS0U0qpqUqp60qpUKXUUaVU46yIOTcw5/uilCoaU++EUipQKeWtlPpeKVUqq+LODcz9P5PoHGOVUloptTmz4sxtnuT7opQqrpRaqZS6H/Pz7KxS6oXMjjk3eILfMQWUUstifscEK6VOKaWGZUXMuYFSqnzM1/eEUipKKXUqje0y7He/VSzhkJmUUu7AXuAixiKlxTG21HEBRqXSfArGbZ1TgX+BkcBOpVRtM5aIEPE8wfelXkz9rzG2QSgIzAT+UEpV11rfz8y4c4Mn/D8Te44iGHuD3sukMHOdJ/m+KKWKAkeB88AQjFvVqwGOmRhyrvCE/1/WYexQMh24DnQGliqlorXWX2Ra0LlHNaAL8DtGp1JaO5Yy7ne/1vr/7d1/sB1lfcfx9wcCSURCiBKQhp8GSKiliLQFsZpgoFLGFrXBEbQEFKvWliC0FqQSQETGQRir6AwWiKkoHcRaqRQEk0hLqTJNGQHTYmtiiCSgTYKQn4Rv/3iew10259577p6zOXL285rZuXuesz++u8+cu9/zPM/uGegJuAh4BphSKHs/8Byw/wjrTQA2AJ8slO0OrACu7/dxvdSnLuplMjCuVDaN9OsAF/T7uAZhqlo3pW18GVgILAHu6PcxDcLUTb0Ai0i/zbprv49j0KYu/pftR/qN3Xml8qXAvf0+rkGYgF0K8zcDD3ewTk+v/U3oLjwFuCciij80/fekjPbkEdZ7PTApLwtARGwFbid927DuVKqXiFgfEc+Vyh4HngL2ryPQBqr6mQFA0huA00jfAq13KtWLpEnA6aQLxPZ6Q2ykqp+X3fLfDaXyDaQHbFuXIuL5Cqv19NrfhCRrBqUfmY6I9cATlH6Uus16lNcFfgQcKGlirwJsqKr1sgNJhwNTSXVj3atcN5J2BT4HXBkRT9QVYENVrZdjSN/Et0laKmlbHjd0df6tV+tOpXqJiFWk3+a9WNKRkvaUdDopMft8feHaKHp67W9CkrU3sL5N+TpgyijrbYn0+4jl9ZTft+qq1suLKP18+meBn5F+t9K6103dfAjYA7i2xzFZ9XrZL//9EvAg6SJ+LTAfuLx34TVWN5+XtwNrgUdI4+RuAc6PiK/3MkAbk55e+wd+4LsNvAXAm4G3RMSzfY6l0SRNJV20/zg3r9uvhtaX6Xsi4oI8v1jSnsCFki6PiE19iq2x8hfEm4DDgDNILV8nAddJWhcRX+tnfNYbTUiy1gF7tSnfG/i/NuXF9cZLmlDKaPcmDVZc17sQG6lqvbxA0rnAx4H3RsS9PYyt6arWzeWkO3HukzQ5l40DxuXXz5TH09mYdPO/DNIdcEX3Ah8DpgM/7Dq65qpaL6cCc4GjIqJ1/pfkLyvXAE6y+qOn1/4mdBcup9QvLmkv4FXs2OdaXg/giFL5DOCn/ubXtar10lr2bcAXgI9HxI21RNhcVetmBvBG0j+h1nQC8Ht5fk4dwTZI1Xp5dJTtTugyrqarWi9HAtuB8rOblgH7S3pZL4O0jvX02t+EJOtOYE7hmzWkbw/PkwYdDud+Uh/53FZBHiT6duDbvQ+zcarWC5JmkcZf3RARV9QUX5NVrZv5wOzS9BDpeWazge/XEGuTVKqXiFhJaqkqJ7knAZsYPQmzkVX9vKwEdgWOKpW/DngyIjb2MkjrWG+v/f1+jsVOeE7G3qRB0UtIAz7PJn2r/lxpuXuBH5fK/grYDJwHnAjclk/+of0+rpf6VLVegJmkQaY/JN1qe1xhenW/j2sQpm4+M222tQQ/J6vv9QK8lXTRv46UXF0MbAU+0e/jeqlPXfwv25OUaD0GvJs0tvRqUuvWJf0+rkGYSA+E/aM8LSY98LX1ep929ZLLenbt7/tJ2EkneiZwD7CRdCfHp4HdS8ssAVaUykR60NyqfMIfAI7v9/EMylSlXoB5pH7xdtPN/T6mQZmqfmbabMdJ1q9IvQDvJHVNbSE9WPEiQP0+pkGYurjGTAduBVYDz+b6OQ8/NLZX9XLwCNeLWSPUS8+u/cobNDMzM7MeasKYLDMzM7OdzkmWmZmZWQ2cZJmZmZnVwEmWmZmZWQ2cZJmZmZnVwEmWmZmZWQ2cZJmZmZnVwEmWmZmZWQ2cZJkNAEk3S4oRpoPHuL0Veb0l9UQ87H7bxb5B0mJJv1/jfl84f4WyyZIW5GlWafmDC/EtqCuuYWKd1eYcbc119kVJU7vY9vx8vPN6GLJZY43rdwBmZqOYBMwCZkk6MyJu2Un7nQxcWni9ZCftt4rdgIOAPwGOl3RMRGyvsJ35eTtLgZt7Fp1ZQ7kly2zwzI4IlaYV/Q5qjFZGhIAJwIWF8qvq2FlEzGudqw6XX1E4twvqiKlDC3PMhwM/yWVHkX483cz6zEmWWUPk7q+vSPqRpPWStklaI+k2Sb/ewfqvk3RHXmdL/rtY0vtKy71Z0l2S1uXl/kvSJZJ2G2vMEbEF+AywIRcdKGmfvJ9dJH1Y0jJJGyU9K+n75a4uSdMlfU3S6hzPU5Lul3RRYZkXdRfmLsCfFDZzaaFrbla77kJJj+TX/1Ha/1mFZU/JZZL0AUkP5rg3SnpA0uljPUf5PD0GfKNQdEBh/2/J9fG4pE2SNktaLukKSRPzMrPysR+UV3tTu+5QSXMl3Sfp6bydhyR9UFJHyalZ07i70Kw5JgNnlMr2Bd4BzJY0MyKebLeipD2Au4BXlNbdF3gW+FJebh5wI+lX7FsOB64AjpP01qj2q/TtLuILgXeXyn4LuEnSkRHxl7nsW8CMwjKvzNMketsytihv77WSpkfEj3N5K3FaA9yd528E5pXW/x3gVkkHRcSnK+y/eI6K9XgccHJp2SOAS4BD2PEctt+4dCmwoFR8FHA98BrgT8cQq1kjuCXLbPAsLg2K/s9cvo6UUB1A6oZ7OXBufm8KOyZgRTMYSrDeAewOTAP+kJTEIOnlwHWki/2deT8vAy7O650KjGnwuqTxwAWkhAhgVUQ8JemNDCUH/5ZjOQxYnssulHSEpFcwlGB9BBgP7EdKOr483H5zF+AhhaLLCt2DS4ZZ7SvA83l+bo5/MjAnl301IrZLegNDCdaVwF6kpK/VEnV5jrtjkg4D3pZfrgX+pfD2P5G6D/chjd16FfDt/N4ZkqZExJLc7bgyly8tdocq3Tjx1/m9m4CppDr5fC77kKTXjCVmsyZwS5ZZQ0TEhnyxvITUurRHaZEjRlh9NbAd2JXUYjEdeAT414j4RV7m9aSEAeAUYFWb7ZxIuuiP5iAV7vQraF3oTymUXRkRqwEkXQPcQEr0Tia1sjxNSgjOIB3zI8ADEfGdDuLoWESsUrob80RS69VVwGmkhBRSSxe8ONH8WJ6KJpDO5bc62O1Zks4qvF4OvCciNhfKVgOfICV7+5ESrRaRktN/H2U/J5PqHuDsPJXNBh7uIGazxnBLltngKQ98PxpA0vnANcBr2THBApg43AYjYg3w56SxUScCVwN3AGtyNxKklpLRTOn4KIb8EvgecFpELMxlryy8v2qY+X3yHXZnk1p3jiV1W94OrJZ0Q4VYRtNKpI6WNJ3cogU8HBHLWnF1sJ0q5wlSy+ELX54l7UKqp7NJLYvtxsUNW+8FdcZsNrCcZJk1R+uCv5k0/mcc8BudrhwR15Mutr8NnElqkRpHGhQ+DXiqsPhFbe5wFHBOh7tbWVhvUkS8KSK+WXj/54X5aYX5A8rLRMTtwP7A0aQWpkWkFpz3STphpEPuMNairwMb8/z7gZPy/KLCMsXzdHybc7RLIZkczUJS4jQXeA44EPiGpFb36nRSUg1wD7Bv3sc1w2xvuGMuxvyuYWK+rMOYzRrDSZZZc4zPf4PUOjSZHQcytyVpX0mfAo4B/peUTNzfepvUsnQ/Q3cBfkTSbEnjJU2VdLqk7zF091q3/rkwf7GkX5N0KGncFaRjvDvH/jfA7wJPAN9kaPA5jNxCs64wP6OTuyMj4pfAP+SX55MSoOdJ47Va7izMf0bSTEm7SzpU0p+RkqGORcRzEXEbqWsUUpfgX+T58YVFtwCbJB0LvGeYzbWO+UBJexXK7yZ1FwNcJunYHPM0SecAyzCzHTjJMmuO1hificCjpJaeoztcdyLwUeCBvN5m0qBtSF10j0bEM6TEIkjJy3fzcmuBW0mJTk9ExFLgq/nlCcDjwP8AM3PZtRHRGgT/YdKDRNeSEo1Wq9KGfDzD7eNp4L/zy3cCW/ONBKONZW1tv7Xcd1tjxvJ272PoQZ/Hk+piS47/s8CrR9n+cD5JutMT4Lw8eH450LrL8VTS+LQfkJLsdn6Q/x4CrM/HOyc/Z+2K/N7hebktpLr/W+A3K8ZsNtCcZJk1x1Wku/+eBJ4BbgPe1eG6vyAlAMtIrR3bSAOqbwHmRMRWgIi4idRFdldebivwU9LdbOcCP+vNoQDp7sL5wEOkZG4T8CDw3oi4oLDc1aSB3T/Pca8B/jHHvWaUfZxFSig2jSGu7+R9tCxqs8w5wAfytjfm6bG87AfHsK8XRMRaUh0B7Al8NCK2AX8ALCYlYKtId2v+3TCbuZR0bta32f5lpO7W+0hJ2maGWjXPrBKz2aBTtUfWmJmZmdlI3JJlZmZmVgMnWWZmZmY1cJJlZmZmVgMnWWZmZmY1cJJlZmZmVgMnWWZmZmY1cJJlZmZmVgMnWWZmZmY1cJJlZmZmVgMnWWZmZmY1cJJlZmZmVgMnWWZmZmY1cJJlZmZmVoP/B6wZ/ANgAFYUAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "params = {\n", - " 'max_depth': np.arange(3, 8),\n", - " 'min_samples_leaf': np.arange(50, 100, 20),\n", - " 'n_estimators': np.arange(100,200,50),\n", - " 'criterion': [\"gini\", \"entropy\"],\n", - "}\n", - "\n", - "clf = RandomForestClassifier(max_features=\"sqrt\", random_state= 10)\n", - "cv = StratifiedKFold(n_splits=5,shuffle= True, random_state= 10).split(X_train, y_train)\n", - "clf = GridSearchCV(clf, params, scoring='roc_auc', cv=cv, n_jobs = -1, verbose=4)\n", - "\n", - "clf.fit(X_train, y_train)\n", - "y_pred = clf.predict(X_test)\n", - "\n", - "print(f\"Best score in train: {clf.best_score_}\")\n", - "print(f\"Count estimators {len(clf.best_estimator_.estimators_)}\")\n", - "print(\"AUC-ROC score sobre test: \", \"%0.16f\" % roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]))\n", - "print(\"AUC-ROC score sobre train: \", \"%0.16f\" % roc_auc_score(y_train, clf.predict_proba(X_train)[:, 1]))\n", - "print(\"Accuracy sobre test: \", \"%0.16f\" % accuracy_score(y_pred, y_test))\n", - "print(\"Los mejores hiperpametros elegidos: \", clf.best_params_)\n", - "print(classification_report(y_test, y_pred, target_names=[\"Bajo valor\", \"Alto valor\"]))\n", - "graficar_matriz_confusion(y_test, y_pred)\n", - "plot_roc_curves(clf, X_test, y_test, X_train, y_train)\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/parte_2/#7 - Stacking.ipynb b/parte_2/#7 - Stacking.ipynb index ab939dc..3f21e03 100644 --- a/parte_2/#7 - Stacking.ipynb +++ b/parte_2/#7 - Stacking.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "1118e18f", + "id": "bd3e1031", "metadata": {}, "source": [ "# Modelo: Stacking" @@ -10,7 +10,7 @@ }, { "cell_type": "markdown", - "id": "58bec26e", + "id": "6381e8de", "metadata": {}, "source": [ "El modelo a entrenar en el sigueinte notebook será Stacking: un ensamble hiíbrido que combina distintos clasificadores de distinto tipo. Se trata de entrenar diferentes modelos (modelos base) y por ultimo, un modelo más, que decide, dada una instancia nueva, qué modelo usar. " @@ -18,7 +18,7 @@ }, { "cell_type": "markdown", - "id": "d8449666", + "id": "05ac6245", "metadata": {}, "source": [ "# Librerias y funciones necesarias" @@ -27,7 +27,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "f7aabaef", + "id": "081605cb", "metadata": {}, "outputs": [], "source": [ @@ -58,7 +58,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "e582d71f", + "id": "4e960c11", "metadata": {}, "outputs": [], "source": [ @@ -78,7 +78,7 @@ }, { "cell_type": "markdown", - "id": "c5c91437", + "id": "25376683", "metadata": {}, "source": [ "# Modelos a utilizar " @@ -86,7 +86,7 @@ }, { "cell_type": "markdown", - "id": "41e9fc63", + "id": "6a6c768a", "metadata": {}, "source": [ "Se eligiran los siguientes modelos, con sus hiperparámetros encontrados en otros notebooks para aplicar Stacking:\n", @@ -105,7 +105,7 @@ }, { "cell_type": "markdown", - "id": "f6f1aa8e", + "id": "b50501ee", "metadata": {}, "source": [ "Importemos el dataset a utilizar:" @@ -114,7 +114,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "936256da", + "id": "089bf37b", "metadata": {}, "outputs": [], "source": [ @@ -123,7 +123,7 @@ }, { "cell_type": "markdown", - "id": "e66b0124", + "id": "711f9ee9", "metadata": {}, "source": [ "# Primer Preprocesamiento" @@ -131,7 +131,7 @@ }, { "cell_type": "markdown", - "id": "73d4502e", + "id": "e37f0dab", "metadata": {}, "source": [ "En este primer preprocesamietno aplicaremos un escalado **MinMaxScaler()** de los datos con ayuda de nuestra funcion importada **get_dataframe_scaled()**. Primero apliquemos la preparacion que venimos aplicando como en otros modelos y luego la conversión numérica." @@ -140,7 +140,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "cca58bc5", + "id": "e9b071f9", "metadata": {}, "outputs": [], "source": [ @@ -150,7 +150,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "dcf6b4a7", + "id": "973f0742", "metadata": {}, "outputs": [ { @@ -178,7 +178,7 @@ }, { "cell_type": "markdown", - "id": "fcb889cd", + "id": "924a6735", "metadata": {}, "source": [ "Dividamos este set numerico en train y test. Luego escalemos (para evitar leaks) los datos tal como lo habiamos mencionado en este preprocesamiento:" @@ -187,7 +187,7 @@ { "cell_type": "code", "execution_count": 6, - "id": "7b93cb09", + "id": "6b738a61", "metadata": {}, "outputs": [], "source": [ @@ -198,7 +198,7 @@ }, { "cell_type": "markdown", - "id": "7270b9d0", + "id": "1406c32e", "metadata": {}, "source": [ "## Entrenamiento" @@ -206,7 +206,7 @@ }, { "cell_type": "markdown", - "id": "36641711", + "id": "2b58de61", "metadata": {}, "source": [ "Definamos los 3 clasificadores mencionados, con sus respectivos **mejores hiperparámetros** para el preprocesado de datos aplicado, encontrados en otros notebook" @@ -215,7 +215,7 @@ { "cell_type": "code", "execution_count": 7, - "id": "70ed697d", + "id": "6a7a25f3", "metadata": {}, "outputs": [], "source": [ @@ -226,7 +226,7 @@ }, { "cell_type": "markdown", - "id": "7de89d72", + "id": "1fc7e74f", "metadata": {}, "source": [ "Definimos el modelo Stacking con estos 3 clasificadores y definimos tambien para utilizar con GridSearchCV los 4 distintos estimadores finales:" @@ -235,7 +235,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "6cf99c9a", + "id": "5f7f9ae0", "metadata": {}, "outputs": [], "source": [ @@ -249,7 +249,7 @@ }, { "cell_type": "markdown", - "id": "367341a1", + "id": "8e0f1bbf", "metadata": {}, "source": [ "Entrenemos:" @@ -258,7 +258,7 @@ { "cell_type": "code", "execution_count": 9, - "id": "a4d2c3c5", + "id": "48757dcb", "metadata": {}, "outputs": [ { @@ -325,7 +325,7 @@ }, { "cell_type": "markdown", - "id": "c67629d3", + "id": "a1f1227a", "metadata": {}, "source": [ "## Métricas" @@ -333,7 +333,7 @@ }, { "cell_type": "markdown", - "id": "f3325d2a", + "id": "e3a448a8", "metadata": {}, "source": [ "Con este stacking evaluamos con X_test. Tambien obtengamos la probabilidad predecida para cada clase:" @@ -342,7 +342,7 @@ { "cell_type": "code", "execution_count": 10, - "id": "5816c6be", + "id": "8aef834e", "metadata": {}, "outputs": [], "source": [ @@ -352,7 +352,7 @@ }, { "cell_type": "markdown", - "id": "26ab862b", + "id": "6c82eb1d", "metadata": {}, "source": [ "Veamos diferentes métricas:" @@ -361,7 +361,7 @@ { "cell_type": "code", "execution_count": 11, - "id": "29c5cb10", + "id": "e301e918", "metadata": {}, "outputs": [ { @@ -420,7 +420,7 @@ }, { "cell_type": "markdown", - "id": "18af5a45", + "id": "258b1f64", "metadata": {}, "source": [ "Vemos que tiene buen score comparado con haber realizado los 3 modelos clasificadores individualmente en sus respectivos notebooks. Además, se nota una mejora en la precision de las instancias con altos valores. Veamos si con un segundo preprocesamiento esto mejora." @@ -428,7 +428,7 @@ }, { "cell_type": "markdown", - "id": "c886322d", + "id": "98a91b07", "metadata": {}, "source": [ "# Segundo Preprocesamiento" @@ -436,7 +436,7 @@ }, { "cell_type": "markdown", - "id": "b39982ff", + "id": "da65c458", "metadata": {}, "source": [ "Veamos con un segundo preprocesado de los datos si mejoramos o no este score de AUC-ROC. Con los 3 clasificadores presentados, en otros notebooks hemos trabajado con este otro escalado y vimos que en algunos mejoró y otros no, pero en general con esos escalados el score conseguido individualmente no alcanzaba al encontrado en el primero preprocesamiento. Veamos ahora con este segundo preprocesamiento que tal nos va:" @@ -444,7 +444,7 @@ }, { "cell_type": "markdown", - "id": "ba973f9a", + "id": "5eed8ddf", "metadata": {}, "source": [ "## Entrenamiento" @@ -453,7 +453,7 @@ { "cell_type": "code", "execution_count": 12, - "id": "9846c675", + "id": "3bdb0ea6", "metadata": {}, "outputs": [ { @@ -474,7 +474,7 @@ { "cell_type": "code", "execution_count": 13, - "id": "98d11ae5", + "id": "8b8b665b", "metadata": {}, "outputs": [], "source": [ @@ -485,7 +485,7 @@ }, { "cell_type": "markdown", - "id": "f3eb319d", + "id": "7efeeb34", "metadata": {}, "source": [ "Para este preprocesamiento, segun lo investigado entonces en otros notebooks, los mejores hiperparametros a elegir seran:" @@ -494,7 +494,7 @@ { "cell_type": "code", "execution_count": 14, - "id": "cb2c96a8", + "id": "f8c4c981", "metadata": {}, "outputs": [], "source": [ @@ -506,7 +506,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "92dce361", + "id": "41df7eb2", "metadata": {}, "outputs": [], "source": [ @@ -520,7 +520,7 @@ }, { "cell_type": "markdown", - "id": "6955466e", + "id": "6214a14f", "metadata": {}, "source": [ "Entrenamos" @@ -529,7 +529,7 @@ { "cell_type": "code", "execution_count": 16, - "id": "8930ca4f", + "id": "287823fb", "metadata": {}, "outputs": [ { @@ -597,7 +597,7 @@ }, { "cell_type": "markdown", - "id": "1294a00a", + "id": "b091ed72", "metadata": {}, "source": [ "## Métricas" @@ -606,7 +606,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "e242c4ff", + "id": "431a832f", "metadata": {}, "outputs": [], "source": [ @@ -617,7 +617,7 @@ { "cell_type": "code", "execution_count": 18, - "id": "ae1f5608", + "id": "d474166f", "metadata": {}, "outputs": [ { @@ -676,7 +676,7 @@ }, { "cell_type": "markdown", - "id": "74fd0849", + "id": "9d8a1e55", "metadata": {}, "source": [ "Vemos que una mejora poca significativa en el AUC-ROC como tambien en la accuracy. Nos quedamos este como mejor preprocesado a los datos." @@ -684,7 +684,7 @@ }, { "cell_type": "markdown", - "id": "38a9e26c-3709-4172-89f0-28c8cdd8dbe8", + "id": "1667d2af", "metadata": {}, "source": [ "# Conclusiones sobre la Teoría de Ensambles" @@ -692,7 +692,7 @@ }, { "cell_type": "markdown", - "id": "47b30c52-54cf-4cf8-8e9b-d89177073ef6", + "id": "34e54250", "metadata": {}, "source": [ "Miremos mediante esta primera tabla como fueron las métricas obtenidas mediante el procesado aplicado de escalado MinMaxScaler(). Todo esto para los 3 clasificadores trabajados de forma individual en sus respectivos notebooks. En la ultima fila se observa el resultado del trabajo obtenido en éste notebook con un ensamble." @@ -700,7 +700,7 @@ }, { "cell_type": "markdown", - "id": "de122019-d3fc-496b-b829-acbafe6ba791", + "id": "3e55b659", "metadata": {}, "source": [ "| Modelo con MinMaxScaler | AUC-ROC | Accuracy | Precision | Recall | F1 score |\n", @@ -713,7 +713,7 @@ }, { "cell_type": "markdown", - "id": "df576ffc-44ac-4b57-bb0d-fb769b3b22ff", + "id": "c9f5b963", "metadata": {}, "source": [ "Lo mismo podemos presentar para el segundo preprocesamiento con un escalado StandardScaler()." @@ -721,7 +721,7 @@ }, { "cell_type": "markdown", - "id": "b4bbdafe-f392-4b7f-8dd1-da5f7c2efce5", + "id": "6d678015", "metadata": {}, "source": [ "| Modelo con StandardScaler | AUC-ROC | Accuracy | Precision | Recall | F1 score |\n", @@ -734,7 +734,7 @@ }, { "cell_type": "markdown", - "id": "85efcbe1-3867-4e6d-9fd5-62bd592c440a", + "id": "446ca6cc", "metadata": {}, "source": [ "Es decir, como conclusión logramos visualizar mediante vía práctica a la **Teoría de Ensambles**. Vemos como diferentes modelos que ven distintos datos, o que ven diferente error u overfitting etc, al juntarse mediante un ensamble se complementen pues eso se refleja en las métricas de dichas tablas.\n", @@ -744,7 +744,7 @@ }, { "cell_type": "markdown", - "id": "534f679f", + "id": "d984adf1", "metadata": {}, "source": [ "# Holdout" @@ -752,7 +752,7 @@ }, { "cell_type": "markdown", - "id": "3e15d39c-07f3-490c-bcb0-5abe40176f73", + "id": "0d811348", "metadata": { "tags": [] }, @@ -763,7 +763,7 @@ { "cell_type": "code", "execution_count": 19, - "id": "ec453eb2-d0b8-441c-8a17-77037a157d67", + "id": "6cf90a97", "metadata": {}, "outputs": [ { @@ -780,7 +780,7 @@ }, { "cell_type": "markdown", - "id": "99d71c62-9773-4c19-bf06-716c09059c3e", + "id": "61ac88f9", "metadata": {}, "source": [ "Importamos y apliquemos la función necesaria para aplicar la preparación en el set de holdout. Recordemos que esta función aplica internamente la función de '**aplicar_preparacion()**' o '**aplicar_preparacion_generalizado()**' según el booleano recibido." @@ -789,7 +789,7 @@ { "cell_type": "code", "execution_count": 20, - "id": "e2b86dab-3872-4290-b33c-1b8221dca99c", + "id": "58940609", "metadata": {}, "outputs": [], "source": [ @@ -800,7 +800,7 @@ }, { "cell_type": "markdown", - "id": "93f57fdb-d658-4bfb-85cd-13f8ff665c0b", + "id": "dd605d6a", "metadata": {}, "source": [ "Apliquemos el procesado con el que obtuvimos el mejor score AUC-ROC:" @@ -809,7 +809,7 @@ { "cell_type": "code", "execution_count": 23, - "id": "35bcd3d0-4220-450d-a36d-37eef923d56a", + "id": "b89433c8", "metadata": {}, "outputs": [ { @@ -839,7 +839,7 @@ }, { "cell_type": "markdown", - "id": "ab5730c6-abfa-4610-9ab9-a9e5d36138d8", + "id": "9f3ceb40", "metadata": {}, "source": [ "Hagamos **.predict()** sobre este holdout para luego agregarlo como nueva columna en este dataset para así exportar el **.csv** con facilidad mediante Pandas. " @@ -848,7 +848,7 @@ { "cell_type": "code", "execution_count": 24, - "id": "2c078ab6-069a-42f5-b33d-fedb618da8ec", + "id": "57ec160f", "metadata": {}, "outputs": [], "source": [ @@ -859,7 +859,7 @@ { "cell_type": "code", "execution_count": 25, - "id": "a146cdb7-23d4-4ab6-9a4c-77e4252cca4f", + "id": "5ec8cd63", "metadata": {}, "outputs": [], "source": [ @@ -887,7 +887,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.5" + "version": "3.8.10" }, "toc-autonumbering": true }, diff --git a/parte_2/Basura de Axel.ipynb b/parte_2/Basura de Axel.ipynb deleted file mode 100644 index 468af15..0000000 --- a/parte_2/Basura de Axel.ipynb +++ /dev/null @@ -1,1964 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "36f42b1d", - "metadata": {}, - "source": [ - "# Comenzamos primero con la carga de librerias necesarias para el entrenamiento del modelo" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "323e47cb", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "import pandas\n", - "import matplotlib.pyplot as plt\n", - "import keras\n", - "import numpy as np\n", - "import tensorflow.keras.optimizers\n", - "from tensorflow.keras.optimizers import RMSprop\n", - "from tensorflow.keras.models import Sequential\n", - "from tensorflow.keras.layers import Dense #, Dropout\n", - "from tensorflow.keras.wrappers.scikit_learn import KerasRegressor\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.metrics import classification_report\n", - "from sklearn.metrics import confusion_matrix\n", - "from sklearn.metrics import roc_curve, auc\n", - "from sklearn.metrics import roc_auc_score\n", - "from sklearn.metrics import accuracy_score, roc_auc_score\n", - "from sklearn.model_selection import StratifiedKFold\n", - "from sklearn.model_selection import GridSearchCV" - ] - }, - { - "cell_type": "markdown", - "id": "be63915e", - "metadata": {}, - "source": [ - "# Primer preprocesamiento simple, acorde al TP1" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "521305dc", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Aplicando 'conversion_numerica' en las variables categóricas.\n" - ] - } - ], - "source": [ - "from preprocessing import obtener_datasets\n", - "from preprocessing import aplicar_preparacion\n", - "from preprocessing import conversion_numerica\n", - "from preprocessing import plot_roc_curves\n", - "from preprocessing import graficar_matriz_confusion\n", - "\n", - "df, df_holdout = obtener_datasets()\n", - "X_df, y_df = aplicar_preparacion(df)\n", - "\n", - "\n", - "# acá solo convierto simplemente a numerico.. primer preprocessing!\n", - "X_df = conversion_numerica(X_df) \n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "2fb0aed9", - "metadata": {}, - "outputs": [], - "source": [ - "X_train, X_test, y_train, y_test = train_test_split(X_df, y_df, test_size=0.2, random_state=30,stratify=y_df)" - ] - }, - { - "cell_type": "markdown", - "id": "c8c302e9", - "metadata": {}, - "source": [ - "## Por el momento solo aplico ese primer preprocesamiento" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "7517e350", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
anios_estudiadosedadeducacion_alcanzadasuma_declarada_bolsa_argentinahoras_trabajo_registradasgenero_mujerestado_marital_matrimonio_civilestado_marital_matrimonio_militarestado_marital_pareja_no_presenteestado_marital_separado_a...categoria_de_trabajo_sin_trabajocategoria_de_trabajo_trabajo_voluntariadoreligion_budismoreligion_cristianismoreligion_judaismoreligion_otrorol_familiar_registrado_con_hijosrol_familiar_registrado_otrorol_familiar_registrado_sin_familiarol_familiar_registrado_soltero_a
01739521744000000...0001000010
11750501301000...0001000000
21338404000000...0001000010
31153304001000...0000100000
41728504011000...0000100000
..................................................................
325561627503811000...0001000000
325571340404001000...0001000000
325581358404010000...0001000001
325591322402000000...0001001000
3256013524150244011000...0001000000
\n", - "

32561 rows × 40 columns

\n", - "
" - ], - "text/plain": [ - " anios_estudiados edad educacion_alcanzada \\\n", - "0 17 39 5 \n", - "1 17 50 5 \n", - "2 13 38 4 \n", - "3 11 53 3 \n", - "4 17 28 5 \n", - "... ... ... ... \n", - "32556 16 27 5 \n", - "32557 13 40 4 \n", - "32558 13 58 4 \n", - "32559 13 22 4 \n", - "32560 13 52 4 \n", - "\n", - " suma_declarada_bolsa_argentina horas_trabajo_registradas \\\n", - "0 2174 40 \n", - "1 0 13 \n", - "2 0 40 \n", - "3 0 40 \n", - "4 0 40 \n", - "... ... ... \n", - "32556 0 38 \n", - "32557 0 40 \n", - "32558 0 40 \n", - "32559 0 20 \n", - "32560 15024 40 \n", - "\n", - " genero_mujer estado_marital_matrimonio_civil \\\n", - "0 0 0 \n", - "1 0 1 \n", - "2 0 0 \n", - "3 0 1 \n", - "4 1 1 \n", - "... ... ... \n", - "32556 1 1 \n", - "32557 0 1 \n", - "32558 1 0 \n", - "32559 0 0 \n", - "32560 1 1 \n", - "\n", - " estado_marital_matrimonio_militar estado_marital_pareja_no_presente \\\n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 \n", - "... ... ... \n", - "32556 0 0 \n", - "32557 0 0 \n", - "32558 0 0 \n", - "32559 0 0 \n", - "32560 0 0 \n", - "\n", - " estado_marital_separado_a ... categoria_de_trabajo_sin_trabajo \\\n", - "0 0 ... 0 \n", - "1 0 ... 0 \n", - "2 0 ... 0 \n", - "3 0 ... 0 \n", - "4 0 ... 0 \n", - "... ... ... ... \n", - "32556 0 ... 0 \n", - "32557 0 ... 0 \n", - "32558 0 ... 0 \n", - "32559 0 ... 0 \n", - "32560 0 ... 0 \n", - "\n", - " categoria_de_trabajo_trabajo_voluntariado religion_budismo \\\n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 \n", - "... ... ... \n", - "32556 0 0 \n", - "32557 0 0 \n", - "32558 0 0 \n", - "32559 0 0 \n", - "32560 0 0 \n", - "\n", - " religion_cristianismo religion_judaismo religion_otro \\\n", - "0 1 0 0 \n", - "1 1 0 0 \n", - "2 1 0 0 \n", - "3 0 1 0 \n", - "4 0 1 0 \n", - "... ... ... ... \n", - "32556 1 0 0 \n", - "32557 1 0 0 \n", - "32558 1 0 0 \n", - "32559 1 0 0 \n", - "32560 1 0 0 \n", - "\n", - " rol_familiar_registrado_con_hijos rol_familiar_registrado_otro \\\n", - "0 0 0 \n", - "1 0 0 \n", - "2 0 0 \n", - "3 0 0 \n", - "4 0 0 \n", - "... ... ... \n", - "32556 0 0 \n", - "32557 0 0 \n", - "32558 0 0 \n", - "32559 1 0 \n", - "32560 0 0 \n", - "\n", - " rol_familiar_registrado_sin_familia rol_familiar_registrado_soltero_a \n", - "0 1 0 \n", - "1 0 0 \n", - "2 1 0 \n", - "3 0 0 \n", - "4 0 0 \n", - "... ... ... \n", - "32556 0 0 \n", - "32557 0 0 \n", - "32558 0 1 \n", - "32559 0 0 \n", - "32560 0 0 \n", - "\n", - "[32561 rows x 40 columns]" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_df" - ] - }, - { - "cell_type": "markdown", - "id": "7afbe58f", - "metadata": {}, - "source": [ - "# En primer lugar diseño la red" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "2f6ed597", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"sequential\"\n", - "_________________________________________________________________\n", - "Layer (type) Output Shape Param # \n", - "=================================================================\n", - "dense (Dense) (None, 8) 328 \n", - "_________________________________________________________________\n", - "dense_1 (Dense) (None, 2) 18 \n", - "=================================================================\n", - "Total params: 346\n", - "Trainable params: 346\n", - "Non-trainable params: 0\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "num_classes = 2\n", - "\n", - "model = Sequential()\n", - "model.add(Dense(8,input_shape = (40,),activation='tanh'))\n", - "model.add(Dense(num_classes, activation=\"softmax\"))\n", - "\n", - "model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])\n", - "model.summary()" - ] - }, - { - "cell_type": "markdown", - "id": "9bd2ac23", - "metadata": {}, - "source": [ - "# Ya tengo el primer modelo compilado voy a entrenarlo" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "21b29533", - "metadata": {}, - "outputs": [], - "source": [ - "y_train = keras.utils.to_categorical(y_train, 2)\n", - "y_test = keras.utils.to_categorical(y_test, 2)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "fd79d5c6", - "metadata": {}, - "outputs": [], - "source": [ - "history = model.fit(X_train.values, y_train,epochs=50,verbose=0,validation_data=(X_test.values, y_test))" - ] - }, - { - "cell_type": "markdown", - "id": "cff2607d", - "metadata": {}, - "source": [ - "# Grafico evolución en función de epocs" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "d43970f5", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAIECAYAAAC63hWIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0SElEQVR4nOzdd3iTZffA8e+TdG8KLS2UvVr23giIbJChIoJ774nz53jV142or3vgQkBRBGSJgOy9916l0EJb6N7J8/vjTtoCbUnapOk4n+vqlTRNntwlJXnOfZ/7HE3XdYQQQgghhBBCCFE5GFw9ACGEEEIIIYQQQthOAnkhhBBCCCGEEKISkUBeCCGEEEIIIYSoRCSQF0IIIYQQQgghKhEJ5IUQQgghhBBCiEpEAnkhhBBCCCGEEKISkUBeCCGEEEIIIYSoRCSQF0IIIYQQQgghKhE3Vw+gItI0TQPqAKmuHosQQgghhBBCiGrDHzir67pe0p0kkC9aHSDG1YMQQgghhBBCCFHtRABnSrqDBPJFSwU4ffo0AQEBrh6LEEIIIYQQQogqLiUlhXr16oENmeESyJcgICBAAnkhhBBCCCGEEBWKFLsTQgghhBBCCCEqEQnkhRBCCCGEEEKISkQCeSGEEEIIIYQQohKRPfKlpOs6eXl5mEwmVw9FOIDRaMTNzQ3VeVAIIYQQQgghKi4J5EshJyeH2NhYMjIyXD0U4UA+Pj6Eh4fj4eHh6qEIIYQQQgghRLEkkLeT2WzmxIkTGI1G6tSpg4eHh6ziVnK6rpOTk0N8fDwnTpygWbNmGAyy60QIIYQQQghRMUkgb6ecnBzMZjP16tXDx8fH1cMRDuLt7Y27uzunTp0iJycHLy8vVw9JCCGEEEIIIYoky46lJCu2VY+8pkIIIYQQQojKQCIXIYQQQgghhBCiEpFAXpRKw4YN+fjjj22+/8qVK9E0jaSkJKeNSQghhBBCCCGqA9kjX43069eP9u3b2xWAF2fLli34+vrafP+ePXsSGxtLYGBgmZ9bCCGEEEIIIaozCeRFPl3XMZlMuLld/c8iJCTErmN7eHgQFhZW2qEJIYQQQgghhLCQ1Ppq4s4772TVqlV88sknaJqGpmn8+OOPaJrG4sWL6dSpE56enqxdu5Zjx44xatQoateujZ+fH126dGHZsmWXHO/y1HpN0/juu+8YM2YMPj4+NGvWjL/++iv/55en1v/4448EBQWxZMkSoqKi8PPzY8iQIcTGxuY/Ji8vj8cff5ygoCBq1qzJ888/zx133MHo0aOd+U8lhBBCCCGEEBWaBPIOoOs6GTl55f6l67rNY/zkk0/o0aMH9913H7GxscTGxlKvXj0AXnjhBd59910OHDhA27ZtSUtLY9iwYSxfvpwdO3YwZMgQRo4cSXR0dInP8frrrzNu3Dh2797NsGHDmDhxIhcuXCj2/hkZGUyePJlp06axevVqoqOjmTRpUv7P33vvPaZPn84PP/zAunXrSElJYe7cuTb/zkIIIYQQQghRFUlqvQNk5ppo+eqScn/e/W8MxsfDtpcwMDAQDw8PfHx88lPcDx48CMAbb7zBwIED8+8bHBxMu3bt8r9/8803mTNnDn/99RePPvposc9x5513cssttwDw9ttv87///Y/NmzczZMiQIu+fm5vLV199RZMmTQB49NFHeeONN/J//umnn/Liiy8yZswYAD777DMWLVpk0+8rhBBCCCGEEFWVrMgLOnfufMn3aWlpTJo0iaioKIKCgvDz8+PAgQNXXZFv27Zt/nVfX18CAgI4f/58sff38fHJD+IBwsPD8++fnJzMuXPn6Nq1a/7PjUYjnTp1sut3E0IIIYQQQoiqRlbkHcDb3cj+Nwa75Hkd4fLq85MmTWLp0qVMnjyZpk2b4u3tzY033khOTk6Jx3F3d7/ke03TMJvNdt3fnu0CQgghhBDCTpu/hYsn4br/gNH9avcWQlRQEsg7gKZpNqe4u5KHhwcmk+mq91u3bh133nlnfkp7WloaJ0+edPLoLhUYGEjt2rXZsmUL11xzDQAmk4nt27fTvn37ch2LEEIIIUSVkBYPi54FdMjLhuGTXT0iIUQpVfzoUzhMw4YN2bRpEydPnsTPz6/Y1fJmzZrx559/MnLkSDRN45VXXilxZd1ZHnvsMd555x2aNm1KZGQkn376KRcvXkTTtHIfixBCCCFEpXdoEWDJftzyLYS1gU53uHRIQojSkT3y1cikSZMwGo20bNmSkJCQYve8T5kyhRo1atCzZ09GjhzJ4MGD6dixYzmPFp5//nluueUWbr/9dnr06IGfnx+DBw/Gy8ur3McihBBCCFHpHVygLms2U5cLn4HoTa4bjxCi1DTZk3wlTdMCgOTk5GQCAgIu+VlWVhYnTpygUaNGElCWM7PZTFRUFOPGjePNN990+PHltRVCCCFElZWVAh80AVMOPLwRVr4D++eBbyjcvxIC67p6hEJUeykpKQQGBgIE6rqeUtJ9ZUVeVFinTp3i22+/5fDhw+zZs4eHHnqIEydOMGHCBFcPTQghhBCicjnyjwriazaFkEgY9QXUbg3p5+G3iZCb6eoRCiHsIIG8qLAMBgM//vgjXbp0oVevXuzZs4dly5YRFRXl6qEJIYQQQlQu1rT6qJGgaeDpB+Ong3cwnN0B858AydQVotKQYneiwqpXrx7r1q1z9TCEEEIIISq33Cw4slRdjxxZcHuNhnDTjzBtDOz+TRW/6/mYK0YohLCTrMgLIYQQQghRlR1fCTlp4F8H6nS49GeN+8KQd9T1pa/C0eXlPjwhhP0kkBdCCCGEEKIqOzhfXUaNAEMRp/9d74cOt4Juhj/ugsRj5Ts+IYTdJJAXQgghhBCiqjLlwcFF6nrkiKLvo2kwfApEdIGsZJh5i6pyL4SosCSQF0IIIYQQoqqK3gCZF8C7BjToVfz93Dzh5l/APxwSDsGcB8BsLr9xCiHsIoG8EEIIIYQQVZW1Wn2LYWC8Sp1r/zC4eToYPeHQItVr3klyTWYW7YklJSvXac8hRFUmgbwQQgghhBBVka7DAUsgX1xa/eUiOsHIT9T11e/D/nlOGdqbC/bz8PTtPD5zh1OOL0RVVyECeU3THtE07aSmaVmapm3SNK3rVe7/pKZphzRNy9Q07bSmaR9pmuZV6Ocvapq2RdO0VE3TzmuaNlfTtBbO/02qtoYNG/Lxxx/nf69pGnPnzi32/idPnkTTNHbu3Fmm53XUcYQQQgghqpWzOyAlBtx9oUl/2x/X/hbo/oi6PuchiNvr0GGtP5rAzxtOAbDyUDyrD8c79PhCVAcuD+Q1TbsZmAK8DnQEdgFLNE0LLeb+E4B3LfePAu4BbgbeLnS3vsDnQHdgIOAO/KNpmq+Tfo1qKTY2lqFDhzr0mHfeeSejR4++5LZ69eoRGxtL69atHfpcQgghhBBVmjWtvtl14O5t32MHvgGN+0FuOvx6C6QnOmRIadl5PPvHbgBq+noA8PaiA5jMukOOL0R14fJAHnga+FbX9R90Xd8PPAhkAHcXc/+ewDpd12foun5S1/V/gJlA/iq+rutDdF3/Udf1fbqu7wLuBOoDnZz5i1Q3YWFheHp6Ov15jEYjYWFhuLldZV+XEEIIIYQokJ9WP9L+xxrd4MYfoEZDSIqGP+5UFfDL6O1FBziTlElEDW/mPdqLAC83DsalMntbTJmPLUR14tJAXtM0D1Rwvcx6m67rZsv3PYp52HqgkzX9XtO0xsAwYFEJTxVoubxQzDg8NU0LsH4B/nb9IpXAN998Q506dTBfVn101KhR3H333Rw7doxRo0ZRu3Zt/Pz86NKlC8uWLSvmaMrlqfWbN2+mQ4cOeHl50blzZ3bsuHTPk8lk4p577qFRo0Z4e3vTokULPvnkk/yf/+c//+Gnn35i3rx5aJqGpmmsXLmyyNT6VatW0bVrVzw9PQkPD+eFF14gL6/gw6Vfv348/vjjPPfccwQHBxMWFsZ//vMf+//hhBBCCCEqo/jDqvq8wR2aDyrdMXyCYfxMlZp/YjX883KZhrT6cDwzNkUD8MGN7Yio4cNj1zYDYPI/h0jPLvtEgRDVhatX5GsBRuDcZbefA8KKeoCu6zOAV4G1mqblAseAlbquv13U/TVNMwAfo1bxi9vg8yKQXOjLvilBXYec9PL/0m1PQbrppptITExkxYoV+bdduHCBv//+m4kTJ5KWlsawYcNYvnw5O3bsYMiQIYwcOZLo6Gibjp+WlsaIESNo2bIl27Zt4z//+Q+TJk265D5ms5mIiAh+//139u/fz6uvvspLL73ErFmzAJg0aRLjxo1jyJAhxMbGEhsbS8+ePa94rjNnzjBs2DC6dOnCrl27+PLLL5k6dSr//e9/L7nfTz/9hK+vL5s2beL999/njTfeYOnSpTb/mwkhhBBCVFoH56vLRteAV2DJ9y1J7ZYw9mt1fdOXsOOXUh0mJSuXF2arlPo7ejSgR5OaANzeswH1gr05n5rNt2uOl36cQlQzlS5XWdO0fsBLwMPAJqAp8Immaa/ouv5mEQ/5HGgN9C7hsO+g9ulb+WNPMJ+bAW/XsfnuDvPSWfCwbdt/jRo1GDp0KDNmzGDAgAEA/PHHH9SqVYv+/ftjMBho165d/v3ffPNN5syZw19//cWjjz561ePPmDEDs9nM1KlT8fLyolWrVsTExPDQQw/l38fd3Z3XX389//tGjRqxYcMGZs2axbhx4/Dz88Pb25vs7GzCwoqcxwHgiy++oF69enz22WdomkZkZCRnz57l+eef59VXX8VgUPNTbdu25bXXXgOgWbNmfPbZZyxfvpyBAwfa9G8mhBBCCFFpWdPqo0qRVn+5qJHQ70XVjm7BU1CrBdTrYtch3lpwgLPJWdQP9uH5oZH5t3u6GXl+SCSPztjB16uOM6FrfUIDvEo4khACXL8inwCYgNqX3V4biCvmMW8C03Rd/07X9T26rs9BBfYvWlbf82ma9hkwAuiv63qxgbmu69m6rqdYv4DUUv4+FdrEiROZPXs22dnZAEyfPp3x48djMBhIS0tj0qRJREVFERQUhJ+fHwcOHLB5Rf7AgQO0bdsWL6+CN94ePa7cHfH555/TqVMnQkJC8PPz45tvvrH5OQo/V48ePdA0Lf+2Xr16kZaWRkxMwcvctm3bSx4XHh7O+fPn7XouIYQQQohKJzkGzm4HNIgc7phjXvOcamFnyoHfboWUWJsfuuLQeX7behpNg8k3tcPH49K1xOFtwulQP4jMXBMf/nPYMeMVoopz6Yq8rus5mqZtAwYAcyE/FX4A8FkxD/MBzJfdZrJcapZjaMCnwBign67rJxw78su4+6jV8fLm7mPX3UeOHImu6yxcuJAuXbqwZs0aPvroI0CltS9dupTJkyfTtGlTvL29ufHGG8nJyXHYcH/99VcmTZrEhx9+SI8ePfD39+eDDz5g06ZNDnuOwtzd3S/5XtO0K2oECCGEEEJUOQcXqst63cCvyEZQ9jMYYMxXMHUQnN8Pv02EOxeBe8mr58kZBSn1d/VsRNdGwVfcR9M0Xh4exQ1fbmDWttPc2ashUeEBjhm3EFVURUitnwL8pGnaVmAz8CTgC/wAoGnaz8AZXddftNx/PvC0pmk7KEitfxOYr+u6NaD/HJgAjAJSNU2z5mkn67qe6fDfQNNsTnF3JS8vL8aOHcv06dM5evQoLVq0oGPHjgCsW7eOO++8kzFjxgBqz/vJkydtPnZUVBTTpk0jKysrf1V+48aNl9xn3bp19OzZk4cffjj/tmPHjl1yHw8PD0wmEyWJiopi9uzZ6Lqevyq/bt06/P39iYiIsHnMQgghhBBV0gHL/nhHpNUX5ukP46fDN/3hzDZY8yFc+38lPuSNBfs5l5JNo1q+PDu4RbH369QgmGFtwli0J463Fx1g2j3dHDt2IaoYV6fWo+v6b8Ak4A1gJ9AeGKLrurUAXn0gvNBD/gt8aLncD0wFlgAPFLrPQ6hK9SuB2EJfNzvnt6g8Jk6cyMKFC/n++++ZOHFi/u3NmjXjzz//ZOfOnezatYsJEybYtXo9YcIENE3jvvvuY//+/SxatIjJkydfcp9mzZqxdetWlixZwuHDh3nllVfYsmXLJfdp2LAhu3fv5tChQyQkJJCbm3vFcz388MOcPn2axx57jIMHDzJv3jxee+01nn766fz98UIIIYQQ1VJ6Ipxap65HjXD88YMbw0hL16H1/4OLp4q967L955i9PcaSUt8Wbw9jiYd+fkgk7kaNNUcSWHU43pGjFqLKqRBRj67rn+m63kDXdU9d17vpur6p0M/66bp+Z6Hv83Rdf13X9aa6rnvrul5f1/VHdF1PKnQfrZivH8v1F6uArr32WoKDgzl06BATJkzIv33KlCnUqFGDnj17MnLkSAYPHpy/Wm8LPz8/5s+fz549e+jQoQP/93//x3vvvXfJfR544AHGjh3LzTffTLdu3UhMTLxkdR7gvvvuo0WLFnTu3JmQkBDWrVt3xXPVrVuXRYsWsXnzZtq1a8eDDz7IPffcw8svl60lihBCCCFEpXd4MehmqN1G9YB3hpajoGEfyMsqtiVdUkYOL87ZA8B9fRrTqcGVKfWXa1DTl9t7NATg7YUHMJlt79AkRHWj6Xa0MKsuLL3kk5OTkwkIuHR/TlZWFidOnKBRo0aXFHYTlZ+8tkIIIYSo9GaMV8F8v5eg3/POe55z++CrPqCb4PZ50LjfJT9+6redzNlxhiYhvix8vA9e7iWvxlslZeTQ94OVJGfm8u7YNozvWt8JgxeiYkpJSSEwMBAg0FKEvVgVYkVeCCGEEEJUAMdXwdxHIG6vq0ciSiM7FY79q647I62+sNqtoMs96vriF8CUl/+jJfvimLPjDAZLlXpbg3iAIB8PHru2KQAfLj1MenbeVR4hRPUkgbwQQgghhABdhwVPws5f4Jt+sGYKmEsuQCsqmKPLwJQNNRpBaEvnP1+/F8E7GOIPwNapAFxIz+H/LCn1D/RtQof6New+7O09GtKgpg/xqdl8vfq4Q4dcoeWkq/93JdQdEMJKAnkhhBBCCKFail2wBE3mXFj+Onw/BBKPlfw4UXEcWKAuo0aqrkrO5hMM11r2yK94C9ITeO2vfSSk5dC8th9PXtesVIf1cDPw/JBIAL5ZfYy45CxHjbhi2zlD/b+bcTOYriz4XC2ZzXB4iUxuFEECeSGEEEIIURAENh8Co74AzwCI2Qxf9YbN36oTalFx5WXDkX/UdUe3nStJpztVYb2sZKL/eIn5u85iNGhMvqkdnm62p9RfbmjrMDo1qEFWrpkP/znkuPFWZIlH1WX8Adj4pWvHUlGsnQIzxsEn7WD6OBXUS6YQIIG8EEIIIYQAOFio93iHifDQemh0DeRmwKJJ8MsYSI5x7RhF8U6shuwU8AuDup3L73kNRhj2PgARJ2bRSjvJw/2a0DYiqEyH1TSN/xseBcAf22PYf7bEul9VQ+H/XyvfheQzrhtLRZAap7YaAKDDkSWWoL49rPkQ0qp3i0IJ5EtJqv1XPfKaVnyxyZn85699PDBtK4lp2a4ejhBCVB0XT0LcHtAM0Hyoui2oHtw2D4a+D25ecHwlfNETdv2q9tOLiuWAZSImcjgYyvcUX6/fgy1+/TGg877PNB7r39Qhx+1YvwYj2oaj6/D2ogNV/1wt+bS69AyA3HRY8qJrx+NqK95S/w4RXeDRbdDjUfAKguRoWP4GTImCP+6Gk+uq5XuSBPJ2cnd3ByAjI8PFIxGOZn1Nra+xqDjOJGXy8tw99H1/JT+uP8mSfed4atYuzNJfVgghHMOaVt+gF/jWLLjdYIBuD8CDa6FuJ8hOhjkPwG+3QnqC04aj6zq7TidxPD7Nac9RpZhNcGiRuu7savVFWLA7lscTxpKhe9LKdACPg3Mcduznh0TiYTSw9mgCKw9X8RXYJEsgP2wyaEbYPw+OLHPtmFwlbg9snwbAD3738fkeWNP4SZIe2g2jv1RZJ+Zc2DsbfhwGX/RQW4CyqkHmhoX0kS9CSX3kAWJjY0lKSiI0NBQfHx+08igmIpxG13UyMjI4f/48QUFBhIeHu3pIwiLmYgZfrDzG71tPk2tS71VdGtZgz5lksnLNPDu4BY84aNZfCCGqte+HQPQGtfre7YGi72PKg3UfqZRfcx741IKRnzg0cNR1nVWH45my9DC7Y5IBaBsRyOj2dRnZrg4h/p4Oe64q5dR6+GEoeAXCs8fAWH6LEudTsxj00WqSMnKZ3nw1vaK/Av868NhW8PB1yHO8vegA36w+TrNQPxY/0Qc3YxVci8xJh7frqOvPn4LVH8CGz1QHgoc3gruXa8dXnnSd7O9H4nl6DfNN3Xks9/FLftygpg9tI4LoH3CW3hfnEXJqPlquZZHV3Rfa3gSd74Hwti4YfNnY00deAvkiXC2Q13WduLg4kpKSyn1swnmCgoIICwuTiZkK4PSFDL5YeZQ/tsXkB/DdGwfzxIDm9GhSk9+2RPP87D0YNPj1/h50bRTs4hELIUQllnYeJjcHdHhqHwRGlHz/2N1qVf78fvV9uwkw9F0VRJbB+mMJTPnnMFtPXQTAy91Ankknz5J9ZdCgd7MQxnaoy6BWtfHxcCvT81Upf78EGz+HtuNh7Nfl9rS6rnP/tG0s3X+OluEBzH2gEx5fdYekU9BnEgx4xSHPk5yRS9/JK0jKyOXtMW2Y0K2+Q46bL3YXZCRCk2sde1x7xB+Cz7uqtPoXT0N2KnzWBVJjVZu/fi9c9RBJGTn8tessi/bEEuTtwbguEfRtHorRUHnObVOyclk69yduOPgM2bobA3Im0zKqDZ7uRnbHJHEq8cqs6AAtg/sDN3OjeQlhOYWq20d0UQF9qzGVZiJEAvkyulogb2UymcjNldYQVYG7uztGY+krqwrHiE7M4PMVR5m9PSb/xK1nk5o8MaAZ3RoXpHrqus7Ts3YxZ8cZagd4sujxPtT0k1UaIYQola0/qP7xdTrA/Stte0xeNqx4G9b/D3QzBETA6M+hcT+7n37bqQt8+M9h1h9LBMDTzcBt3RvwYL8maMDCPbHM2XGGHdFJ+Y/x8TAyqGVtRneoS++mtarmCq2tdB0+aQtJ0XDzL+VasX7ujjM8+dtO3I0a8x7pTcs6AWqbxm8TwegBj2yC4MYOea4f1p3g9fn7qeXnwcpn++Pn6aCJnNws+LCFCpyf3AOBdR1zXHsdXQa/3AChLeHhDeq2vX/CH3eB0VPdVrPJFQ/LM5lZcySBP7bFsHT/OXJMl3aXCAvwYlznCMZ1qUdEDZ/y+E1KJSfPzIxNp/hi+UFm5D1NU8NZ5vreSIObJ9Ohfo38+yVl5LDnTDK7Y5LZHZPE7phkYvPbE+p00w5yq9tSBhu24KGp6vbZ7oGkRo0nsM/9uIdU7ExOCeTLyNZAXghhJ7NZpWO6eVxy86nEdD779yh/7jiDyRLA925aiyeua0aXhkWvtqdn5zHys7Ucj0+nb/MQfrizC4ZKNOMshBBWZrPOmaRMQvw98XJ3waTyLzeoIGLAq9DnGfseG70R5jwIF0+o77veD9e9Dh5XDxh2xyQxZelhVh5S+57djRq3dK3PI/2bUjvgytWzkwnpzN15hrk7znCy0KpcLT8PRrarw5gOdWlTN7D6ZdbF7oKvrwE3b3juuE3/9o5wPiWLgR+tJjkzl2cGNuexAZae8boO00ar4ogthsMtMxzyfDl5ZgZ9tIqTiRk8dm1TnhnUwiHH5eAi+PUWdf22udCkv2OOay/rhFqzQTDxd3WbrsO0MXB8BTS9Dib+AZa/76PnU/l9Wwxztp/hfGpBAeCW4QGM7ViX2OQs/twew8UMteioadCnWQi3dKnHgKjaeLhVjMkvXddZvDeO9/8+yMnEDG4z/sOb7j+S41ED96d2onkHXfUY51Oz2BNzaXCvpcczzriCCW7/EqGpeh55uoG8pw7iFVTbyb9V6UkgX0YSyAvhBLG7YeZ48AmGe5aBuxcnE9L59N+jzN1ZEMD3aVaLJ69rRqcGV0+XPxiXwqjP1pGdZ+a5IS14uF/FnmUVQghQqaM7o5PYHn2R7dFJ7Iy+SEpWHrX8PHhiQDPGd62Pe3mtMGclw/tNVNGoR7ZASHP7j5GdBktfha1T1fc1m8Lor6BelyLvfiA2hSlLD7N0/zkAjAaNcZ0jePTaZtQN8r7q0+m6zs7TSczdcYb5u2O5kJ6T/7PGIb6MaV+X0R3qUi+44q4+OtS/b8Hq9yFyBIyfXi5Pqes69/28lWUHztOmbiB/Ptzz0r/Z8wfhy56gm+DWP6HpAIc8799743jwl214uRtYMakf4YFX/3spjtmss+F4Im5/PUy3lCUAHO3+Nk2HPOKQsdpt+ZuwZrJKBR8xpeD2hKPwZQ8w5ZA++kfmZHXkj20x7DydlH+XYF8PRrWvw42dImhVp2CLS3aeiSX7zvHblmjWHU3Mv72Wnwc3dIzg5i71aBziVx6/XZG2nLzAWwsP5P8uDX3z+NvwOF65STD8Q+hyb6mOq+s6Z5Oz2H06iT0xFzAcXUrXxLkY3Tzo9fI/jvsFnEAC+TKSQF4IB4vZCr+MVSeMQEKfN3k74Rrm7jyDtfB83+YhPHFdMzoWSp+yhXW/vNGgMfO+7rJfXghRoZjNOscT0th+yhq4X+TI+bQrOiVpWkH3pMa1fHluSCSDW9V2/ury7t/hz3uhVnN4dEvZjnV0Ocx7FFLPqjZ2vZ+Cvi/kZ2EdPZ/KR8uOsHB3LKD2vI/uUJcnBjSjQc3SFUXLNZlZcySeOTvO8s++OLLzCtKKOzeowegOdRneJpwavh4lHKWS+6KHqlcw5mtoN75cnnLGpmhemrMHD6OB+Y/1pkWY/5V3WvwCbPoSarWAh9Y5pACfruvc/PVGNp+8wA0dI/hwXDu7j3E+JYvft8Uwa+tpziamsNXzQQI1leHxlT6GLnd/RKcG9p2LOMSfD8DuX2HAa9Dn6fybTWadmD9fpsHez4jVgxmQPZkMvDAaNPq3COXGThFcGxl61RX2U4np/LblNL9viyG+0Ap+t0bB3NK1PkNah5VbRtDR82m89/fB/Mk8Hw8j91/TmIdzf8Jj02eWv5n1YHRcHQyzWediWgY1AxxTgNFZJJAvIwnkhXCgk2thxs2Qk4bJJwRjRjzn9CCuyf6YbDzo3yKEJ65rTvt6QaU6vK7rPPXbTubuPEtYgBcLH+8t++WFKMrBhWrv6vDJDqskLa5U3Gr75eoFe9Oxfo38r6ahfvyx7TQfLztComWFuVODGrw0LNKmDKVSm3W7anHV5xmVWl9WmRdh8fOw+zf1fe02nL32IybvdL9k8nZE23CevK45TUMdtxqYmpXL33vjmLvzDOuPJeZPjLgZNHo0qcnQ1uEMalWbWlXpMyLxGHzaEQxu8OxR8HZ+APrdmuP8d+EBgJK7x2QmqbFlJMLgd6DHww55/p2nkxj9+To0DeY/2pvWda9eZNFk1ll1+Dy/bj7N8oPn87MAB3nu5Rvt7fz7zTH14lXjE8y8r7tNx3WoH4bBqXVww1RocyPH49P4Y1sMf24/w8WUFJZ6PEt9QzyzPMaS0ucVRrWvW6ouDrkmMysOnufXLadZeeh8/v/JQG93xnSoy/iu9YgM9YP1n0ByDAz6L7iXPvOhsPOpWXyy7Ai/bjmNyaxjNGjc3KUeTw5oRmherCr2Z8pRWwiaDXTIc1Y2EsiXkQTyQjjI0WXw662Ql0legz5cd/pufjE9S4SWwMzgh2k55nnalTKAL0z2ywtxFXnZMCVKnVBf/xl0vM3VI6r0ck1m4pKzOJOUyanEdHZYgveiVtu93A20jQiyBO1BdKhfo9gT8NSsXL5ZfZxv1xwnK1etLg9pFcZzQ1o4PgU2NxPebwy5GXDfCqjb0XHH3j8P019PYMy6SI5uZEreTXxjGsF1LcN5amBzosKde34Vl5zF/F1n+XPHGQ7EFpwLGzTo0jCYoa3DGNI6nLDAylHJulhrP4Zlr6kig7fPc+pTmc06by06wNS1qh7CnT0b8uqIliV/3m77CeY/riqxP7Yd/EIcMpbHZ+7gr11n6dmkJtPv7VZs5krMxQxmbY3h962nCxVEU5Nk47vUY0zM+7jt/Bn8akPaOQ66t2RI6svU8HHn1/t7FJ1p4Cwft4GkaJb3+JkvjoewzdK9ASDIx51JDU9y6/Fn0Q1uaA+sgdoty/yUZ5My+X2ryk44k5QJgAEzXwf9zMAslYKuR41Cu+lHMJR+u096dh7frjnON6uPk5GjCtANbFmb54e0oGmo5d941h2wf67qHHDrn/m1AKobCeTLSAJ5IRzg4EL4/U41s9psELObvs0zcw7zsP8ansv9Un1oPrHLYbO8B2JTGP252i///JBIHup3ZWVXIaota+VjgI53wPX/c+14KoG07DzOXMzkbFImMUmZ+dfPJKnLcylZ+StZl7t8tT0y3N/uPe/nUrL4aOlhZm09jVlX+8gndK3PE9c1c9yKsrXIV0AEPLWX9BwTm04kciA2tcyHjrmYwYpte3nT8B0DjdsASA/thO/N3xZZeduZTiSks3hvLH/vjcvvTW/VsX4QQ1uHM6R1WOXcU//ddRCzpUz7iW2RnWfi6Vm78rdFvDg0kvuvaXz1rR9mE3zbXxXk63AbjPrMIeM5fSGDAVNWkZNn5vs7O3NtZEHxspw8M8sPnGPmltOsORKfP7EW5OPO2A4RjO9aj+a1/cGUp6rVZyTAta/Av29i9g9njNdUdp1OopafJ78/2INGtcohg8lsQv9vKJo5j+5ZnxJHTYwGjb7NQ7ipUwTXRoXi6WaEXyfCwQVQvyfctchhwa7JrLP2aAKzNh1n0OHXGWVch0nXMGHAQzPxnT6Kbzxux8/LDT9PN3w93PD1dMPP02i5VN/7errhn3/diJ+nGwfjUvl42RES0lQ6f/t6Qbw0LOrSrZDRG+H7wWpLzoNroXYrh/xelZEE8mUkgbwQZbR3Nsy+TxW5iboebpjKndN2svJQPJMGNOLRvTdDcjQMfht6OK6ozK+bo3nhT7Vf/tf7uxdb8V6IaufnUaqCNEBoK3h4vUuHU1GcS8li68mLnEnK4GxSFjEXCwL15Myrt5f1MBqoE+RFRA0fWtcNvOpqe2kcPpfKe4sPsvzgeQB8PYw82LcJ9/RpVOY+6vqch9B2zWBX3fG8o9/JtlMXyTU59rywZ+Ng3m68h4ab34CcVHD3gYFvqKDTBStupy9ksGRfHIv3xl2y4gnQpm4gQ1qHMbR1mEsLgNksJRamRKrrTx+EgHCnPE1yZi4PTNvKxuMXcDdqTL6pHaPa29GizRqkocF9/zos8+OdxQf4etVxmob68fcTfYi+kMFvW04ze3sMCWkFBRB7NqnJ+K71GdyqtgqGrU6shp9GglcQPLzR8m+pkfT0acZ/v4ODcanUCfTitwd6OH2S59jRQzT5pSt5uoEO+nQeGdCCsR3qEnp594akaPi8m8qiGf0VtL/FcYPIy4Y/7oaDCzBpbvzX82kupqTxsccXALyQey+/mq4t9eEb1PThucGRDGsTdukEkNkMU6+DM9tkohkJ5MtMAnkhymDHL/DXY6qvcNubYdQXXMwy0+WtZeSZdZY/05cm0bNVqp1vqFqVd1CrnMv3yy96og/BVbnAkajwzGadf/afI+ZiBtl5ZrJzTWTlmcnKNZGdayYrz0RWromsXDPZeeoyK9d0xX2zck00DfXjPyNb0bNpLfsGceEE/K99oRs0ePE0eJZjymgFEnMxg7/3Fg7kdKDogDLQ2506Qd7UDfKmbpAXdWt4UzfIhzqW67V8PcttG8/6Ywm8u/hg/opyqL8nTw9szo2dIuzqoR6bnMmaIwmsOxzH64dHE0Qa43NeZqNZpenWC/amS4PgMremcjNqDGsTTs8mlr/XpGiY+zCcXKO+b3Kt2ubhqp7dqPR7FdTHsvnEhUsyLFrU9mdomzCGtg6neW2/itnSbvO3sGgSRHSBe5c55SlikzO58/stHDqXip+nG1/f1ole9r4HgZrc3zMLIrrCPf84ZBInOTOXfh+s4GJGLk1CfDkWn57/sxB/T27qFMG4zvVoWNyK+sJJsOVbaD8RRn0Ob9dRAfJj20nwjODmrzdwLD6d+sE+zHqgh9O2YSzdf44ff/2V6YZXidVCSH1wh8oYKM7aj2DZf8A3RBWodERdhNxM+O1WtSXS6AnjfoYWQ8jMMWFe8Q6+Gz5A14wcGvA9Z2v1IDUrj/RsE+nZeaRl55GenUd6Tp7ldvWzNMttRoPG7d0bMKFbg6LfV6wFNz381PYL/4rbGq48SCBfRhLIC1FK1pMKgE53wvCPwGDIrywfFR7A4if6gCkXPu0ESadUEZWejzlsCGnZeVz/6VqOJ6TTr0UI398h++WFayRn5vL0bzvzV1Id5cZOEfzfsCjbq3AvfwPWfAiN+6vCWMnRcMd8aHSNQ8dVkV2eWt1Ii2WEYQMjjBupZ0xkVtgzxNUfSd0a3kQEeVMnyJs6QV74e5W9yrYjmc06C/bE8sGSg5y+oPazNq/txwtDI+nfIrTIYDPTki6/5kgCa47Ec/hcGgA9DPuY6fEWF3V/Xmw8m14twrimWa1SV4+38ReAzd+oPd15WeAZCMM+gLbjXL4fNiEtm3/2nWPx3lg2HEskr1BU37iWL6Pa1+Whfk0qTO9toCDTZuAb0OsJhx/+UFwqd/6wmdjkLEL9Pfnhri6XtDazS8pZ+LQz5KbDmG+g3c0OGeNP60/y2l/7AFX/oG/zEMZ3rc+1kaElb2cxm1XdkLQ4mDALmg9WK93xB1Wtgcb9iEvOYtzXG4i+kEGTEF9+e6CHQwsl6rrOFyuPMfmfQ4zU1vM/j8/IjeiB+71/l/zAvBz4qjckHFKZLcM/LNtAslNh5i1qks3dB8bPgCb9Cw8U5jygClh6+KuJGAfszwfUBMKnnSElRm1vuGaSY45biUkgX0YSyAtRCus+UX2EAbo/rNLmLSdmt03dxJojCZdWt90+Df56FHxqwZO7HVpFu/B++ReGRvJgX9kvL8rXwbgUHpi2jVOJGXi4GRjYsjY+7ka83I14uRvwdFOXXu5GPN2NeLkZ8i+9irifQdP4ZvVxftl0Cl1XPYNfHdGSUe3rlLxSaMqDj1qpk9WbfoT9f8G+P1V18j7PlNu/R3nTdZ0j59NYvEetth6MSyVCi2e4YSMjjRtobTh55YN6P61OJMtQ0Km8ZOeZ+GVjNJ/+e4SkDLUFoHvjYF4aFkXrOoEciEvJD9y3nLhIjqmgJZtBg3b1gnjV+CMdYmdhbjcRw5gvyvcXiD8Mcx9UqbQAUSNhxMfgW4qVXidIyshh2YHz/L03ltWHE/L//R67tinPDGrh4tFZZFyAyc3AnKdWMR1cd2Dj8UTu/3krKVl5NAnx5ae7uxJRo4zZc2s+VBOLfmHw2FaHZAXlmsx8uvwI7kYDN3SKoE6QjXV3ojfB94NUEb5nj4KbJ0y/CY78A9d/Ch1vB9RWjHFfbyA2OYuo8ABm3teNIJ+yZ/pl5ph4bvZu5u86C8A3jdcw6OyXKpNx7DdXP8CJNfDTCMq8XSEzCabfqOosePjDxN+hQY8r75eXDdPGqKr6gfVUBoh/WOmes7DVk+HfN1Wdjse2OqxuUmUmgXwZSSAvhB10HVa9ByvfUd/3mQTXvpwfxCemZdP17eWYzDorJ/UrSHEz5cJnneHiSaesJszcHM2Llv3yv93fnc6yX16Uk3k7z/DC7D1k5pqoG+TNV7d2ok2EY9oYbTt1gRf/3JO/qtqnWS3eGt2G+jWLOcE+uBB+naAmzJ4+oNJIl7wELYbBLTMdMqaKQtd19p1NYfHeWBbvjeN4fDqhXGS4cSPXGzfSwXCk4M6aUVX5bn2DWtVa94m6vflQdRLtVTk++5Mzc/ly5TG+X3eCHEv/9Bo+7lzMuHR/f90gb65pHsI1zWrRs0ktAr2MaoIn9Szc8hu0GFL+gzflqRThVe+qYNQ3BEb+DyKHlf9YSpCalcuvm0/z1qIDeLgZWP5034pRFG/nTDUZEtoSHt7g0EMv2H2Wp3/bRY7JTOcGNfjujs4OCV7JzYIvusPFE9DrSRj4etmPWVpL/g82fAZtboIbvlO3LXwGtnwH1zyrzmMsjsenMe7rjSSkZdMuIpBf7u1Wpmyd2ORM7v95G3vOJONm0Hh9VCsmxn8CW6eqc6gBr9h2oD/vV6vkdTrAvcvBYGcP+PREmDYa4narOgG3/Ql1OxV//4wLMHUgJB5Vz3nnwrItwqSeU+0Jc9Jg7HfQ9qbSH6sKsSeQr/jTzkKIikvX1Sq8NYi/9hX1AVRohXDJvnOYzDqt6wZcuk/N6A7XPKeur/sEstMcOrTxXeoxqn0dTGadx2bu4EJ6ztUfJEQZ5JrMvLlgP0/8upPMXBO9m9Zi/mO9HRbEA3RqEMyCx/owaVBzPNwMrDmSwKCPV/H1qmPkFVp1zbftJ3XZ/hZw81B7aUGtvlSBiXyzWWd79EXeXnSAaz5YwYhP1zJzxQ56XJjHbx5vstHrUV5zn2YJ4jVo2AdGfASTjqiT1g4T1UTi2G/VvtDDi2HqILhw3NW/mk0Cvd15YWgkKyb144aOEWgaXMzIxdfDyHVRobx+fSv+faYva5/vzztj2zC0TTiBPu5wdocK4j381ISGKxjdoO+zajUxtCWkx6sK+nMfhqzkqz++nPh7uXNvn0b0bFKTnDwz7yw+4OohKQcXqMuokQ497NS1J3hs5g5yTGYGt6rNL/c6ZgUaAHcvGGI5X9j4hdrq4wq6rrKTQBXktQqqry6Toi+5e+MQP6bf240aPu7siknmnh+3kpGTV6qn3h59kZGfrmPPmWSCfT2Yfm83JnZroPq1AwRG2H6wgW+qjIKzO2DbD/YNJDUOfhyugnjfEBWUlxTEA/gEq20I3sHqOWffp7oSlNaKt1QQX7eTmlQVdpMV+SLIirwQNjCbYfFzaoUPYPA70OPhK+424duNrD+WWHSKuykPPu+iTpqv+w/0fsqhQyy8X75/ixCmyn75ik/X4dxeNcsf3NjVo7FZfGo2j8zYzuYTFwB4qF8TJg1qgdGJf2/H49N4ac4eNh5Xz9kyPIB3b2hD24ggdYfkM/Bxa1V48tGtUKuZWhF7JwLMuarQZI2GThtfWWTlmkjKyCU5M5ekjBx1mZlLSmZu/u0XM3LYduoisclZBJDOYOMWRrltpIe2FyOFJjXqdYNWY6HV6JJTQc9sU62dUmNV8aibfoLGfZ3+uzrSyYR0EtOzaVM3qOS93Mv+o1bDW46GcT+V1/CKl5etTurX/Q/QVeruqM8r1L//wbgUhn2yBrMOM+7rVlDEzxVy0uH9JpCXCQ+sgfC2ZT6k2azzzuIDfLtG9Yi/vUcDXhvZyvHvYboOv9wAx5ZD8yEw4TfHHt8WZ3fAN/3UfvBnjxUU3N03R7XNrd8D7r5yn/qemGQmfLuR1Ow8+jSrxbe3d8bL3fZV8D+2xfDSn3vIMZmJDPPn29s7F2R3fNETzu+DibOh2XW2/y6bvoHFz4JXIDy6DfxCrv6Y5Bj46Xq4cAz8w+H2vyCkue3PGb1RVfs35UCPR2HwW7Y/1urcPrXPXzfD3Uugfnf7j1FFSWp9GUkgL8RVmE3w1+Ow8xdAUytcne+64m7xqdl0e3sZZh3WPNe/6HREa3qgd7DaK+/gStr7z6Yw+ot15Mh++YpL1+H8ftXrfO9slXbp5qVWCCI6u3p0V7U9+iIP/bKNcynZ+HoY+XBcO4a0dk4bqMvpus7v22J4a+EBkjNzMWhwV69GPD2wOb4bPoSVb0OD3nDXwoIHfXutClpvmAptbiyXcRaWlp3HH1tPE31BtXhLzrQE6tbAPTM3P028JN5kMdCwjTHuG+mj7cKNQitk4e3VCk+rMRBUz/bBpcTCbxPVv49mhKHvuaxNmtPoutrWlHjUZX8DxYreCHMeVO8BAN0ehP4vqSClAnh13l5+3nCKyDB/FjzW265uAQ61/y+YdZtaQX5id5n/PrPzTEz6vWC/9vNDInmwrw094ksr/jB82UNtqZj4BzQb6JznKc6y12HtFLUaf/O0gtvPbFPvjwF14en9RT5026kL3DZ1Mxk5Jq6LCuXLWzuVXFQP1aP93UKTJINb1WbKuPb4ehZqH/lOPchOgUc2Q4gddRjMJjUpEbcb2k2AMV+WfP8Lx+GnUaroaVB9FcQHN7L9+az2/AGz71HXh02GrvfZ/lhdV/vtj6+AlqNUhXyRTwL5MpJAXogSmHJV9dK9s9WJ7ugvi60+O23DSV6Zt492EYHMe7R3McfLg8+7qplhJxXgmrEpmpfmqP3ysx7oTqcGsl++Qkg4qv6O9v2pKgVfzjdE7fur0aD8x2YDXdf5ZVM0b8zfR65Jp0mIL1/f1pmmoeXffzohLZs3F+xn3k51Il4v0IOlxsfxyjir0sbbjiu48+LnYdNX0O0hGPpuuY0xO8/E9I3RfLbiqE1bXYwGjSBvdwK93Qn0UZdB3u4E+XhQyz2b2/bcQWBGoRTY0JbQeqxafS9L4a/cLNUec7dlpbDTnTD0A7U1oSo4fxC+6AZGD7UaWdHqAWSnqS1bW6cW3OYbAjUaqYDj8kvfkHKbaLmYnkO/yStJzszlv6Nbc2t3F703WfdGl3Y1tJCUrFwe+HkbG44n4mbQeP/GtoztaEd6d2lZ96jXbAoPbSi//1+6rrrmXDh25URWWjxMbgpo8PL5Yse0/mgCd/24hew8M8PbhvO/8R2KzVxIzszl8Zk7WHU4HoDHBzTjyQHNLs0OzEqGdy1p/S+dtX/fecxW+O46QIc7F0HDXkXfL/6QWolPi1P/7rfPsy+V/3KrP4B//wuaQdXaaD7ItscdWaoK7Bk94JFNlSr7rjzYE8i7lfRDIYS4RF42/H4XHFoIBne4caqaTS3Ggt2xAIxoW6f4YxrdoO/zMOd+WP8pdLnP4SeWt3Stx8bjify16yyPztjBosf72N66SzjWxVMqcN87G+L2FNxu9ICmA1Ug1ugalXoZtxtmjFNpd95BNh0+M8fEiYR0jiekkZVr5ppmtQgNcHzv36xcEy/P3csf29S+xiGtwpg8rh1+nq75WK3l58kn4zswpkNdXp67lybJG/DyOEu6wZ+MeoO5JNkyoosK5GO2lMvYTGadP7fH8PGyI5xJUi3TGtfyZWCr2gR5exBUKEjPD9h9PPD1MBa/IrhwEmREqyCu013q7yY0yjEDdveCMV9D7Vaw9DXY9iMkHFGrRhWkqnqZHJyvLhv1rXhBPICnH4yYooreLXpWrSCmx6uvmM1X3t/DT20RqdHwykA/sJ76jHGQGr4ePD2wOa/9tY8P/znEyLZ1VM2B8pSXA4ctad+RI8p0qLjkLO78YTMH41Lx9TDy1W2d6NPMhtRsR+j7nJqMSDyqWhL2fLR8nvf8fhXEGz2h2WWBp28tcPNWWxZSYooNMHs2rcVXt3Xi/p+3snB3LF5uRj64se0VW/eOx6dx789bOR6fjpe7gQ9vas/wtkVkayWdVpfewaUrHhfRWU04bvtBFex7cI2qQ1RY3B74eTRkJKhJz9vmlr1fe59JcOGkys784y61HSGsTcmPMeWpSRyAbg9IEF9GEsgLIWyTk6FSTo/9qz4Ab/6lxNnXcylZbD6p9u4OK+qDq7DWN8Dq9y0f6F+rirEOpGkab49tw54zyZxISOeZ33fx3e2dZb98eUk5C/vmquD9zNaC2w1uqrd567EQOfzS9NkJv8G3A9RK/azbVfqlZXVE13XOpWRzPD6NYwnpHDufxnHL5dnkzEtquGkadKpfg6FtwhnSOoy6trYmKsHpCxk8NH0be8+kYNDg2cFOTkO1Q78Wofzz1DVEf/ExJMGsnJ589MlG/m94FOM611NjtBY0itutJufcHNcXuTBd1/ln/zkmLznEkfOqmGVYgBdPXteMGztFlD4t+fRmVVkaVLVpZxRr0zTVSSMkSqWPnloH3/RXlf7DWjv++crTAecUSXO4ptfB4zsgK0Wl2l84cdnlSRVs5aSpuhrn9l55DIObCuYjuqjAsVazMg9rYrf6TN90isPn0vh4+WFeG9mqzMe0y8k1agXXNwTqdS31YY6cS+WO7zdzNjmLEH9PfrizC63rluMWBq9AVSB3/uOq4G2Xe8qn9Zi1yF2Ta6+cyNI0lW6ecEgVvCshyOzfIpRPb+nAIzN2MHt7DF7uBv47unX+58Cqw/E8OmM7qVl51An04pvbOxf/71uaQneXG/AqHPgL4g/Axi+h1+MFP4vZBr+MUX834e3htjmqcF1ZaZatlcnRcGI1TB8H9y2HgBIWb7b/qP59vYPVRIAoEwnkRYVh3eZREU6GxWVyM1V/1VNrVXGYW2Ze9eR58Z5YdB061g+6evBkXZX/8z5Y/xl0vd/heyL9PN34fEJHRn+xjn8PnufbNcd5QPbLO09aPByYp/a9n1oPWKNrDRr1UenPUdeDb82iHx9Qh+ybf8Xtp6EYT6xi37f38G3QUxxLyOB4fBrpOcVXyg30dqdJiC8ms86umGS2nrrI1lMXeXPBftpFBDKkdThDW4dd2kXBRmuOxPPYzB0kZeRSw8edzyZ0pFfTirVK65OdSGTKOgC21hxJyrk8np+9hz+3n+HtsW1oUquhakeXkQCxu6FeF4ePYcOxRN77+yA7TycB6jV5pH8Tbu/R0K7iUFfIy1H1OdDVflBnV1xvPkj1S545Xq0MTx0EY76Cltdf/bEVUVI0xO5UqbAtKlabt2J5BUB4O/V1ubwc9TtdPKFen0uC/ZNgylbfXzyhJhI736U+a/xCSz0cN6OBV0e04tapm/h5wykmdK1Ps9qOre1SImu1+sjh9rcbQ3XXWHUonqdn7SQlK4/GIb78dFdX17TUa3cLrHpfTcjsnKGCeWc7YAnki/s/XDiQv4ohrcP58CYzT83ayfRN0fh4GHlpWBRT157g7UUHMOvQqUENvrq1EyH+JUyYJltW5APtqOdxOZ9gVcV+3sOw8l21QBJYV33+Th8HOamq8OfE3x17fuXmAeOmqffGhEMw42a4a7HKrLlcVjKseFtd7/+SzZl2ongSyIsK48nfdrLi4Hke7t+Uu3s1KrnirpOdScrEbNap5eeJt0cZTjqrio1fqCDeM0B9CNhQXdSaVj+8pLT6wlrfoPZbJRyGTV+r1RMHa1kngNdGtuT/5uzl/SWHaFDTlyGtS6hiXcWlZuVyIDaV/WeT2R+bwsnEDIK83akd4EVYoBeh/p7512v7exHg7VbyRFvmRTgwXwXvJ1aparRW9bqrlfeWo8A/jJw8M/Fp2cSdusj5lCzOpWRxLjWbc8lZnEvN4lRiBmeSMumrPcxU98m0OvcXdWK8mWtSWzmMBo36wT40ruVLk1C/Sy6DfT3yx3k2KZMl++JYvDeOLScvsCsmmV0xybz390GiwgMY2jqMoa3Drnoirus6X6w8xof/HMKsQ5u6gXx5a0cialSAftKX2zldFZGK6MInd02kw/qTfPjPYTaduMDAKatoVy+IyZ5RNMlYg+n0ZowODOT3xCTz/pKDrDmSAIC3u5F7ejfivmsaE+jtgBTk9Z+oFSefWmXeG2yzkBaqRdrvd8LxlarIWL+XVOaQoZJ18T1oKXpYr7tt1a0rOjcPqNVUfV3ObFYdCBKPwMavVGvBLd/Brl9VtkWPR0rdA7t3s1oMbFmbpfvP8caC/fx8d9fyWYQwm+HgInU90vaMivjUbFYeOs/KQ/GsPhJPapYqDNmpQQ2+u72z67aauXlAz8fg7+fVqnzHOxy6FeIKCUdVar3BDVoMLfo+xbSgK87oDnXJzDXx4p97+HbNCTYev8CeM6p94rjOEbw5ujWeblc5j7QG8vYU5ixKu1tg+89weiMseVGl28+coLYKNLoGxs8sOsAuK+8gmDhLZdHF7VZZTONnXDnRtOZDyEiEms3U2ESZSbG7Ikixu/J3KC6VwR+vzv++SYgvr1/fmt7Nynel6+j5NN77+yBL95/Lv83Hw0hNPw9q+npSy3JZ08+DYF8Pavl5XvKzGr4eV61eWunkpMPHbdSb75ivod34qz4kNjmTHu/8C8DGFwcQFmjjHmVrFVSvQFWJ1wmztbqu88SvO/nLUp33pk4RvDqyJf5e5bzPsRzpuk5cShb7z6aor1j1dSoxw67jeLkbqB2ggvrQABXk1/Mx0SZ9LY3P/UPQ2TVo5tz8+6fUaM3R2kPY5teXY9lBKlhPyeZcShaJNhQ7AwjwcuMRv5U8kPYFADu7fYRfp5uoH+xr92Tf+dQs/tl3jr/3xrHheCImc8HnX5MQX4ZZ0u9bhgdcclKempXLM7N28Y/lfWFc5wjeGNW6bCvLzmI2w6cd1Qrk9Z9Bx9sAtR3g1Xl7WXFIFVx62DiX59xnsVjvyZwmb9KneQh9m4VQv2bpJiaOx6fx4dLDLLRM4LkZNCZ0q8+j1zYl1N9BNQoSjsKXPdUq69jvoO1NjjmurUx58M/LsMlSFbrlKFXss5TBoEv8MFxNyhbTLrRKO7kW/nkFzm5X3/uFQf8Xof2tpQoeTyakM+ij1eSYzEy9ozMDosq439gWsbvh6z7g4Q/PHS+2GJvZrLP7TDIrDp5nxaHz7I5JvuTnwb4ejGgbzkvDolz/PpaTodpkZiQ6///1mg9h+Rsqrf62OUXfZ+3HsOw1aHszjP3G5kN/v/YEbyxQle4NGrw8vCV39Wpo2wTPH3erjJFB/1UTG2URtxe+vgZ0k5qwMOepWgDjfnb+1oXTW+CnEZCXpTpODH2v4GcXT8JnXVTLult+gxZDnDuWSkyK3YlKZ9rGkwBEhQcQn5rFsfh0bp26ieFtwvm/4VHUccC+1pKcT83ik2VH+HXLaUxmHYOm0udy8sxk5JjIuJDJ6QuZNh0ryMedmr4e1PTzZFjrMO7sVYq2HhXJ1h/UB2yNRtDatjZF1pP5Lg1r2B7Eg2oVtep9lZ616Svo90JpRlwiTdP44Ka2hAd68c2a4/y+LYb1xxL54Ka2ru0L7CB5JjPHE9ILAnbLZXFVwusEetGyTgAt6wTSJMSXlKw8zqdkEZesVsjPp2QRl5JFUkYuWblmTiVmcC7xItcadtDJuJFrDTvw0gqC9wPmeiww9WC+uQfRsbUhFiDV8nUpd6NGqL9lxT/Ak1B/L0sGgCd1Ar1pEupHTV8PNG0w/K3Bxs9pv/UFaNUK3LrZ/W8T6u/Frd0bcGv3BlxMz2Hp/nMs3hvL2qMJHItP59N/j/Lpv0epH+zD0NZhDGkdhq+nGw/+so3j8el4GA385/pW3NK1XsXdAnRyjQriPfxVBoRFvWAffrirK2eTMll7JIG4XbEQM4vW+hEe2n8uf5KiQU0f+jSrRZ9mIfRoUpOAq0xwxSVn8cnyI8zaqt47NQ1GtavD0wNblHpSoEhmM8x/QgXxTQa4pmWa0U1V+a/dEhY8DfvnqXTu8TPLvpJWHtITIHq9uh453LVjcYWGvVVmxb45sPx1FVjMfwI2fAEDX1c9ze34f92wli93927EV6uO8eaC/fRpFuL8TMKLJ9VlaNQVQXxyZi5rjsTz78HzrDoUf8VkaZu6gfRvEUL/yFDaRgQ5vj98aXn4qKBvxVuw9iP1f9tZ76/W/fFRJWyNsXNF3uru3o0waPDnjjNMGtSCa5rbkfGS5IDUequw1tD9IdURwJynamHc8H35dAWo10Ut+Px+hzqHq9EIuj+ofrbsdRXEN+oLzQc7fyzVhKzIF0FW5MtXalYu3d9eTnqOien3dqN13UA+WnqYnzecxKyr1MzHBjTl3t6NHf4hmZ6dx3drTvD16mNkWPbcXhcVyvNDImka6kd6jonEtGwS0nJITMsmMb3wZQ6J6dkkpuWQkJbDhfRszEX8d/piYkeGtSmfntIOl5sJn7SDtHNw/afQ8XabHjbmi3XsiE7i9etbcUfPhvY9597ZanbaM1D1lXfiHqrNJy7wzO878ydp7urVkOeHRLp+hcJC13Wycs2kZeeRnp2Xf5mek0datom0rILbz6VksT82hUNxqWQX0YPbaNBoGuKngvbwAFrVCSAqPMDmlMqszAxS9y3BsO9PAqOX4WYqWM0/a6zLUkNv/sjuyp6ccAyaqqJeO0AF6OrSEqwHeBFm+b6Gj7vtAbHZBL/dpjom+NRU+5YdVO02OTOXfw+eY/GeOFYdji/y3y8swIsvb+1Ih/o1HPKcTmNd2el0F4z8uPj7Zaeiv1MPDZ0feizh75M6205dJK/Qm5jRoNGhXhB9moXQp3kt2tYNzC9Ql5SRw5crj/Hj+pP5/14DIkOZNLgFUeFO+Nzc/jP89Ziq0fHwRte3JIzeCL/dqiqp+9RSxT8b9HDtmK7G+m8Y1lZVta7O8rJh6/ew6j21JQigQW8Y9EZBMUgbpGXn0X/ySuJTs3lxaKTz665s+EKlTLcai37j9xw+l8a/llX3bacuXpJl5OfpRp9mtegfGUq/5iFO6d7hMJkX4aPWqnDhhFnOCfQunoJP2qr6EM8cLn5rScw2+K7kXvIO92EUpJ6Fe/+FCNv//oqVnQrzHlUTjAP+49ztCkWxZjVoBpVi71MTpg4ENPXec7XK9tWc9JEvIwnky9fPG07y6rx9NAnxZdnTffNP7PefTeG1v/ay5aT6kG1cy5f/XN/KvlnOYuSZzMzaGsNHyw4Tn5oNQLuIQF4cFkX3xsUU37oKs1knKTM3P/Cfv/ssMzZFE+zrwZInrym50ElFtflbWDRJzRI/tt2mGd2Yixn0fm8FmgabXhxg/8mD2azSZ+MPqKJE/V8q5eBtk5adx1sLDzBzs5p9bxziy5Rx7WlfL8ipzwtqC8KMTdEcOZdGWuFA3Xo9x3TJiZmtfD2MRIUHFAraA2lW28/+CQpTrtrrvvdPVek6u1B6ZlB9VbCu9Q3qQ1nT0HWd9BwTXm6G0lckL0lOOvwwTBXrqtkM7vnHMZV3C0nPzmPloXgW7Y1lxcHzZOSY6N44mM8mdKSWXwX/P5yeCFMi1arH/augTvuS7/9FD7VfdPwMiBxOWnYem44nsvpwPGuOJHA8If2Suwd4udGraS3qBfswc3N0/j7bzg1q8PzQSLo0dOxrkS/1HHzeRRVKGvRW+bWpupqk0/DrLaqtk8FdpeEWyoKocKaPgyNLoP/L0NexnUEqrcwkWPexqvKdl6VuazUWBrxi80ThH9timPT7Lvw83fh3Ul/HbSUpyt8vwcbPWR0ygRdTb8pv52jVNNSPayND6dcihM4Ngl1aa8hu/7ysWtDW76HamDna+s/gn/9TEzZ3LSz+fjb2kneYvBz4byigw6QjZSrEWGHousp22f6TmnwNqq860HS4DUZ95urRVXgSyJeRBPLlR9d1Bn60mqPn0/jPyJZXpKHrus6cHWd4e9FBEtJUwD20dRgvj2hZqjZSuq6z7MB53l18gGPx6iS1frAPzw1pwfA24Q5Nl83JM3P9Z2s5GJfKoJa1+fq2ThU3HbcoeTnwvw6qmuywydD1Ppse9s3qY7y96CDdGwfz6/2lXKHaN0cVlvIMsKzKO38VdMWh8zz/x27Op2ZjNGg80q8Jj17bzCknQntikpm69jgLdsdesgJaEl8PI76ebvh5uuHr6YavpxG/Qt8H+3oQGaaC9wbBPqVvrWc2qSq3e2er1OHMCwU/8w+3BO9j1aqVK/6eU+NUQZ2UGHVCdtscp51oZeWaOHIujZZ1AipOGmpJNnwOS15S1b0fWH31+//1mFql7f0UXPefK358+kIGa48msOZIPGuPJJBiCdytIsP8eW5IC/q3CHXue9vvd6r3hPD2cO/y8l9dKklOOsx9SP1fMbirtolNB7h6VFfKSoEPmqhJnoc3qtRsUSA5Bv59C3bNBHT1Wna5VxU0LK6zhoXZrDPmi3XsiklmXOcI3r+xiOr6DqDrOkc+HUvzC//yau4d/GwajKebgZ5NatI/MpT+LUJdU3neUVJi1Yq5KQfu+tvxGS5TB8HpTTD0A+h2f/H303V4K1wViHt8h/P7nF88qTIfjZ7wf3GVr4BmcUy5qtvR8RXqe3dfeHw7+FffAsO2kkC+jCSQLz/rjyUw4dtN+HgY2fjSgGL3Y6Zk5VrS7U9hMut4uxt59Nqm3Nun0dWrgVrsPJ3E24sOsPmECkxq+Ljz+IBmTOzWwGmz1vvPpjDq87XkmnSmjGvH2I5l6BFa3rb9qGZU/cLgiV3gbtsqw/WfrWV3TDJvjm7Nbd1Lmf5qNsNXveH8PnUide3LpTuOnZIycnh13r78Qnit6gQwZVx7WoQVUdHcbIYdP6vqz6GRVz222ayz/OB5vltznE0nCoLjbo2CGdYmnABvN3w9Cgfq6rqflxs+7kbn97zPTlN7FPfOVlsprHxqQavRKoCv36NinGSc2wdTB6t2Ou1uUQXHKtMkmTPoOnzeTdWXGD7FtjZO1lTrhn3gzgUl3tVk1tkdk8SaIwkcPpfKdVG1ub5dHef/XR76G2beDJoR7l9RdAsyVzOb4c971f8dd1+4Y75j0mMdybplKbgJPLZN/r8UJ24PLH0Nji1X33sGqImu7g+VWChs26mL3PDlejQN5j3Si7YRQQ4dVp7JzP/N2cstu++gveE4P9R7i4a9xtG9cc2q1Vnnr8fVKm6zQapDjqOknIUplsmrpw+U3Occ4LOu6r309nnOb3F5ci38OFxNGDy+w7nPVd6yktVndfwByQSygxS7E5XGtA2nANW+o6SiSgFe7rw2shXjOtfj1Xkq3f6DJYf4Y1sM/7m+FX1LSLc/lZjO+0sO5Rdg83QzcHfvRjzYt4lj2iGVoGWdAJ68rjkfLDnEa3/to0eTmoQHOrlqqCOYcmHNFHW91xM2B/HRiRnsjknGoKnMiVIzGKDf8zDrdtU2qPvDDk+hLkqQjwf/u6UDg1rV5uW5e9l3NoWRn67lmUHNubdP40tXZff+oSY6vAJVz9TarYo8ZkZOHrO3xTB17QlOWqrEuxk0Rrarwz29G9G6rgP7uZbFPy/Dth/Uda8gVSCn9Q0qyKtIK6Cg/q3H/ahShXfNVCdATmhXWKmc3qROPN19oI2NVZ8jLG3nzmxXmRgl9KQ2GjQ61K9RvjUCslNh4TPqeo+HK2YQD+r9avRXap/vsX9h+o1w9xIIae7qkRU4YJmoiRopQXxJwtrAbX+q13HpqyqwX/66alt37Suqa0sR/36dGtRgTIe6zNlxhtfn7+ePB3s4LEslK9fEYzN3sHT/OSZ5JgJw17A+EF4FUrAv1+sJ2DENjvyjqq+HtXbMca1//xFdrx7Eg1295MvMkYXuKhqvQLhrEZxaBy2GuXo0VVIFWFoR1VVscmZ+peTbe9i2chsVHsCsB3rw0c3tCPH35ERCOnd8v5kHp227Yq/YhfQcXp+/j+umrGLh7lg0DW7sFMGKSf14fkik04N4qweuaUy7ekGkZuXx3B+7cUUWzPmULPsesOcPSDqlVmPt6PW5cI+aLOnRpGbZ9xNHjoTardWq64bPy3YsO41oW4d/nryGayNDyTGZeWfxQcZ/s4Howu3adv2qLrOSYdpYVUinkLjkLN77+yA93vmXV+bt42RiBgFebjzUrwlrn7+Wj25uX3GC+NwstQ8eYMTHap/eqM+gSf+KF8RbNb0Ohn+orq94C3bPcu14XG3bT+qy1VjwsjGTrFYLteKYmw7nDzhvbKX171tqC0VQA9W3vSJz84Bx06BOR7Ud5ZexkHzG1aNScrNUYAQqkBdX1+RauH81jPlGBVgpZ2DugwX/jkV4fkgk3u5Gtp26mJ/VVVbJGbncNnUTS/efw9fNRIhmqVNSFYM+gJpNoOVodX3tR4477gFLtfqWJVSrL6yUletLJTlGXVbV19QnWL3vlDBRLEpPAnnhMjM3RWMy63RtGExkmO1bGDRNY0yHCP59pi/39G6E0aDx9744Bny4ks9XHCU5M5cvVh6l7/sr+GHdSXJNOn2bh7Do8T5Mvqmd01vZXc7NaODDm9rh6WZgzZEEZmwuhw8GC7NZ58lfd9D17eV8u/q4jQ8ywZrJ6nrPR1VrGBst2K1OXka0tWHG+2oMhoL2c5u+gowLJd/fwUIDvJh6R2feu6ENvh5Gtpy8yJBPVjN90yn01LiCfV81GkFaHEwbA2nx7D2TzFO/7aT3e//y5cpjJGfm0rCmD2+MasWGFwfw/JBI+1rylYfDi1Uhu8B60PGO8mlT4wid74Kej6vr8x5Re/uro8wktYccoNMdtj/OYIA6HdT1mC0OH1aZxGxT/+8BRnxk1/uQy3j6qXTgms0g+bQK5sv5fatIJ1apauD+4WqiQdjGYIB2N8OjW6Fxf3Xb+eKrmIcFevFIf1W1/t3FB8nIySv2vraIS85i3Ncb2HLyIv5ebky/ybI1z92nXOrGuEzvJ9Xlvj9Ve8eySk9QK8Jg+0RWuQbylueoDC0sRYVTQZdaRKVybAUsfUXNKnoFqQ8Yb8tlMd/negSwbPN+PPHgNhtX4y/n7+XOKyNaclPnCF6dt4/NJy7wwZJDTFl6OL/Sd8vwAF4aFkXvZjb0B794SqXTHfsXTm+GtjfBwDcdkobYNNSP54ZE8uaC/by18AB9moY4tsdyEXRd5/X5+5i7UwXXk/85xOBWYVd/3n1zIPGoer263Gvz851ISGff2RSMBo3BrRxUzCRyhEp1jNujqtle95pjjmsjTdO4uUt9ejapxaTfd7HpxAX+b85e9A1ruFU3q9TkcT+jTx2EduEYxz4Zys2pL5COmizq2iiYe3s3YkBU7YpdLM2aXdB2XMXYA2+P6yz9oA/8Bb9OUMXQajq5BVRFs+d3VZgpJKogXd5WEV1UoBezVU2MVASmXLV3Hx3a3lwxi8cVx7eWSs2eOlhVaZ5xs9pn68qJiAPz1WXkiMr3/7sicPeCiM5q8vYqgd29fRrz65bTxFzM5KtVx3l6YOm2Vxw9n8Yd32/mTFImIf6e/Hx3V6KydqofBkZU7e0R4e1UxtXRZepzf0QZV+YPLgDdrI5bo6Ftj3HJinwlqqEkKgwJ5EXppZ5TrTz2FCpIknkRLp646kPdgUUAXqD/5QlLg1Tg6B+m3mzrdFQrRUH1r/qBFRkWwG/3d+evXWf578IDxKdmUzfIm0mDmzOqXd3iizFlp8KJNQXB+4Vjl/58/adqdXrw2w750LyrZ0P+2RfHphMXmPT7Ln69v7tTC0V99u9RfrLUIGhUy5cTCem8Mm8vP97Vpfi9e2YzrLGkK3d/GDyLKPJWjIWW1fheTWsRbGNv8qvSNOj3ogrQNn8DPR69agVhZ6gX7MPM+7rz/boTvL/kEK0vLAED7KwxkD37c1ma+yIf6c/TJPcI33h8xJ+RU7jzmkjaRFSQ1PmSpMWrEyaAtuNdO5bSMBhgzNcq9fXMNrU/+d7lpa+pYMpVaeZnd8DZ7ZBwVLUDCm6ksi+sl/7hFSMo0vWCtPpOd9j/XmUN/CvSivz6T1WhS+9g9f5b2QTVV8H890MgZjP8fodq8Wcsn+1clzDlwaFF6nrUiPJ//qrCmvZs3c9cDC93I/83LIqHpm/n61XHGNc5goga9k3i7DydxF0/bOZiRi6Navny891dVTX6ndUo4Ov9tPpc2jEd+r4A/rVLf6z9lrT6KBvT6kFt5wEJ5EWFJ4G8sJ/ZBFu/h+VvqnRczQBd7oOOt6vgOCtJBfSZlssivk+5EI+PORU3zYxmylZVstPOqRWM4ysLnsunZkFQX9dyWUTrCk3TGNW+LtdGhrI9OolujYKv7JltNsHZnQWBe8xmMBdKfdOMUK+r2htncFMFbjZ+AUYP1ZqpjMG8waAx+aZ2DP54NZtPXuD7dSe4t49z2prM2BTNh0sPA/DayJb0bR7CkI/XsOpwPIv3xjGsTXjRDzy0UKUOegZA1xLasxRhgaWY4Ijijl1aLYapyZ3YXbD+fzDwdcce30YGg8a9fRpzXWgqDWceJ083cM+WeiRu2QsE8YjXS/xkeJNe7KWX2xdQ53uXjNNue2er/wd1Olas4lz28PCBW35VbekuHFcTP7fPA7er1GkwmyHxiCr2Zg3c4/YU9JMuiZuXOtm7PMAPbqwCufLannB2O5zbo1oXtb3Z/sdHdFaXCYfUe7R3kCNHZ7/EY7DqPXV9yDtqhbsyCo1SafY/Xa/2Vc97RBXEK+/Jn9MbISNRZcM16FW+z12VWNOebQjshrQOo0fjmmw4nsg7iw7y+UTbtzOsPHSeh37ZTmauibYRgfxwZxdqWuvNVKeAr0FPVZguZjNs/BwGvlG642ReVBlHULD33hbWFfmUs6oVr7Pez3W9ahe7E04ngbywz9mdsOApdfIIKrAe8VHBPksbHIxLYcjHazAaYP2TXantkVkQ6F88WXBCfW6fOgE5ulR9WfnXsQT2HdRlnY75q2/+Xu6XVrBPOq3S4Y79qyYIMi9eOpjgxipwb3ItNOytKmxaeQWoisnrPlYBQf+yF1uqF+zDy8Nb8tKcPby/5BD9WoTSNNSvzMctbPGeWF6euweAx65tyl29GgHwYL8m/G/5EV6fv49rmofg53nZf39dh1Xvq+td77frhP7o+TQOxqXiZtAY1KoMM+dFsa7KzxwPm7+Fno+59OS+4dmFAJwO7k7yuSAa1PDm7l6NuLHTYDxjolTf1P1zYXEtGDa54qdA7rak1be7xbXjKCu/UBU4TR0E0RtU4DT224J/f123vL9YgvYzOyB2p9o7fDnPAKjT3jK5EQnp8SrT6MIJdZl0WgX7CYfU1+U0AwREQHDDguC+5SgV7DuadTW+5fWly0LwraXGePGEymhwZRq7rsOCJ9W/beP+pZuYqEjqdYVxP6v3rt2/qeKhg98q3/cEa7XuFsNckxFQVVhXaJNPq7/TEl5DTdN4dWRLhv9vDQv3xHLb8US6N756JtncHWeY9Psu8sw6fZrV4qtbO+Fb+HM6uRoFfJoGfZ5W/3e2fK9W6EszyXjobzVRHdoSajW1/XG+tcDNW21ZSolxXi/5jAvqOQAC6jrnOUSVJoG8sE1WiqoMvfkbtdfIMwAGvAqd77a7EuXPlnTvwa3CqB1qCbqts5/0LSjWlJulgnnriffZHWrFPvUsHDqrVo+tajQsCOqD6kH0RhW8Jxy+9Mk9A6HxNSpwb9y/5BPrLveqNNu/X1ArREZ31dO8jG7pWo+/98Wx+nA8z/y+i9kP9sDN6JhVmvXHEnji152Ydbila/1L9uc93K8J83ae4VRiBlP+OcyrI1te+uAjSyFut+qD3P1hu57X2tqvT7NaBPk4Yea6+RD1+p7dAes+gUFvOv45bKHr+dXRG/W/i10tBuFduMd7k/4w9hvVr3nLd+AbUlCwryKKP6T+TQ1uqtVcZRcaCeN+Uun1e34HDz8V3FrfPy6fyAN1shberiDjp05HddJW0sqpKVedVFsD+wsn1CSB9fvcDFXAKDkaTqxWj1nzIYyfDo2ucdzvm52mMirAru4SV4joUjEC+Z0z1L+Xm7eaIK7ok2C2aD4IRn8Bcx5QK4t+IaoveXnQdbU/GCStvqysQVZuhgq+rrLFKyo8gAnd6vPLxmhen7+fBY/1LrFOyndrjvPfhapzxPXt6jD5pnZ4uF32HlSdVuQBmg1WAfj5/erz9JpJ9h/DWq3enrR6UO89hVvQOSuQtxa686ttc5tfIQqTQF6UTNdV8bO/X1SVuUGd8A9+u8gU96tJycpl7g7VkufW7lcpcufuBRGd1JdVdpoKNs/uKEiHvXBMnURfPFlQudlKM0DdzipwbzpAnaTb006r+0NgylH9ZP/9r0pf7fW47Y8vgqZpvHdDGwZ9tJpdp5P4evVxHulvx0xxMfaeSeb+n7eRYzIzpFUY/x3d+pK98F7uRt4Y1Zo7vt/Mj+tPMLZj3YL2Z7oOqy2r8V3utnsfurVa/XBHVKsvinVVfsY49YHe83F1QlzezmxTAY+7L0QOx9ejiL+l1mNVJsmiSbDyHbU9pOt95T9WW1iL3DUb5JLaA07RpL8KAv96DLb9cOnPjB6qpWHhrTq1WtjfYs/ork7sijq503VIO3/pCv6Rf9R71S83wOgvoc2Npf/9Cts7W2UU1GxatrTpiM6wZ5Zr98mnxauaKwD9X3RO9oKrtBuv3hOWvATL/qNW5jve5vznjd2pJpzcfdRnoCg9dy/wC1PnQUmnbHq/fHpgC/7aeZYDsSn8tuU0E7rVv+I+uq7z7t8H+XqVqs5+V6+GvDK8ZdH1c6pbIG8wQK8nYc79sPFLtcBgT9HI7FQ4ulxdt7XtXGHl0Uu+ur2mwuEkkBfFu3AcFk6CY5Y3wuDGqm9zGU4IZm+LISPHRLNQP3rYkGp2BU8/tXeqQc+C2zIvqv3T1sA+6ZQK2Jtcq1a/yrrns9cTao/Uiv+q6vxGD+j+YJkOGR7ozevXt+LpWbv4eNlh+rcIpWUd21vwXe5kQjp3/rCZtOw8ujcO5uPx7Yuc/e/bPIThbcNZuDuWl+fu5c+HeqoThuMr1Um8mxf0eMyu5z58LpUj59PwMBoY2NLBafWFNRsEdTupYHrdxypFtbxZe5VHDgcP3+Lv1/U+1fJm1buw6FkVzLceWz5jtJXZXPD7VPYU5st1vF29L+ybC7VbFQTuoS2vvm++rDRNFWbyrw31u6vbej+tTkb3z4PZ90BqnGrtWFbbLWn1HW8v2+q1dZ98zJarpg07zd8vqNcsrA10f6T8n9/ZejyiJnjWfQzzH1fvCZHDnPuc1rT6pteBe/m2Xa2SguqpQD75tHo/uYpgXw+eGtic1+fvZ/I/hxjeNpxA74LtDbkmMy/M3sPs7SqYe25ICx7q26ToYrS6Xj2DvtY3qHOvpGjYOd2+SfHDS8CUDcFN1Hu/vcqjcn11fE2FQ1WAkruiwsnLhlUfwBc9VBBv9FCroQ9tKFMQr+s60zaqtPrbejQovnK6vbxrQON+aj/VzdPggdUw8mM1A+uowk19ny1Iq//7edgytcyHHNOhLoNa1ibXpPP0rJ3k5JlLdZzzKVnc9v0mEtJyaFUngG9v73xlob9CXh3REj9PN3aeTmLmFssH1GpL3/hOd9pdHXbBLrUaf03zWpecpDicdVUe1L9/2nnnPVdRTLkFacxtx139/v1egM73ADr8eb9q01iRnFqr9v55BaqtC1VNryfg/hUw6jPoco8K5p0dxBfH3Qtu/AG6WSYA//k/+PslNZlSWnF71aSWwR3aTSjb+Gq3UdlGmRcd07fZXkeWwt4/VAbVyP/ZnyFRWVz3H+hwq9qe9sddcGq9c5/P2nbO1t7ZomSlCOxu7d6ApqF+XEjP4X/Lj+TfnpGTx/0/b2X29hiMBo33b2zLw/2aFn9elHlRpfVD9dpLbXRTGXgA6/6nPodtZU2rb3l96SYnyyOQl0J3oowkkBeXOr4KvuylZkDzslSA/NAGFZSUcf/O+mOJHI9Px9fDyJgOlfCDqP//qeAAYOHTsH1amQ6naRpvjWlDsK8HB+NSL/mQt1VyZi63f7+Z0xcyaVDThx/v6oq/V8nBdO0AL54ZpPbOv7f4IEkHVqmgzuhR8IFpI13XWbDHUq3eWWn1hTW9Tm2VyMuETV85//kKO74SMhJUWmzj/le/v6bBsA9UpVxzLvx2q8oaqSisafWtxsjevPJgMMKQd2Ggpb7Dxs9h9t1q4rQ0rKvxkcPKvs3EzUMV94PyT6/PToMFT6vr3R6yaaWz0tI0GPGJKjyXlwUzxqsJGWdIOKLSgg1uKptJlJ2NLegKczcaeGWEWg3+af1Jjp5P42J6DhO/28SKQ/F4uRv45rZOjOt8lUDOWujOr7brJiRdpcOtqt5McnTBZPrV5GSoCUKwf3+8VbmsyEsgL8pGAnmhpJ1Xq4Y/X6/aMfnVhhumwm1z7av0WYKfN5wEYGzHiKsGmxWSpsF1r6uTTVB7cHf9VqZDhvh78t/RrQH4YuVRdkQXUYyrGFm5Ju77aSsH41IJ8fdk2t3dCPG37QP+tu4NaFUngJSsPM4tsLR1aT8RAu2bYDkQm8rx+HQ83AwMiAq167GlomkFkylbpqogoLxY09Bb32D7iqHBqIrfNeqr9jJPv1H1JXe1nAyV5g2Vv1p9ZaJpqsbG2O/USvq+OTBtrOrYYY/cTFUFHaDjHY4Zm6v6ya98R52gB9Z3SGeQCs/oBjd+D/V7qvatv4xV9V0czboa36iv61sKVhWlDOz6Ng/huqhQ8sw6L83Zw01fb2BHdBKB3u5Mv7cbA6JsyIKzpmBXp9V4K3dvVa8IYO3HtmUyHVuuMhgC69vVVekS5dFL3hrIB0kgL0pHAvnqTtdVT/jPOltODDXVE/6Rzaogk4PS388mZbJ0/zlApdVXWpqmehtbU6bnPmj7DHExhrUJZ1T7Oph1eOb3XWTlmq76mDyTmcdm7mDzyQv4e7rx011dqV/T9iIwbkYDb41pQwfDUVqkb0XXjKWqpLxwj0qr798ipPwmZyKHq3oNWUmw45fyec6cdDho6ZJgS1p9YW6eqlp5eHtV8GraGNWb1pUOLlQTCzUaQr1urh1LddT2Jrh1Nnj4q2yY74cUnKjbYv88yEpWgYUt2SG2qGspKhqz1THHs8WZ7bDxC3V9xBRVA6U6cPeGW2aqwotp59R7gqO3CuWn1Uu1eoexBvLJtq/IW708vCXuRo3NJy5w9HwaYQFe/P5gDzo1sLFlZHXfS93lXtUtKf4AHP776vffX8a0eriyl7wzVPfXVZSZBPLV3ZF/VF/4rGTVgum+5TB8ssNn8GdsisasQ/fGwTSv7e/QY5c7TVP9wTvcpvY6zr6v4KSplF6/vhWh/p4cj0/ngyWF+lLnZatWN4XouprVX7r/HB5uBr67o3OpCuW1rxfEO7XUB+ISY19y/O2bEdZ1nQWWtnNOq1ZfFIMRelgKhW38HEx5zn/Og4sgN13127YGPPbw9IeJf6iiO8nRqnp5Ua3Qyou1d3zb8VWjxVdl1Lgv3L1YVcKOPwDfDYRz+217rLV3fIfbS26TZw/rivy5vSpjw9lMuarom26G1jdCs4HOf86KxDtITeYE1Vd1CX65QbV5dYTkM6ptKxq0GO6YY4pSpdZbNazly719VJeLpqF+zH64p33nQtU9BdsrULU7Blg7RS1CFScvuyDYL21aPRT0kkdX9WQcLTcT0uPV9er6uooyk0C+uruois/RqC/ct6J0QcpVZOeZ+NVSVO227g0dfnyXMFiKMrUdD7oJfr8LDtkwS1yMIB8P3ruhLQA/rzvCwdV/wJwH4YOmMLk5bPg8/4Pr/SWHmLU1BoMGn93SgW6lqf4PELuLyJT1mDDwbvpwvl1jX5GrfWdTOJWYgZe7gQGR5ZBWX1j7CWqvelI07J/r/OezpjG3HVf6wNcvBG6bowK38/vV/tjyCJgulxoHx/5V1+3NLhCOFdYG7l2qWuClnlUr8yfXlvyY+MMQvV4Vhusw0XFjCYxQf5vmPNUFxNk2fgFxe1Sx0iHvOv/5KiL/MLV9zTdEtVX9dQLkZpX9uNbsoXrd7C5eKkpgTX/OTrZ/Owzw7KAWTL+3G3Mf6UXdIDu7CMjKrWo/Z/RU239OrSv+fsdXQXYK+IcXTFCWhrWXPDgnvT5ZtWLG3Ve9DwpRChLIV3fWVcHgxmql0wn+3htHQloOtQM8GdSqCp1UGAww6nNoNVYVM5t1GxxdVrpjmU3099jPb+Ez2ezxMJH/3gO7ZqoPI3Ou6j/860R+/ncnX648BsA7Y9swqFVY6ce/+gMAzkYM5aQezv+WHyE60fbAcr6ld/y1kaH4epZzlWl3b+h6v7q+/n8lz86XVVp8QeDbpoyBb40GcNufanXh9Eb4/U77qvA6wp7f1SpovW5Qs0n5Pre4UlB9uPtvqNddBQjTxsDeP4u/v7XIXfMhEODATBhNu7QNnTMlx8CKd9T1QW+VvVhfZVazicrW8fCHk2vg8y4w+17Y8AVEb1Tbeux1UNLqncLDV7UNhFKl1xsMGr2a1sKvNJ+X1qCvOgfy/rVV4TuANVOKv5+1/kvkiLJnLDk1kLdmWURIZpwoNQnkq7tMS9q2E2cDf96gVv1v6Vofd2MV+5MzuqliZlEjwZQDv05Us8G2MJvh1AZYOAk+jISfR9Ht4nxqaGnE64FsqHkD3L1EpfEbPeDQQvqvvJG22jGeG9KCm7vUL/24zx/I3w4QMfJlejapSXaemVf/2otuQ1Cs6zoLd5djtfqidLlXpb3F7oITq533PPvmqKyLOh0dU/ixdiu45Tdw84IjS1TRxLK0IbOXtUBjVesdX5n5BMPtcwveR/64S2XhXC4vW03wgeOK3BVWXgXvtnynOk/U76Gya6q7Ou3hlhng4acChj2/w5IX4fvB8E4EfNET5j6i/t3ObCu500HGBThpWa2MlEDe4cqjknlRZEVe6fU4aEZVzO7szit/bsqFQ5aMlJZlSKu3Cir9doqrkkJ3wgGqWFQl7GZdkXdSIL/vbDLbTl3EzaAxoWsZAs+KzOgON3wPzYeqlkIzxxffH1jX1YnYkv+Dj1vDD0Ngy7eQfl69Bh3vYO910+iW/Tm3nLmBVVlNoOt9bBnwG9F6KPUM8czxep2HvJaVbRXa2jc+6nq02i15c3RrPIwGVh6K5++9cVd9+O6YZGIuZuLjYaR/i3JOq7fyrVkwO7/+f857nj2WavWOTENv0ANu+lGdkOyaCctec9yxSxK3F87tURNDrcaUz3MK27h7w00/FWSaLHlJvU8UnuQ5uFAVTPSvo1oxOlp+IO/Egne5WbD9Z3W9x6OyEmXV6Bp4ai9MnA39X1Yt6vzCVPbM+X2w8xdY+Ax8ey28XRe+7qvq22yfpv5fW2uFHFqsJh5rt4HgRq79naqiMuyTLzVTLqTGXvr81VWNhtB6rLq+7uMrf35yrTqv9ampOkOUlVNX5GVyRpRdOefDigrHyYH8LxvVavzg1mGEBlThXtVuHjDuJ5h5i5opnn6T2g9dr6sKuM/tU9Xt9/15aashzwBVhb31DdC4HxjdaQ3cfmEfP64/yfN/7OadG9rw0OJsPHLfYlrINNqlroa/n1d7xEZ9ptK07ZFwVI0D4JpnAWgS4scDfRvz6b9HeX3+fvo0Dykx/W+BJa1+QFRtvD2csyXDJj0ehq1T1ZaGc/vUarcjJR5Tq5OaQW2hcKQWQ9XrN/chNRHRbBA06uPY57ictchd88FqFVhULAYjDH1ftZha9hps+EydwI/+UnU/sKbVd7jV9haI9qjTXk0upZ5Vqbx2tqO0yf65ajIiIEJtDxAFvGtAs+vUl1VKrCpcd3aHqvJ/drv63I7dqb74Xt3PzRvC20J6gvpe0uqdwxUr8ilnAV3tD/etVX7PW1H1fkplreyfpz6jC28RO2CpVh853DHvkc58vZOqeQFD4RCyIl/dWQN5J5zUJ2fmMneHCvhu716JW87ZytpmrNE1qrXXLzfA0lfh827wVS9VafXiSXD3UYH7zdNh0hEY85Wq2GwsaN/2/JBIGtXyJS4li7t+2EJWrpmOLRrS8om5MOQ91YP6wF/w9TVFp5eVZO0UtcrTfIg68bN4pH9T6gf7EJeSxUdLDxf78MJp9cPbhNv33I4W3FilIwOs/9Txx9/zh7ps3M85RaPaTyioxLtokvNa3ACYTbD7d3VdesdXXJoGvZ+EMd+AwU1NAP5yg/p/fnwloEHH25zz3B6+ULulun7GSavym79Vl53vcs5kRFUTEK6CkmtfVvU1njsBT+yCG3+Ano9Dwz5qf31eJpzeBBdUDRVJq3eS/BZ05RjIF165lQwWNWHffIg6j1n3ScHtZhMcWKCutxzlmOdyZi/56t6JQDiEBPLVnRNX5P/YFkNmrokWtf3p2qiarP65e8Mtv6qUruwU9SGTcEjNpEeOgBu/h2ePqsuoEeBedJaCt4eRyTe1w2D5zO5QP4gvJnbE3c0I3R9Ue+eD6quJgakD1cmxLan2F0/CLsuq7DXPXfIjL3cjb4xSK9o/rj/JvrPJRR5ie3QSZ5Oz8PUw0q9FBShS1fMJdbnn94KCQI6g64XS6p24n3zAq6oCf/zBgp7aznB8JaTFgXcwNK1mrb4qo3Y3w8TfC4qgTR2kbm9ybUEw4QzO3Cd/doeaIDB6OGePf3WgaQXpxYPehDsXwAvR8MgWNfnT7SE12RvW2tUjrZryU+tdFMgLpfdT6nLXTJW1AmoiK/28ylJseI1jnsf6XpvqhF7y8roKB5BAvrpzUiBvNuv5afW39miAVp1mkT18YeIslYrdfAiM/gqePaJW61vfoH5ug04NavDhuHaM71KP7+/ogo9HodWriE7wwGrVI9iUo1Zz/7jr6n2I136k9k82uVYd4zL9WoQyvE04JrPOy3P3YjZfOTlgXY0f2LI2Xu4uTKu3iugEDXqptlmbvnLccc/ugMSjKmU10om9mL1rqBNygFXvOW/vpXUCp/UNaiuIqPiaXAt3LQK/2mCyFDjr5OQA2Jn75Dd/py5bjq7eleodzWCAkOZq8mfou2qyVzhHfqp1Oe6Rl5XbK9XvrhZMTDlqCxLAfktafYthjvuM8w1RhWl1M6Q4cKHAXOh4UuxOlIEE8tWZ2ey0QH7t0QROJKTj5+nGmA5O2GdZ0Xn6w00/wITfoP0t9u9jtxjTIYJ3b2hLDd8iPpS8a6jJgcFvqxTcfXPgm74Qu7vogyWfgR3T1fXLVuMLe2VES3w9jOyITuLXLZeerJjNOov2WNLqXVWtvig9H1eX2368+mSGrXZbVuMjh6nX05na3aJOSnIz4O8XHH/87FQ4uKDguUTlEd4W7lkKYW1V54TmQ537fNZA/uwOx7ZGzLgAey1bVbrc67jjClGerEFX5gXITiuf55SV26L1eVpdbvtRvb8csLZddEC1eitn9ZJPP68mITSD6ncvRClJIF+dZaeoWUYAryCHHtracu6GjnVL1zNV2EbToMcjcNffarb+wnH47jrY+v2VqfbrPlE96Rv0VlXTixEW6MXTg1oA8O7iAySkFbQ62hZ9kbiULPw93bimeQUqutNsENRqof6mt/1Y9uOZ8tTeZCh773hbaBoM/1AVGju4AA4vcezxD8xXkwQ1m0Ldjo49tnC+Gg1UBs79K5yfTRHcRH0e5GXBub2OO+6OX9Qxw9qoIqBCVEZegQUT86XoJV8qEsgXrel1qjtDThrMewRSYlQLxybXOvZ5nBHIWzM6/OtcUh9JCHtJIF+dWVfj3X2K3atdGjEXM/j34DkAbutRDYrcVQT1uqgT/eZDVQrugqdg9r1qJRYg9VxBxeu+z171cHf0aEDL8ABSsvJ4e9GB/NsX7FLFCwe2qo2nWwVIq7cyGKDnY+r6xi/LvpftxCpLS8BgaDqg7OOzRe2Wqgo/wKJnITfTcce2ptW3Gy/Fkiqr8nrdDAaoa9l246j0erNZdZcA6HKf/A2Kyi2wnNPr8wP5apjdWBJrYVCAQ4vUZbNBDj2fBZwTyOdvl5DJGVE2EshXZ05Kq5+xKRqzDj2b1KRpqJNTkkUBn2C4ZSYMfFOt7O79A77pp3oMb/hUrYZFdIVGfa96KDejgbfGtEbT4M/tZ9hwLBGTWWeRpcf8yIqUVm/VdpzaS5x6tmA1vbT2WKq7tx5bvrPlfV9QM/RJp1Q9A0dIPgMnVqvr5ZFdICo/R++TP7ZcFdr0CoQ2NznmmEK4Sn5gd8r5z6Xrske+JC1HQ41Ghb53YFq9lVMCecmyEI4hgXx1lh/IO66ifHaeid8s+6pvl9X48qdp0OtxuGux6kWdeBS+G1BQZOqaZ21eDetQvwYTuqoPsJfn7mHd0QTiU7MJ9HanV9MKlFZv5eYJ3R5Q19d/alsV/6LkZBTstSvvwNfTD4a8o66v/Uj1yC2rPbMAXW2pqCH/J4UNHF253tpyrv2t4OHjmGMK4SrWffLlkVqflaxSx0F9potLGd3UOQ+owrTO6MjizBV5KXQnykgC+eosP5APctghF+2JJTE9h/BAL66LckLfbWGb+t3ggTXqQy0vS/UYDm+v+tXb4bnBkdTy8+BYfDpPz9oJwOBWtfFwq6BvHZ3vBndfOL8Pji4v3TEOLVInTkENXLOXt+UoaDKgoBtBaSckQD02P63eiS30RNViraNw4ZgqIlUWF0/CkX/U9S73lO1YQlQE5dmCzrpy61NTJsGK0/5W1XZxxBQ1Ge5ozuglLyvywkEq6Nm4KBdOSK23Frmb0LU+bkb583Ip35owYRZc97oqMDXsA7v3pgb6uPN/w6MASEhT+84rVLX6y3nXKGjPtf6T0h3Dmlbf5ibX7OXVNPVaGT3h2L+wf27pjxW7S/Wnd/NSEwRC2MInGGo2U9fLml6/ZSqgq8mpmk3KPDQhXK48W9BZW5RJwFc8Nw/VdrH9BOcc3xm95K1/O9Z6C0KUkssjLU3THtE07aSmaVmapm3SNK3EJTBN057UNO2QpmmZmqad1jTtI03TvAr9/BpN0+ZrmnZW0zRd07TRTv8lKisHB/J7zySzIzoJd6PGzV0lXahCMBhUMZgH15Z6dXl0+7r0aFwTgBo+7vRsUtOBA3SC7g+pGgEnVsPZnfY9Nj0Rji5T19u6cD95zSbQ+yl1/e8XC4oW2su6Gt9iWKlbIIpqKqKzuixLen1uJuyYpq5LyzlRVZRnar3sj3c9Z/SSl2J3wkFcGshrmnYzMAV4HegI7AKWaJoWWsz9JwDvWu4fBdwD3Ay8XehuvpbjPOK8kVcRDg7kf95wEoAhrcMJ9Xdw1VDhMpqm8fbYNrSNCOTJ65rjXtEzLYLqqyJ1oPbK22Pfn2DOg/B2ENLC8WOzR+8nVRGf1FhY+a79jzflFvTtlt7xwl7WQP5MGVbk9/6pPmcC60PzwY4ZlxCuZk21TjsHuVnOfS5JwXY9R/eSz06FrCR1XV5XUUauPiN/GvhW1/UfdF3fDzwIZAB3F3P/nsA6Xddn6Lp+Utf1f4CZQP5So67ri3Vdf1nX9TnOHnyl58BAPjkjl3k7VWsyKXJX9TSq5ctfj/bmjp4NXT0U2/S0FL/ZN8e+D978tPoKUN3d3Vul2INqqXdun32PP/YvpMer1QRH99UVVV9+wbttqn1caWyxFLnrfBcYKlC7SiHKwruGqsUCBYG2s0ggXzE4MpC3vqZegeAVUPbjiWrNZYG8pmkeQCdgmfU2XdfNlu97FPOw9UAna/q9pmmNgWHAojKOxVPTtADrF1A9eqZZA3mfslet/33babLzzESG+dO5gWPb2Qlht/C20Lgf6CbY8IVtj7l4Ek5vAjRofYMTB2eHZgMhaqT6PRY8bV9AZU2rb3OTquwrhD1CW6kq0NnJkHjE/sef2QZnd4DRAzre7vjxCeEql6zQOrkFnQTyFYMzAnnZLiEcwJUr8rUAI3DustvPAWFFPUDX9RnAq8BaTdNygWPASl3X3y7q/nZ4EUgu9OXkKdYKwkEr8mazzi8b1YfZ7T0aormiQJgQl7Ouym//ueBvvSTW1fjGfSEg3HnjsteQd9Xqz+mNsGumbY/JSoaDC9X1tlKtXpSC0a2gen1p9slbW162Ggu+FbBdpRBlUV775CXoqxgcGchbjyGvqXAAV6fW20XTtH7AS8DDqD31Y4Hhmqa9UsZDvwMEFvqqHlOfDgrkt0Vf5GRiBn6ebozuUIErmovqpcm1ULs15KZbKmeXQNdh9yx1vSKk1RcWGAH9nlfXl75iWzuw/fPAlA0hUWq/vxClUdqCd+mJsHe2ut71PseOSYiKwBm9xS9nyoMUtWVRVuRdzCkr8vKairJzZSCfAJiAy5uN1wbiinnMm8A0Xde/03V9j2Uf/EvAi5qmlfp30XU9W9f1FOsXUMoS0ZWMNSAoYyC/YJf6oBnUqjY+HpLCKyoITYOej6nrm74uuShR7C5IOKwq00aNLJ/x2aP7wxASCRmJsPyNq9+/cO94yZARpVXXGsjbWfBuxzQ1kRTeHup2cviwhHC5/F7yTlyRT4tT26oM7uBbZA1oUV4c2UvemsURJCvyouxcFsjrup4DbAMGWG+zBOMDgA3FPMwHuHyTqMn6cEePsUrTdYesyJvMOov2qnmXEW0rUDqyEKD2ugfUhfTzsPu34u9nTatvPqRiFp8xusPwKer6th9VAbLiXDwFp9YBWsXLLhCVi7Xg3fn9kJ1m22PMJthqyYDpcq9MJImqqTxS6/NXbuuqVrLCdRzZS15W5IUDufqdYQpwn6Zpd2iaFgV8iWof9wOApmk/a5r2TqH7zwce0jRtvKZpjTRNG4hapZ+v67rJ8hg/TdPaa5rW3vKYRpbv65fXL1UpZKeqmV4oUyC/+cQF4lOzCfByo3fTEAcNTggHMbqrvvIAGz4rulic2QR7LG3aXNk7/moa9rK0kdNh4VNq3EWxbhFodI06ARSitALCISBC9U8+u8O2xxxZqlatvIIqTtFIIRzNkSu0xbEGfAES8LmcI3vJS90D4UAuDeR1Xf8NmAS8AewE2gNDdF23FsCrDxRe5v0v8KHlcj8wFVgCPFDoPp2BHZYvUJMFOyzPIaysq/Fu3qrNVSkt3KPS6ge3CsPDzdXzQkIUoeMd4BmgUuePLLny5ydWqxRG7xrQdGD5j88eA98Az0C1FWDr91f+XNdhtzWtXnrHCwewd5+8teVch1vBw8c5YxLC1axBWGps2Vdoi2Nd7ZeVW9dzVC/5S+oeSCAvys7lkZeu65/put5A13VPXde76bq+qdDP+um6fmeh7/N0XX9d1/Wmuq5767peX9f1R3RdTyp0n5W6rmtFfN2JKOCAtPo8k5nFeyxp9e2kyJ2ooLwCVB9rgHX/u/Ln1rT6lqPBzaPchlUqfqEwwFLbc/mbkHpZ048z2yDxKLj7VMy9/qLyye8nb8M++cRjcHQZoEGXe5w6LCFcyi/UcSu0xZEU7IrFEYF8amxB3QO/y0uECWE/lwfywkUcEMhvOnGBxPQcavi407NJTQcNTAgn6PaQ+uCMXn9pQJKbCfv/Utcrclp9YZ3vVkXEspNVFfvCrEXuokaCp1+5D01UQYVX5HW95Ptas0SaXgfBjZ07LiFcSdMKAmxn7ZOXQL5icUQgn59lIXUPhGPIX1F1lVn2ivULdqv0oCGtw3A3yp+SqMACwgsC9XWfFNx++G/ISVUpbvW6u2Zs9jIYYcQUQFMF/E6sUbfn5cBe615/6R0vHCS8HRjcVMHIkk5gczJgxy/qurScE9WBs1vQyV7qisUhgby8psKxJPqqrvJX5INK9fBck5m/LdXqh7eRtHpRCVhb0R2Yr1KAoVDv+Jsq1+x43U5qZR5g4TMqiD+6VP2/9guDxv1cOjxRhbh7Q1gbdf1MCen1e2dDVpIqAtb0unIZmhAu5ewWdLIiX7E4dEVeXlPhGJXozFU4VBlT69cfS+RiRi41fT3o3jjYgQMTwklCoyzF7HTY8DlkXFAVtqHypNUXNuAV8KkFCYdg4xewa6a6ve04tWovhKNcbZ+8rhcUuet8t/z9ierBmS3oslPVxBhI95GKwhGdCqyTPrIiLxxEAvnqKjNJXZYykF9YKK3eTdLqRWXR63F1uXO66nVtzoXabVSQX9l414BB/1XXV70Hhy0V+duNd92YRNWUH8gXU7k+ZqvqpGD0hA63ld+4hHAlZ7agS7YU0PMKAk9/xx9f2M8RveQly0I4mERg1ZV1Rd7H/tX0nLyCtPoRbSWtXlQiDfuoQnF5WbDibXVb25tcOqQyaTce6veE3Aww5agU6NqtXD0qUdVYC97F7oK87Ct/bl2Nb30D+ErhU1FN5KfWOyOQl73UFY4jeslbszeC5HUVjiGBfHVVhtT6dUcTSMnKI8Tfk66NJK1eVCKaVrAqr5sBDVrf6NIhlYmmwfAPQbOkMreV1XjhBDUagU9NNVkUt+fSn6XFw7456nrXe8t/bEK4inWFNuUMmE2OPbbspa54NK1skze6LhM0wuEkkK+uyhDIL9gdC8Cw1mEYDZojRyWE80WNKjgBa9i78u8/rN1SBfORI6CjpDULJ9A0qFuoDV1hO35WAX6djqoIoxDVhX+Y6uhgzlP9wR1JUrArprIUvMtKgpw0dT2gkp93iApDAvnqKqN07eey80z8s99SrV7S6kVlZHRTe8t9Q6D3U64ejWN0vgvGTwevQFePRFRVRRW8M5tg6w/qurScE9WNwVgQaDs6vV4C+YqpLIG8tdCdTy3w8HHcmES15ubqAQgXKeWK/JrDCaRm5VE7wJPODUrfg14Il2o5Sn0JIWwTUcSK/OElKgXYuwa0GuuacQnhSoH14OJJFaQ1cOBxJZCvmKyBfGk6FchrKpxAVuSrI10vdSC/wFKtflibcAySVi+EENVD3Y6ABkmnIO28us1a5K7DbeDu5bKhCeEyjugtXhTZI18xleX1lkJ3wgkkkK+OctJV2y0Ab9uL1WXlmli6/xwAI9qGO2NkQgghKiKvQAiJVNdjtkLCUTj2L6BBl3tcOjQhXCZ/hdaBgbzZBClq0UQC+QqmLC0Hk6WHvHA8CeSrI+tqvNET3L1tftjKQ/Gk55ioE+hFh3qSVi+EENVKhKWYXcwW2DpVXW82CGo0dNmQhHCp/CrmpUi1Lk7aebXYohnBL8xxxxVlV7hTgSnXvscmSSAvHE8C+eqocFq9Znt6/MI9lmr1klYvhBDVj7Xg3YnVsGO6ui5F7kR15ozUeute6oA6qjirqDj8QkvfS172yAsnkEC+Osq0v2J9Zo6J5QcsafXtpFq9EEJUO9ZA/sxWyE5W/eWbDHDtmIRwJet+5+QYMJsdc0zZH19xlaWXvATywgkkkK+OSlHobsWh82TkmIio4U27CGlxJYQQ1U5IJHj4FXzf5R4wyGmEqMYC6oJmAFM2pJ93zDGtK70S8FVMpcnCyMuGtLhLHy+EA8gncHVUikDeWq1+eNtwNDvS8YUQQlQRBqOlej0qvbT9RNeORwhXM7qDvyVL0VH75GXltmIrTSBvnZxx8wafmo4fk6i2JJCvjuwM5NOz8/j3oJppHtFG0uqFEKLaaniNumx7M/jY3vVEiCorP7A75ZjjSSBfsZUmkE8qtF1CFsOEA0kVjerIGsj72BbILz94nqxcMw1q+tC6boATByaEEKJC6/koBDeCFsNcPRIhKoagehBNwd72spI2ZRVbaQJ5mZwRTiKBfHVk54r8QmtafRtJqxdCiGrN3Rva3OjqUQhRcTi6BZ0EfRVbaXrJy2sqnERS66ujDNsD+dSsXFYcigdgRFtJqxdCCCGEyOfIFnQ5GZCRqK5L0FcxlaaXfHL0pY8VwkEkkK+O7FiRX37gPDl5ZhrX8iUq3N/JAxNCCCGEqETyW9A5YEXeWhTNMwC8pENQhVSaXvKyIi+cRAL56siOQH7B7lgARki1eiGEEEKISxVOtdb1sh1LeshXfKXpJZ8kdQ+Ec0ggXx3ZGMgnZ+ay+rBKqx8uafVCCCGEEJcKqKsuczMg40LZjmVdubUeU1RM9myn0HVZkRdOI4F8daPrhQL5klsHLdt/jhyTmWahfrQIk7R6IYQQQohLuHuBX5i6XtYWdBLwVQ72BPLpCWDKBjSZoBEOJ4F8dZObaXlD4aor8gus1erbhjt7VEIIIYQQlZOj9slLIF852BPIWwvd+YeBm4fzxiSqJQnkqxvrarzBHTx8i71bckYua44kAGp/vBBCCCGEKIKjWtBJD/nKwa5AXiZnhPNIIF/dZFr2b3nXUAU7irFkXxx5Zp3IMH+ahkpavRBCCCFEkRzVgk6CvsrBnl7yUuhOOJEE8tWNjYXuFuxR1eqHt5HVeCGEEEKIYjkitV7XIdnSzkwC+YrNnl7yMjkjnEgC+erGhkD+QnoO646qtHrZHy+EEEIIUQJ7VmiLc0lRNOkUVKHZ00tetksIJ5JAvrqxBvI+xVesX7IvDpNZp2V4AI1D/MppYEIIIYQQlZAj9shbAz7/cDC6l31Mwnns6SVvfV2DJJAXjieBfHVjw4q8tVr9iHayGi+EEEIIUSJrkJadDJlJpTuGpGBXLrbWRZDXVTiRBPLVzVUC+YS0bDYcSwRgRBtJ7RJCCCGEKJGHL/jUVNdLu09eAr7KxZZAPicdMtQ5taTWC2eQQL66ybBWrQ8q8seL98Zh1qFtRCD1a/qU37iEEEIIISqr/MBOAvlqIciG1Hpr8UIPf/AKdP6YRLUjgXx1c5UV+YWWtHqpVi+EEEIIYSNb90wXR4qiVS62FDhMtvwsqF6JLZ+FKC0J5Ksb696tIgL58ylZbDqhVuylWr0QQgghhI2sK/KSWl892JJaL6+pcDIJ5KubElbkF++NQ9ehfb0gImpIWr0QQgghhE3yA7tTpXt8ftBX1zHjEc5lSy95CeSFk0kgX93kB/JXtp9buDsWgBGyGi+EEEIIYbuytKDLzYL085ceR1RsvqFg9Cy5l3ySbJcQziWBfHVTzIp8XHIWW06ptPphsj9eCCGEEMJ2trYjK4o1EHT3KbE9sKhADIarF7zLX5GXQF44hwTy1UluJuRlquuXfVAs2hOLrkPnBjWoE+TtgsEJIYQQQlRS1qAu84JqO2aPwinYUhSt8rja5E3hYndCOIEE8tWJdTVeM4Kn/yU/WmCtVi9p9UIIIYQQ9vEKLGgxZm96veylrpxKCuTNJkhR59byugpnkUC+OimcVl9oxvdMUibbo5PQNEmrF0IIIYQolcBSptdLIF85lRTIp50Dc55aPPMLK99xiWpDAvnqpJj98YssRe66NAymdoBXeY9KCCGEEKLys6ZQJ9sZyKfIXupKqaRe8tasjIC6YHQrvzGJakUC+erEGsj7XFqxfsEeFciPlLR6IYQQQojSKW3BO1mRr5zyX+8itlIkWyvWy2sqnEcC+eqkiBX50xcy2HU6CYMGg1tL6o8QQgghRKmUtgWdBPKV0yW95PMu/Zk1kJdCd8KJJJCvTooI5DefUC3nOtavQai/pNULIYQQQpRKaVbkdV0C+coqv5e86cpe8vKainIggXx1kqGC9sKBfFJmLgDh0nJOCCGEEKL08vfI27Ein3kRcjPU9YC6jh+TcJ6SeslLIC/KgQTy1UkRK/LJlkA+0FsKcQghhBBClJq1+FnaOcjNsu0x1qDfrza4eTpnXMJ5isvCsG6vsHYyEMIJJJCvTooI5FPyA3l3V4xICCGEEKJq8K4B7r7qunVF9mpk5bZyKy6Ql9dVlAMJ5KuTEgL5AC8J5IUQQgghSk3T7G9BZw34JK2+cioqkM9KhuxkdV0CeeFEEshXJ5lJ6rLI1HoJ5IUQQgghysTegnf5bcqkunmlVFQveevkjHcN8PQr/zGJakMC+eqkhD3yARLICyGEEEKUjb0t6CQFu3IrauImSSZnRPmQQL46ybyyan1KlqzICyGEEEI4hN0r8hLIV2pF9ZKXLAtRTiSQry5yswram0hqvRBCCCGE49nbgk4C+cqtqF7y8pqKciKBfHWRlaQuNQN4BuTfnJKpZg+l2J0QQgghRBkVtWe6OHk5kBqnrsvqbeVUVC956yROkLymwrkkkK8urPvjvYLUmw6Qk2cmM9cEyIq8EEIIIUSZWQPy1Fgw5ZZ839SzgK5WdH1rOX1owkku304hK/KinEggX11YA3mf4PybrGn1mgb+Xm6uGJUQQgghRNXhFwpuXqCbC1Kti5Ns+XlghDoZE5XT5YF8frG7+q4Zj6g2JJCvLorqIW8pdOfn6YbBIB8gQgghhBBlomkFK7FXS6+XlduqoXAgb8pV2Rggr6twOgnkq4sSWs9JWr0QQgghhIPY2oJOqptXDYXrIqRYt0t4gG+IS4clqj4J5KuLjCJaz1l7yEuhOyGEEEIIx7C1BZ2syFcNhV/v/MmZiPyaVEI4i/yFVReyIi+EEEII4Xy2tqCTQL5qKNxL/uJJdV1eU1EOJJCvLoraIy+BvBBCCCGEY9nagk4C+arBN1Sl0usmiN6obpNCd6IcSCBfXeQH8gVV61OyLD3kvaVivRBCCCGEQwRe1le8KLp+aRq2qLwMhoLX/NR6dSmvqSgHEshXF5JaL4QQQgjhfIVTrc2mou+TlQw5aep6QN3yGZdwHutrfuGYupRAXpQDCeSri6IC+QwpdieEEEII4VD+YWBwA3NeQSuyy1nT6n1qgodP+Y1NOEfQZan0QdKJQDifBPLVRQl95AN9JJAXQgghhHAIg7Fglb24FnSyP75quTyQl5aCohxUiEBe07RHNE07qWlalqZpmzRN63qV+z+padohTdMyNU07rWnaR5qmeZXlmFVefiAflH+TpNYLIYQQQjjB1VrQSQ/5qsVa4NBKtkuIcuDyQF7TtJuBKcDrQEdgF7BE07TQYu4/AXjXcv8o4B7gZuDt0h6zysvLKdiHVcSKvKTWCyGEEEI4kDWQTy4ukJcV+Sql8Iq8byi4exV/XyEcxOWBPPA08K2u6z/our4feBDIAO4u5v49gXW6rs/Qdf2kruv/ADOBwivu9h6zastKslzRwCsw/2brinyArMgLIYQQQjjOVVfkJZCvUgoH8vKainLi0kBe0zQPoBOwzHqbrutmy/c9innYeqCTNVVe07TGwDBgUWmPqWmap6ZpAdYvwL+Mv1rFUjit3mDMv9la7E5S64UQQgghHCi/BV0xe+RTzljuJ0FfleBXW/WSByl0J8qNq1fkawFG4Nxlt58Dwop6gK7rM4BXgbWapuUCx4CVuq5bU+vtPibwIpBc6CvGvl+jgiui0J3ZrJOaLX3khRBCCCEcLj+1/mrF7iToqxIK95KX11SUE1cH8nbTNK0f8BLwMGr/+1hguKZpr5ThsO8AgYW+qtb0aMYFdVkokE/NzkPX1XXZIy+EEEII4UBBhVbkzeZLf2bKg5Sz6rqsyFcdNSwF7y6vYC+Ek7h6KTYBMAG1L7u9NhBXzGPeBKbpuv6d5fs9mqb5At9omvZWaY6p63o2kG39XtM0e36Hiq+o1nOW/fGebga83I1FPUoIIYQQQpRGQF3QDGDKhvR48C90WpoWB7oJDO6qMJqoGno9AZ4B0HK0q0ciqgmXrsjrup4DbAMGWG/TNM1g+X5DMQ/zAS6b2sRkfXgpj1m1FRHIS+s5IYQQQggnMbqDfx11/fKCd/lp9XVVSraoGhr3g3E/XTppI4QTVYR3jynAfZqm3aFpWhTwJeAL/ACgadrPmqa9U+j+84GHNE0br2laI03TBqJW6efrum6y5ZjVTgkr8hLICyGEEEI4gTW9/vIWdLI/XgjhAK5OrUfX9d80TQsB3kAVo9sJDNF13Vqsrj6XrsD/F9Atl3WBeFRw/392HLN6yQ/kg/Nvyu8hL4G8+P/27j7K8ruuE/z705Xuru4k3W2APABm1gdAxqARHIQZFlAGh1l3fBqRjOusStZdGJTBh3HMroOCMzA7YkQM64oPAY4cQMSJclgHRWUcZzBAkAdFM3iEQIAEkpiuJF3VT/XdP+691bcrVdXpqlt17+9Xr9c599xb39/v3v5e8jt1eNf3+/t8AIDJO3Jl8qn3rrEiPyyAd+hROz8noDfOO8hX1SeT/FqS17fW1mmOeX5aazckuWGdY89c9fOpJC8bPjb1mbuOrfUAADtrvRZ0esgDE7CZrfWvzqBS/N9U1e8Pt7jvn+y0mChBHgBgZ42ql697j7wgD2zeeQf51tqrW2tXJ3lykr9M8gtJPldVN1TVEyc8PyZh8cHt5xYWhz3k56d+dwUAQP+s3CO/3oq8e+SBzdt0sbvW2gdbay9O8sgMtrn/b0neX1UfqqrnV+96uHWYFXkAgJ11ZNhX/N5PJ62dGR8FeyvywBZsOshX1d6q+s4kv5PkZ5N8IIMw//Ykr0jyponMkK1bvHfwvEaQV+wOAGAbjIrZnXwgOTbcHbm0kCwdHbw+rNgdsHmbKXb3xCTfl+SfZVBN/o1Jfqi19ldj5/zHJO+f1CTZgtMnk+MLg9fjW+tVrQcA2D5755OLLkvuv3PQgu7ChyULnxkcmz+S7L94qtMDum0zK/LvT/KYJC9M8qjW2o+Oh/ihTyR5y1YnxwSM/uqbJAeOrLy0tR4AYJutLnjn/nhgQjZT6exLW2u3bXRCa+2BDFbtmbbR/fHzh5M9cyvDC6Ot9fOCPADAtjj8xcnt7z/Tgk7FemBCNrMif2lVfd3qwar6uqr62gnMiUk69uCK9UlydFi13oo8AMA2WXdFXpAHtmYzQf61SdbaD/So4TFmyRoV61trKyvyhw8K8gAA22J1CzpBHpiQzQT5v5vkg2uM/9nwGLNkjSB//NRyTpxeTqKPPADAthlvQZcI8sDEbCbIH09y2RrjVyQ5tbXpMHEb9JDfU8lF+wV5AIBtMSpqt7K1/tNnjwNs0maC/O8leWVVHR4NVNWRDHrH//6E5sWkrAT5S1aGFsZ6yFfVNGYFANB/o631x48O6hYtfHbwsx7ywBZtZjn2R5P8cZLbqurPhmNXJ7kzyT+f0LyYlA1W5BW6AwDYRvsuTA4+LDl2d/KZW5Llk0nNJRddPu2ZAR133kG+tfaZqvqqJP9Lkq9OspjkxiRvbq2dnPD82KrFB1etF+QBAHbI4S8eBPnb/tvg50OPTObc2ghszaZ+iwz7xL9uwnNhO6yxIr+wpIc8AMCOOHJl8rkPnQnyCt0BE7DpPwdW1d9NcmWSfePjrbXf2eqkmKC1ttYfsyIPALAjRr3kPzts+iTIAxNw3kG+qr40yX9M8oQkLcmoWlobPs9NZmpMxJr3yA+aCxwS5AEAttcoyJ8+MXgW5IEJ2EzV+p9P8okklyY5luQrkzw9yQeSPHNiM2MyNtpaf8D9WQAA22p1qzlBHpiAzSS5pyb5htbaXVW1nGS5tfYnVXVdktck+ZqJzpDNWz6dLB0dvD54pv2cYncAADtktCI/ooc8MAGbWZGfS3Lf8PVdSR45fH1bksdNYlJMyCjEJ8n8kZWXK33kFbsDANheR6zIA5O3mRX5P8+g7dwnktyc5Meq6kSS/z3J30xwbmzVsWHruf2HzmpzYkUeAGCHzB9O9h9Ojg8XWAR5YAI2syL/b8fe99IkX5LkvyT5n5K8eELzYhJW7o8/ctawIA8AsING2+v3HxoEe4AtOu8V+dbau8Ze/3WSr6iqS5L8bWutrf9Odtwahe6S5L4lVesBAHbMkS9O7vyo1XhgYs5rRb6q9lbVqaq6any8tXaPED+D1gnyVuQBAHbQaEVekAcm5LyCfGvtZJJPRa/4blgJ8mcq1p86vZz7jw9X5Oe1nwMA2HaPHDZ1uvyrpjsPoDc2k+T+XZJXVNU/b63dM+kJMUFrrMiPttUnttYDAOyIJ3xncunjk0c8ftozAXpiM0H+B5J8eZLPVtVtSR4YP9hae+IkJsYELA7/zjIW5Efb6i/cN5e9c5updQgAwHnZsye54qunPQugRzYT5G+a9CTYJmusyC8sDXvIW40HAADopM1UrX/ZdkyEbbBGkFfoDgAAoNvsre6zDYK8FXkAAIBuOu8V+apaTrJuq7nWmor2s2IU5A+eqVq/sDiqWC/IAwAAdNFm7pH/tlU/703yNUm+J8lPbnlGTI6t9QAAAL2zmXvkf3uN4d+sqr9I8rwkv7rlWbF1y6eTxXsHr9csdqeHPAAAQBdN8h75P03yrAl+HluxdDQrd0DMH1kZtiIPAADQbRMJ8lV1IMmLk3xmEp/HBIy21e+7KLlg38qwIA8AANBtmyl297c5u9hdJbk4ybEk3z2hebFVa2yrT5KFUdV6xe4AAAA6aTM3Sv9Qzg7yy0m+kOTm1trfTmRWbN1KobsjZw0vWJEHAADotM0Uu3v9NsyDSVsJ8pecNbyytf6gIA8AANBF532PfFV9X1U9d43x51bV90xmWmzZGq3nkmRhSR95AACALttMsbvrkty1xvjnk/yfW5sOE7N4z+B5LMi31hS7AwAA6LjNBPkrk3xijfHbhseYBWusyB87cTqnlwflDfSRBwAA6KbNBPnPJ/mqNca/OsndW5sOE7NGkB+txu+dqxzYOzeNWQEAALBFm1mWfXOS11TVfUn+eDj2jCQ/n+Qtk5oYW7RBkD98YG+qahqzAgAAYIs2E+T/TZL/IckfJDk1HNuT5I1xj/zsGAX5g2eq1ushDwAA0H2baT93IsnzquonklydZDHJR1trt014bmzFBivyhxS6AwAA6KxNVzxrrX08yccnOBcm6diDq9arWA8AANB9m+kj//aq+tdrjP9YVb1tMtNiS5aXk6V7B6/HgvxKD3lBHgAAoLM2U7X+6Un+vzXGf3d4jGk7vpC05cHr+SMrw2dW5LWeAwAA6KrNBPmLkpxYY/xkkkNbmw4TMbo/fu/BZO/8yrBidwAAAN23mSD/0STPW2P8miQf29p0mIg1Ct0lZ4K8e+QBAAC6azN7rH86yW9V1Zcl+cPh2LOSfFeS75jUxNiClSB/yVnDit0BAAB032baz72jqr41g57x35FB+7kPJ/mGJPdMdHZszkqQP3LW8MKS9nMAAABdt6mqZ621dyZ5Z5JU1aEk/yzJq5I8KcncxGbH5qyztd6KPAAAQPdt5h75JElVPb2q3pDks0l+JINt9k+Z1MTYgnMEecXuAAAAuuu8VuSr6vIk35vk2gwq1P9Gkv1JvrW1ptDdrFi32N2gj7wVeQAAgO56yCvyVfWOJLcm+aokL0nyyNbaD27TvNiKNYL8iVPLWTx5OokgDwAA0GXnsyL/j5O8JskvttY+vk3zYRJGQf7gmar1o0J3SXLR/KZKIwAAADADzuce+acluTjJLVV1c1X9QFU9fJvmxVassSI/uj/+4vkLMrenpjErAAAAJuAhB/nW2p+21r4/yRVJfinJNRkUutuT5NlVdfH2TJHzdmzYBXCNIG9bPQAAQLedd9X61toDrbVfa609LckTkvxskh9P8vmq+p1JT5BNWGNFfkHFegAAgF7YdPu5JGmt3dpa+7Ekj86glzzT1tqGW+utyAMAAHTbRKqetdZOJ7lp+GCajt+XtEF1+rNW5JcGrecOHVDoDgAAoMu2tCLPDBqtxl9wINl7YGV4wYo8AABALwjyfbPGtvrE1noAAIC+EOT7ZvHBFesTxe4AAAD6QpDvm3OtyB8U5AEAALpsJoJ8Vb2oqj5ZVUtVdXNVPXmDc99TVW2NxzvHzrmsql5fVZ+tqmNV9Z+q6jE7822mbCXIHzlr2NZ6AACAfph6kK+q5yW5PsnLkjwxyYeTvKuqLl3nLd+e5Iqxx1VJTid52/DzKoPq+V+a5FuSfE2S25K8u6ou3LYvMivWWZFfWLK1HgAAoA+mHuST/HCSX26t3dha+1iSFyQ5luT5a53cWruntXbH6JHk2cPz3zY85TFJnpLkha2197fWbk3ywiQHsht63S/eO3heZ2v9ISvyAAAAnTbVIF9V+5I8Kcm7R2OtteXhz099iB9zbZK3tNYeGP68f/i8tOozjyd52jrz2F9Vh0aPJBef1xeZJaMV+YOXnDW8sDjoI39YH3kAAIBOm/aK/MOTzCW5c9X4nUkuP9ebh/fSX5XkV8aG/yrJp5K8sqq+qKr2VdW/TvLoDLbir+W6JEfHHrefz5eYKcceXLV+ebmd2VpvRR4AAKDTph3kt+raJB9trb1vNNBaO5nBffSPTXJPBtvuvz7J7yZZXudzXpnk8Njj0ds45+21xj3y9x0/ldYGr90jDwAA0G3T3md9VwaF6i5bNX5Zkjs2euOwcN01SV66+lhr7ZYkV1fV4ST7WmtfqKqbk3xgrc9qrR3PYOv96LPP5zvMljWC/KiH/P4L9mR+79w0ZgUAAMCETHVFvrV2IsktSZ41GquqPcOf33uOtz83g/vhf32Dzz86DPGPSfK1SX57y5OedWsEea3nAAAA+mPaK/LJoPXcG6rqA0nel+QlSS5McmOSVNUbk3ymtXbdqvddm+Sm1trdqz+wqp6b5AsZ3Cv/hCQ/Pzz397brS8yE1jZckRfkAQAAum/qQb619taqekSSl2dQ4O5DSZ7TWhsVwLsyq+5tr6rHZVCB/hvX+dgrMvgDwWVJPpfkjUl+euKTnzUnHkiWB6E9B85UrVfoDgAAoD+mHuSTpLV2Q5Ib1jn2zDXGbk2y7o3srbXXJHnNpObXGaPV+Ln9yd4DK8O21gMAAPRH16vWM25xrPXcWMG+UQ/5Q/Mz8XcbAAAAtkCQ75M17o9PrMgDAAD0iSDfJ4I8AABA7wnyfbJOkFfsDgAAoD8E+T45x4q8IA8AANB9gnyfjIL8QVvrAQAA+kqQ75Nj62ytH63IzwvyAAAAXSfI98m6W+sH7eesyAMAAHSfIN8n5yx2p488AABA1wnyfbJGkF86eTonTi0nsSIPAADQB4J8n6wR5EeF7vZUctF+K/IAAABdJ8j3RWtjQf6SleGFsdZzVTWNmQEAADBBgnxfnDyWnD4+eL3Girxt9QAAAP0gyPfFaDV+z95k34UrwyuF7rSeAwAA6AVBvi/G748f20JvRR4AAKBfBPm+WK+H/DFBHgAAoE8E+b5Yt4f8qSR6yAMAAPSFIN8XoyB/8JKzho+OVa0HAACg+wT5vlhva7175AEAAHpFkO+LY/cMnldvrV9UtR4AAKBPBPm+WFmRP3LWsBV5AACAfhHk++Kcxe4EeQAAgD4Q5Pti8d7B8zpb663IAwAA9IMg3xeK3QEAAOwKgnxfrAT5M+3nTp1ezv3Hh1vr5/WRBwAA6ANBvi8WH1y1/r7h/fGJe+QBAAD6QpDvg5OLyamlweuxID/aVn/hvrnsnfOfGgAAoA+kuz4YbauvuWT/xSvDC0vDHvJW4wEAAHpDkO+D8UJ3VSvDCt0BAAD0jyDfB+v1kF8cFboT5AEAAPpCkO+DUZA/eMlZw6MVeVvrAQAA+kOQ74NjD65Yn9haDwAA0EeCfB+st7V+pdidHvIAAAB9Icj3wTpB3oo8AABA/wjyfSDIAwAA7BqCfB+sW7V+uLVe1XoAAIDeEOT74BxB3oo8AABAfwjyfbB47+D5QcXuhn3kBXkAAIDeEOT7YFH7OQAAgN1CkO+DNbbWt9YEeQAAgB4S5Lvu5FJy8tjg9ViQP3bidE4vtyT6yAMAAPSJIN91S/cOnmtPsv/QyvBoNX7vXOXA3rkpTAwAAIDtIMh33Whb/fyRZM+Z/5wLS2daz1XVFCYGAADAdhDku24U5A9ectbw0WPujwcAAOgjQb7rjm1csV7rOQAAgH4R5LtujYr1iR7yAAAAfSXId906QV7rOQAAgH4S5LvunEFe6zkAAIA+EeS7br2t9YtnqtYDAADQH4J8160E+bOr1i/YWg8AANBLgnzXLa5dtX6lj7wgDwAA0CuCfNcpdgcAALCrCPJdt3jv4FmQBwAA2BUE+a5bWZE/ctbwwuKwj7xidwAAAL0iyHfZqRPJifsHr63IAwAA7AqCfJct3Tt8Ucn84ZXhE6eWs3jydBJBHgAAoG8E+S4b31a/Z25leFSxPkkumr9ghycFAADAdhLku+zY2q3nRtvqL56/IHN7aqdnBQAAwDYS5LtsndZzC8Mgr9AdAABA/wjyXaaHPAAAwK4jyHeZIA8AALDrCPJdtt7W+qVhD/kDCt0BAAD0jSDfZStB/pKzhhesyAMAAPSWIN9lJx4YPK9T7E6QBwAA6B97r7vs238p+ebXJK2dNXxU1XoAAIDeEuS77oL9DxpaKXZ3UJAHAADom5nYWl9VL6qqT1bVUlXdXFVP3uDc91RVW+PxzrFzLqqqG6rq9qparKqPVdULdubbTN/CkhV5AACAvpp6kK+q5yW5PsnLkjwxyYeTvKuqLl3nLd+e5Iqxx1VJTid529g51yd5TpLvTvL4JK9OckNVffM2fIWZo/0cAABAf009yCf54SS/3Fq7sbX2sSQvSHIsyfPXOrm1dk9r7Y7RI8mzh+ePB/m/n+QNrbX3tNY+2Vp7XQZ/IFh3pb9PVu6RF+QBAAB6Z6pBvqr2JXlSknePxlpry8Ofn/oQP+baJG9prT0wNvbfknxzVT2qBr4+yWOT/N4689hfVYdGjyQXb+LrzIyFxUEf+cP6yAMAAPTOtFfkH55kLsmdq8bvTHL5ud48vJf+qiS/surQDyb5WJLbk5xI8p+SvKi19sfrfNR1SY6OPW5/iPOfOcvL7cw98lbkAQAAemfaQX6rrk3y0dba+1aN/2CSpyT55gxW/H8kyWur6h+u8zmvTHJ47PHo7Znu9rv/xKmVbnSK3QEAAPTPtPde35VBobrLVo1fluSOjd5YVRcmuSbJS1eNH0jyiiTf1lobVbL/SFVdneRHM7aNf6S1djzJ8bHPOK8vMUuOHhusxu+/YE/m985NeTYAAABM2lRX5FtrJ5LckuRZo7Gq2jP8+b3nePtzk+xP8uurxvcOH8urxk+n+zsQzknFegAAgH6b9op8MmgV94aq+kCS9yV5SZILk9yYJFX1xiSfaa1dt+p91ya5qbV29/hga22hqv5zkp+pqsUktyV5RpL/NYMK+b3m/ngAAIB+m3qQb629taoekeTlGRS4+1CS57TWRgXwrsyq1fWqelySpyX5xnU+9poM7nt/U5JLMgjz/1eS/3fS8581C1bkAQAAem3qQT5JWms3JLlhnWPPXGPs1iTr3sg+7C//fZOaX5fYWg8AANBvvb9nfLcZ9ZA/ND8Tf6MBAABgwgT5nrEiDwAA0G+CfM8odgcAANBvgnzPWJEHAADoN0G+Z0ZB3oo8AABAPwnyPTNqP3doXpAHAADoI0G+Z2ytBwAA6DdBvmeODtvPCfIAAAD9JMj3zJmq9frIAwAA9JEg3yNLJ0/nxKnlJFbkAQAA+kqQ75FRobs9lVy4z4o8AABAHwnyPTLeem7PnprybAAAANgOgnyPqFgPAADQf4J8j6wUutNDHgAAoLcE+R6xIg8AANB/gnyPLOghDwAA0HuCfI+cKXanYj0AAEBfCfI9Ml61HgAAgH4S5Htk1EdesTsAAID+EuR7RLE7AACA/hPke0SQBwAA6D9BvkcWlgZV690jDwAA0F+CfI8sWJEHAADoPUG+RwR5AACA/hPke+L0cst9x4db6+f1kQcAAOgrQb4nRqvxiXvkAQAA+kyQ74mFpUGQP7hvLnvn/GcFAADoK4mvJ7SeAwAA2B0E+Z4Q5AEAAHYHQb4nFhZHhe4EeQAAgD4T5HtitCKv0B0AAEC/CfI9MSp2d+iA1nMAAAB9Jsj3hHvkAQAAdgdBvicEeQAAgN1BkO+JhdE98ordAQAA9Jog3xNW5AEAAHYHQb4nFgR5AACAXUGQ74mFpWEfeUEeAACg1wT5nrC1HgAAYHcQ5HugtXam2J0+8gAAAL0myPfAsROnc2q5JbEiDwAA0HeCfA+MttXvnasc2Ds35dkAAACwnQT5HlhYOtNDvqqmPBsAAAC2kyDfA0ePKXQHAACwWwjyPaD1HAAAwO4hyPfA0ZWK9YI8AABA3wnyPaCHPAAAwO4hyPfASg/5eT3kAQAA+k6Q7wEr8gAAALuHIN8DC4I8AADAriHI98BKH3lBHgAAoPcE+R6wtR4AAGD3EOR7YGFx0EdekAcAAOg/Qb4HVvrIzwvyAAAAfSfI94Ct9QAAALuHIN9xJ04tZ/Hk6STJoQP6yAMAAPSdIN9xo4r1SXKxrfUAAAC9J8h33Ghb/cXzF2RuT015NgAAAGw3Qb7jFhS6AwAA2FUE+Y5T6A4AAGB3EeQ7bmFp0ENeoTsAAIDdQZDvOCvyAAAAu4sg33ELgjwAAMCuIsh3nGJ3AAAAu4sg33G21gMAAOwugnzHrQT5g4I8AADAbjATQb6qXlRVn6yqpaq6uaqevMG576mqtsbjnWPnrHW8VdW/2plvtHMWlmytBwAA2E2mHuSr6nlJrk/ysiRPTPLhJO+qqkvXecu3J7li7HFVktNJ3jZ2zhWrHs9P0pK8fRu+wlTZWg8AALC7TD3IJ/nhJL/cWruxtfaxJC9IciyD8P0grbV7Wmt3jB5Jnj08/21j59yx6pxvSfJHrbW/2fZvs8MWFvWRBwAA2E2mGuSral+SJyV592istbY8/PmpD/Fjrk3yltbaA+v8G5cl+aYkv7rBPPZX1aHRI8nFD/Hfnjor8gAAALvLtFfkH55kLsmdq8bvTHL5ud48vJf+qiS/ssFp35PkviS/tcE51yU5Ova4/Vz/9ixYXm5n7pEX5AEAAHaFaQf5rbo2yUdba+/b4JznJ3lTa21pg3NemeTw2OPRk5vi9rn/xKm0Nnit2B0AAMDuMO0bq+/KoFDdZavGL0tyx0ZvrKoLk1yT5KUbnPM/Jnlckudt9FmtteNJjo+9b8NJz4qjxwar8fsv2JP5vXNTng0AAAA7Yaor8q21E0luSfKs0VhV7Rn+/N5zvP25SfYn+fUNzrk2yS2ttQ9vcaozabSt3v3xAAAAu8csbK2/Psn3V9X3VNXjk/xikguT3JgkVfXGqnrlGu+7NslNrbW71/rQYdG652bj++c7bVTozv3xAAAAu8e0t9antfbWqnpEkpdnUODuQ0me01obFcC7Msny+Huq6nFJnpbkGzf46GuSVJI3T3rOs2JBxXoAAIBdZ+pBPklaazckuWGdY89cY+zWDEL6Rp/5uiSvm8T8ZtVKD/n5mfjPCAAAwA6Yha31bJIe8gAAALuPIN9hgjwAAMDuI8h32KhqvWJ3AAAAu4cg32FW5AEAAHafaq1New4zZ9i67ujRo0dz6NChaU9nXXfdfzxfuO94HnbRvlx68fy0pwMAAMAmLSws5PDhw0lyuLW2sNG5yp132MMv2p+HX7R/2tMAAABgB9laDwAAAB0iyAMAAECHCPIAAADQIYI8AAAAdIggDwAAAB0iyAMAAECHCPIAAADQIYI8AAAAdIggDwAAAB0iyAMAAECHCPIAAADQIYI8AAAAdIggDwAAAB0iyAMAAECHCPIAAADQIYI8AAAAdIggDwAAAB1ywbQnMMsWFhamPQUAAAB2gfPJn9Va28apdFNVPSrJ7dOeBwAAALvOo1trn9noBEF+DVVVSR6Z5L5pz+UcLs7gDw6PzuzPFRLXLN3jmqVLXK90jWuWLtmp6/XiJJ9t5wjqttavYfg/2oZ/AZkFg783JEnua625D4CZ55qla1yzdInrla5xzdIlO3i9PqTPVuwOAAAAOkSQBwAAgA4R5LvteJKXDZ+hC1yzdI1rli5xvdI1rlm6ZKauV8XuAAAAoEOsyAMAAECHCPIAAADQIYI8AAAAdIggDwAAAB0iyHdYVb2oqj5ZVUtVdXNVPXnac4IkqaqnV9U7quqzVdWq6ltXHa+qenlVfa6qFqvq3VX1mClNl12uqq6rqvdX1X1V9fmquqmqHrfqnPmqem1V3V1V91fV26vqsmnNmd2rql5YVR+pqoXh471V9Y/HjrtWmWlV9ePD/2/w6rEx1y0zoap+anh9jj/+auz4zFyrgnxHVdXzklyfQQuEJyb5cJJ3VdWlU50YDFyYwTX5onWO/1iSFyd5QZKvS/JABtfv/M5MD87yjCSvTfKUJM9OsjfJ71XVhWPn/FySf5LkucPzH5nkt3Z4npAktyf58SRPSvK1Sf4wyW9X1VcOj7tWmVlV9feS/B9JPrLqkOuWWfIXSa4Yezxt7NjMXKvaz3VUVd2c5P2ttR8Y/rwnyaeT/EJr7d9PdXIwpqpakm9rrd00/LmSfDbJz7bWXjUcO5zkziTf21p7y7TmCklSVY9I8vkkz2it/fHw+vxCku9qrf3m8JyvSPKXSZ7aWvvT6c0Wkqq6J8m/SvKbca0yo6rqoiQfTPIvkvxEkg+11l7idyyzpKp+Ksm3ttauXuPYTF2rVuQ7qKr2ZfCX+HePxlpry8OfnzqtecFD9CVJLs/Z1+/RJDfH9ctsODx8vmf4/KQMVunHr9m/SvKpuGaZoqqaq6prMtgF9d64Vpltr03yztbau1eNu26ZNY8Z3h76N1X1pqq6cjg+U9fqBTv9DzIRD08yl8EK5rg7k3zFzk8Hzsvlw+e1rt/LA1M03N306iT/tbX258Phy5OcaK3du+p01yxTUVVPyCC4zye5P4NdTx+rqqvjWmUGDf/g9MQkf2+Nw37HMktuTvK9SW7NYFv9Tyb5L1V1VWbsWhXkAeCM1ya5KmffDwez5tYkV2ewe+Q7kryhqp4x1RnBOqrqi5P8fJJnt9aWpj0f2Ehr7XfHfvzI8Hbm25J8Z5LF6cxqbbbWd9NdSU4nWV0h8bIkd+z8dOC8jK5R1y8zpapuSPI/J/n61trtY4fuSLKvqo6seotrlqlorZ1orf11a+2W1tp1GRQX/ZdxrTKbnpTk0iQfrKpTVXUqgyJhLx6+vjOuW2bUcPX9vyf58szY71hBvoNaayeS3JLkWaOx4XbQZ2Ww1Q5m2Scy+GU3fv0eyqB6veuXHTdsh3hDkm9L8g2ttU+sOuWWJCdz9jX7uCRXxjXLbNiTZH9cq8ymP0jyhAx2kYweH0jyprHXrltm0rBI45cl+Vxm7HesrfXddX0GW+k+kOR9SV6SQbGbG6c5KUhWful9+djQlwzv3byntfapYe/Yn6iqj2cQ7H86g0r2N+3wVCEZbKf/riTfkuS+qhrd53a0tbbYWjtaVb+a5PphdfCFJL+Q5L2qKbPTquqVSX43g+JKF2dw7T4zyT9yrTKLWmv3Jfnz8bGqeiDJ3aNaJK5bZkVVvSrJOzLYTv/IDFp9n07y5ln7HSvId1Rr7a3DFkkvz6C4woeSPKe1trqAGEzD1yb5o7Gfrx8+vyGDAiL/IYM/PL0uyZEkf5LB9eveOabhhcPn96wa/74krx++/qEky0nensHK57syaKEEO+3SJG/MoAjT0Qz6cf+j1trvD4+7Vuki1y2z4tFJ3pzkYRm0mvuTJE9prX1heHxmrlV95AEAAKBD3CMPAAAAHSLIAwAAQIcI8gAAANAhgjwAAAB0iCAPAAAAHSLIAwAAQIcI8gAAANAhgjwAAAB0iCAPAAAAHSLIAwAAQIcI8gDAg1TVnqq6rqo+UVWLVfXhqvqO4bFnVlWrqm+qqo9U1VJV/WlVXbXqM/5pVf1FVR2vqk9W1Y+sOr6/qv7vqvr08Jy/rqprd/J7AkAXXTDtCQAAM+m6JN+d5AVJPp7k6Ul+vaq+MHbOzyT5l0nuSPKKJO+oqse21k5W1ZOS/EaSn0ry1iR/P8n/U1V3t9ZeP3z/G5M8NcmLk3w4yZckefg2fy8A6LxqrU17DgDADKmq/UnuSfIPW2vvHRv/lSQHk7wuyR8luaa19tbhsUuS3J7ke1trv1FVb0ryiNbaN469/z8k+abW2ldW1WOT3Jrk2a21d+/UdwOAPrAiDwCs9uUZBPbfr6rx8X1J/mzs55WQ31q7p6puTfL44dDjk/z2qs/9r0leUlVzSa5OcjrJf57ozAFgFxDkAYDVLho+f1OSz6w6djzJl03g31icwGcAwK6k2B0AsNrHMgjsV7bW/nrV49Nj5z1l9KKqvijJY5P85XDoL5P8g1Wf+w+S/PfW2ukkH83g/4c8Y7u+BAD0lRV5AOAsrbX7qupVSX6uqvYk+ZMkhzMI4gtJbhue+tKqujvJnUn+XZK7ktw0PPazSd5fVf8mg2J3T03yA0n+xfDf+GRVvSHJr1XVqNjd30lyaWvtN7b/WwJAdyl2BwA8SA1ujn9xkhcm+dIk9yb5YAbV6fdkUOzunyT590kek+RDSb6/tfaRsc/4p0lePjz+uSS/0Fp71djx+eHnXZPkYUk+leQVrbUbt/fbAUC3CfIAwHmpqmdmEOS/qLV271QnAwC7kHvkAQAAoEMEeQAAAOgQW+sBAACgQ6zIAwAAQIcI8gAAANAhgjwAAAB0iCAPAAAAHSLIAwAAQIcI8gAAANAhgjwAAAB0iCAPAAAAHSLIAwAAQIf8/2Bk9BjQRESUAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure(figsize=(12, 6), dpi=100)\n", - "plt.ylabel(\"Accuracy\")\n", - "plt.xlabel(\"epoc\")\n", - "plt.plot(history.history[\"accuracy\"], label=\"training\")\n", - "plt.plot(history.history[\"val_accuracy\"], label=\"validation\")\n", - "plt.legend()" - ] - }, - { - "cell_type": "markdown", - "id": "e13a93d5", - "metadata": {}, - "source": [ - "# Busco bajar el learning rate porque esta over shootiando, poner mas epocs y regularizo también" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "eed7aad9", - "metadata": {}, - "outputs": [], - "source": [ - "from keras.regularizers import l2" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "288472f1", - "metadata": {}, - "outputs": [], - "source": [ - "num_clases = 2\n", - "model = Sequential()\n", - "model.add(Dense(16, input_shape=(40,), activation='relu', kernel_regularizer=l2(0.001)))\n", - "#model.add(Dropout(0.25))\n", - "model.add(Dense(8, activation='relu', kernel_regularizer=l2(0.001)))\n", - "#model.add(Dropout(0.25))\n", - "model.add(Dense(4, activation='relu', kernel_regularizer=l2(0.001)))\n", - "model.add(Dense(num_clases, activation=\"softmax\"))\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "46ce7437", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"sequential_1\"\n", - "_________________________________________________________________\n", - "Layer (type) Output Shape Param # \n", - "=================================================================\n", - "dense_2 (Dense) (None, 16) 656 \n", - "_________________________________________________________________\n", - "dense_3 (Dense) (None, 8) 136 \n", - "_________________________________________________________________\n", - "dense_4 (Dense) (None, 4) 36 \n", - "_________________________________________________________________\n", - "dense_5 (Dense) (None, 2) 10 \n", - "=================================================================\n", - "Total params: 838\n", - "Trainable params: 838\n", - "Non-trainable params: 0\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "#opt = RMSprop(lr=0.0001)\n", - "opt = tensorflow.keras.optimizers.RMSprop(lr=0.0001)\n", - "model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy',\"AUC\"])\n", - "model.summary()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "3777aa07", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/100\n", - "814/814 [==============================] - 2s 1ms/step - loss: 5.2003 - accuracy: 0.3509 - auc: 0.3840 - val_loss: 0.7490 - val_accuracy: 0.7652 - val_auc: 0.8022\n", - "Epoch 2/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.6525 - accuracy: 0.7783 - auc: 0.8227 - val_loss: 0.5278 - val_accuracy: 0.7811 - val_auc: 0.8597\n", - "Epoch 3/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.5456 - accuracy: 0.7861 - auc: 0.8506 - val_loss: 0.4892 - val_accuracy: 0.7943 - val_auc: 0.8675\n", - "Epoch 4/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.5034 - accuracy: 0.7960 - auc: 0.8671 - val_loss: 0.4526 - val_accuracy: 0.8128 - val_auc: 0.8926\n", - "Epoch 5/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.4661 - accuracy: 0.8109 - auc: 0.8846 - val_loss: 0.4852 - val_accuracy: 0.8059 - val_auc: 0.8807\n", - "Epoch 6/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.4496 - accuracy: 0.8157 - auc: 0.8935 - val_loss: 0.4436 - val_accuracy: 0.8108 - val_auc: 0.8946\n", - "Epoch 7/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.4313 - accuracy: 0.8277 - auc: 0.9018 - val_loss: 0.4153 - val_accuracy: 0.8245 - val_auc: 0.9088\n", - "Epoch 8/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.4272 - accuracy: 0.8229 - auc: 0.9022 - val_loss: 0.4286 - val_accuracy: 0.8265 - val_auc: 0.9101\n", - "Epoch 9/100\n", - "814/814 [==============================] - 1s 995us/step - loss: 0.4211 - accuracy: 0.8300 - auc: 0.9061 - val_loss: 0.4265 - val_accuracy: 0.8265 - val_auc: 0.9091\n", - "Epoch 10/100\n", - "814/814 [==============================] - 1s 997us/step - loss: 0.4105 - accuracy: 0.8305 - auc: 0.9110 - val_loss: 0.4059 - val_accuracy: 0.8326 - val_auc: 0.9191\n", - "Epoch 11/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.4007 - accuracy: 0.8315 - auc: 0.9142 - val_loss: 0.3984 - val_accuracy: 0.8340 - val_auc: 0.9203\n", - "Epoch 12/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.4108 - accuracy: 0.8309 - auc: 0.9142 - val_loss: 0.4238 - val_accuracy: 0.8323 - val_auc: 0.9171\n", - "Epoch 13/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3929 - accuracy: 0.8339 - auc: 0.9162 - val_loss: 0.3951 - val_accuracy: 0.8320 - val_auc: 0.9197\n", - "Epoch 14/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3939 - accuracy: 0.8372 - auc: 0.9168 - val_loss: 0.3976 - val_accuracy: 0.8340 - val_auc: 0.9195\n", - "Epoch 15/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3922 - accuracy: 0.8331 - auc: 0.9168 - val_loss: 0.4321 - val_accuracy: 0.8044 - val_auc: 0.8957\n", - "Epoch 16/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3910 - accuracy: 0.8340 - auc: 0.9182 - val_loss: 0.3785 - val_accuracy: 0.8371 - val_auc: 0.9255\n", - "Epoch 17/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3911 - accuracy: 0.8386 - auc: 0.9215 - val_loss: 0.3877 - val_accuracy: 0.8313 - val_auc: 0.9224\n", - "Epoch 18/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3902 - accuracy: 0.8361 - auc: 0.9185 - val_loss: 0.3852 - val_accuracy: 0.8371 - val_auc: 0.9248\n", - "Epoch 19/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3895 - accuracy: 0.8361 - auc: 0.9195 - val_loss: 0.4432 - val_accuracy: 0.8135 - val_auc: 0.8927\n", - "Epoch 20/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3848 - accuracy: 0.8376 - auc: 0.9223 - val_loss: 0.3815 - val_accuracy: 0.8405 - val_auc: 0.9257\n", - "Epoch 21/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3804 - accuracy: 0.8396 - auc: 0.9233 - val_loss: 0.4044 - val_accuracy: 0.8339 - val_auc: 0.9193\n", - "Epoch 22/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3867 - accuracy: 0.8379 - auc: 0.9220 - val_loss: 0.3715 - val_accuracy: 0.8465 - val_auc: 0.9288\n", - "Epoch 23/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3800 - accuracy: 0.8409 - auc: 0.9232 - val_loss: 0.3832 - val_accuracy: 0.8417 - val_auc: 0.9255\n", - "Epoch 24/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3899 - accuracy: 0.8390 - auc: 0.9232 - val_loss: 0.3874 - val_accuracy: 0.8412 - val_auc: 0.9244\n", - "Epoch 25/100\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3830 - accuracy: 0.8369 - auc: 0.9218 - val_loss: 0.3714 - val_accuracy: 0.8449 - val_auc: 0.9293\n", - "Epoch 26/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3749 - accuracy: 0.8437 - auc: 0.9254 - val_loss: 0.3872 - val_accuracy: 0.8419 - val_auc: 0.9258\n", - "Epoch 27/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3835 - accuracy: 0.8359 - auc: 0.9214 - val_loss: 0.4138 - val_accuracy: 0.8345 - val_auc: 0.9130\n", - "Epoch 28/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3901 - accuracy: 0.8375 - auc: 0.9222 - val_loss: 0.3901 - val_accuracy: 0.8319 - val_auc: 0.9235\n", - "Epoch 29/100\n", - "814/814 [==============================] - 1s 995us/step - loss: 0.3765 - accuracy: 0.8404 - auc: 0.9247 - val_loss: 0.4574 - val_accuracy: 0.8061 - val_auc: 0.8916\n", - "Epoch 30/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3763 - accuracy: 0.8371 - auc: 0.9240 - val_loss: 0.3768 - val_accuracy: 0.8443 - val_auc: 0.9274\n", - "Epoch 31/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3763 - accuracy: 0.8365 - auc: 0.9239 - val_loss: 0.3949 - val_accuracy: 0.8293 - val_auc: 0.9204\n", - "Epoch 32/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3769 - accuracy: 0.8406 - auc: 0.9258 - val_loss: 0.3774 - val_accuracy: 0.8432 - val_auc: 0.9276\n", - "Epoch 33/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3854 - accuracy: 0.8384 - auc: 0.9234 - val_loss: 0.3659 - val_accuracy: 0.8475 - val_auc: 0.9319\n", - "Epoch 34/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3736 - accuracy: 0.8417 - auc: 0.9247 - val_loss: 0.3713 - val_accuracy: 0.8369 - val_auc: 0.9273\n", - "Epoch 35/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3776 - accuracy: 0.8421 - auc: 0.9251 - val_loss: 0.3698 - val_accuracy: 0.8462 - val_auc: 0.9302\n", - "Epoch 36/100\n", - "814/814 [==============================] - 1s 996us/step - loss: 0.3785 - accuracy: 0.8416 - auc: 0.9250 - val_loss: 0.3714 - val_accuracy: 0.8388 - val_auc: 0.9282\n", - "Epoch 37/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3769 - accuracy: 0.8439 - auc: 0.9256 - val_loss: 0.3715 - val_accuracy: 0.8397 - val_auc: 0.9287\n", - "Epoch 38/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3819 - accuracy: 0.8394 - auc: 0.9227 - val_loss: 0.3946 - val_accuracy: 0.8403 - val_auc: 0.9249\n", - "Epoch 39/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3750 - accuracy: 0.8421 - auc: 0.9257 - val_loss: 0.3914 - val_accuracy: 0.8405 - val_auc: 0.9241\n", - "Epoch 40/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3833 - accuracy: 0.8413 - auc: 0.9254 - val_loss: 0.3859 - val_accuracy: 0.8411 - val_auc: 0.9268\n", - "Epoch 41/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3776 - accuracy: 0.8457 - auc: 0.9274 - val_loss: 0.3661 - val_accuracy: 0.8468 - val_auc: 0.9317\n", - "Epoch 42/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3746 - accuracy: 0.8373 - auc: 0.9235 - val_loss: 0.3663 - val_accuracy: 0.8451 - val_auc: 0.9311\n", - "Epoch 43/100\n", - "814/814 [==============================] - 1s 865us/step - loss: 0.3740 - accuracy: 0.8384 - auc: 0.9253 - val_loss: 0.3654 - val_accuracy: 0.8451 - val_auc: 0.9311\n", - "Epoch 44/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3742 - accuracy: 0.8380 - auc: 0.9252 - val_loss: 0.4057 - val_accuracy: 0.8231 - val_auc: 0.9135\n", - "Epoch 45/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3770 - accuracy: 0.8416 - auc: 0.9247 - val_loss: 0.3634 - val_accuracy: 0.8443 - val_auc: 0.9321\n", - "Epoch 46/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3765 - accuracy: 0.8399 - auc: 0.9245 - val_loss: 0.3635 - val_accuracy: 0.8472 - val_auc: 0.9327\n", - "Epoch 47/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3718 - accuracy: 0.8431 - auc: 0.9261 - val_loss: 0.3627 - val_accuracy: 0.8475 - val_auc: 0.9325\n", - "Epoch 48/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3657 - accuracy: 0.8423 - auc: 0.9280 - val_loss: 0.3913 - val_accuracy: 0.8328 - val_auc: 0.9234\n", - "Epoch 49/100\n", - "814/814 [==============================] - 1s 916us/step - loss: 0.3846 - accuracy: 0.8411 - auc: 0.9246 - val_loss: 0.3651 - val_accuracy: 0.8475 - val_auc: 0.9285\n", - "Epoch 50/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3727 - accuracy: 0.8408 - auc: 0.9258 - val_loss: 0.3605 - val_accuracy: 0.8471 - val_auc: 0.9332\n", - "Epoch 51/100\n", - "814/814 [==============================] - 1s 918us/step - loss: 0.3731 - accuracy: 0.8400 - auc: 0.9266 - val_loss: 0.3670 - val_accuracy: 0.8452 - val_auc: 0.9317\n", - "Epoch 52/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3748 - accuracy: 0.8394 - auc: 0.9264 - val_loss: 0.3680 - val_accuracy: 0.8391 - val_auc: 0.9296\n", - "Epoch 53/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3716 - accuracy: 0.8431 - auc: 0.9276 - val_loss: 0.3606 - val_accuracy: 0.8491 - val_auc: 0.9321\n", - "Epoch 54/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3676 - accuracy: 0.8429 - auc: 0.9267 - val_loss: 0.3654 - val_accuracy: 0.8446 - val_auc: 0.9287\n", - "Epoch 55/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3709 - accuracy: 0.8396 - auc: 0.9271 - val_loss: 0.3745 - val_accuracy: 0.8458 - val_auc: 0.9303\n", - "Epoch 56/100\n", - "814/814 [==============================] - 1s 932us/step - loss: 0.3715 - accuracy: 0.8403 - auc: 0.9259 - val_loss: 0.3872 - val_accuracy: 0.8372 - val_auc: 0.9213\n", - "Epoch 57/100\n", - "814/814 [==============================] - 1s 857us/step - loss: 0.3710 - accuracy: 0.8400 - auc: 0.9251 - val_loss: 0.3803 - val_accuracy: 0.8425 - val_auc: 0.9271\n", - "Epoch 58/100\n", - "814/814 [==============================] - 1s 854us/step - loss: 0.3744 - accuracy: 0.8410 - auc: 0.9252 - val_loss: 0.3739 - val_accuracy: 0.8391 - val_auc: 0.9283\n", - "Epoch 59/100\n", - "814/814 [==============================] - 1s 886us/step - loss: 0.3714 - accuracy: 0.8417 - auc: 0.9262 - val_loss: 0.3627 - val_accuracy: 0.8477 - val_auc: 0.9328\n", - "Epoch 60/100\n", - "814/814 [==============================] - 1s 863us/step - loss: 0.3746 - accuracy: 0.8387 - auc: 0.9250 - val_loss: 0.3784 - val_accuracy: 0.8411 - val_auc: 0.9278\n", - "Epoch 61/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3651 - accuracy: 0.8444 - auc: 0.9288 - val_loss: 0.3728 - val_accuracy: 0.8439 - val_auc: 0.9296\n", - "Epoch 62/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3713 - accuracy: 0.8434 - auc: 0.9274 - val_loss: 0.3859 - val_accuracy: 0.8417 - val_auc: 0.9248\n", - "Epoch 63/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3719 - accuracy: 0.8442 - auc: 0.9280 - val_loss: 0.3705 - val_accuracy: 0.8443 - val_auc: 0.9299\n", - "Epoch 64/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3719 - accuracy: 0.8396 - auc: 0.9256 - val_loss: 0.3705 - val_accuracy: 0.8429 - val_auc: 0.9304\n", - "Epoch 65/100\n", - "814/814 [==============================] - 1s 852us/step - loss: 0.3634 - accuracy: 0.8414 - auc: 0.9284 - val_loss: 0.3879 - val_accuracy: 0.8276 - val_auc: 0.9181\n", - "Epoch 66/100\n", - "814/814 [==============================] - 1s 861us/step - loss: 0.3666 - accuracy: 0.8420 - auc: 0.9269 - val_loss: 0.3682 - val_accuracy: 0.8376 - val_auc: 0.9296\n", - "Epoch 67/100\n", - "814/814 [==============================] - 1s 876us/step - loss: 0.3706 - accuracy: 0.8445 - auc: 0.9285 - val_loss: 0.3580 - val_accuracy: 0.8495 - val_auc: 0.9340\n", - "Epoch 68/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3665 - accuracy: 0.8428 - auc: 0.9280 - val_loss: 0.3718 - val_accuracy: 0.8392 - val_auc: 0.9266\n", - "Epoch 69/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3729 - accuracy: 0.8435 - auc: 0.9269 - val_loss: 0.3641 - val_accuracy: 0.8400 - val_auc: 0.9310\n", - "Epoch 70/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3608 - accuracy: 0.8455 - auc: 0.9301 - val_loss: 0.3700 - val_accuracy: 0.8428 - val_auc: 0.9302\n", - "Epoch 71/100\n", - "814/814 [==============================] - 1s 982us/step - loss: 0.3670 - accuracy: 0.8436 - auc: 0.9287 - val_loss: 0.3699 - val_accuracy: 0.8432 - val_auc: 0.9301\n", - "Epoch 72/100\n", - "814/814 [==============================] - 1s 881us/step - loss: 0.3759 - accuracy: 0.8397 - auc: 0.9252 - val_loss: 0.3725 - val_accuracy: 0.8468 - val_auc: 0.9305\n", - "Epoch 73/100\n", - "814/814 [==============================] - 1s 871us/step - loss: 0.3644 - accuracy: 0.8453 - auc: 0.9296 - val_loss: 0.3650 - val_accuracy: 0.8382 - val_auc: 0.9295\n", - "Epoch 74/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3689 - accuracy: 0.8414 - auc: 0.9279 - val_loss: 0.3599 - val_accuracy: 0.8488 - val_auc: 0.9328\n", - "Epoch 75/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3625 - accuracy: 0.8430 - auc: 0.9290 - val_loss: 0.3584 - val_accuracy: 0.8488 - val_auc: 0.9323\n", - "Epoch 76/100\n", - "814/814 [==============================] - 2s 2ms/step - loss: 0.3718 - accuracy: 0.8400 - auc: 0.9253 - val_loss: 0.3581 - val_accuracy: 0.8495 - val_auc: 0.9337\n", - "Epoch 77/100\n", - "814/814 [==============================] - 1s 875us/step - loss: 0.3590 - accuracy: 0.8482 - auc: 0.9312 - val_loss: 0.3626 - val_accuracy: 0.8428 - val_auc: 0.9306\n", - "Epoch 78/100\n", - "814/814 [==============================] - 1s 856us/step - loss: 0.3602 - accuracy: 0.8404 - auc: 0.9291 - val_loss: 0.3704 - val_accuracy: 0.8359 - val_auc: 0.9283\n", - "Epoch 79/100\n", - "814/814 [==============================] - 1s 889us/step - loss: 0.3724 - accuracy: 0.8437 - auc: 0.9279 - val_loss: 0.3610 - val_accuracy: 0.8478 - val_auc: 0.9312\n", - "Epoch 80/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3643 - accuracy: 0.8409 - auc: 0.9285 - val_loss: 0.3558 - val_accuracy: 0.8494 - val_auc: 0.9337\n", - "Epoch 81/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3688 - accuracy: 0.8466 - auc: 0.9289 - val_loss: 0.4278 - val_accuracy: 0.8179 - val_auc: 0.9021\n", - "Epoch 82/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3678 - accuracy: 0.8444 - auc: 0.9280 - val_loss: 0.3825 - val_accuracy: 0.8434 - val_auc: 0.9255\n", - "Epoch 83/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3711 - accuracy: 0.8412 - auc: 0.9269 - val_loss: 0.4384 - val_accuracy: 0.8088 - val_auc: 0.8992\n", - "Epoch 84/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3645 - accuracy: 0.8467 - auc: 0.9294 - val_loss: 0.3630 - val_accuracy: 0.8458 - val_auc: 0.9319\n", - "Epoch 85/100\n", - "814/814 [==============================] - 1s 977us/step - loss: 0.3589 - accuracy: 0.8452 - auc: 0.9307 - val_loss: 0.3742 - val_accuracy: 0.8429 - val_auc: 0.9280\n", - "Epoch 86/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3770 - accuracy: 0.8409 - auc: 0.9272 - val_loss: 0.3665 - val_accuracy: 0.8389 - val_auc: 0.9299\n", - "Epoch 87/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3675 - accuracy: 0.8398 - auc: 0.9276 - val_loss: 0.4054 - val_accuracy: 0.8188 - val_auc: 0.9110\n", - "Epoch 88/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3740 - accuracy: 0.8403 - auc: 0.9261 - val_loss: 0.3572 - val_accuracy: 0.8480 - val_auc: 0.9334\n", - "Epoch 89/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3681 - accuracy: 0.8379 - auc: 0.9261 - val_loss: 0.3953 - val_accuracy: 0.8359 - val_auc: 0.9192\n", - "Epoch 90/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3642 - accuracy: 0.8430 - auc: 0.9279 - val_loss: 0.3577 - val_accuracy: 0.8509 - val_auc: 0.9340\n", - "Epoch 91/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3669 - accuracy: 0.8443 - auc: 0.9274 - val_loss: 0.3756 - val_accuracy: 0.8376 - val_auc: 0.9274\n", - "Epoch 92/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3593 - accuracy: 0.8435 - auc: 0.9300 - val_loss: 0.3723 - val_accuracy: 0.8377 - val_auc: 0.9250\n", - "Epoch 93/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3644 - accuracy: 0.8432 - auc: 0.9286 - val_loss: 0.3609 - val_accuracy: 0.8472 - val_auc: 0.9332\n", - "Epoch 94/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3584 - accuracy: 0.8449 - auc: 0.9302 - val_loss: 0.3641 - val_accuracy: 0.8449 - val_auc: 0.9324\n", - "Epoch 95/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3724 - accuracy: 0.8426 - auc: 0.9260 - val_loss: 0.3742 - val_accuracy: 0.8419 - val_auc: 0.9290\n", - "Epoch 96/100\n", - "814/814 [==============================] - 1s 876us/step - loss: 0.3685 - accuracy: 0.8423 - auc: 0.9284 - val_loss: 0.3542 - val_accuracy: 0.8521 - val_auc: 0.9342\n", - "Epoch 97/100\n", - "814/814 [==============================] - 1s 878us/step - loss: 0.3625 - accuracy: 0.8451 - auc: 0.9295 - val_loss: 0.3772 - val_accuracy: 0.8403 - val_auc: 0.9283\n", - "Epoch 98/100\n", - "814/814 [==============================] - 1s 890us/step - loss: 0.3618 - accuracy: 0.8444 - auc: 0.9294 - val_loss: 0.3635 - val_accuracy: 0.8411 - val_auc: 0.9282\n", - "Epoch 99/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3699 - accuracy: 0.8422 - auc: 0.9272 - val_loss: 0.3566 - val_accuracy: 0.8457 - val_auc: 0.9325\n", - "Epoch 100/100\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3671 - accuracy: 0.8428 - auc: 0.9284 - val_loss: 0.3724 - val_accuracy: 0.8465 - val_auc: 0.9307\n" - ] - } - ], - "source": [ - "history = model.fit(X_train.values, y_train,verbose = 1,epochs = 100,validation_data=(X_test.values, y_test))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "7b0668fc", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAIECAYAAAC63hWIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAACO2UlEQVR4nOzdd3xUVfrH8c+ZSe+QAKH3Kk1AFETFghV7x8bau/5cu1tsu7prX+vae+8FRbGtAiLSe++kkEB6mWTm/v44mRRIIAmBITff9+s1r8zcuXPnTCZlnnue5znGcRxEREREREREpHnwhHoAIiIiIiIiIlJ/CuRFREREREREmhEF8iIiIiIiIiLNiAJ5ERERERERkWZEgbyIiIiIiIhIM6JAXkRERERERKQZUSAvIiIiIiIi0owokBcRERERERFpRsJCPYB9kTHGAB2A/FCPRURERERERFqMeGCz4zjOznZSIF+7DsDGUA9CREREREREWpxOwKad7aBAvnb5ABs2bCAhISHUYxERERERERGXy8vLo3PnzlCPzHAF8juRkJCgQF5ERERERET2KWp2JyIiIiIiItKMKJAXERERERERaUYUyIuIiIiIiIg0I6qRbyTHcSgvL8fv94d6KNIEvF4vYWFh2JUHRURERERE9l0K5BvB5/ORlpZGUVFRqIciTSgmJob27dsTERER6qGIiIiIiIjUSYF8AwUCAdasWYPX66VDhw5ERERoFreZcxwHn8/Hli1bWLNmDb1798bjUdWJiIiIiIjsmxTIN5DP5yMQCNC5c2diYmJCPRxpItHR0YSHh7Nu3Tp8Ph9RUVGhHpKIiIiIiEitNO3YSJqxdR+9pyIiIiIi0hwochERERERERFpRhTIi4iIiIiIiDQjCuSlUbp168bjjz9e7/1/+uknjDHk5OTssTGJiIiIiIi0BGp214KMHTuWoUOHNigAr8vMmTOJjY2t9/6jR48mLS2NxMTE3X5uERERERGRlkyBvFRyHAe/309Y2K5/LNq0adOgY0dERJCamtrYoYmIiIiIiEgFpdY3AcdxKPKV7/WL4zj1HuPEiRP5+eefeeKJJzDGYIzh1VdfxRjD119/zfDhw4mMjOTXX39l1apVnHzyybRr1464uDgOOOAApkyZUuN426fWG2N48cUXOfXUU4mJiaF37958/vnnlfdvn1r/6quvkpSUxOTJk+nfvz9xcXEce+yxpKWlVT6mvLyc66+/nqSkJJKTk7ntttu46KKLOOWUUxr1PomIiIiIiLiBZuSbQHGZnwF/m7zXn3fxvccQE1G/t/CJJ55g+fLlDBw4kHvvvReARYsWAXD77bfz8MMP06NHD1q1asWGDRs4/vjj+cc//kFkZCSvv/46J554IsuWLaNLly51Psc999zDv//9bx566CGefPJJzjvvPNatW0fr1q1r3b+oqIiHH36YN954A4/Hw/nnn8/NN9/MW2+9BcC//vUv3nrrLV555RX69+/PE088waeffsrhhx/ekG+TiIiIiIiIq4R8Rt4Yc40xZq0xpsQYM8MYM3IX+99ojFlmjCk2xmwwxjxmjImqdv/dxhhnu8vSPf9K9m2JiYlEREQQExNDamoqqampeL1eAO69917GjRtHz549ad26NUOGDOGKK65g4MCB9O7dm/vuu4+ePXvWmGGvzcSJEzn33HPp1asX//znPykoKOD333+vc/+ysjKee+45RowYwbBhw7j22mv5/vvvK+9/8sknueOOOzj11FPp168fTz31FElJSU3y/RAREREREWmuQjojb4w5G3gUuBKYAdwITDbG9HUcJ7OW/ScADwIXA9OAPsCrgAPcVG3XRcBR1W6X74HhV4oO97L43mP25FPU+bxNYcSIETVuFxQUcPfdd/PVV1+RlpZGeXk5xcXFrF+/fqfHGTx4cOX12NhYEhISyMzc4W2sFBMTQ8+ePStvt2/fvnL/3NxcMjIyGDmy6ryO1+tl+PDhBAKBBr0+EREREZFmYekkWPQxHHQVdBwe6tHsHseB9PnQdj/wKhG8qYX6O3oT8ILjOK8AGGOuBE7ABuoP1rL/aGCq4zhvV9xea4x5Bzhwu/3KHcdJ30Nj3oExpt4p7vui7bvP33zzzXz33Xc8/PDD9OrVi+joaM444wx8Pt9OjxMeHl7jtjFmp0F3bfs3pO5fRERERMQVHAemPw3f3mVvL/wIDroaDr8TIuq/UtQ+ZeaLMOlm6Hs8nP0WeEKeDO4qIftuGmMigOFAZRc1x3ECFbdH1fGwacDwYPq9MaYHcDwwabv9ehtjNhtjVhtj3jLG1F3YbY8TaYxJCF6A+Ma9qn1bREQEfr9/l/tNnTqViRMncuqppzJo0CBSU1NZu3btnh9gNYmJibRr146ZM2dWbvP7/cyePXuvjkNEREREZI8K+OGb26uC+PZDwAnA9KfgmYNg5ZSdP35fVFoAP//LXl82CaY9EdrxuFAoT4ukAF4gY7vtGUCt65RVzMT/DfjVGFMGrAJ+chznn9V2mwFMBI4FrgK6A78YY3YWnN8B5Fa7bGzoi2kOunXrxowZM1i7di1ZWVl1zpb37t2bjz/+mLlz5zJv3jwmTJgQknT26667jgceeIDPPvuMZcuWccMNN7Bt2zaMMXt9LCIiIiIiTa6sGN6/EGY8Z28ffT9c/jOc9yEkdoac9fDm6fDxFVCYHdqxNsTvz0PhFoiIs7e/vxfW/BLaMblMs8pvMMaMBe4ErgaGAacBJxhj/hrcx3Gcrx3H+cBxnPmO40zGztgnAWft5NAPAInVLp32xPhD7eabb8br9TJgwADatGlTZ837o48+SqtWrRg9ejQnnngixxxzDMOGDdvLo4XbbruNc889lwsvvJBRo0YRFxfHMcccQ1RU1K4fLCIiUp2vEBZ/BuU7LxMTEdlrCrPhtZNg6ZfgjYAzXobR14Ex0HscXP0bHHgVYGD+u/D0ATD/fZuGvy8ryYWpFTPwJzwCQ861GQYfXgz5e6362fVMqGqSK1Lri4AzHMf5tNr214Akx3FOruUxvwC/OY5zS7Vt5wPPA3EVqfm1PddMYIrjOHfUc2wJQG5ubi4JCQk17ispKWHNmjV0795dAeVeFggE6N+/P2eddRb33Xdfkx9f762IiEs5Drx1Jqz8DkZdC8f8I9QjEpGggkwIlENCh1CPZO/auhrePAO2roKoRDjnHeh2cO37bvwDPr8OMhfb272OghMehVZd99z4ln4FX98Ox9wPA3YIy3bupwfhpwcgpY89GVFeAi8eZcffdQxc+Jma39UhLy+PxMREgETHcfJ2tm/IZuQdx/EBs4Ajg9uMMZ6K29PreFgMsH2wHiz6rjXf2hgTB/QE0nZnvLL3rVu3jhdeeIHly5ezYMECrrrqKtasWcOECRNCPTQREWlO/njJBvFgmy/lbQ7teETEKsyGZ0bB0wdCrisrW2u3cRa8OM4G8Yld4JLv6g7iATqNsOn2R/zFztyvnAJPjYCv/rxn/p5tWwefXAm56+HTa+zt+iraapv2AYy9Azxe26zvrNdtmv26X+HH+5t+zC1QqFPrHwUuM8ZcZIzpDzwLxALBLvavG2MeqLb/F8BVxphzjDHdjTHjgPuALxzH8Vc85mFjzGHGmG7GmNHAJ9hg/529+LqkCXg8Hl599VUOOOAADj74YBYsWMCUKVPo379/qIcm+6LCLPj6Nlj9c6hHIiL7kqyVMPkv9npUkp0Z+uWRkA5JRCr89AAUZUFpHvzQQjJlln0Nr55gX3f7IXDpd9Cm764fFxYBh94CV06F7oeC32dPTD4x1H7+aaqUdX85fHSpfU8AfPnw6VW2IV99THvSPrbdQBhwStX2lN5w0pP2+q+P2e+D7JaQBvKO47wH3AzcC8wFhgLHOo4TbIDXBWhf7SH3A49UfF0MvARMBq6otk8nbNC+DHgfyAYOchxny556HbJndO7cmalTp5Kbm0teXh7Tpk3j0EMPDfWwZF+0bS28dLRtFPPZtRCC5owisg/yl8HHl0F5MXQ/DM5+026f9ZptICVSXcBf/2CluSv3wRc3wnvnw/f32brrzXNtL4m9JXMp/PFy1e1570D6gr33/KGQuQTePc/+Tep1FEycBPG19viuW5s+cNEX9tJlNPhL7eefJ4bAN3faUoXd8fO/YOPvEJlgU+DDY2Hd1KpZ9p0p2FLVtO/wO3dcbm7gaXDglfb6J1fYz2/SaCGrkd+XqUa+ZdJ720ylL7DdXAuqLYBx0Rf2bLWItGzBOs2oRLhqOiR2hNdPhtU/wf4XwMlPhXqEUh+FWbBxpg18vOF75jkKtsBbp9vnuvJXiGm9Z55nXzH7Dfj82trvS+xig8WUvpA6CAaebmeDm9qbp9sU8b4nQFgkLPoYeoyFCz61zd6aUsZiu555wfaLZW0nPMbOJKcOtK+93cAG/SwEAg4l5X5iIuqo//7yJlvq0/MImPD+7v88O479e/bjP23wDRAWDSMvg4NvgNiUhh1v7VR4bbxtTHf6SzDoDHvi84vrbUr/ZT/a701dJt9ll8zrsL/dt7b3sdwHrxwHm/6wGQkXfwvhtX/uTsst5puF6UxblU3X1jEcMzCVYV1a4fW4dwWrhtTIK5CvhQL5lsmV721+uv3D69YPJGt/hXfOtSlcbfeD5B6w5AvbHfXU50I9OhEJpY2z4KVx4PirPpACbJgJLx0FxgvXzoTknqEdp9Qtd5NN0531qp3BHH09HN30zW5t5/ATIXORvX34X+CwW3b+mN3hOE0fqDZEwA9PHWDrs/c7DaISYMtyyFoGRbUsb3b0P2B0HUF/Y634Dt46AzzhcM0MW0f91AE2Xfy8j6D3UU33XPnp8MKRkNfIGvzEzlVBfeogG4RHxtXYxR9w+HL+Zh6fsoI1WYUM6ZzEcQNTOW5gKl2TY+1OpfnwSD/wFcCFn0OPw2ocw3EcVmYW8OvKLBZvzqOkPICv3E+Z38FXHsBXHqDUb7+W+QN0SIrmkF4pHNInhb5t4zCrf7AB/aZZ9oDhsXD8v2H/8+v3Oou3wbMHQ94mcvuexW+D7yMjr4TuyTEcNONawldNtp+1Lv/RnnjZXl4a/GeoLV/a1XuYswH+eygUb4URF8P4xyrv2rC1iG8WpvP1wjRmr8/Z4aHJsREc1b8dxwxsx+ieKUSFe+v3+poJBfK7SYF8y+S69zY/HZ4eaWtCr5u957qDBgKwfjq02w+ik/bMc9Rm8ee2hstfCl0PhnPehqzl9oN7eAzcvBwi4/feeETcKOC3H8oiYkM9kobxFcF/D4HslXY28YyXa97/1lmwYjIMPhtOez40Y5S6bV0Nvz4Oc9+GQFnV9oh4uGmRzbBoKkVb7fJfGQsgLMr+vMekwP8thPDopnueoLVTbbnHwNPseuGhsOgT+GAi/sgkVp03nU6pbatmkAuz7f/SrGU22F76JXQaaeu4m4q/zAaMWctqriIRnM1tO8BmRXiaIEDzFdp69M1zILk3nPi4PYlXl6JsyFhos/3SF0BOLU3euh8GF30O2Bn4yYvSefS75azILKj1kPt1SOC4gamcbabQ5ufbIbkXXPsHGENGXglTV2bx68ospq7MIiOvtFEvs218JGN6p3BorxQO984l8beHIG2uvfOAS+GYByqzKvwBh5wiH1sLfWzMKWZtViFrthQwftntjCz+lTWBdoz3/ZNCqn7+U8jlu6jbaUUu87pOxHf439mvQ0LNzIOvboaZL0Dng+Dib3Z9smrFFHsyB4fMcU/yYdlovlmYzvyNuZW7GAPDu7Ti8H5tWZVZwJQlGeSVlFfeHxPhZWzfNhw9IJUDe9hJq3K/Q5k/QHnAngApDziU+wOU+R1iIrwM6ZzUqO/x3qJAfjcpkG+ZXPfe/vgA/PygvV7Lmd8mM+0p+PYu+8Fq1LW29ikqYdeP2x0zX7Ipck4A+o23s23hUXaW46kR9sP7yU/X/yx0QxRk2lqx/ifvWPsl4hZlJTDnDZj6HyjcAqc8bQPi7WTmlTBlSSY928RyYI/kEAy0DsEPlPEd4KqpO2YlbZ4Lzx8GGLs0Utt+oRilbC9zCfzyKCz80P59B7tU1SE3wTd32MCvKWeHi7baUov0+RDb1tYDv30W5G6wM4QjLm6a5wnKWgkvHgklOfb2Ga/YgH4vKiv3U/TkwSTmLuHx8tN4vNxmqrSNj6Rbcixdk2PolmK/9ozMp/87IwEDf17a8Fruuvz+gv0fHt0arp9TNQlQtNXO6JbkwklPwbALAPCVB0jPLaF9UhTh3gb83w0E4P0LYOmXlIYn8XCXZyiM60LHpGg6tYqmQ1I0HZOiaZcQVXeqdnEOZCyqCuznvweBMpyLJ/N9QXce/W45i9NsrJUQFcYVh/Vk/OD2/LIii68XpvHb6q34Aw7gMCniTgZ41vFTtxv5Ofksfl2RtUPwHxnmYWT31ozo2pr4qDAiwjxEeD32a7XrYR7D4rQ8flmRxYw12ZSU1ewNtF9qHH+O+owj0l8CYEn4fvwl4lZWF8eQU1y2wzL053h/4MHwF/E5Xk733cPaiD50S4mlbXwkKzILWL+1iHGeP3gh4lECjuEc31/4g/70aRfPQT2SuaC/h57vHGJPvF30JXQ/ZJdvT7k/wOoP7qLP0mcodiK4pewKvgyMwmPgwO7JHD8olWP2S6VtQtVn8jJ/gN/XbOXbRel8uziDtNySXT5PdYM7JfL5tWMa9Ji9TYH8blIg3zK56r0t98Fj+0FhRcOTAy6DEx5u+uepHjgHRSXB6OvgwCuafkbccWwTlp8qFrMYPtGuo1r9rP0vj8D399pZ+j9NatrnD/jhhcMhbZ6dSRl9XdMeXyTUSgts86npT+1YSzruPhh9HQ4wZ0MOr01by6QFaZT57eeIMb1SuOWYvqGf7VgxxdY6A1zwiU2Dxaatbisqo3VsRa3ve+fbUpwBp8BZr4VmrKG0eY49UZPSGw66CqJbhW4safPt3/alX1Zt6zUODr0Zuhxkb896Fb64waY5Xz9397PMirfB66fYWcvYNjb4aNsPpj8Dk++A1j1t6UVTzAqDDVJfPMqms0cmQmluRe+GaZDYqUGHKi33k5VXTFJsFLGR9fs+ZBeU8s7v61k57VMeL7+fQieSw8qexBeRVGOGc3ufRvyVoZ5VvN32JnIHnM/gTokM7JBIYkwja7uLt8F/9rdfj3/Y1nJXCAQccr5/lNZT76Ugog1/6/IaC7eUs3pLIeUBh9gILyO7t+bgXimM6plM/9QEPHUE4Jl5JWz55Hb2W/MKPieMCb47+cOp/YSd12NITYiiYysb2KcmRpGaEEW7hCjaJ0aRmhhFSlwkXo/B+ew6zJzX+T1iJGfl3QhAXGQYF4/pziVjupMYXfP7srXQx3eL01n2xw/8LeMGSpxwDix9mlxsar4xMKhjIgf3SmFMrxSGd23V4FTxkjI/s9Zt438rtvDL8qzKEwsAR3hm83j40ySYYtKc1lzpu5F5Ti8AEqPDSU2I4qCEbP6y6QrCA6VsGHE7UYfdREpcBKbajPq2Qh/zN+XS5vubGJDxOZtpw9ElD1BADAAPhL3AuWE/sqXNQSRe8TURYXWfcMkrKeP9mRt4Zepa0nIKeT78EY7yzgFgWbfzST71QVISd/350XEcFm7K49vF6UxelM7yjALCvYYwj4cwryHca094hHvt7TCPoV9qAk+fN6xB39+9TYH8blIgX7tu3bpx4403cuONNwJgjOGTTz7hlFNOqXX/tWvX0r17d+bMmcPQoUMb/bxNdZxdcdV7O/99m7pnvLY+NL4D/N+ipp9B3viHnV0Ij4ETHrHLiWQtt/dFt4aDr7cnEbarJWuUgB8m3WKbxAAcdptdn3T71K3cTfYkBo4909+6x+4/d9DMl+Crm+z16NZw43yl74s7FG+DGc/DjGftdYCETvZ3eOvqyi7Eq7pP4M955zB3U9UsUr/UeFZtKagM6I/Zrx03H92X3u1C8LtRtNWuSV2QDiOvgOP/zbZCHx/N3sjbv69n9ZZCLh3TnbtO6I/JXALPjgYcuOIXaD947483FHI32ZOd89+t2haZAKOusQF9U6at10fmEvjvYbZMCgP9T4RD/gwdhtbcr6wYHhtol+zabiY7M6+E75dmUuzz20CzY+LOg6GSXBvEb54NMck2iG83wN5XWgCPDbD7nP2mHc/uKvfBG6fYbK7ELjbt+P0LbC1zt0Ns1ly1/8+ZeSXMXr+NjLxSMvJKyMgrJTO/hMy8UjLyS+hVvIBnIv7DjEA/Ho2/lb7tk+jXPp5+qQn0bx9P51YxlQHugo25vDptLV/M24zPH+C9iHs50LOUP9pPoNM5j5GaGEVOkY912UWszS6s/Lo+u4i12UWcVfw+t4a/x4/+Ifyp7LbKMXZpHcOgjvZ73TU5hpgIL7GRYfZrRBgxkfZrdLgXj8dQ5CsnK99H5A9/od2il8iN68lbw95mS6GfrAIf67MLWZ5RgL+shO8jbqazZwsPl53JU/5TARts25ntKq1iwhnVM5nRPVMY3TOZcK+HyYvS+WZhOr02fsyD4S8AcIPvapa2OY6jBrTFYwybcorZtK2YTTnFpOeWUB7YdSzk9RjaxkfSy5vBq4VX4zUOJ/v/zajRh3HFoT1oFbuLZoCfXAXz3mZtp5N5OOZG4qPCOaR3CqN6JO/6sQ20Jb+UaauyWLgpl7jIcLqxiSPn/R9x+asJeCIoPOrfRB94EWFeD5SX2s9x6Qtso8HzP9n5Z8XSfFsWkbOO4v3O4ef+9zB95u/8de1FhJkAp5XezfrYgZx9QGcmHNiVjklV6fkbtxXxytS1vDdzAwWl9uRRcmwEFx7UkcvK3yVmxhN2x84HwpmvQkKHBr1ux3FqnHxorhTI7yYF8rXbPpBPT0+nVatWREbW0vCCxgXgEydOJCcnh08//bRym9/vZ8uWLaSkpBAWtofqvHHZe/vCkbYb6CE32w/gvgK49HvoNKJpn+erP9s1TIN1pgE/LPzIzqwEZ+ljUmDMjTDiEoiIadzzOA58cmXFB08Dxz9U4yz+Dt44FVb9YIP9w+9s3HNurzAbnhxmUyK9kfZD5xF/sWu6iuyr/GU7v78oG3571p6k8uXbba17wpj/s7/XYRFk5JWw5OMHGLv2cQAm+0dwS+A6xg3pzsTR3RjUKZENW4t4fMoKPpmzkYADHgOn7t+JG4/qTefWjfy9byjHgQ8ugsWf4aT0YebRn/DW7C18vSAdn79m2ulZIzrxwGmD8X58qU3j7ns8nPtOkwxj9vptbNhaxOieKbSJr/3/Y0iUFsDUx205VHkxAPMTD6dD2QZSiir+XkclwqiKjKo9XCLlOA5LNueS+M54OhYsYL53AD/0upNe+w3noB7JpMTV8r0Llox1HM76U79g8uIMvlmUzuz122qkCod5DP3axzOkUxJDOyexf5ckeqTE2eC2JA/ePM12wY9uTen5n5MT35vc4jJyi8so9zv0nP8Ibec9ja/9CIov+IaYSG/DUrprvlC7Bve8d2yN/yXf2pMG2avguUOgrBDG3UvusKuZvDCdT+duYvrq7B1Sn4P2M2t4J+J+Eox9D+8uu5BX/cfW2Ccmwkvf1HgCDszbkFO5/Zx2G3kw91YcTzjmxvn1CpTyNywi/qXR+E04t3b/hJnp5azfWtSgb0GE14PPH6C7SePbiFsJN34u9N3G/wJDdtw3zMMlibO4rfAhfN4Yfj/xe3p06067hCiWpucxbWU201ZlMWPNVop8tS8VONqzkNfC/0W48fNHt8tJHn833VNq7/PhDzhk5pewOaeYjduK2ZxTQkZeCem5JaTllZCRW0JmfgnVY/2nI57kBM90SvqdRtQ5r+z6G1C0FR7tb/svXDIFOh9Qr+9bkyrJs5+jln1lbwfr5qf8HX57xp7Qumpa/con1k23Xedx4Kw3YOlXMP9d1rQazTmFf66s8/cYOKJfW04Y3J4pSzL5ekFa5fexV9s4Lh3TnVP271h10m3pJDvG0lz72fGMl/dcWeg+TIH8blIgX7vtA/ldaapAfm9xzXu7aRa8cITtVv9/i+DrW21jm4NvhHH3NN3zlJfCI33t7F219FUA/OWw4AMb0G9bY7cldoGLv25wCiFQVU/nCYPTX4T9Tt35/gs+hI8usc95w7ymyUT44gab2tluoE2p/+QK+6H3hvl7t8lfhYy8Euas30ZCVLhNA0yMqnu5mwql5X7WZBWyMrOg8rIpp5juKbEc0K01B3RrRc82cfU+o13mD7Amq5BVmQXERoZVjiM+Mqzpz4rPfQdmvWKbT0XG2xnEiLiK6/FV23qMhbg2u/VU/oBDRl4JG7YWsXGb/XC3YVsRG7cVsWFrMVkFpSREh5McG0GrmAhax9pLq9gIWseE0zoukm7JMfRvn9DgD//+gMPCTblMXZVFWk4JHmOzn4wBjzEYwOOxt73G0CEpmu4psXRPiSU1IaoqzbSsBD78EyxrQHlJ2/1sLfJ+p4LHy+z123hl6lq+XpBGecDheM9vPBbxLJGUUdZ+OOHnv7/D0kYrMvJ5+NtlTF5k0/LDvYbzDuzKNYf32vNB7bz34JPLCZgwro5+kG+2VgUpAzsmMGFkVxwc/vrpQgIOnDCoPY8dFUvEcwfZeuxLf4BOw3f+HFuW2yWy+p9UNYNbzRvT1/L3zxdVflgd2DGBQ3u34bA+bRjWtVXjg8HdEfDDnDfhx39UlkssjRjIrflnM9/piSHAiWF/cGfsp6SWrrWPiW5l/86NvLxm1lFpQUW98PyqhmCZS+ys8jlv1yvdfUVGPl/MT+PL+ZsZvfVT7g9/hQIninGlD5FGVZ+F3m3jGNUzmVE9kjmwRzKtYsJZvXYNXV8/kDDHx+mlf2eW07dy//27JJEcG8m8jTlsyd+xYVh8ZBj7p4Zx59a/0K9sMbnEcUH5X5lf3nmHfduwjV8jbyDSlFc+T4TXUznL3Co2nOTYSJLjImgTZ78Gb6fERVZcIuyM5/8egh/utxly571vl9CrUPb7K4RPupFywjij/D7mlnetvG9gxwQ6t4qhXUIUbeIjaZcQRdfARvb//lzCSrbiJHTE5G3C743kkxFv8VtBW5am57E8owBfedWJq3Cv4YRB7blodDf2/+VyWPEtDLsITvrPLt8roGYJXUUmRE6Rj4Wb8liwKZeFm3LJzC+hsNRPcZmfwtJyinx+Cn3lO5yMeCniEY70zOKP8BE80/FBkmMjSK74XnVIiqZPu3i6JccQZrCzxJtn79DRvPJ75w8wb0MO01ZlM3VlFnPW51AeCHBqp0Ie2HYTEeX5MPAM+5lhN/8flfsDZBX4SM8rIbuglKHhG0h+80gwHtu0blcrX0x/GibfCe0GwZW/hG7FgkDA/jz+9E97u+1+VSs1nPse9D227sdub8rdNgszKsmuHOQE4PKfKGs3hO+XZPDGb+uYunLHFRDG9ErhkkO6c1jvNrWXRWxdDe9faP+2GA8c8Vf7+bUF9SRSIL+b3BjIP//889x9991s3LgRT7VfhpNPPpnk5GTuuusubrrpJn777TcKCwvp378/DzzwAEcdVfUPZ1ep9b///jtXXHEFS5YsYeDAgdx1112cdtpplYG83+/n8ssv54cffiA9PZ0uXbpw9dVXc8MNNwBw9913c889NQPNH3/8kW7duu1wQuDnn3/mlltuYd68ebRu3ZqLLrqI+++/v3LGfuzYsQwePJioqChefPFFIiIiuPLKK7n77rvr/B411/d2Bx9fYWeug7PkCz+CDy+2s2zXzWq6fyBLvrA1pvHtK9L2a0lj9Jfbsfz0oG0e1H6oTSlsSCfgzXNtJ3q/z549HnX1rh9TVgwP97H/XJpiTflNs+3JERz409e2I+uzo2HLEjj0Vjjirt07fj04jsPS9HymLM7guyUZNbq6BsVHhZGaEFVZ35eaGIXPH2BVRdC+fmtRjVmFgWY1p3qn8rb/CFY5HQGbqji8a2tGdGvFAd1aMbBjIpFhXrIKSlmals/S9DwWp+WxNC2flZkFO8x0gp0Nql5f2C4xik6toumXGk+fdvHERzWwtjJ7lU2X9tejm29MCkz8qtbmZcETGVn5PrILS8kq8JFdUEpWQSnZBT6yCn1k5dsU1mCa+O6IDveyf5ckRlScJNm/SyvitqtndRyHddlFlR2Lp63KJrd4F7PodYgK99AtOZYeydFct+1B+m+dUr8HdhxhU5n7HIsvAJMWpPHKtLU1ZvJGdmvNxIO7cXTcasLem2AzU1r3gPM+rPVD7NwNOTw8eRm/rswC7MxMm/jIHX4u2ifa26kVzYzyS8rJLyknr6SM/JIye724jLyScgpLy/EHHPyOQ3nAIRCo+tqzaB43bvkrMU5RZTpuTISXk4d2YMLIrgzqVJUu/vWCNK5/dw5lfoexfdvwYuLLhM1/B3oeCRd8XPv3qDDL/h3742VbrmS89m/RYbdDZBz+gMM/Jy3hpV/ticvOraPZsLW4xiHiIsMY3TOZw/q24dDebXaeqbBluf1A23tcnTXaucVlxEZ4bbBYl1U/wOS/VH5YT/e25+/FZzM5cABhHg8nDenAmuxC5qzPwUOAEzy/cXvMp3Qsr1imK7o1DDkH8jZB+kI7Jur43ajlZLHjOPj8ATZuK2bS/DS+nJ/Gsgyb+ZFKNlMibyXOFLNg8F9I63sB01dnM31VNkvT83c4fEpcJFkFpTwY9jznhP3EN4GRvN75Po4dmMrRA1JJTYyqfM7NuSXM25DD3A05zF2fw4JNuZiyQl6N+BcjPcvIcWI5z3cXi5xugP35TIgOJzE6nDCPodjn5+bSpziNH/jWP5zLy/5c9/e4DsbAOdF/8EDgUQA+6XATa7qfS9v4SBKiw/ll+Ra+WZjGQ4GHOdY7k5WBDvxf0hMcu38PThrSYcefj5z18PKx9r1oP9R2Tf/gT7Dqe7sW9yVTICyCcn+AtdmFLEnLJ7e4jKP3a0fb+Cjbh+C/h9Q/+Kzuu7/B1CdsYHzGS/V6iOM4lJQFKPSVU1LmJzlzOtHvnGZ/d66eDm367vwAa6fCq8dX7P+bXdd+J0rK/JTnZxL3+jG203zng2zzwjrWJ99tb51Zv5Mi1U+E7IkGio2x7BtbfllaESNWlCE1SLnPfi7KWGBv9xsP57xVY5eVmQW8NWMd/1u+haGdW3HpId3p374emT5lxbZh6dw37e2+x8Mpz4Zk0iQUFMjvpgYH8o4DZQ1LM2oS4TH1Dsq2bdtGamoqkyZN4sgjjwRg69attG/fnkmTJpGSksJvv/3GwQcfTGRkJK+//joPP/wwy5Yto0uXLsDOA/mCggJ69OjBuHHjuPPOO1mzZg033HADq1evrgzAy8rKuP/++znxxBNJTk5m2rRpXH755bzyyiucddZZFBQUcMkll5CXl8crr9hUpdatW7N58+YagfymTZvo06cPEydO5LrrrmPp0qVcdtllXHPNNZWB+tixY5kzZw433XQTEyZMYPr06UycOJHJkyczbty4Wr9HrgjkC7bY2j6/r2p2qSQPHuppt139G7Tt3zTP9e55tjHRwTfAuHt3vu+2dbZJXFE2DDoTTnuhfj+7Jbm2dnLbGuh7gv0nUd8TEcEZ9CHnUjL+ab5emMZbv61n/dYijujXltOGdeKAbq12PXMcCNgTCZv+gEFnwem25o7Fn9sax4g4uGE+5VGtWJqez6x125i3IYfkuAiOH9SeoZ2TGj07HezO+t3iDKYsyWDjtqrAwBjon5pAabmf9NwSCutIMdxefFQYw1L8XOV/mwO3fYnBITOmN9cnPMGcjXmUltcMzCPCPCREhZFV4Kv1eLERXnq3iaG4HNLzSuoVhHZuHW1rOVPj6dc+gX6p8XRNjq29a7Dj2K7Sa362s377X2BTwEurXwrsB5KMhbBtre0+PfErcmO7M3v9Nmau3cofa7cxd2NOjZmqnQn32tnuzq1i6NTKdjju3NpebxMXRX5pGdsKy8guLGVboV3GZ2vFcj7ZBT6Wpufv8L3wGOjfPoEDurWmd7s4FmzM5deVWTXeV7Dv0ageyfRLtTOhAQccHAIOBBwHKr76ym2AtKainjVY53l72DtcGfYFPsfLZWU3syysD0M6JzGiSyuGd2vNfh0SiAw2IjJeiEogq6CUt2es583f1pFZMZsZEebh5CEdmHhwN/brUK1uesty20wuZ71Nx5zwfp1lO9NWZvHvycuYW+2kQFMb75nOI+HPEmnKme4fwD9THuCcg7pz8tCOO5w4Cfp5+RaueOMPSsoCnNDJx1NbL8UEyu2Juq6jq3YsK4Hf/wv/e7jqQ29KX9s9HSChE6Xj/sG1szvy3RLbXPSWY/py9dieZBX4+GXFFn5evoVfVmSxtbDm71BybAR9K05u9UuNp0/F9bic5fDS0fbnvP1QfMc8yIqIAZUn0pam57MkLZ+sglIiwzyVj+/Xvup3qnXeEphyjw3ygHwTx2O+U3nDPw7jjeCsAzpxxaE9K4PF2eu38fKva/h6YTpOwM9Jnmn8OfJTOjubd/jeFUW2JSOmN+vCe7CE7jiFW7m68CkAbg67nR+cEZVrXtd2oi/cazi0Vwr3lT5Ah/QfoNMBcPHkGicsthX6mLHGBvXTV2ezPMP2ZIgI83BO1wLu3XQpDgZz/ex69UEpL/dT9NYFJKz5irLweBYf9QbeTsNIjA4nMSacuIiwHWcHtyyHpw/AwZB/yVTy43tQVFpOQWk524p8ZOX7yCq0JwGzC0rJLvSxJd9+zS4oZSjLeSfiH0SaMl4sP477yy+odWz9Esr4wPkz8WVZOCMuxYx/ZMedCjLh5WPsiZSUvvbnNDbZrtv97CibGXfoLbbcqy4f/Mlmk9S2HOOubPjd/h+MTIBbVlUuY1ZvAb9dMzxjYcOCxnfOtVlF9Sl9KSuB10+CDTOgVTdbTrhdxlCTWjcdXjnWZj/eMK/uMoU1/4PXTrSfFf68dN/pq5O1Ej672o7rnLcbd8IjYzE8P9Z2qr/iF0gd2LRjnP26Dej9pfY9HXmF/T4HL3HtwLuLiYGyEttXoyjbnpD1RtSro34oKZDfTQ0O5H2F8M+GNWRoEndubtDavqeccgrJycm89JI9m/r8889zzz33sGHDhhqz9EEDBw7kyiuv5Npr7TIvOwvkn3/+ee688042btxY+X157rnnuOqqq3aaWn/ttdeSnp7Ohx9+CNSeWr99iv5dd93FRx99xJIlSyoDpGeeeYbbbruN3NxcPB4PY8eOxe/388svv1QeZ+TIkRxxxBE8+OCDtY7FFYH8zw/Bj/dDx+Fw2Q9V24NrJh/+FzisCWq6C7NtWn2grP4nB9b+agOyQDkcdY+tm98Zx4EPJsLiT22K/JX/a1hX5YoPHj5PFGOd59lcvOMH+s6tozl1/06ctn9HutVRP8fsN+Dza+0/u+tmVdaP5RSW4n1xLPHbFvN53JnclnsGxWU7BtOdWkVzwuD2nDi4A/t1SNhpUF/mD7B4cx6z1m3jj3Vb+WVFFvnVuglHhnk4pHcK4wa0Y1z8Olpv+tHOzPQ+mny/t6Kur5S03GJ7Pa8ErzH0bBtHrzZx9EqJos3SNzA/PmBr0AA84fZ9PP0lfP1PY9HmXP5Ya4PfWeu2kV0RfBgD3ZJjbcCQmkC/9vH0T02gU95sPG+dDkMnwAmPUlwWIL2ivjAjr4S0iq9rswtZlp5f51IxUeEe2iVEkRQTQauYcJKiw0mKieCggikcu/xv+D2R/H78V5QndsPrMXiNIcxr8BjbodbjAW9JDqmfnUVS7lKyTSvOKr2LVYGaf5sTomwJQHJsJCnxkSTHRpASF0zvtKmxwVnjOpcjqodAwGHVlgJmrt3GH2u3MnPd1h1maIPCvYZhXVoxplcKY3qnMKhj4s5nWWtRXjHrWfrb8/T9424Anmt1C8/ljiSnqOYJhcgwD8O7tuLA7skM6JDA5EXpfD53c2XQ1TY+kgsO6sq5B3apvU4ZID/DLtOVNhfCom1jojrSMh3HYUtBKem5NX8u0vOqalHTc0swxpAQFUZ8VDgJ0fZrfFQYCRVfYyPDCK98zw1eA/ute4Nhy2zgsyn1KHKOe4b9urar1/fsj7Vb+dMrM8kvLefZxNc5rvQbu9TZxIrO6Ys+tumjOevt7dTBdr3r7ofaGa2vb6m873v//vzD+RP/d+Y4Thyy4+eBQMBh4eZcfl5mA/s5G3J2aNwF0IYcvoj+O6nOlhrbP/KP4cGyc9nCzv8GdjXp/DnsA07yTgegHC+vlR/Nf8pPpTTclhdcfmiPytnr7W3KKeb16Wt5Z8Z6CktKOdkzlRGeZaxx2rPY6cqSQFe2suOM2t/CXufisG/IdWIY7/sHG5ya74HXYzi4VwrjB7fnmAGpJK6dZNNnPWE2AKilTKG6rIJSVmYWMLBjoj058+bpsHJK/YPC356Fb263f+8mfgVdDtz1Y6AqkBx2IZz0ZP0eA/iz12BePBJPcTZbOh7J94MfISO/nIyKhnXZhaX0S03glKEdOKBbazxrfrS9XWDHFOfibfDqeBsEJ3WxJz2qB42LPrW9IYzH3td55I4Dyl5lZ4WdAFw5teEBVyBg/+cXZsL5H0OvIxv2+OCKA1FJtgnt9stB1mXLcnjmIJsFM3ESdDu45v3lpTZjbt1U+z5tmmVXBLh0yi5n8JvEy8fB+ml26d1j/lH7Pu9fZD/H1FEi0OxtnmOD5a6j9tDx59pJk+Df4RqMDeYT2tumzpHxNmAvyrbBe2G27UFRXacD7M/HPqwhgfye6xwm+5zzzjuPyy67jGeeeYbIyEjeeustzjnnHDweDwUFBdx999189dVXpKWlUV5eTnFxMevX1/aLs6MlS5ZUprIHjRq14y/1008/zcsvv8z69espLi7G5/M1uBP9kiVLGDVqVI2A6OCDD6agoICNGzdWZhAMHlyzA3H79u3JzMxs0HM1K/6yqo7uI6+oeV//8TaQX/pF0wTyCz+ywV/7ofWf4e82Bo77l22QN+VuaDsA+hxd666O45D7v2dJWvwpfhPGowm3M/nZ+eSXlNGzTRx92sXTu10cvdvG06ddHEkxVbMDZf4A3y3O4K3f/NwbaE9P0ji47FemJR3HuSM7M7BjIpMWpDFpQTobthbzn+9X8J/vVzCsSxKnDevE+MHtSYqJoKC0nMyMdDpP/hvhwNROl/LN91mk5W5kTVYBq7YUcrjnBF6JWMy4/M+4r+xwwqJSGNalFUM7J7Emq7ByFv2/P6/mvz+vpltyDOMHd2D8kPb0bRfPtqIyZq/bxqz125i1bhvzN+bssBZscmwER/Zvy1H923FI7zZEZ86BH2+snGkDIDKB+H7jiR94Or16HAbeWmYhVv8Mb91mywEAUgfBcQ/B2l9s7eyP/yBiwMns38WmgF92aA8cx2FNViH5JeX0bhe3Yw2+vwzeuck28PnjZYhuRfSRf6us2a7NtkI7W700Pa9yhnFZRj4lZQHWZRexLrsquymJfK6LfAgMPFJ6Cs98mAns/He4FTfydsQ/6O/ZwNvh9/Pn2Ado330/DujWmuHdWtEjJXbPd7Vd/xuetHn0jkmmd0prJnRJgZi+ZPjj+GNjETPXbmVFZj79UxM4uHcKB3Zvvcv+BrsS5vXQLfsXmFWRHXP4XVx52K1cHnBYlpHPjNXZzFizld/XbCW70Me0VdlMW1WzfnFI5yQuPrgbxw1sv9OlgwCIb2cDog//ZNNL3zvfzpj13jHjyRhD2/go2sZHMbgRLTJqFfDbwGzZ8/b2gVfS8Zh/0rEBS4WN6Naady4/iIte/p17c0/gyKgpRKz71S69t/gz2wwNbPnQkX+DwedU1Wn2PZZlMfvz26t3cG75pxzpncPh3iV4cm+B8ut3mLH0eAyDOyUxuFMS1x3ZmyJfOSsyCliWkc+y9HyWZ+SzNi2LJ32PkOpsYXUglcvK/szl3q840/szp3t/5fiwWfzS4WJyBl1Cn47J9G4bx5b8Upam57Fu3Rr6LnuWMXlfEYY9ofiZfzSPlJ9JdngHLjisG5eM6b7LPgUdk6K547j+XH9Ebz6avZFXpibwcdahGAPJsZG0T4hkSEW9dtv4SNpWfE0IH0bBd+eSuGUO33V8mYwzPiM8KqZy7euoMG/Vz1RxDky61V4/+MZdBvFAZd15pVHX2EB+zptw+B07P8m74Xf4tmKm+ph/1D+IBxh9vQ0Q571rT4TH1+MkUXEO3nfOhuJsSB1Mmwtf55xdrdzS8wg46GrbdOyza2zqeVxbm2301lk2iI9rBxd8uuPM736nwLKz7frmH18OV/6640oxUx+3QXzvYxo3a+rxQL/jbUC+9KuGBfIlebZHAMDY2+sfxIMNxodfZP+/fPsXmyq/8Xc7G75+ul05p3rJlScczn597wTxYEuS3poGf7xir2//2vIzqpZU3BdS6veEDvvv4eMPhct/tifjsldA3mabiZK/2U4MFaTbC3PqPoYnzJbdxSTbMlMXUSDfFMJj7Ox4KJ63AU488UQcx+Grr77igAMO4JdffuGxx+zZwZtvvpnvvvuOhx9+mF69ehEdHc0ZZ5yBz1d7Om1jvPvuu9x888088sgjjBo1ivj4eB566CFmzJjRZM9RXXh4zXQbYwyBQP3SapulJV9AfppdD3e/U2re1/d4MDfY9c+3rYNWXWs9RL3Nq0hxG3Juwx434hLbwGTWq7YZ3WU/QEpvin1+vpi/mYWbclmalg/pc3nD+SsY+IfvXF5ekQTY1MqMvNIdApA28ZH0bhtHx6Roflq+pbLR0Udhh3Kr5z3u7DCHhKv+XTnDOrZvW+45aSDfLk7n49mb+GXFFmavz2H2+hzu/WIxkWEe8kvLuTvsVSaGbWVFoCMXLR5GOetqPO+6VgezLvAVXYsX8+0Bs0g89ZEa6ZnFPj8/Lsvky/mb+X5JJmuzi3jqx5U89eNKUuIiak1XT4oJZ1iXVgzv2oqDerRmaOdWdtybZsMH19mgCew/pj7H2rPVeRth3tv2EpNs18UedIatEczbCJPvgiWf28dFt4Yj/2rr+jxeG9DP+K9N2ZzzJoz4U+VYjDH0aLOTD6C/v2BTjMNjbHnRL4/YoGcnKwq0io2wDax6VjW18gccNmwtYktBKTlFZWwr8pFT5OPABXeTvCWfzRHdmNf+fPYrtcsPBWqpkfY7Dv6AQ8ekznzd8b90WnMj7fKW86b3PjjyK2i9Y0OrPWLu27ZDdS3aASdExHFCTLL9MD7gduix6yCmXjbPsUG1E4D9z69cTcHjMfRvn0D/9glMPLg7juOwMrOA39ZsZcbqbBZtzmO/DglcPKY7w7o0cB3xyDg45x1ba7noYxvMT3h/z3cZLiuGjy6t+oB89D9sYNeIEzQDOyby3hWjuOClGbxVeCR/CptcFfSFx9hAc/S1O2S//bx8C9e8NZeC0tP5sfXhPNfqbaI2TYMf7rMB1QmP7jR9MyYijCGdkxjSOcluCATgw4mweBVlEUnMPeB5zozoRNt2p7DVrCT5f38letMfHL3paSiZDMkPQuQ4Yp1CumW8CHOfqSzxK+9xFCsG/R+Fvi5cXO7n5KEdG7y8VWxkGBeO6sb5B3Zla5GPpOjwXWeJtHsTnjuEqKwFdJ15H5z4eO37TbnbfvBO7tX4VT96HF7VqGvWa3VneBVm2cyuQLlt4jjy8oY9T5eD7Azexpm2xOLIv+18//wMO3uYtcz+LZzwXv2XXz3y7/aEa+YiG8yf9Qa8d54NXKOSbFPZuuraj/u3rSnftga+vQtOfKLqvrzNtlko2GCzsfqNt/+7l02y67/Xt/nYr49B4Rb7fh9wacOfd+wddkndzbPhwS7s0KMhtq2dDe4y2k4ONOWSs7vS60ibqZM+3/4fPfyOmvfPed3+7HUaaf/XSuPEtN6xF1EgYGfd8zbbS/5mmyEdk1xxSbGPi02xJSEuWJauNgrkm4IxDUpxD5WoqChOO+003nrrLVauXEnfvn0ZNmwYAFOnTmXixImceqpN7SooKGDt2rX1Pnb//v154403KCkpqZyV/+2332rsM3XqVEaPHs3VV1c1K1u1alWNfSIiIvD7d17r279/fz766KMa60VOnTqV+Ph4OnVqqumeZuj3ipmpERdD2HazLrEp9p/cul/t2fT6NIyry5Zl9h+qJ8zW2jWEMXYWeMtyWD8N551z+HTE6/zrx3TS82zKdTxFfBHxGJGecqaFHcjWvhdze4dE+qXGkxAdzsrMAlZk5LMis4AVGbbr+pb80hpdilPiIjn7gE6c1+9WeOV9Wm2ZCTlravyDj47wcvLQjpw8tCOZeSV8NnczH8/ZxJK0PHz+AAPMWi7wfgfAh22v55R23WzKdWIUnZKiGdwpkeS4SFj1T3jjFFotfgOO+jMkdqzxHMcPas/xg9pTWFrOlCUZfDk/jZ+XbakM4nu1jWN4ReA+rKudMa5Rq5k2zzbZCnYfN14Yeq79ANyqm/1ntmGGXUJr0af2H9sfL9lLQkebYlZeYtMuD7jUfiiqPmsQGWeP9c1tdpWBIefUrxlhwRb46QF7/dgHIT/ddsKddIstP2jA2stej6FbSmzN8oa1U+EHe/Khw/n/5a0uB9X7eHZ8k+C18bBlKbx6ok2Xbt29YcdoqGXfwGe2FIkuo+2Jkso0v2z7gc5XYC856+DNio7K2594a6ht6+Dts20g1+NwGP94nR9ajDH0bhdP73bxXHDQbp7QA9ul/LTnbYrrsq/gnXNswNHQ96toqz0Jsaua1sJseOdsG1h5I+DU/9ZYT7wxerWN44MrR3H98zmcXvQLcRTzMWP5MOoiotd0pMO21XRsFU3HJHtZnJbHPV8sxh9wOLB7ax6/YBxR0efbYOPbuyBruf3ZG3kFHHV3/Zbd/OE+mwXgCSd8wtucViOFuC30/s42Dv3u77Zp1ltn2J4RGQtt6jXYgPOouwnrNob+QFN0Q/F4TN3lFdtL7GR7iLx5hl1hostB9u9Jdeum2fvABpuNbURmjD1589nVNoA66Ood67YDfnuSKW8TJPe2qfEN/TBvjJ2Vf/8Cu0TjmJvqDszXTbMnDQoy7DJzE95r2DrY4VH2+/f84faE7XNj7AxkeCyc/xG026/ux0YnwanP2lrsWa9Cn+Oq0vOnPWUz6Loe3LBshO11P9SWmOWn2ROHu1rhAez/hd+etdfH3bvreubaxLW1q2l8fy/gQFJX28ei62j7dza5Z+iCNGPs2D6YaJf6HX1tVQ18wG9PMoF7Z+NDyeOxPxtxbe2sfQulQL6FOe+88xg/fjyLFi3i/PPPr9zeu3dvPv74Y0488USMMfz1r39t0Oz1hAkTuOuuu7jsssu44447WLt2LQ8//HCNfXr37s3rr7/O5MmT6d69O2+88QYzZ86ke/eqD9fdunVj8uTJLFu2jOTk5GCNSA1XX301jz/+ONdddx3XXnsty5Yt4+9//zs33XRTrbX+LULaPJtm5gmD4X+qfZ/+4ysC+S/rHcin59olzjblFJNbXEZOURmHrH+Go4Hfw4Zz+3OLyC0uo6TMz6ieyZwxvDNH9Gu787TcsAics16j9JlDicpeSatJV5FZdgsdk2IZPyiVCzbdTafNGTiJnRl95XuM3i5lcvtZw4LS8srAfl12IQPaJzJuQLuqMfQ83HZunvdunWvKt02I4rJDe3DZoT1Yk1WI3x+g+xdP4N3owIBTuOOsK+t+PT3G2g9I66bCLw/XWQMXGxlWeeIgr6SMZen59G5bsyyghozFNuU9OOtoPHYlgkNvqTkr4/HY2Yiuo+DYf9mmcAs/shkaeZvsPt0OscF2XSmVI/5kl8fJXW9PCB18Q92vN+j7e2zzr/ZD7Qyw8djnm/0afHiJTYFsbM1ceSl8eaO9Pnxiw4NCsEvQXfQFvHpCRWB1ok0F391slLqsm27rVB0/DJkAJz9dc8bKcWzzxmBQ/9szdlnID/9kv4/DLmzc8xZvs92TCzLs0ohnvd64D8u7wxsOZ75i64lXfW8DuYs+s706dqWs2J6omvak/d7Ft7czV+0G2q+pg+0JGI/XZo28eQZsXWVnKM99p2Zjut3QqVUMz119Are97mXBxhw2Om1gC7BlS52POW1YRx48bXDV35ohZ9sZwSl322Dq9//C6h/tyYaOw+p+8jlvwq+2szknPbljHTDYn6WhE+ys6P/+bYOjtRU9YFL62pnifieEftap11Fw2G12rfcv/892Uw+WX5WX2jppsD/v3cbs3nMNOsP+HcrfbGuQB59V8/7/PWT/9odF29+LxjYZ63eCPQm8dTXMeQMO2i7jxnHs38/v/mZ/htv0h7PfgJTeDX+udvvZzv/f3G6DeG+k/Tmvo5lkDd0PtbXa05+Cz6+z6fnGU3Xi5JCbGj6e6sIibenMok/s/6X6BPL/ewjKi+2MdN/jG//cY26y/2cTO9c4Wb5P6H+SzTbIXml/70dfZ7evnGJX64lutfsna0XqoEC+hTniiCNo3bo1y5YtY8KECZXbH330US6++GJGjx5NSkoKt912G3l5O+2vUENcXBxffPEFV155Jfvvvz8DBgzgX//6F6efXjVje8UVVzBnzhzOPvtsjDGce+65XH311Xz99deV+1x22WX89NNPjBgxgoKCgsrl56rr2LEjkyZN4pZbbmHIkCG0bt2aSy65hL/8ZSfdWt1uRsVs/ICTbdOP2vQbbz8crJtmZ1O3W2u7pMzPos25zFmfw5z1Ocxev22HxmSGAFdFfg0GXik4iNWBqiYiU5ZkMmVJJq1jIzh1/46cOaIT/VJ3bIo0f2MOD0xaTd626/gw4m7Geufxaffv6HPBY0TNeRlmTgZPOObM1+rV3C4uMqyyrrtWQ8+zH+bmvmOXitrFyZ7uKbE26N84w6bW1tXApvKbYuDwu+wyObNft0Fwq247fUhCVDgHdNtJneDSSTYo9PsAYzv9H3brrj8YesNsql+vI21q7+qf7Ox690N3/gE/LNLWLn52tU2DHD4RonY8iVZp0ywbfIBN6QzWJZ/wqO2uvPxrOzN78eRal4Hbpan/scF3bBs7o9lYcW2rgvnslXaWdOIkSGriNPuMRXaWuLzEljuc9J8df86MsbNm0Un2REzH4Tbdb/Zr9kN3SW7VB8D6Ki+F94JpvB1sWntUPZb22RPCIuHsN20DvLW/wBun2RMnO6vHXfM/G9htXV21LT/NXoIlJGB/D9vtZ/cryrbNL8//cNfLVzVQ2/gonr3mFErK/GzKKWbTtmI25RSzueL6xoqvRb5yLhnTnWsO77Vjv4XoVnamud94mx6dtdx2+z7sNhuMbL/OevB7AHYpy6G7KFeKSoCj74f9L7QzgB2H21nvBvQG2OMOu9VmCa3+0f58Xv6jDaJ/eaTi97rtrlc6qY+wSFvG88P9NngddGbV37mV39sTRGBT/OtRh18nj9cGyF/dBNOfgQMuq3ofS/Ls+xwsXRp0pn3/dydLc+QV9sT8yu9ttktDSlWO+Kt93JYl9ueq3X42Uyd1sF1ecXf1G18RyH8FR/195/tuXWMDW7AnmnbnJJMxjTuhuzd4vLYE5/NrbfbDyMvtz+bMip5FQ89r2JK7Ig2grvW1cOM68rJrzfa9LcyGR/vbhi8Xf7vz1Ln/Hma7TJ/4Hxh+ESsz83l7xgZmrd/G4s25O6yd7THQNzWhYuY4nIG+uZy16Bp84Qn8fOKvxMfZ7eV+hy/mb+bj2ZtqpLgP6pjIWSM6cdIQOwv90ORlfD7P9pOICPPw774rOGXVX+3OY26yH8Yasl58fZQVw8N9bZf2Cz/f9Yeikjx4crjtznvk3+pfU/j6KfaD69Dz4JRnGj/ehR/ZhkWBcvvB65h/Ni4YbqiAH54dbVPRd7aMUfXl+AafA6f9t+b9viK7BNDGmZDQCS79rmHppdXXjD/9JTvrtrvyNttgfutqe5LltBeh8wG7f1ywy929dIyt+e18kE0rr08qNdiZvCl/t+szg/1ZO+Kv9fvAGwjAp1faeuyIeLj4632jBrM03wbxG3+3NYp/mrRjwF28Db79q53dBHsS4oSHofthkLnY1pumL7DrlmcssjN6Qe2HwIQP6td0LNSKttpZ6cWf2tsdR9jZ+ZRe9nbWCnjxKCjJsWVKp78U+hn1plKYBc8dYmfLB55uT1I8N8ameJ/xym6XQ1Q9TzY8tp/9GbnoS9uXIHejfe7irfakZPV68cYqK4bHBtrSpeDfpYzFNuU+e6VtsnbsA7Z8qSneQ8exJ+oaU3qQNg9eONJ+rz1h9n/Jma81zaxwSS78u6c99rV/7Pzk8seX279PPY+wfxfdrNwH/xlqs9LGP25Ppj8+GHDg2llVv/Mi9aDl53aTAvmWqdm+t788atML2w+xnT139iHifw/BD/dT2v1I7k24h3dnbqixBFJybETF7HYS+3dJYkinJGKrr8P8yVW2oVody6iU+wP8b8UW3p+5ke+XZlSeGIgI84ADPn8AY+DUoR256eg+dGoVY+vefqm2bm5D14uvjy9utOmFtQWe25t8lz2h0LqnTU3cvt9AXTb+AS8eaVMZr5nZuH/cc9+2sztOwK5Zf8qzO87g7UlLvrANy8Jj4Ya5dka7tjF+epWtlbz2j9ozQAqz4eWj7QfcdgNtMLezGf6g6mvG9zzCLnPUVD8HuZtsML9tjb3db7w9UbM7s7oFW+zr3LrarsLwp0kNWyIxKPg7DDYQOO6hujNH8jNg7pu29jJnne2ZcN4HDV8Oak8qzrEnc9LmQVyq/b4k97Tv7+LPbB+FworVBw641Db5qiuTIOC3J3fS59uMhwGn1L952L7AcWDBB3Yt5NJcm11w9H32dbx4lP157DTSZo40tl58X7V+hs1UCpTb7JrCLTZj5dx3m/bv+5f/Z7ua9znOptC/eoI9kZQ6GC75rum+rz/9y/YBSR1ss2e+uMHOdid0tM9bn/T3vaX635Tk3nDNjKbL2njjVJvltrNlZDMWwbMHAw5c/tOe72y+Lwgucdiqm/39nvq4PTl50echHpg0Nwrkd5MC+ZapWb63/nJ4YojtTH7yM7D/eTvdvWTzYqKeH4XPCWNY6XMUEMNR/dty4pAO7N+5FZ1bR9e9NFdpATzcx67Jecl3ta9VW83WQh+fztnE+39sYGl6PgBjeqVw+3H9GNixWlAXCMC758Lybxq3Xnx9bJgJLx1layVvXr5j0OAvgxXf2ZMUS7+ygfR5H0Hvoxr2PG+fbV/HwDPgjJca9tiZL9nUTbD1o+Mf3/vpso5jT0ZsmlX7+szVsxV29iEOKmaqj7a1290Osc2adnVSZN578MnlEBZlT6I0dffh/Ax74mje2/Y9NhV1x2PvsI26GqIkz6bqp82rWNv527rLWupj5kt2aUYcm557yrNVte6BgM32CHaMDpTb7ZGJcMIjMPjMxj/vnlK01QZUmYttXevpL9kPtsGmjSl9bGbQnlp7eF+Tu9GeAFvzP3s7KtHObiZ1gUt/2KHUyTWmPwOTKzp5R8TZgLKhv2u7krUSnqqo1+5/kk1zj0yEK35u2gaX1Wf/g3ocbhtW7qpJ494W8Nu159dPg1Oft/0bmsrMF+3fqk4jbcZVbd4+x5ZYDTgFznqt6Z57X+YrtFkbxVvtCVbH33SZENKiKJDfTQrkW6Z96r31l9kz2pHxNpipK7he/LlN7YtJhv9bXOfMgz/g8PHsjTzy7XLeKrmGnp40Hoq/lUNPvZIDeyTX+pgdzHsXPrnCjue62fWeUXEch6Xp+fgDTs0AvjpfoV3SrvfR9oNtU3MceOoA2zzopKdg2AV2e/oCO8M8/32bMhk07ELbdKqh0ubBfw8FDFw1rf51mdOest2uAQ680jamC1WK7eqf7Ky4Jxyum1WzOdy3f7FNyeqbrZA2D145AXz5ttHRsAttANeq244nKYq2wlMjbA10Q0oaGiNzqe0SHmwk6K2ota1tHeDalJXYruFrf7Hp45d8W/eyUA2x4EP7OxYotzOXx/3LlloEZ9+DOo20DQoHnFL/NP5QyM+wM7LZK6u2ecJt061D/lz/bBe3CARsXfuUu23pSGSCPSm6N0pnQsVx4MOL7fKEJzzSuOXH6iMYOAad845d97ypfXUzzHzBXj/0VttbZF/qT1Cdr8ieSGvqTIG8zbacDwN/XmpXKalu/QybqWS89sRNY5r+NVc/PwQ/3m+vx7WD/1u095uPSrPXkEBeze5E9gW+IltzvG667X6+cWblmsB2jdTgUiujbPOa4AeH4JJzwy6qM4j/ZcUW/jlpKUvS7N+CqbGj6en/iJs7L8fUN4iHmmvHNyDINMauY71TEbF77gOeHYSdef3+HjurWZpvZ2XTF1TtE9vWdj0eOmHny/zsTPshtuHg4s/s7Nvo6+zJiZ01IKv+j3/M/9k041DWyfYYay+rf7LNok6tWDpoy/KqZYSOfbB+QVj7IbZ781tn2JnY4GysN8J2+U3pY1PbU/rAsq9tEN+mP4xqYNO3hmrbz5ZvbJhpg6p1v9pyitmv26WmBp1uZ+tr4zi2O/XaX2xt+vkfNU0QD7buNjIe3r/QZnYs/6bqvshEO6s2fGLjfz73tvh2ti/FK8fZExGdDrCz8LvTeKw583hs74+eR9i/3UMnuDuIB/u37PQXbc+Npvo9qc2oa6oC+YNv2DNBPNi1rMMi7Xu4L5Wz1CYiZs+k+yd0sE0WN82yf7dHVFspx3EqlonD/ny3pCAeYOSlNvPIV2BPXCuIlz1MM/K10Ix8y7RX39uA33aWXTfVdpHfPMc2j6kuKsk22PGX1twemWgb2rXbz3YYN164cX6NdMUyf4Aflmby+vS1TF2ZDUB8VBjXHdGLi7puJfKVo2ya4y2r6lc/mLvJphTiwA3zdtmVfZ+Ut9m+BqfasoreCOh7nF0urNeRTfNPN3MpPH+YrecNPkePsXZd9b7HV6VgBj/wBJedOvwvcOjN+0azq02z4IUjbDB71XQbbL95ul1arM+xdn3khlj9sw2Ss5bZNNjqqanbu3jy3u1O7Dj2d3HK3ZCxYJe7V/JGwHkfNqyjdH2tnWq7/pfmNZ/Z950p2mpr3Lsdsu/OXkrz5jgw+U57Avz4R/Zub5GW6JdH7P+vXuPsChJBK6fY/xXeSLh+dtOXUTQH896zJ/NPehJiGzBZIlJBqfW7qT6BfLdu3YiO1nISblJcXMzatWv3TiD/wUS7hEt18R0qZt5H2fVSU/raDu6bZ9tgf9002PC7TVOurv9JdtYT2LC1iPf/2MB7MzeQWdE9PsxjuGBUV64/ojetYiPsB57H9rPdVc99D/oeu+vx/vqYDXS6HmwbVzVXH15sU5U7DLOzBQNPr18qdUNtWWa79S7+3KbzBxmP/R72P9GmGwczKo6+v+FLj+1p751vm9/1G2/XiX/nHBu8Xv3b7s2sBQJ2vfoty21gv2WZXZJq21rY/wI48q9N9hIaPK5FH9uGkDkbdr5vdJJddq//+D03nvx0W3KyJ2cxRUQaY8syeHqk/Z9wyyqbdRYI2JPY6fPhoGvg2H+GepQizZIC+d20s0De7/ezfPly2rZtS3KyzrS5SXZ2NpmZmfTp0wevdw/OGq36wXZ99YTZ9X+7HmwD+KSuu56N9ZfbWcN1020Tm7zNlJ34FD9kt+btGev534otBH+lU+IiOGN4Z847sAudW283kzfpVvj9vzD0fDjl6Z0/p+PAMwfZZclOetKmizVX5T7bYGpvNpbassw2X1ryha0Z397xD9v67H3NlmX2fXcCVR2nx/zf7q3rLiIizZ/j2J4m2SurlhNc+DF8+CdbcnTD3H2vAaBIM6Ea+T3I6/WSlJREZqZdOicmJqbuLt/SLDiOQ1FREZmZmSQlJe3ZIN5fbpc3g4plpv7VsMd7w8hvPZBNnp5sbnU6s9fl8P5LG8jMX1O5y5heKZw7sgvjBrSzy77Vpv94G8gvm2THtLM0xLS5NogPi7Lpvc1ZWMTe7w7dpi+0ucWuzb5tnW2wtuRLyFxka82HTti746mvNn1tP4S5b9kgPr49HHJzqEclIiKhZgz0OwGmPmFXeul/Evz4D3vf6GsVxIvsJQrkGyE11XboDAbz4g5JSUmV7+0eM+d120U2KgkOu63O3cr9AX5dmcXyjHw2bStmU04xG7cVszmnmLyS8h32D86+nzuyM12TY3c9ji6jIbq1XSZl/XTofkjd+857137tN37nTdtk11p1tU2ZRl0T6pHUz9jb7RrYfh+Mu7d5rd8tIiJ7Tr/xNpBf8S3MesXOzsckN5//byIuoEC+EYwxtG/fnrZt21JWVrbrB8g+Lzw8fM/OxINN6f6h4oz12Dtqrc1en13Ee3+s54M/NlbWuNcmMTqcjknRdE2OYfzgDjuffa+NN8w2Xpv7pk353j6QL94Gy76x962sWCd2yLn1P764Q1IXOPtNyFlv1zYXEREB6DjCrvZSmGkbDYJdVjIyPrTjEmlBFMjvBq/Xu+eDP3GP/z1s1ypP7g0HXFK5ubTcz7eLMnh35vrKDvMAybERjO6VQqdW0XRIiqZTUjQdK67HRTbBr27/8TaQX/qlTfEvyLApcku+sEtrBarN/Pc8wnZel5anzzGhHoGIiOxrPB67zN+sV23WVkInGHHJLh8mIk1HgbzI3rB1ddUa3Mf8A7zhrMzM553fN/Dx7I1sK7KZHcZU1bgf1b+Bs+wN1eNwCI+13ev/ewikLwSqNb9su5/trt7/RLvUnXpBiIiISFC/8TaQB1uKVZ/lbEWkySiQF9le5lJbC57Qoc5d8krKiIsIw+OpX3Dr++YvRATKWN/qIB78PZkFn/7Ahq1Va2mnJkRx1ohOnDmi844d5veU8CjoPQ4WfwrpFetndzrABu79xmvZKxEREalb90Oh00iIiFH5nUgIKJAXqe73F2BSRWfu+A7QcRh0GgEdh0OH/Vlf4OXG9+Ywe30OYR5DSlwkbeIrLnGRpMRH0CYuktZxkWzcVsTCTbl410/lydKv8DuGS9NPZXlaBgBej+GIfm05d2RnDu3dhjDvHpx9r8uRf7MNzNoPtR1od3LyQkRERKRSWCRc+l2oRyHSYmkd+VrsbB15cbFVP8CbZ4DjBww10swBB8NKpxOz/T2ZEejH54HRlO/iXJiHAJ9H/IWBnrV8EnYsU7rfxqBOiQzqmMjADokkxoTvudcjIiIiIiLNRkPWkVcgXwsF8i1Q1gp44UgozbXpYcc/DGnzYNMs/Btmkr/qN5LKai43WJbSn3UH3cf6uMFsyS+tuhSUkpXvo018JGd4f+TwpffiRCZgrp+jtVVFRERERKRWCuR3kwL5FqZoK7x4FGxdBZ0PhIu+sOliwNL0PK59ew4rMwtoa7Zx55AiTmq9Cc+c1+0a7AD7XwBH3QOxyTWPW5oPTw633eCPvh9GX7eXX5iIiIiIiDQXDQnkVSMvLZu/DD6YaIP4xM5w9lsQFonjOLw1Yz33fbmY0vIAbeMjefzsYxndq2JG/eDrYcrfYc4b9rL0Kxh3Dww93y7JAvDrYzaIb9UdRl4espcoIiIiIiLuohn5WmhG3r1Kyvxs3FZMVLiH6HAvCT/cRvjsV+wybJd8C6kDyS0q4/aP5/P1wnQAxvZtwyNnDiE5LnLHA67/Db68CTIX2dudD4Txj0FkPDw5Avyl9uRA//F78VWKiIiIiEhzo9T63aRA3n3K/QHenbmBx6csJ6vAB8AF3m+5L/xVAo7h2sCfmRZ+IDHhXgp9fnKLywj3Gm47th8XH9x958vM+ctgxnPw4wNQVgjGC627Q/ZK6HaITdXXGuwiIiIiIrITSq0XqeA4Dt8vyeSBr5ewakshADERXg5y5vF3z+sA/Lv8bCb5h0FZGTmUAdCldQxPnrs/Qzon7fpJvOG2/n2/U+Gb22HJFzaIx8Ax/1QQLyIiIiIiTUoz8rXQjLw7LNiYyz8mLea31bYpXevYCG44sjcTepYS/vI4KM2lfNDZ5B79H4rLA5SU+Sny+SnzB9ivQyJR4d7GPfHyb+GXR6DPMXDITU34ikRERERExK00Iy8t2sZtRTw8eRmfzt0MQESYh0vGdOeqsT1JCOTbDvWludBpJGEn/Yfk8KimHUCfo+1FRERERERkD1AgL/uGLcvgu7/bGezOIxt1iLVZhbzz+3pembYWX3kAgNP278ifj+lLx6RoCATgrUuqOtSf8xY0dRAvIiIiIiKyhymQl33D5Dth5RTYPAeung4xrev1sJWZ+UxakM7XC9NZklaVfTKqRzJ3ndCfgR0Tq3b+7WlY9QOERcO570Bc26Z+FSIiIiIiInucAnkJvYxFNogHKEiHL2+EM1+rtUmc4zgsTc/n6wVpTFqYzsrMgsr7vB7D6J7JTBzdjSP6tcVUf3z6Avj+Xnv92H9C6qA9+IJERERERET2HAXyEnrTnrRfOwyD9Pmw+DOY/z4MObtyl9JyPy//upb3Zq5nbXZR5fZwr2FMrxSOG9Secf3b0So2YsfjlxXDR5eC3wd9j4fhf9rTr0hERERERGSPUSAvoZW7CRZ8YK+f8DCs/AF+vB8m3QJdR0NSZ6avyuauTxewumL5uIgwD2P7tOG4Qakc0a8didHhO3+O7/4OW5ZCbFs46UktByciIiIiIs2aAnkJrd+egUA5dB0DHYdD6hBYMRk2zqTsoyu5Pe4+PpqTBkBKXCS3HtOX4we3Jy6ynj+6K6bA7/+11095BmJT9tALERERERER2Ts8oR6AtGAluTDrNXv94OvtV28YgZOfo9wbTfiGX0ma/xLGwPkHdeH7Px/GWQd0rn8QX5gFn15lr4+8AnqPa/rXICIiIiIispcpkJfQ+eMV8OVDm/7QywbZyzPyOfujTP5WMgGA28LfY9I5ydx/yqBdp9BX5zjw+XVQmGmPP+6ePfEKRERERERE9joF8hIa5T6Y8Zy9Pvo6SvwO//pmKcc/8Qsz127jU+841iePIYIy+k+72e7fELNehWWTwBsBp78A4dFN/hJERERERERCQYG8hMaCDyA/DeLb4xtwOle+OYtnf1pFecBh3IB2fHfTWLpMfBmiW0PGAvjpgfofO2ulXZce4Mi/aak5ERERERFxFQXysvc5TuWSc4GRV/J/Hy7mp2VbiAr38Nz5w3jhwhF0TIqG+HZw4hP2MVMfh3XTd31sfxl8fCmUFUH3w+Cga/bc6xAREREREQkBBfKy9634DrYswYmI5+7NB/DVgjTCvYb/XjCCYwe2r7nvgJNgyARwAvDJFVCav/Nj//QAbJ4D0a3g1OfAox9xERERERFxFy0/J3vftP8A8Fur8bw+JwePgf+csz+H9WlT+/7HPQhrf4WcdfDeBdC2P5TmQWmBDexL88FXcT13o33MiU9AQoe99IJERERERET2HgXysndtmg1rf8FvvNy0bjQA/z5jCMcNal/3Y6IS4dRn4dXxsPpHe9mZkVfAgJObcNAiIiIiIiL7DgXysndVzMZ/Wj6KNJK5+8QBnDG8064f120MnP4irJ8OkfEQEQeRCfZ6ZFzFtniIaQ2tu+/hFyEiIiIiIhI6CuRl79m6hsCiz/AAz5eP5+aj+zDx4AYE3YPOsBcREREREZEWTJ3AZK9Z8+W/8RDgJ/8Qxh46lmsO7xXqIYmIiIiIiDQ7CuRlr/hl3hJSV30IwKreF3P7sf0wxoR4VCIiIiIiIs2PAnnZ4xZuymXOR48QbXxsiOzDn867UEG8iIiIiIhII6lGXvaorYU+rnt9Gh+YyQC0P/5WPF6dPxIREREREWksRVSyx5T7A1z3zmwOLphMiskjkNiFsIGnhnpYIiIiIiIizZoCedlj/j15Gb+tzOTysEkAeEZfB14lgYiIiIiIiOwOBfKyR3w2dxPP/281x3pm0sVkQHRr2P/8UA9LRERERESk2VMgL01u8eY8bvtoPuDw11a2Np4Dr4CImJCOS0RERERExA1CHsgbY64xxqw1xpQYY2YYY0buYv8bjTHLjDHFxpgNxpjHjDFRu3NMaTrbCn1c/sYflJQFuLLLRlILl0F4DIy8PNRDExERERERcYWQBvLGmLOBR4F7gGHAPGCyMaZtHftPAB6s2L8/cAlwNvDPxh5Tmo5tbjeHjduK6dI6hj/HfG3v2P8CiGkd2sGJiIiIiIi4RKhn5G8CXnAc5xXHcRYDVwJFwMV17D8amOo4ztuO46x1HOdb4B2g+ox7Q48pTeShb5fx68ososO9vHZcBOFrfwLjhVHXhHpoIiIiIiIirhGyQN4YEwEMB6YEtzmOE6i4PaqOh00DhgdT5Y0xPYDjgUm7cUyMMZHGmITgBYjfjZfWIn0xbzP//Xk1AA+dOZjuy16ydww8DVp1DeHIRERERERE3CWUM/IpgBfI2G57BpBa2wMcx3kb+BvwqzGmDFgF/OQ4TjC1vsHHrHAHkFvtsrH+L0OWpudx64fzAbjisB6M71QKiz6xdx58QwhHJiIiIiIi4j6hTq1vEGPMWOBO4Gps/ftpwAnGmL/u5qEfABKrXTrt5vFaDF95gBvfnUtxmZ9Deqdw6zH9YPrT4ASg55GQOijUQxQREREREXGVsBA+dxbgB9ptt70dkF7HY+4D3nAc58WK2wuMMbHA88aYfzTymDiOUwqUBm8bY+r7Glq8p35YwdL0fFrHRvDY2UPxFmfDnDftnWNuDOnYRERERERE3ChkM/KO4/iAWcCRwW3GGE/F7el1PCwGCGy3zR98eCOPKY20cFMuT/+0CoD7Th5ISlwk/P48lBdDh/2h2yEhHqGIiIiIiIj7hHJGHuwyca8ZY/4AfgduBGKBVwCMMa8DmxzHuaNi/y+Am4wxc4AZQC/sLP0XjuP463NMaRq+8gA3fzAPf8DhhEHtOWFwe/AV2kAe4OAbQZkNIiIiIiIiTS6kgbzjOO8ZY9oA92Kb0c0FjnUcJ9isrgs1Z+DvB5yKrx2BLdjg/q4GHFOaQPWU+ntO3s9unP0GFG+D1j2g/4mhHaCIiIiIiIhLGcdxQj2GfU7FEnS5ubm5JCQkhHo4+5yFm3I5+emp+AMOT08YZmfj/WXwn/0hdwOMfwxGXBzqYYqIiIiIiDQbeXl5JCYmAiQ6jpO3s32bVdd6Cb1aU+rBLjeXuwFi28CQc0M7SBERERERERdTIC8NUmtKvePA1Cfs9QOvhPDo0A1QRERERETE5RTIS73V2qUeYMW3kLEQIuLggEtCOEIRERERERH3UyAv9VJnSn3WSvj0Knt9+ESIbhWyMYqIiIiIiLQECuSlXmpNqc/bDG+cAkXZ0H4ojL09lEMUERERERFpERTIyy7VmlJftBXeOM02uEvuBed/BJHxIR6piIiIiIiI+ymQl50q8pXvmFLvK4K3z4YtSyC+PZz/McSmhHqoIiIiIiIiLYICealTuT/AtW/PYWl6PsnBlHp/GXxwEWz8HaISbRDfqmuohyoiIiIiItJihIV6ALJvchyHOz9ZwA9LM4kM8/D8hcNJiQmHT6+0XerDomHCB9BuQKiHKiIiIiIi0qJoRl5q9eh3y3n/j414DDw1YRjDu7SCb/8C898D44WzXocuB4Z6mCIiIiIiIi2OAnnZwRvT1/LkDysB+Mepgxg3oB38+hj89rTd4ZRnoM/RIRyhiIiIiIhIy6VAXmr4ZmEaf/t8EQD/d1Qfzh3ZBWa9Ct/fY3c45p8w5JzQDVBERERERKSFU428VPp9zVauf3cujgMTDuzC9SMi4f2LYPGndocx/wejrgnpGEVERERERFo6BfICwLL0fC59bSa+8gDH90vi/qSvME89DuXFYDww+jo48u+hHqaIiIiIiEiLp0Be2JxTzEUv/05eSRlXt1vCLdtew6zdYO/sejAc9y9IHRTaQYqIiIiIiAigQL7FyynyceHLvxOXv5KPYt9ieO48e0dCRzj6PtjvNDAmtIMUERERERGRSgrkW7jHv5rFuVuf5aLIyYT5A+CNgNHXwyE3QURsqIcnIiIiIiIi21Eg34I5hdmcu+gq+oatsRv6ngDH3A+te4R2YCIiIiIiIlInBfItVWEWvpfH05c1ZDmJJJz7IhH9tDa8iIiIiIjIvk7ryLdEBVvgtROJzF5CppPEQ+0fURAvIiIiIiLSTCiQb2kKMuG18ZC5mBxvMuf4/kKP/sNCPSoRERERERGpJ6XWtyT56fDaiZC1HCe+A+fm3spqpy0H90oJ9chERERERESknjQj31LkbYZXT4Cs5ZDQkQXj3mKJry2tYyMY0D4h1KMTERERERGRelIg3xLkbrJBfPZKSOwME7/i+4w4AEb3TMbj0TrxIiIiIiIizYUCebfL2QCvHg9bV0NSF5j4FbTuzq8rswAYo7R6ERERERGRZkU18m7mK7SN7bathVbd4KIvIakz+SVlzN2QA8CY3grkRUREREREmhMF8m629lcbxMe1szPxiZ0AmLF6K/6AQ7fkGDq1igntGEVERERERKRBlFrvZmnz7dfuh1UG8UBlWr261YuIiIiIiDQ/CuTdLH2e/dp+SI3NwUD+EKXVi4iIiIiINDsK5N0sOCPffnDlpvTcElZmFmAMjOqhQF5ERERERKS5USDvVsXbIGedvZ46qHLz1IrZ+MEdE0mMCQ/FyERERERERGQ3KJB3q/QF9mtSF4huVbm5ctk5pdWLiIiIiIg0Swrk3SqYVp9alVbvOI4a3YmIiIiIiDRzCuTdKj1YHz+0ctOKzAK25JcSFe5hWJdWtT9ORERERERE9mkK5N0qLdixvmpG/pcVdjb+gG6tiQr3hmJUIiIiIiIispsUyLuRrwiyltvr1VLrp2rZORERERERkWZPgbwbZS4GJwCxbSA+FYAyf4DfVmcDqo8XERERERFpzhTIu1FlWv0QMAaAOetzKPL5SY6NoH9qQggHJyIiIiIiIrtDgbwbBQP5amn1wW71o3ul4PGYUIxKREREREREmoACeTeq7Fi/Y338mF7JoRiRiIiIiIiINBEF8m7jL4OMxfZ6xYx8XkkZczfkAKqPFxERERERae4UyLtN1nLwl0JkArTqDsCM1VvxBxy6p8TSqVVMiAcoIiIiIiIiu0OBvNukVaTVpw4Cj317g2n1ByutXkREREREpNlTIO82tTS6+2XFFgDGKK1eRERERESk2VMg7zbbNbpLyy1m1ZZCPAZG9VAgLyIiIiIi0twpkHeTQADSF9jr7YcAMHVlNgCDOiWRGBMeqpGJiIiIiIhIE1Eg7yY5a6E0D7yRkNIHgF8r0+pVHy8iIiIiIuIGCuTdJFgf324AeMNxHIdfK2bkx/RqE8KBiYiIiIiISFNRIO8mlR3rbX386qxCsgpKiQr3MKxrUujGJSIiIiIiIk1GgbybVDa6s/XxOUU+ANolRBEZ5g3VqERERERERKQJKZB3k7SagXxpWQCAyDC9zSIiIiIiIm6hCM8t8tOhMBOMB9oOAKDUHwzkNRsvIiIiIiLiFgrk3SLY6C6lD0TEAFUz8hGakRcREREREXENRXhusV1aPUBpuR9Qar2IiIiIiIibKMJzi/SKGfmKjvUApeWqkRcREREREXEbRXhuUTkjX1sgrxp5ERERERERt1Ag7wbF2yBnnb2eOqhysy8YyIfrbRYREREREXELRXhukL7Afk3qAtGtKjcHa+QjvHqbRURERERE3EIRnhvU0ugOqq0jrxl5ERERERER11CE5wbpFYF86naBvGrkRUREREREXEeBvBsE15Cv1ugOtPyciIiIiIiIGynCa+58RZC13F5PrRnI+zQjLyIiIiIi4joK5Ju7zMXgBCC2LcSn1rgrmFofoRl5ERERERER19gnIjxjzDXGmLXGmBJjzAxjzMid7PuTMcap5fJVtX1ereX+b/bOq9nLqqfVG1Pjrqoa+X3ibRYREREREZEmEBbqARhjzgYeBa4EZgA3ApONMX0dx8ms5SGnARHVbicD84APttvvG+BP1W6XNtWY9ymVje4G73BXaVlFjby61ouIiIiIiLjGvhDh3QS84DjOK47jLMYG9EXAxbXt7DjOVsdx0oMXYFzF/tsH8qXV93McZ9uefBEhU0ejO1DXehERERERETcKaSBvjIkAhgNTgtscxwlU3B5Vz8NcArzrOE7hdtvHGmMyjTHLjDHPGmOSdzKOSGNMQvACxDfslYSIvwwyFtvr260hD9Wb3e0L52tERERERESkKYQ6wksBvEDGdtszgNQdd6+popZ+IPDidnd9A1wIHAncBhwGfG2MqWtq+g4gt9plYz3HH1pZy8FfCpEJkNRth7uDy8+p2Z2IiIiIiIh7hLxGfjddAixwHOf36hsdx3m32s0Fxpj5wCpgLPB9Lcd5AFunHxRPcwjm04L18YPAs2OwrmZ3IiIiIiIi7hPqCC8L8APtttveDkjf2QONMbHAOcBLu3oSx3FWVzxXrzruL3UcJy94AfLrMfbQC9bH19LoDlQjLyIiIiIi4kYhDeQdx/EBs7Ap8AAYYzwVt6fv4uFnApHAm7t6HmNMJ2x3+7RGD3ZfFOxYX0t9PFSl1qtrvYiIiIiIiHvsC6n1jwKvGWP+AH7HLj8XC7wCYIx5HdjkOM4d2z3uEuBTx3Gyq280xsQBfwc+ws7q9wT+DawEJu+5lxEC+50K8e2h04ha71azOxEREREREfcJeSDvOM57xpg2wL3YBndzgWMdxwk2wOsCBKo/xhjTFxgDHF3LIf3AYOAiIAnYDHwL/NVxHHetJT/yMnupg2rkRURERERE3CfkgTyA4zhPAU/Vcd/YWrYtA0wd+xcDxzTl+Jqr0jLVyIuIiIiIiLiNpmpdynGcqhp5zciLiIiIiIi4hiI8lyoPOAQce10z8iIiIiIiIu6hQN6lgo3uQF3rRURERERE3EQRnkuVVgvkI7x6m0VERERERNxCEZ5LBevjw70Gj6fWvoAiIiIiIiLSDCmQdyl1rBcREREREXEnBfIupTXkRURERERE3ElRnkv5FMiLiIiIiIi4kqI8lwrWyEcokBcREREREXEVRXkuVZVarxp5ERERERERN1Eg71LBGXmtIS8iIiIiIuIuivJcqqprvd5iERERERERN1GU51I+v1LrRURERERE3EiBvEsFZ+TV7E5ERERERMRdFOW5VGWNvAJ5ERERERERV1GU51KlWkdeRERERETElRTluZSWnxMREREREXEnBfIuVRnIa/k5ERERERERV1GU51LBGvkIr95iERERERERN1GU51KV68hrRl5ERERERMRVGhzlGWPWGmP+ZozpsicGJE1DNfIiIiIiIiLu1Jjp2seB04DVxpjvjDHnGGMim3ZYsru0/JyIiIiIiIg7NTjKcxznccdxhgIjgSXAk0CaMeYpY8ywJh6fNJJPy8+JiIiIiIi4UqOjPMdxZjuOcz3QAbgHuBSYaYyZa4y52BhjmmqQ0nDB1PoIpdaLiIiIiIi4SlhjH2iMCQdOBf4EjAN+A14COgH/BI4CJjTBGKURSjUjLyIiIiIi4koNDuQr0uf/BJwLBIDXgf9zHGdptX0+AWY21SCl4UrLKmrk1bVeRERERETEVRozIz8T+A64CvjUcZyyWvZZA7y7OwOT3aOu9SIiIiIiIu7UmEC+h+M463a2g+M4hdhZewkRNbsTERERERFxp8ZEeW2NMQduv9EYc6AxZkQTjEmaQHD5uQgF8iIiIiIiIq7SmCjvaaBzLds7Vtwn+wA1uxMREREREXGnxkR5A4DZtWyfU3Gf7ANUIy8iIiIiIuJOjQnkS4F2tWxvD5Tv3nCkqahrvYiIiIiIiDs1Jsr7FnjAGJMY3GCMScKuHf9dE41LdpPPr9R6ERERERERN2pM1/qbgf8B64wxcyq2DQUygAuaaFyyGxzHqUytV7M7ERERERERd2lwIO84ziZjzGDgPGAIUAy8ArxTx5ryspeV+R0cx15XjbyIiIiIiIi7NGZGPrhO/PNNPBZpIsGl50Cp9SIiIiIiIm7TqEAewBgzAOgCRFTf7jjO57s7KNk9wbR6UCAvIiIiIiLiNg0O5I0xPYBPgEGAA5iKuyqSuVEud4j5qtXHG2N2sbeIiIiIiIg0J42Zrn0CWAO0BYqA/YBDgT+AsU02Mmm0yjXkvZqNFxERERERcZvGpNaPAo5wHCfLGBMAAo7j/GqMuQP4D7B/k45QGixYI6815EVERERERNynMZGeF8ivuJ4FdKi4vg7o2xSDkt1TWhZcQ15VDiIiIiIiIm7TmBn5hdhl59YAM4BbjTE+4HJgdROOTRqpMrVeje5ERERERERcpzGB/P1AbMX1vwFfAr8A2cDZTTQu2Q3Vm92JiIiIiIiIuzQ4kHccZ3K16yuBfsaY1sA2x3Gcuh8pe0tljbwCeREREREREddpUKRnjAk3xpQbYwZW3+44zlYF8fuOqtR61ciLiIiIiIi4TYMCecdxyoD1aK34fZq61ouIiIiIiLhXYyK9fwD/rEinl31QVdd6BfIiIiIiIiJu05hmd9cCvYDNxph1QGH1Ox3HGdYUA5PG8/mVWi8iIiIiIuJWjQnkP23qQUjTCs7Iq2u9iIiIiIiI+zSma/09e2Ig0nTUtV5ERERERMS9FOm5UFXXer29IiIiIiIibtPgGXljTACoc6k5x3FUmB1ilYF8uN4KERERERERt2lMjfyp290OB/YHLgL+vtsjkt3m04y8iIiIiIiIazWmRv6zWjZ/aIxZBJwNvLTbo5LdEqyRj/AqkBcREREREXGbpoz0fgOObMLjSSNVriMfrkBeRERERETEbZok0jPGRAPXA5ua4niye6qa3alGXkRERERExG0a0+xuGzWb3RkgHigCzm+icclu0PJzIiIiIiIi7tWYZnf/R81APgBsAWY4jrOtSUYlu6Wqa70CeREREREREbdpTLO7V/fAOKQJBQP5CK9S60VERERERNymwVO2xpg/GWPOrGX7mcaYi5pmWLI7SrX8nIiIiIiIiGs1JtK7A8iqZXsmcOfuDUeaQmlZRY28UutFRERERERcpzGRXhdgTS3b11XcJyHmU9d6ERERERER12pMIJ8JDK5l+xAge/eGI01BqfUiIiIiIiLu1ZhI7x3gP8aYw40x3orLEcATwLuNGYQx5hpjzFpjTIkxZoYxZuRO9v3JGOPUcvmq2j7GGHOvMSbNGFNsjJlijOndmLE1R5XN7hTIi4iIiIiIuE5jIr2/AjOA74Hiisu3wA80okbeGHM28ChwDzAMmAdMNsa0reMhpwHtq10GAn7gg2r73ApcD1wJHAgUVhwzqqHja460jryIiIiIiIh7NTjScxzH5zjO2UBf4DxsYN3TcZyLHcfxNWIMNwEvOI7ziuM4i7HBdxFwcR3Pv9VxnPTgBRhXsf8HYGfjgRuB+x3H+cxxnPnAhUAH4JRGjK/ZqVpHXjXyIiIiIiIibtPgdeSDHMdZAazYnSc3xkQAw4EHqh03YIyZAoyq52EuAd51HKew4nZ3IBWYUu2YucaYGRXHbFT6f3PhOE61ZneakRcREREREXGbxqwj/5Ex5rZatt9qjPmgtsfsRArgBTK2256BDcZ3NZaR2NT6F6ttDj6u3sc0xkQaYxKCFyC+HmPfJ/n8gcrrCuRFRERERETcpzGR3qHApFq2f11x3950CbDAcZzfd/M4dwC51S4bd3dgoRJMqwc1uxMREREREXGjxkR6cUBttfBlQEIDj5WFbVTXbrvt7YD0nT3QGBMLnAO8tN1dwcc15JgPAInVLp12Oup9WGlZtUDeq0BeRERERETEbRoT6S0Azq5l+znA4oYcqKI53izgyOA2Y4yn4vb0XTz8TCASeHO77WuwAXv1YyZgu9fXekzHcUodx8kLXoD8hryOfUn1jvW275+IiIiIiIi4SWOa3d0HfGyM6Yldcg5s0DwBOKMRx3sUeM0Y8wfwO7bjfCzwCoAx5nVgk+M4d2z3uEuATx3Hya6+0XEcxxjzOPAXY8wKbGB/H7AZ+LQR42tWStXoTkRERERExNUaHMg7jvOFMeYU7JrxZ2DXkZ8HHAFsbcTx3jPGtAHuxTajmwsc6zhOsFldFyBQ/THGmL7AGODoOg77b+zJgOeBJODXimOWNHR8zY1PS8+JiIiIiIi4WqOWn3Mc5yvgK6hMWz8XeBi7lFyDI0jHcZ4CnqrjvrG1bFsG1Jk37jiOA/yt4tKiBGfkVR8vIiIiIiLiTo2O9owxhxpjXsOmrP8Zm2Z/UFMNTBqntKyiRj5cgbyIiIiIiIgbNWhG3hiTCkzE1qcnAO9jG86d4jhOgxrdyZ5RVSOv1HoRERERERE3qve0rTHmC2AZMBjbkK6D4zjX7aFxSSOp2Z2IiIiIiIi7NWRG/jjgP8CzjuOs2EPjkd3kUyAvIiIiIiLiag2J9sYA8cAsY8wMY8y1xpiUPTQuaaTgOvIRCuRFRERERERcqd7RnuM4vzmOcxnQHvgvcA620Z0HGGeMid8zQ5SGUI28iIiIiIiIuzV42tZxnELHcV52HGcMMAh4BLgdyDTGfN7UA5SGUdd6ERERERERd9utaM9xnGWO49wKdMKuJS8h5vOrRl5ERERERMTNGrT8XF0cx/EDn1ZcJIRKy5RaLyIiIiIi4maatnUZLT8nIiIiIiLibor2XCbYtV6BvIiIiIiIiDsp2nMZzciLiIiIiIi4m6I9l/EFA/lw1ciLiIiIiIi4kQJ5l9GMvIiIiIiIiLsp2nOZYI18hAJ5ERERERERV1K05zJVy8/prRUREREREXEjRXsuU5Varxp5ERERERERN1Ig7zI+1ciLiIiIiIi4mqI9l6lcRz5cb62IiIiIiIgbKdpzmWBqfYRXqfUiIiIiIiJupEDeZSpr5DUjLyIiIiIi4kqK9lymtKwitV418iIiIiIiIq6kaM9lfH51rRcREREREXEzBfIuo3XkRURERERE3E3RnstUNrtTIC8iIiIiIuJKivZcJBBwqqXW660VERERERFxI0V7LhIM4gEiw1UjLyIiIiIi4kYK5F0kmFYPmpEXERERERFxK0V7LlJabpee8xgI85gQj0ZERERERET2BAXyLhLsWB8R5sEYBfIiIiIiIiJupEDeRYKp9VpDXkRERERExL0UyLtIMLVe9fEiIiIiIiLupYjPRXzBGflwva0iIiIiIiJupYjPRZRaLyIiIiIi4n4K5F0kGMhHePW2ioiIiIiIuJUiPhcpLauokVdqvYiIiIiIiGsp4nORqtR6va0iIiIiIiJupYjPRXyqkRcREREREXE9BfIuohl5ERERERER91PE5yLBdeQjFMiLiIiIiIi4liI+F9HycyIiIiIiIu6nQN5FSssqAnl1rRcREREREXEtRXwu4vNXLD+n1HoRERERERHXUsTnIpUz8kqtFxERERERcS0F8i4SrJFXszsRERERERH3UsTnIsGu9UqtFxERERERcS9FfC6ideRFRERERETcTxGfi/iCgXy4auRFRERERETcSoG8i2hGXkRERERExP0U8bmIauRFRERERETcTxGfi1QtP6e3VURERERExK0U8blIVWq9auRFRERERETcSoG8i/hUIy8iIiIiIuJ6ivhcpLJGPlxvq4iIiIiIiFsp4nORYGp9hFep9SIiIiIiIm6lQN5FKmvkNSMvIiIiIiLiWor4XKS0TMvPiYiIiIiIuJ0iPhfx+dW1XkRERERExO0UyLuEP+BQ5ncAzciLiIiIiIi4mSI+lwguPQcQoUBeRERERETEtRTxuURw6TnQjLyIiIiIiIibKeJziWDHeq/HEObV2yoiIiIiIuJWivhcIphar9l4ERERERERdwt51GeMucYYs9YYU2KMmWGMGbmL/ZOMMU8bY9KMMaXGmOXGmOOr3X+3McbZ7rJ0z7+S0Aqm1iuQFxERERERcbewUD65MeZs4FHgSmAGcCMw2RjT13GczFr2jwC+AzKBM4BNQFcgZ7tdFwFHVbtd3tRj39eUlNkZeTW6ExERERERcbeQBvLATcALjuO8AmCMuRI4AbgYeLCW/S8GWgOjHccpq9i2tpb9yh3HSW/64e67Ssu1hryIiIiIiEhLELLp24rZ9eHAlOA2x3ECFbdH1fGwk4DpwNPGmAxjzEJjzJ3GmO2j197GmM3GmNXGmLeMMV32xGvYlyi1XkREREREpGUI5Yx8CuAFMrbbngH0q+MxPYAjgLeA44FewDNAOHBPxT4zgInAMqA98HfgF2PMQMdx8ms7qDEmEoistim+ga8l5Cqb3YUrkBcREREREXGzUKfWN5QHWx9/ueM4fmCWMaYjcAsVgbzjOF9X23++MWYGsA44C3ipjuPegQ34my2l1ouIiIiIiLQMoZy+zQL8QLvttrcD6qpvTwOWVwTxQUuA1IpU/R04jpMDLMfO3tflASCx2qXTrga/rwkG8hFaQ15ERERERMTVQhb1OY7jA2YBRwa3GWM8Fben1/GwqUCviv2C+gBpFcfbgTEmDuiJPQlQ11hKHcfJC16AWlPw92WlZRU18kqtFxERERERcbVQR32PApcZYy4yxvQHngVigWAX+9eNMQ9U2/9ZbNf6J4wxfYwxJwB3Ak8HdzDGPGyMOcwY080YMxr4BDvz/87eeUmhUZVaH+q3VERERERERPakkNbIO47znjGmDXAvkArMBY51HCfYAK8LEKi2/wZjzDHAY8B87DryTwD/qnbYTtigPRnYAvwKHOQ4zpY9+2pCy6caeRERERERkRYh5M3uHMd5CniqjvvG1rJtOnDQTo53TpMNrhnRjLyIiIiIiEjLoKjPJYLryEcokBcREREREXE1RX0uoeXnREREREREWgYF8i5RWlYRyKtrvYiIiIiIiKsp6nMJn79i+Tml1ouIiIiIiLiaoj6XqJyRV2q9iIiIiIiIqymQd4lgjbya3YmIiIiIiLiboj6XCHatV2q9iIiIiIiIuynqcwmtIy8iIiIiItIyKOpzCV8wkA9XjbyIiIiIiIibKZB3Cc3Ii4iIiIiItAyK+lwiWCOvZnciIiIiIiLupqjPJaqWn9NbKiIiIiIi4maK+lyiKrVeNfIiIiIiIiJupkDeJXyqkRcREREREWkRFPW5RLBGPipcb6mIiIiIiIibKepziWBqfYRXqfUiIiIiIiJupkDeJSpr5DUjLyIiIiIi4mqK+lyg3B/AH3AA1ciLiIiIiIi4naI+F/D5A5XX1bVeRERERETE3RTIu0BwDXmACM3Ii4iIiIiIuJqiPhcI1seHeQxejwnxaERERERERGRPUiDvAsGl51QfLyIiIiIi4n6K/FygqmO96uNFRERERETcToG8C/iCgbxm5EVERERERFxPkZ8LKLVeRERERESk5VDk5wLBrvXqWC8iIiIiIuJ+ivxcoLJGXmvIi4iIiIiIuJ4CeRdQar2IiIiIiEjLocjPBaq61uvtFBERERERcTtFfi6g1HoREREREZGWQ4G8CwQD+Qiv3k4RERERERG3U+TnAqVlFTXySq0XERERERFxPUV+LlCVWq+3U0RERERExO0U+bmATzXyIiIiIiIiLYYCeRfQjLyIiIiIiEjLocjPBYLryEcokBcREREREXE9RX4uoOXnREREREREWg4F8i5QWlYRyKtrvYiIiIiIiOsp8nMBn1818iIiIiIiIi2FIj8XqFxHXqn1IiIiIiIirqdA3gWCNfJqdiciIiIiIuJ+ivxcINi1Xqn1IiIiIiIi7qfIzwW0jryIiIiIiEjLocjPBXzBQD5cNfIiIiIiIiJup0DeBTQjLyIiIiIi0nIo8nOBYI28mt2JiIiIiIi4nyI/Fygt04y8iIiIiIhIS6HIzwWqUutVIy8iIiIiIuJ2CuRdwKcaeRERERERkRZDkV8z5zhO1Try4Xo7RURERERE3E6RXzNXHnAIOPZ6pFep9SIiIiIiIm6nQL6ZC9bHg2bkRUREREREWgJFfs1caZm/8nqEV2+niIiIiIiI2ynya+Z8fjsjH+H14PGYEI9GRERERERE9jQF8s2c1pAXERERERFpWRT9NXPBGvkIBfIiIiIiIiItgqK/Zq5y6TkF8iIiIiIiIi2Cor9mLjgjHxmupedERERERERaAgXyzZyvXDXyIiIiIiIiLYmiv2ZOqfUiIiIiIiIti6K/Zi7YtV7N7kRERERERFoGRX/NXGWNfJhq5EVERERERFoCBfLNnFLrRUREREREWhZFf81cZbO7cL2VIiIiIiIiLUHIoz9jzDXGmLXGmBJjzAxjzMhd7J9kjHnaGJNmjCk1xiw3xhy/O8dszpRaLyIiIiIi0rKENJA3xpwNPArcAwwD5gGTjTFt69g/AvgO6AacAfQFLgM2NfaYzV0wkI/whvycjIiIiIiIiOwFoY7+bgJecBznFcdxFgNXAkXAxXXsfzHQGjjFcZypjuOsdRznZ8dx5u3GMZu10rKKGnml1ouIiIiIiLQIIYv+KmbXhwNTgtscxwlU3B5Vx8NOAqYDTxtjMowxC40xdxpjvLtxTIwxkcaYhOAFiN+9V7f3VKXWK5AXERERERFpCUIZ/aUAXiBju+0ZQGodj+mBTan3AscD9wF/Bv6yG8cEuAPIrXbZWK9XsA9QjbyIiIiIiEjL0tymcT1AJnC54zizHMd5D/gHNn1+dzwAJFa7dNrN4+01mpEXERERERFpWcJC+NxZgB9ot932dkB6HY9JA8ocx/FX27YESK1Iq2/MMXEcpxQoDd42xtRn/PuE4DryEQrkRUREREREWoSQRX+O4/iAWcCRwW3GGE/F7el1PGwq0Ktiv6A+QJrjOL5GHrNZ04y8iIiIiIhIyxLq6O9R4DJjzEXGmP7As0As8AqAMeZ1Y8wD1fZ/Ftu1/gljTB9jzAnAncDT9T2m25SWVQTy4aqRFxERERERaQlCmVqP4zjvGWPaAPdim9HNBY51HCfYrK4LEKi2/wZjzDHAY8B87PrxTwD/asAxXcXn14y8iIiIiIhISxLSQB7A+f/27j3WsuquA/j3NwwDffKwpViwhtpCsRhRSgVRwCKmBquS+iBt/8A0VWgpok2q9BWlEbGlgAJNRPtASwIoBoOvKk3VlFKE8mw7ra2BAh2YtiDM2MDMMF3+sfedOVwGmBLmnrvYn09yc87Za99z15nzS2Z/915r7dYuSHLB47QdvY1t1yY57Km+5zPNlvvIW7UeAABgElzG7dzCHHmL3QEAAEyD9Nc5i90BAABMi/TXuYXbzwnyAAAA0yD9dW7jI1atBwAAmBJBvnOG1gMAAEyL9Ne5hVXrLXYHAAAwDdJf51yRBwAAmBbpr2OttZkgb448AADAFAjyHdu0uW15vsvOvkoAAIApkP46tnDrucTQegAAgKmQ/jq2MKw+SVbt5KsEAACYAumvYwtBftXKFamqOfcGAACApSDId2zh1nOG1QMAAEyHBNixjZutWA8AADA1gnzHNmxyD3kAAICpkQA7tvUe8r5GAACAqZAAO7Zw+7lVgjwAAMBkSIAd2zK0fmdz5AEAAKZCkO/Y1sXufI0AAABTIQF2bGFovSAPAAAwHRJgx6xaDwAAMD0SYMe2rlpvjjwAAMBUCPIdM7QeAABgeiTAjm1cuCK/s68RAABgKiTAjhlaDwAAMD2CfMcWgvwqQ+sBAAAmQwLs2IZN5sgDAABMjQTYsa1D632NAAAAUyEBdmyjOfIAAACTI8h3bINV6wEAACZHAuzYwn3kV+3kawQAAJgKCbBjrsgDAABMjwTYsQ2bzJEHAACYmpXz7gBP3bknHJz1D2/K9+/2rHl3BQAAgCUiyHdsn92flUSIBwAAmBJD6wEAAKAjgjwAAAB0RJAHAACAjgjyAAAA0BFBHgAAADoiyAMAAEBHBHkAAADoiCAPAAAAHRHkAQAAoCOCPAAAAHREkAcAAICOCPIAAADQEUEeAAAAOiLIAwAAQEcEeQAAAOiIIA8AAAAdEeQBAACgIyvn3YHlbN26dfPuAgAAABPwveTPaq3twK70qar2SXL3vPsBAADA5OzbWvvGE+0gyG9DVVWSFydZP+++PInnZTjhsG+Wf1+ZNrVKL9QqvVCr9ECd0ovlVKvPS7KmPUlQN7R+G8Z/tCc8A7IcDOcbkiTrW2vmAbBsqVV6oVbphVqlB+qUXiyzWt2uv2+xOwAAAOiIIA8AAAAdEeT7tiHJH46PsJypVXqhVumFWqUH6pRedFerFrsDAACAjrgiDwAAAB0R5AEAAKAjgjwAAAB0RJAHAACAjgjyHauqt1XVHVX1cFVdV1WvnnefmK6qOr2qrq+q9VX1zaq6sqoOWLTPrlV1YVXdV1X/V1VXVNWL5tVnSJKq+v2qalV13sw2tcqyUFX7VNUnxlp8qKpuq6pXzbRXVZ1RVfeM7VdX1cvn2Wemp6p2qqr3V9XtYx3+T1W9t6pqZh+1ypKrqiOr6qqqWjP+X//Li9qftC6ras+quqSq1lXVA1X1kap67pJ+kG0Q5DtVVb+e5JwMt0n48SS3JPlkVe01144xZUcluTDJYUmOTbJzkn+tqufM7HNuktcl+dVx/xcn+bsl7idsUVWHJvmtJLcualKrzF1V7ZHkmiSbkvx8kh9O8o4k/zuz2zuTnJrkpCQ/keQ7GY4Hdl3a3jJxv5fk5CSnJDlwfP3OJG+f2UetMg/PyZCT3vY47dtTl5ckeWWG49tfSHJkkot2VIe3l9vPdaqqrktyfWvtlPH1iiR3JTm/tXbWXDsHSarqhUm+meSo1tp/VtVuSb6V5A2ttb8d93lFktVJDm+tfW5+vWWKxrPpNyZ5a5L3JLm5tXaaWmW5qKqzkhzRWvvpx2mvJGuSfKi1dva4bbcka5Oc2Fq7dMk6y6RV1T8kWdtae/PMtiuSPNRae5NaZTmoqpbk+NbalePrJ63LqjowyZeSHNpau2Hc57VJ/inJvq21NUv/SQauyHeoqlYlOSTJ1QvbWmvfHV8fPq9+wSK7jY/3j4+HZLhKP1u3X05yZ9Qt83Fhkn9srV29aLtaZbn4xSQ3VNXfjFOWbqqqt8y075dk7zy6Vh9Mcl3UKkvrs0mOqar9k6SqfjTJTyX557FdrbIcbU9dHp7kgYUQP7o6yXczXMGfm5Xz/OM8ZS9IslOGs0Wz1iZ5xdJ3Bx5tHCFyXpJrWmtfGDfvnWRja+2BRbuvHdtgyVTVCRmmJR26jWa1ynLx0gzDlc9JcmaGev2zqtrYWrs4W+txW8cDapWldFaS5yf5clVtznCc+u7W2iVju1plOdqeutw7wwjTLVprj1TV/Zlz7QrywI5wYZKDMpyNh2Wlqn4gyZ8mOba19vC8+wNPYEWSG1pr7xpf31RVB2WYy3nx/LoFj/FrSd6Y5A1Jvpjk4CTnVdWa8aQT8DQztL5P306yOcniFZRflOTepe8ObFVVF2RYCORnWmt3zzTdm2RVVe2+6FfULUvtkCR7Jbmxqh6pqkcyLGh36vh8bdQqy8M9GeZmzlqd5CXj84V6dDzAvH0wyVmttUtba7e11v46w6Khp4/tapXlaHvq8t4MxwxbVNXKJHtmzrUryHeotbYxyeeTHLOwbRzKfEySa+fVL6ZtvH3HBUmOT/Ka1trti3b5fIaVl2fr9oAMB6TqlqX0qSQ/kuGK0cLPDRlWpV14rlZZDq5JcsCibfsn+fr4/PYMB5Kztfr8DPM21SpL6dkZ5gzP2pytWUOtshxtT11em2T3qjpk5vdek6G2r1uifm6TofX9OifJxVV1Q5L/SnJahtsrfGyenWLSLswwpO6XkqyvqoV5Qw+21h5qrT1YVR9Jcs44r2hdkvOTXGsVcJZSa219ki/Mbquq7yS5b2FNB7XKMnFuks9W1buSXJ7k1Ul+c/xJa61V1XlJ3lNVX81wUPr+DKswXzmPDjNZVyV5d1XdmWFo/Y8l+d0kH03UKvMz3qHmZTOb9quqg5Pc31q788nqsrW2uqr+JclfVNVJGRbDvSDJpfNcsT4R5LvVWrtsvL3XGRkWWrg5yWtba4sXa4ClcvL4+O+Ltv9Gko+Pz38nwxn7K5LskuSTGW79BcuNWmXuWmvXV9XxSf44yfsyHGSeNrOAWJJ8IMOJ/IuS7J7kMxmOB6z/wFJ6e4YA9OEMw5DXJPnzDMepC9Qq8/CqJJ+eeX3O+HhxkhOzfXX5xgzh/VPZemxw6o7s9PZwH3kAAADoiDnyAAAA0BFBHgAAADoiyAMAAEBHBHkAAADoiCAPAAAAHRHkAQAAoCOCPAAAAHREkAcAAICOCPIAAADQEUEeAAAAOiLIAwCPUVUrqur0qrq9qh6qqluq6lfGtqOrqlXVcVV1a1U9XFWfq6qDFr3H66vqi1W1oaruqKp3LGrfpar+pKruGvf5WlW9eSk/JwD0aOW8OwAALEunJ3lTkpOSfDXJkUk+UVXfmtnng0l+O8m9Sc5MclVV7d9a21RVhyS5PMkfJLksyU8m+XBV3dda+/j4+3+V5PAkpya5Jcl+SV6wgz8XAHSvWmvz7gMAsIxU1S5J7k/ys621a2e2/2WSZye5KMmnk5zQWrtsbNszyd1JTmytXV5VlyR5YWvt52Z+/wNJjmutvbKq9k/ylSTHttauXqrPBgDPBK7IAwCLvSxDYP+3qprdvirJTTOvt4T81tr9VfWVJAeOmw5M8veL3veaJKdV1U5JDk6yOcl/PK09B4AJEOQBgMWeOz4el+Qbi9o2JPmhp+FvPPQ0vAcATJLF7gCAxb6UIbC/pLX2tUU/d83sd9jCk6raI8n+SVaPm1YnOWLR+x6R5L9ba5uT3JbhOOSoHfUhAOCZyhV5AOBRWmvrq+rsJOdW1Yokn0myW4Ygvi7J18dd31dV9yVZm+SPknw7yZVj24eSXF9V782w2N3hSU5J8tbxb9xRVRcn+WhVLSx294NJ9mqtXb7jPyUA9MtidwDAY9QwOf7UJCcneWmSB5LcmGF1+hUZFrt7XZKzkrw8yc1J3tJau3XmPV6f5Iyx/Z4k57fWzp5p33V8vxOSfF+SO5Oc2Vr72I79dADQN0EeAPieVNXRGYL8Hq21B+baGQCYIHPkAQAAoCOCPAAAAHTE0HoAAADoiCvyAAAA0BFBHgAAADoiyAMAAEBHBHkAAADoiCAPAAAAHRHkAQAAoCOCPAAAAHREkAcAAICOCPIAAADQkf8HlmabMHNJlK8AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure(figsize=(12, 6), dpi=100)\n", - "plt.ylabel(\"Accuracy\")\n", - "plt.xlabel(\"epoc\")\n", - "plt.plot(history.history[\"accuracy\"], label=\"training\")\n", - "plt.plot(history.history[\"val_accuracy\"], label=\"validation\")\n", - "plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "4b8750e8", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIECAYAAABlkG+XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcoUlEQVR4nO3dd5xcV33//9eZ2ZntRb1YllVty70b2xQbYoqJcUyohgQHvgRCCyFOgCSEFlowBn6YFJoxxIQeSgwYTAsY44Z7kW1ZstUlq6y0ddr5/XFnVitpV5bslabs6/l4zGNm7r0zc0ZzJc17zjmfE2KMSJIkSZKk6ktVuwGSJEmSJClhSJckSZIkqUYY0iVJkiRJqhGGdEmSJEmSaoQhXZIkSZKkGmFIlyRJkiSpRhjSJUmSJEmqEYZ0SZIkSZJqRFO1G3CohRACMBfYWe22SJIkSZImjU5gXYwx7uugSRfSSQL6mmo3QpIkSZI06cwD1u7rgMkY0ncCrF69mq6urmq3RZIkSZLU4Hbs2MHhhx8O+zGiezKGdAC6uroM6ZIkSZKkmmLhOEmSJEmSaoQhXZIkSZKkGmFIlyRJkiSpRhjSJUmSJEmqEYZ0SZIkSZJqhCFdkiRJkqQaYUiXJEmSJKlGGNIlSZIkSaoRhnRJkiRJkmqEIV2SJEmSpBphSJckSZIkqUYY0iVJkiRJqhGGdEmSJEmSaoQhXZIkSZKkGmFIlyRJkiSpRhjSJUmSJEmqEU3VboAkSZImoRhh3R9g5W9g9vGw+NkQQrVbpYkSI6y/A7asgMNOhSkL/Hz3lB+C3jWwfRVsfwy2PZpcp5rg6Atg6XMh2z6xrxkjbLgLHv45NDXDtKUwfQn0HAGp9FN73vwADG6HwW0wVL6OJVh0HrR0TdQ7mBQM6ZIkSfUgRtj6CKz9A2x5GKYcAbOOhRlHJ1+260GMsPY2uPd/4L4fQO9ju/bNPwue889wxNkT93qlIqy7HVb8IglDx70YFj6rscPilhXw0E+T99vaAy090Dplj0sPNHdDaoIH1cYI6+8sf77fg22rdu3rPhwWPAMWPgMWPB165lMqRYYLJbJNKdKpMT6TYh52roe+zUkALAxDYbB8PQT5UbdjTN5PSCdhM+xxO9WUXNKZZFsqs/f9qYug+7CRl88VSmzcMcTa7YOs2z7Ilr4c3a0ZZnQ1M6uzhZldzUxty5KqtD1GyPXD4FYY2DrqehsMbEluD2yB3tVJIO/bMP6f5d3fhEwbHPk8OPZiWHI+ZNv2/iMqRbb0DbNp5zAbdwyNXO8cKtCUDjSnU2RTkXn9d7Nky69YsPkXdAyu2+t5SqkMg50LGO5eyHD3YvI9i0l1z2VqJkdbsS8J3UO9SQgf6t39fiWUF3NjvpVSUytbF/4xjy54Kevaj6MvV6RvqMDO4QJ9QwVKMdKUCqTTgUwqRVM6kEmnkm2pQLYpRUtTmuZMipZMmtZMetR1sq0lk2Za+6jPos6FGGO123BIhRC6gN7e3l66uvxFR5IkHSL9j8Ojv4PNy5OQ1D4DOmZC+0zomAHNXbuHx50bkkC+9rakx3ntH5IvwnsKaZh+JMw+DmaVL7OPg7bpkO9PQkOuH3J9MNy363YxDwufuVsoOShKJVhzC9z3/eSyY82ufZm2JJw/ekMStID8wvPofdq72DnteIbyRYbyRUoROlua6GrJ0NXaRGsmTRgvaG9/DFb8Elb8HB759V5/ZnH28RTOfAsDS1/EcCnFUL7EUKHIcL5ECNCa3T0ENDelxv/iX8xD/+bks+rbBH0bIdOafB7TjxwzVO0pxkiuWGJocIDCpoeImx8kUKR59tG0zTmaVPO+e1KL+RxbHvg/Cvf/hI5Hr6erf+UTviZAkRR3tp3ND6e+hvXNi0mlIBVC+QKpVKCpHJCam5I/h+ZyUKrczjalyBeKtGy5l8PXXcfizdczZXjX5zscmlnbdDjz8ytporjb66+OM/ld8Rh+X1pGLmRZ3LydI5q2My+1lZk8zrTiZjrzWwgcuqwSCdzTdibfa3o+1w4cw8b+Ak8UlZpSgWXtO3l55jc8N/dzZhb2DsD7MkgL61OzWMsM1sQZPFqcwVS2c0Hq98xj027H3dp8Jje1PZP72s5g81CKjTuGeLxvmNIYbcyS5+zUvTw3dQvnp29jRtix67lilt+UjidPmkVhPQvDBlpC/oDaPZ4CaXaGTrbHNraW2umhj8Wp9SP7l5fm8Y3ieXy3+HS207nP5+pkgEVhHfPDJlpCjmbyNFO+Dvny/fK2UOCP3vUtuttbJ+R9HAw7duygu7sboDvGuGNfxxrSJUm1qVhIemEefxC2PJT0iM04GmYeDT0LJr4H6Inkh5IgsfFeGN5ZDjw7RwWfUdddc2HOiTDnpOR6+tKnNoywYmArLP8x3P9D2HhPEgIOOwXmnpJcd85+6q+xn2KMDOVLDOQKNKVTtGRSZNOp8YPTgSjkoHc1cdujFLespLh1JcWhPoZbZjDYMoOB5hn0ZWawIzONXroYLJQYLpSY0dHMkpntzJ/aTrYplYTD0Z9TMZ+E49YpSTjcV1tLpaQHb9sq2LYStq2itHUlxf5t5LrmM9C1mJ0dC9nWuoDezHT6c8mfRf9wkZZMmqntWWantjN7+21M2XQL2bU3EjY/sM+3XUo3k2+ZxlB2Ktmhx2kd3LuXrZjK0jf1WPo7F9G04zG6epfTUtjnd719vyZpHuw5hz/MuJhHus4glP9ejf4cY4zECBHK18n9EIvMGHyE5txWsvmdZAp9ZPM7aS7upLmwk5ZiPy3FnSzMP8y00paR5xughRvSp/PzcBa/iSfSV8rSXdjM6+N3eUX6l2RCEuZ+XDydKwov5aE4b692p1OBrpYmpjVHlmYfZ2lqPcfm7+K4wds4rLhmt2N30sat4Xi2xg5eEH9LWxgGYF2cylWF5/P14rPZyfhhupUhTm56lFMyK1kWVjMzbGMG25kSt9FZ2kFqHyFyS2Y26zPzeSw9n0fDPB6Oh/FocRo9+Y0cVljN/OJqFsQ1LA7rODxsIh12f65SDKwLM1idOpz12flsbl7A9o6FDLfOZtrW2ziq93ecXvgD3aF/5DH5mObm0tHcF4+gg0F6Qh899NMT+ugK/fTQR3v5z6DyGj8sncWnCn/Kyjhn3Peyp6PCY1yYvpEXpn7PwtTGke2DMcsvSidxbfFp/LJ0EoO00MoQp6Ue5Gmp+zgrdR8nhEdoCqX9ep3h2MRmehiMzQyTYYgswzHDMJmR+7mYoUQgRSQdSqQokS5fAiXSRNIUaaJImhIZiqRDMbkmuc6S3y1Mri7N4GvF5/A/4Txae2Yzt6eF6R3N9A7m2bhjmO07dnLK0I28NPVrnpm6i9Soz244NrGdDrbFTrbTwdbYyfbYwbbytnVxGmviDFbHGWyjExjr36LI8WElL0z/nj9O/5554fGRPf2xmc2xJ/k7SQACqVQgnU6RTiWX7sJmWoq7zouBVAf3dJzNH1rP4Y7mU+krZckXSxRLkUKxyJT8Rubk1zCnuJp5xbXMK61lSmkb20ut7Iht9NI+6rp95P4O2tkeO+iN7WyngwGad3s/mTQ8o/kRXpr6BecVbqCF5NwrhAz3dT+Te2ZfzM62+XT3r6RnYBVTB1cxbehRZgw9Sldh178b+3Wu/P1jNLd1H9BjDiVD+j4Y0qUDNNyXhIvMQfxlMsZd85b2paUH0s7S2R8xRgqlZPjYhISmMeSLJQaGiwzmiyND07LpFJl0MjxtrNctliJD+eQxg7mkh2wwl4d1d1Da9ADprQ/R0vsIXf0rmTa8liYKY752LjSzpXUBOzuXkJt2NOlZy2g97Fia2noITVlCUwupdBOp5LvLSO9Qvlhi+0Ce7QM5tg/m6R3Is618e/tAnt7BHAOVduVLdA+v58ShWzg9fyunx7tpZXjM9jyR4dDCY9lFrGhawoOpxTySXsj25rnQ3EVbcxNt2Sbasmlas2naMsntVCoQY6R1aBNHbP4lCzb/grnbbiO1R2/UaDubZ7G58xg2dR7Dps7j2JmZRqGQp1jIU8jnKJZvF4t5Svk8+RKsyx5Bb9MM0uWAnQ7J55dKBdIB8sVI33AhuQwl1zuH8pRy/RwbH+HY1Cq6Qz8dDNIRBukKw3SlBukIQ3SEIdoZIEVkKLQyFFoYDG0MhZbkfqqV4dBKLmTpLmxhRmE9s0obmBm3kObAvsBvjj2kKI1qxxCtDI37uFIqSz7bTS7TzXCmm8GmLgZTHTQNb6VjcC09w+vIxrGHbu6pPzazIs5lRZzLytIc5oQtnJm6n0WpvUP2qtR8VmaXkikM0FncRndpO9PopTMM7t3GGHgwzuPO0mLuiou4o7SY5fFwCrvNVozMZivLUo+xLDzGstSjLAuPsTCsHwl8hZiinxb6aWEgJtf9sYW2MMxJqRW72laaxdeKz+ZbxWexjbG/I80Lm3hG6m6ekbqbs1P30jMqHO7LztjK9aVT+FHxTP6vdALDZMc87vCwkbc3fZeLU78lFSIlAtelnsX3Mi8gm9vGzPxajmADC8N6FqY2MJctu4Wjyvu9Iy7hN8Xj+U3peO6MiymS/EjWw05elf45lzZdx4zQC0BfbOW74Y/4duZCNsceDius4ujCQxzLw5yUWsGRYfVe4XnP13ucbjbHbjbHHtrDEEvCWqaFnfv1ZzNab2zjEeZRJLCItUwNffv1uK2xk1syp/Fg9zlsmf10Zs6YwfT25t2z36i3kCrm6Ox/hGUPfY75G34KQIkUK+b+MX9Y+AZ2tsylFCP5YiRX/hFsuFCko381x2z9KSdu/zlzc6tGni8XsizvOovlU/+ItTOeQVNrJ+3ZNG3ZJlqyu4Ylj4xQiAN0b76VtnU30rzuZooRBltms7N5FlvTM9gYprMuTuPRQg+PDbaxY7hEZ0sT3a0ZusqX7vKlq7w9nQrkiiVyhfKlWCK/2/1IoViiUIrky/sKxeQ9Fkol8sXI4aW1PHPH/3Lk+h+QzSfnR0xlCMdcBKe/Lhn1sfFeuP2rcNc3ku8ulc9gxhk8MOdFPNj9DPJNnYTy/4OB5PfAQDI6IcDIiITKMO2WplG3MylSIXkvw/nkz304XyS78Q6mrrqWWat/TOvgrh8T9qljNhz9Qlj2x8lUg3Rm/x43ykCuwPreIdZvH2Ld9kHW9Q4mt3sHWd87RDadYnZ3C7O6WpjV1czsrhZmdbcwuyu59LRldn0fGOqFu78Ft12dzIvfH51zkmkIzZ3JtJ6mFkhnk+vK/aYWYlMznPF6wsH8vvoUGdL3wZAu7afVt8BN/54MTYyxPJTy+FGXE6B92pN77qHe8hDOW2HNbcl1/+Ynflzb9OQ/ydP/XzJE9CCJMbJzuEDvQJ7ewV2X7eX7kcic7hbmdLcyt7uVWd3NNDc9cS/pYK7I433DbOnPsW0gR/9wgf7hAn3DxfJ1cqlszxUjpVLy5aFYihSLRXoKm5mVX8es4jpaS308wjyWxyNYU5xKvvzFo1BMhk4CNDelmNHZzIzOZqZ3JNczOpqZXr7ubs0wmC+wc2jPELbrfn+u0qbirtu5IrnC+CEqBEZCe7YpRbEUGczv/pjp9PKy9K94RfoXzE+N/fkPxiyPxDmsiHMpkuLIsIYlYR3N+zEsLx/TDJMhRxPDZMnFJvppZWPsYWOcwkamsClOYUOcktyPU9hBOyenHubc1B2cl7qDo1K798htiFO4uXQ022MH/bTQF1tHwk/l9mBsZn7YxHGplRyXWsmx4dGRnrs97YytrIvTypfprI3TWRunsYkpHBtW8YL0zZyaemi3x9xXOoKfFE/nlngUi8M6TgiPcGJqBUvD2r3Cyv7aHLu4u7SIu+NC7i4t4q7SIjYxZdQRkYVhAyeHhzg59TCnpB7iqLB6v3vCnoyhmOGxOJPH4kxWx5kM0MKc9A5mpbYzk23MYBs9sXe/nisf0/TRSoEU3fSTDeP/0DFaIaZYG6fzaJzF6jiTR+NMeulgUWojS9PrWBzWMy+uH/cHhRKB5fEIbiwezU2lZdxcOmrc8NsScixq6Wd+cz/zMjvJZTp5JL2EgdBChGQ4a4yUyj3ZAD2tWaa2J5dp7VmmlK+ntmeZ3lIkUxyijxb6C2n6ckUGyv/WjP57PLX/EU7e9D8c9/i1I71uhZDlganP5g8zL2Zz62KO2Hkbi3pvYkHvzUwd3v3vxHC6nR3Nc8hnOsk3dZLPdlLIdFHKdlJs7qKU7SLfPocds88inW0hkwo0pctzTlMpMk2BplQyfLpl1PzSzJYH4Zcfgvt/8MSfU1M7fe1HsG3KcWyd/Qx2zD6L0Nqd/GjYlMxrzZT/LWppSl6jOeRpW/5dmm76t10jHEI6+fJf2PsHk2L7LAZnnkTf1GPpa57DzqapbE9PZVtqCttiB3056M8l/27GCO3ZNNNSO5mbf5RZw48ybXAVU/ofoXPnCpoHN5Jvm0V+ylKK05Jh8WHmUWRmH022a/bIaIahfJGdW9czvP4BSpseIDy+nOZtD9O+cwXtQxvZ3nUkA0f8EdljLmDq0rNINT3JH7HX3wW//DA8+OPkfqoJTvlzeMZlyVSIHevh3u/C3d9Opl1UpLPJPOnjXgxHPh+aO57c69ei/CDc81249YvJdJOK9hm7f1/pnAsnXZJcpi0+NG0rlWDz/UknCjH5jjbWdXNX8l3tUI8621/r7oA/XA13fSv5Ozd1cTLqbPqRMOOo5Pa0pQ1VcM6Qvg+GdDWMUvlL4UT+41vMJ6H89/+eBOcn0jk3Cewzjtr9F86RS3PSA5/OwNaVyX90a25Nhi8/hTlmxVSGx+ZewL3zX82G1iXJL/z5IsPFEqkQRgqNJNcpmuMwc3fczuHbbqJ1cH25N7FIqVigWCpQKhaJpQKxWKBQgj8UFvLL0kncWjpyjx6r8U3vaGZuTwtzyr8eD+aLbOnL8Xh/ji19w2ztz9GZ28wpqYc4JfUQc8PjDNLCQGxmYOR61+1BsswIvSwIGzgibGRB2Mj8sGnccLo9tvNAnM/9pfncH+dzf+kIHozzxu2tmkhNqUBhrAlxYwiUODt1L5ekf85zU7eNDGvto41V2aVsaTmCvs5F5HqWEKcvpW36fGZ0tTCtvZkQSAri9PYzuGEFqc3307L9Qab0P8Ls4ZXMK60lO07P+5MVQ4q+mafQP//Z5Bf9EanZx5NKBfr3+CFjZ+X+UIG+4TypVBiZw9mSjszIrWFW3wNM33k/U3bcT0fvg2Rz2/e7HStbj+Wezmdyb/cz2dp8GKkQRkZqx/J3smxxgMOGljNv8H7mDTzAvMHltJb6iSFNKdVEDGliaCJWiielmkjHHB19q0jFvUPrQHYGm7uWkaLEzN67ac7vHYhLnXMJh51KqX0mhUw7+XQb+XQ7w+l2hlNtDKVaGQytFGIglR8glR8gXRggVegnnR8gXegnXRggXRik2DadQtcRxCkLSE05gkz3HFqbm0aC25hD6Qu5ZA7wzg1JAaZUhtjcwdZCM6t2plixM8WDWyMPbsmzYnM/j/cN05pJMTWTZ2ZmkBlNA0xP9TM1PcAUdtIT+im1dJPrPIJSzwLSUw6nu72NnrYMPW0ZuluzdLU27f6jXCG3+7SMxx+GtilwxNNh/tOgtYfhQpFt/Xm29Cf/FvQNFehoaaKnNZv0BrZl6Gxuqm7Bo1w/3PMduOWLSUXuEYHd/r0OaTj8jKRa8+Jnw9yTD+4Ip3W3JwFy9U1J4bGpi5IwNG1J8qV+2uIkOD3ZEUOlUjJ3/Xf/H6z8v2RbcxfMPSmpSF65dM2dsLdEsfDU/8wm4jn2tOZW+MW/wCO/TO6nm5P/49fexsg5EFJJ4b3j/hSWXZhMH2l0625P/l7c/e0kTKYySeX1k/8s+TswEVOZJrNSMflPbBKMlDSk74MhXXVvYCvcdhXc/PmkQujp/w+e8bfQPn3ch1SK0uSLkXyhPPyrfL9YirTkttF9/zW03/llUn3JEKqYzhKOfymc+QZon0Fx3V0U1t1J3HA36Y33kOndv8I041kdZ3J7aTF3lJZwR2kx98YF+wyUTRR4bupWXtf04916Fn9XPIYvFV/Az0snE6n8YBE5OqzmGam7eEbqbs5MPbBfPa972hlbuTl1En9oOYMHO84kdsyipy1DKUY29A6xvjcZ+jU8Ro9yhgLHhFWcknqIU1MPcXLqIQ4LBza3aiylVIah9nkMdR5BKdtB+/aHaOldQYh7h9MYUuRnHM/jh53HqmnP5JH0Yjb35djcN8zjO4fZ3DdM72Ce9mwTHc1NdLQ00Vm+7skUWDx8Hwv67mS4ZzHbFr2I9mwT7c1p2pubaG9uoiPbRFtzmkw6NTK8Pl8skS/EkWGGlaGGTcNbmfbgN2m/5xrS20edO/NOh1P/Iqlcux8FlvYpRigVypV+h6FYrvhbyBELg8R8DoZ6SfVvSELdzvW7X/dtTKZctE1LeoeOfG4SRNqmPrV2jSc3ADvWJlV+t69OKjH3rknu71ibBJJlFyZDFScyIOwpPwgb7km+iK6/I7ne/MDe00/SzUkgm3daEtIOO+3gFxxTday9DW75Etzz7eTv0NTFSRhZfF4yZLaBerZ2s2VFEhimLand3sdDYdUNSVh/7He7th1+Jhz3Ejj2Tw7qSLaaNrg96cCYc9I+v3NJ4zGk74MhXXVr8/Kkh/vOr+89FC/bAWe9Bc56M0Ppdv7vwc1cd+9Gfv3gZnoHc+SLY/09j5wYVvCK9C+5OP3bkaqem2M3Xy2cz9eKz2FHegrZptTIHK/R2hnk6PAYx6QeZWHYQDP5UZU3K5U2k+sW8myKPdwRk1B+Z2kxW9hV2KMlk6KjuSmZB1upLJuC9MjtpNJsJp0MiTym9BAXDvwPpw3838gw0y3N87hr2gVMHXqMRTtuoXOPYiPbm6Zzf9tprG1ZQjaTJZvN0pzN0JxJrluas7Q2Z2gLBbo33kjLql8QBh7f7TmYc1KyFMrsE0aKUcWhXoZ2bmNw5zaG+7dTHOwlNbiNmYMP01TafYhzDCmYdSxh3hnJcK7CULKkTG5U9eX8QPLcuYGkd2jqwqTnqHLpnrf3r/aF4eT82HhPMlduw93J7YE9fhTonJOsuXrUC5KekNGhuJBLvnys/E3Sm7Tm5t2XUnnam+G5HzzwHoOhHXDdu+HOb0Cp/ENJthNOfDmcemnSS1MrSsXkR7C2aZP7Czok52IluIeQBPNZx0PTwR+ZoRoyvDMZUtu1/8XE1CBiTP4v2LoCFj8nWe5P0lNiSN8HQ7rqSozJ2q6//zd4+Ppd22cfn4Sm9hnwiw+ODE3cmermysJFfDn37DF7pQMlTg4Pc0HTzbwgdTOHjaoUek9pIV8sPJ9rS08jx/iFRUKAtkya1nKhq0qxq/by/fbmpvL99EgxrLZsutxLm0muy8voVHpvM+knGYh618DNn4PbvpzMcx+tqTVZh3Xxs5PLjKMObDhkqZQElIeuS9abXXf7gbevdQrMOyPpdTz8jKQC96Gasxcj7FiXnD8P/iRZjig/qsBTU0uy9NKcE5Nes8d+n/xAMFrnnGQpp4d/ltw/6gJ48ef3/z1suBu++efJus6QvP/T/iIZJpnd95JCkiRJjcSQvg+GdNWsSoXzyjqrjz8It3whGXYKQEhC0llvYnDO01i1dYBbVm3lp/dsoGfVj/mb9DdGlg7ZwHRuOuIvmfn0S1k4o5PWjbfS8tD/kl3+Q8LOUet3ZtqTXtXT/x/MfxqlSNJrProaaqFEpimpyNqWTebYHqxq4U/acB/c+d/JDxkzjk5C+fynJXPiJ8rOjcnzP/TTZDhyc1cyD7+lC5q7y9ddu65nHpPMlayVP6v8EDz6W3jwOlj+E+h9bO9j2qbDwmckw1kXPmtX++/5DvzPXyXDx2efAJd8Y9/Dr2NMisH86O+Tx3TNgxd/Dhacc/DenyRJUg0zpO+DIV0HTSE3aj3eyvDlvvGHMw9u3xXIK9elvedNF5rauH/2Rfyk/SJu29nDqscH2LBj72WFls1s429m3MJ5G75Epr+8NMfUxcnr7Ry1VEe2Mwnmx1wES55zcJdWU22KETbdn/Swb16erK+94Bkwc9n4Pyqsvhn++5Uw8HhSMPCSb8CcE/Y+LtcP//sOuOvryf2lz4WL//PgzeuWJEmqA4b0fTCk60kp5pM5vqtvTirMbl9dnjfcl/Ti5vp2n7/7FOwInWyO3WwodvPL0kl8o3geO9m7oFZPW4YjZ3XyR8tm8txjZrNgenn4cH4w6YH/zSd2rd/Z3JX0wh/7J0khrEzLhLRVk8y2VXDNy+Dx5ckojJd8CY56/q79mx6Ab70mGf0R0vCc98DZf+38bkmSNOkZ0vfBkK79MrA1WYpk9e+TYL72tr3n646nqSWZb5ttJ2Y7yKVa6Y9ZegvNbM03sWm4iQ2DKbYXW9lED5tjD5tjN5tjD4/Tvdt88M6WJhZOb2fBtHYWTG9n4fQ2FkxrZ+H0dnranqCA01Av3PeDZN764vMmdui3Jq/B7UkQf+RXyVI8z/swnPlGuOub8L9vT/6edMxOArzD2yVJkgBD+j4Z0iexGMtLG61LepgHtsLg1r1v71ifrHW7h1JzNwMzT2H79JPZ3r6IwdBGP63sjC30xWb6Si30FpvpLwZ2DhVYsbmPhzb20Tc89rrNmXRgVlcLc7tbmdPTwpzuVg4rX8/pSbb3tGVqb/63VMzDtX+bzDuHZFmuSmG9RefCi78AHTOq1jxJkqRacyAhvfFXjdfk1L8FNt2bzLvdeC9sui8Zipvbud9P8WiYy+2lI/l9YSm3lpayYmgusTcFu+X3CAyWL2PLpAOLpndw5OxOjprVwZGzOjlyVieHT20jnTKAqw6lM3Dhp5O1hH/2z+WAHuDcd8Ez/+7Al2mTJEnSCEO66lupBNtWJkuQrb8T1t+VBPK+jWMfnsrQl53F9tDB44V21uVa2Vxsp5d2tsVOtsd2ttLFPaUFbGP3kRaZdKCzJUNnS9PIcmOt2TStmb2v27JpFkxv56hZnSyY3v7klxiTalUIcM7bkqD+h6uTIe+Lz6t2qyRJkuqew91VP0ol2LoC1t2xeygf7h3z8E1Nc1jBfO4uHMbdubk8EOezMs6msMdvU02pwMLp7Syd1cGSmZ0sntHO1PbsSCCvrOldk0uPSZIkSap5DndX/YsxqSS97g/JUNq1tyehfIzh6jky3Feaz92lhdwbF/BAaT4PxnkMsHsF8yltGY6e0soRU5NAvnRmJ0fO6uCIae1km+zpliRJklR9hnTVhuG+pFr0utt3BfPK8mGjDMYs98UjuLu0kHviQu4pLeThOJcCTXQ2N7F0VgdHTG3j7J5WDpvSytyeVub1JNftzZ7ukiRJkmqbqUXV1bsWbv5PuPXLew1bL4QMD4cF3JxbwN1xIXeWFrMiziWVbmLxjA6Ont3Ji2Z3cvTsTo6a3cXc7haHo0uSJEmqa4Z0Vcf6O+F3V8K934VSskTZYPs87smeyPW9h/G7wfksj4eTI0NTKvC0RdN41TGzOGvxNBZaiE2SJElSgzKk69ApleChn8KNV8Kq34xsXt11Clf0nc/3thxPJAnfnc1NPO/omZx/zCzOPWoGXS2ZarVakiRJkg4ZQ7oOvmIB7vivpOd8S7LIeAxpbuk4lw9vPY87Ni0CYFZXM88/djbnHzObMxZOtZibJEmSpEnHkK6Da8Uv4Cf/AJvvByDX1MEP0ufzid5ns35wGgBnLpzKpWcv4PxjZtHkMHZJkiRJk5ghXQfHlhXw03+C5T8CYKCpmysLF3F137Pop5XWTJpXnnwYrzn7CI6e7Xr1kiRJkgSGdE20oR3wfx+H3/87lPIUSfOV4nP55NDF7KCD+VPb+JuzjuClpx5Od5vzzCVJkiRpNEO6JkapCHdcAz//APRvBuCXxRP5l8KrWREP48yFU3nDsxZx7pEzSaVcJk2SJEmSxlL1kB5CeDPwd8Bs4E7grTHGm8c5NgO8G3gNcBiwHHhnjPEnh6i5GsuaW4nXvoOw/k4AVpTm8MHCq/lV6WT+aNks/vXcxZx6xJQqN1KSJEmSal9VQ3oI4eXAFcAbgZuAtwPXhRCOijFuGuMh/wK8Gng98ADwPOB/QghnxxhvPzSt1ohSEX57BfGXHyHEIjtiG58uvJhr4vO44MT5/PTcxRw5q7ParZQkSZKkuhFijNV78RBuAm6JMb6lfD8FrAY+E2P86BjHrwM+FGP87Kht3wEGY4yv3s/X7AJ6e3t76eqyYNmTtmMdQ998HS1rfgfA94tn85F4Kc87/Vhe/8xFzJvSVuUGSpIkSVJt2LFjB93d3QDdMcYd+zq2aj3pIYQscCrwkcq2GGMphHA9cNY4D2sGhvbYNgg8fR+v01x+XIVdu09R/r7/pfjdN9FS6KU/NvPe4mvpPvPP+N/zljC9o/mJn0CSJEmSNKZqDnefDqSBjXts3wgcPc5jrgPeEUL4P2AF8BzgxeXnGc+7gfc+taYKgPwQa791GYc9+FUywN2lBXxx1j/xppc832HtkiRJkjQBql447gD9NfB5kvnokSSoXwW8dh+P+QjJvPeKTmDNwWpgo9r4yJ3kv34p83KPAPBfqRfRfeEH+OQpCwjBau2SJEmSNBGqGdIfB4rArD22zwI2jPWAGONm4E9CCC3ANGAd8FHgkfFeJMY4DAxX7hsoD0yhUOQ337yCpy3/V1pDjsdjFz898n1c9Kd/TmeL65xLkiRJ0kSqWkiPMeZCCLeRDFn/HowUjnsOcOUTPHYIWFteku1PgW8e3NZOTn19O7nz3/+C8/p/BgHuzJ5C2ys+zyWLllS7aZIkSZLUkKo93P0K4OoQwq3AzSRLsLWTDGEnhPAVYG2M8d3l+2eSrI9+R/n6fUAK+NdD3O6Gt3H1Q+z48ss5p7iCYgzcu+ztnPCy9xBS+5r+L0mSJEl6Kqoa0mOM3wghzAA+AMwmCd/PjzFWisnNB0qjHtJCslb6IqAP+BHwZzHG7YeqzZPBylt+TM+1f8lSdrCNLh5/wX9wwtNeWO1mSZIkSVLDq+o66dXgOun7ECMPfv+jLLr9X2kKJR5MLabjz/+buQuOqnbLJEmSJKlu1cU66aoxuQFWfOkvOHLDTyDAb9r+iBPeeBXd/pAhSZIkSYeMIV0Ut6xk8xdeyuLBh8jHND+e+xZe8Lr3kmly/rkkSZIkHUqG9Elu8IHrKX7zUmaXdrI5dvG7Uz7Bi170UpeqkyRJkqQqMKRPYvm7vkPTd/+SVgrcGRez5YIvctGZJ1e7WZIkSZI0aaWq3QBVye3XkP7u/yNDgR9zNvE11/JsA7okSZIkVZUhfTK66T/h+28iRYmvF8+j5eVf4qRFc6rdKkmSJEma9Azpk83/XQ4//nsAvlB4ARue+THOW2ZAlyRJkqRa4Jz0ySJGuP59cMOnAPhU4cXcueiNfPE5R1a1WZIkSZKkXQzpk0GpBD/+O7jlCwD8S/5VXNf9En74ipNJpaziLkmSJEm1wpDe6IoF+P6b4a6vEwn8Q/61fDecz3dedSo9bdlqt06SJEmSNIohvZEVcvCd18L9PySGNG/PvZHvF8/h8pcez3GHdVe7dZIkSZKkPRjSG9lP3pkE9FSWt5fezveLJ3HJmfN5yanzqt0ySZIkSdIYrO7eqO76Ftz6JSKBD7S/i+8PncSJ87p574XHVLtlkiRJkqRxGNIb0ebl8MO/BuDn0/+MqzYfzdT2LP/26lNpbkpXuXGSJEmSpPEY0htNrh+++RrI97Nt5tP4yzXPJRXgM688mcN6WqvdOkmSJEnSPhjSG0mMcO3fwub7oWMW317wPkqkuOikwzhnyfRqt06SJEmS9AQM6Y3k9q/Cnf8NIQUv+RIPDbQBsGh6e5UbJkmSJEnaH4b0RrHhbvjR3yW3n/1PsODprN0+CMBhUxzmLkmSJEn1wJDeCIZ2wDf/HApDsPS5cM7fALBu+xAAc52LLkmSJEl1wZBe72KEH7wFtj4C3YfDxf8JqRSlUtzVk25IlyRJkqS6YEivdzd/Du77PqQy8NIvQ9tUAB7vHyZXKJEKMLu7pbptlCRJkiTtF0N6PVtzK1z3j8nt534Q5p02sqsy1H1WVwuZtB+zJEmSJNUD01s9+/5boJSHZS+CM9+426612xzqLkmSJEn1xpBer4r5ZD10gBd8DELYbfe68nx0i8ZJkiRJUv0wpNerwW3lGwHaZ+612+XXJEmSJKn+GNLrVf/jyXVrD6Sb9tq9xuHukiRJklR3DOn1amBLct02fczd61x+TZIkSZLqjiG9Xg2Ue9Lbpo252+HukiRJklR/DOn1qtKT3r53T3rfcIHewTxg4ThJkiRJqieG9HrVXxnuPnWvXZWh7t2tGTqa956vLkmSJEmqTYb0erWPOemukS5JkiRJ9cmQXq8qc9LHGO6+xjXSJUmSJKkuGdLr1UhP+t6F4yrD3edZNE6SJEmS6oohvV71O9xdkiRJkhqNIb1eDTxx4TiHu0uSJElSfTGk16MY9zkn3TXSJUmSJKk+GdLrUa4Pirnk9h5z0vPFEht3DAEwt6flULdMkiRJkvQUGNLrUWWoe1MrZNt327Whd4hShGxTiuntzVVonCRJkiTpyTKk16P+8Su7jwx172kllQqHslWSJEmSpKfIkF6PKj3p7WOE9G2VonEOdZckSZKkemNIr0eVonH7WCPd5dckSZIkqf4Y0uvRwD7WSB8J6W2HskWSJEmSpAlgSK9H/eP3pK/d7nB3SZIkSapXhvR6tK856a6RLkmSJEl1y5BejwbGru4eY3ROuiRJkiTVMUN6PRpnTvrW/hxD+RIhwJxuQ7okSZIk1RtDej0aZ056Zaj7zM5msk1+tJIkSZJUb0xy9WhkTvruPem71ki3F12SJEmS6pEhvd4U8zC0Pbk9Tk+689ElSZIkqT4Z0uvN4LbyjQCtU3bbZWV3SZIkSapvhvR6U5mP3joFUunddlWGu9uTLkmSJEn1yZBeb8aZjw6wrteQLkmSJEn1zJBebwbGruwOFo6TJEmSpHpnSK83I2uk7x7SB3IFtg3kAeekS5IkSVK9MqTXm/6xQ/q6ctG4zpYmuloyh7pVkiRJkqQJYEivN+PMSV9j0ThJkiRJqnuG9Hozzpz0dduHAEO6JEmSJNUzQ3q9GZmTvntP+trtA4BF4yRJkiSpnhnS6804c9JH1ki3aJwkSZIk1S1Der0ZmZPucHdJkiRJajSG9HoS47hz0tdud410SZIkSap3hvR6kuuDYi65PWpOeqFYYsOOpCd9nsPdJUmSJKluGdLrSX+5F72pFbJtI5s37hymWIpk0oEZHc1VapwkSZIk6akypNeTga3J9R5rpFeKxs3pbiWVCoe6VZIkSZKkCWJIrycj89Gn7rZ5XXk+ukXjJEmSJKm+GdLrybhrpFs0TpIkSZIagSG9nvSPXdl9jWukS5IkSVJDMKTXk5E10nfvSa8Md59nT7okSZIk1TVDej0ZZ066w90lSZIkqTEY0utJpbr7qDnpMcaR6u4Od5ckSZKk+mZIrydjzEnfPpBnMF8EYE53SzVaJUmSJEmaIIb0ejLGnPTKUPfpHc20ZNLVaJUkSZIkaYIY0uvJwN496ZWQ7lB3SZIkSap/hvR6UczDUG9ye9Sc9JH56D0OdZckSZKkemdIrxeVonEEaO0Z2TzSk25ld0mSJEmqe4b0elGZj942FVK75p6vM6RLkiRJUsMwpNeLMeajg2ukS5IkSVIjMaTXi5Ge9Om7bXaNdEmSJElqHIb0ejGyRvrUkU1D+SJb+nMAzOtpq0arJEmSJEkTyJBeLyqF48ZYI709m6artakarZIkSZIkTSBDer0Ya430UUPdQwjVaJUkSZIkaQIZ0uvFGHPS11k0TpIkSZIaiiG9XvSP0ZPu8muSJEmS1FAM6fViZE76GCHdyu6SJEmS1BAM6fViX3PS7UmXJEmSpIZgSK8HMY45J93h7pIkSZLUWKoe0kMIbw4hrAohDIUQbgohnPEEx789hLA8hDAYQlgdQvhkCKHlULW3KoZ3QjFZD310T/qWvmTbzM7GfvuSJEmSNFlUNaSHEF4OXAG8HzgFuBO4LoQwc5zjLwE+Wj5+GfA64OXAhw9Jg6ul0oueaYNsGwAxRoYLRQBaslX/rUWSJEmSNAGqne7eAXw+xnhVjPE+4I3AAPDacY4/G7ghxvi1GOOqGONPgf8G9tn7XvdGhrrv6kUvlCKlmNxubkpXoVGSJEmSpIlWtZAeQsgCpwLXV7bFGEvl+2eN87DfAadWhsSHEBYBFwA/2sfrNIcQuioXoHOC3sKhM0ZIzxVKI7ebm6r9W4skSZIkaSI0VfG1pwNpYOMe2zcCR4/1gBjj10II04HfhhACSfv/I8a4r+Hu7wbeOwHtrZ4x1kgfHhXSs2lDuiRJkiQ1grpKdyGEc4F/AN5EMof9xcALQwjv2cfDPgJ0j7rMO7itPAgqPentuyq7V+ajZ9KBVCpUo1WSJEmSpAlWzZ70x4EiMGuP7bOADeM85oPAV2OMXyjfvzuE0A58LoTwofJw+d3EGIeB4cr9pAO+zoyxRnpluLvz0SVJkiSpcVStJz3GmANuA55T2RZCSJXv3zjOw9qAPYN4sfLwiW5jzRhjTvrwSEivq8EQkiRJkqR9qGZPOiTLr10dQrgVuBl4O9AOXAUQQvgKsDbG+O7y8T8E3hFCuB24CVhC0rv+wxhjkUbVP37huKwhXZIkSZIaRlVDeozxGyGEGcAHgNnAHcDzY4yVYnLz2b3n/F+AWL4+DNhMEtz/8VC1uSr2MSfdnnRJkiRJahzV7kknxnglcOU4+87d434BeH/5MnmMMSd9OG9PuiRJkiQ1GhNePRiZkz6qJ71o4ThJkiRJajSG9FpXzMNQb3LbnnRJkiRJamgmvFo3sDW5Dilo7RnZnCta3V2SJEmSGo0Jr9ZV5qO3ToHUrqHtw3kLx0mSJElSozHh1box5qPDrnXSHe4uSZIkSY3DhFfr+veu7A671km3cJwkSZIkNQ5Deq0bWSN995BuT7okSZIkNR4TXq0bGe4+Xk+6H6EkSZIkNQoTXq0bd056pXCcw90lSZIkqVEY0mvdOHPSHe4uSZIkSY3HhFfrRuak796T7nB3SZIkSWo8JrxaNzLcfepumyvD3e1JlyRJkqTGYcKrdePMSbcnXZIkSZIajwmvlsX4hHPSmzMWjpMkSZKkRmFIr2XDO6GUT26PF9LTfoSSJEmS1ChMeLVsoNyLnmmDbNtuu0aGu2f8CCVJkiSpUZjwatnA1uR6j/noMKpwnD3pkiRJktQwTHi1rDIfvX3aXrvsSZckSZKkxmPCq2Ujld33Dukjc9KbLBwnSZIkSY3CkF7LKnPSxxzunoR010mXJEmSpMZhwqtl++hJd510SZIkSWo8Jrxa1l8O6WPMSR8pHGdIlyRJkqSGYcKrZc5JlyRJkqRJxZBey/ZjTrrD3SVJkiSpcZjwatk4PekxxpE56Q53lyRJkqTGYcKrZSNz0nfvSc8VSyO37UmXJEmSpMZhwqtVxTwM9ya39+hJrwx1B3vSJUmSJKmRmPBqVWWoe0hBS89uu3KjQ3raj1CSJEmSGoUJr1ZVQnrrVEjt/jENj5qPHkI41C2TJEmSJB0khvRa1V+u7N4+RmX3fLJGuvPRJUmSJKmxmPJq1T7WSK8UjnONdEmSJElqLIb0WrWPkD6cd410SZIkSWpEprxatV896X58kiRJktRImqrdAI3j8DPgrLck13uo9KS7/JokSZIkNRZDeq1a/OzkMobhgoXjJEmSJKkRmfLqUGWddAvHSZIkSVJjMaTXodHrpEuSJEmSGocprw7t6kn345MkSZKkRmLKq0OVOen2pEuSJElSYzHl1aFhe9IlSZIkqSGZ8urQsIXjJEmSJKkhGdLrkIXjJEmSJKkxmfLqkIXjJEmSJKkxmfLqkIXjJEmSJKkxmfLqUM456ZIkSZLUkAzpdWikcFzGj0+SJEmSGokprw6NFI5L+/FJkiRJUiMx5dWhXHlOuj3pkiRJktRYTHl1yJ50SZIkSWpMprw6NFI4LmPhOEmSJElqJIb0OmRPuiRJkiQ1JlNeHRp2TrokSZIkNSRTXh3atU66H58kSZIkNRJTXh0aNqRLkiRJUkMy5dWhXT3pFo6TJEmSpEZiSK9DI4Xj7EmXJEmSpIZiyqtDw/ly4ThDuiRJkiQ1FFNeHcoVHe4uSZIkSY3IkF5nSqVIvhgBh7tLkiRJUqPZ75QXQpgbQrg8hNA1xr7uEMLHQwizJrZ52lOlFx0c7i5JkiRJjeZAUt47gK4Y4449d8QYe4HO8jE6iIbzu0K6PemSJEmS1FgOJOU9H/jKPvZ/Bfjjp9YcPZHhQlI0LhWgKRWq3BpJkiRJ0kQ6kJC+EHhsH/vXAAueUmv0hIZHrZEegiFdkiRJkhrJgYT0QfYdwheUj9FB5BrpkiRJktS4DiTp3QT82T72/zlw81Nrjp5IbqQn3ZAuSZIkSY2m6QCOvRz4WQihF/h4jHEjQLmi+98DlwLPnfAWajeVOen2pEuSJElS49nvkB5j/GUI4c3Ap4G/CSHsACLQDeSBt8YYf3FwmqmKYXvSJUmSJKlhHUhPOjHG/wwh/C/wMmAJEIAHgW/HGNcchPZpD7lRheMkSZIkSY3lgEI6QIxxLfDJg9AW7QcLx0mSJElS49rvkB5CeNs4u3qBB2OMN05Mk7QvFo6TJEmSpMZ1ID3pfzPO9h6gO4TwO+BFMcatT7lVGpeF4yRJkiSpcR1I4biF4+0LISwC/gv4F+BNE9AujWPYOemSJEmS1LAmpDs2xvgI8C5cgu2gGxnunrEnXZIkSZIazUQmvceA2RP4fBpDZbh7c9qQLkmSJEmNZiKT3vHAoxP4fBqDPemSJEmS1LgOpLp71zi7uoFTgU8AV09EozS+kSXY7EmXJEmSpIZzINXdtwNxnH0R+ALw0afaIO3bSOG4jIXjJEmSJKnRHEhIP2+c7TuAh2KMfSGE44B7nnqzNJ6cPemSJEmS1LAOZAm2X4+1PYTQCVwSQngdcBpgF+9BNFI4znXSJUmSJKnhPOmkF0J4ZgjhamA9cBnwS+BpE9UwjW3YwnGSJEmS1LAOZLg7IYTZwKXA64Au4JtAM/AnMcb7Jrx12ouF4yRJkiSpce130gsh/BBYDpwAvB2YG2N860Fql8YxnLdwnCRJkiQ1qgPpSX8B8P8B/x5jfOggtUdPIFe0J12SJEmSGtWBJL2nA53AbSGEm0IIbwkhTD9I7dI4hvPlwnHOSZckSZKkhrPfSS/G+PsY4+uBOcB/Aq8A1pWf4/xylXcdZJWe9OYmh7tLkiRJUqM54O7YGGN/jPFLMcanA8cDnwDeBWwKIfxgohuo3VXmpGddgk2SJEmSGs5TSnoxxuUxxr8H5gGvfLLPE0J4cwhhVQhhqDyU/ox9HPurEEIc43Ltk339euI66ZIkSZLUuCYk6cUYizHG78UYX3Sgjw0hvBy4Ang/cApwJ3BdCGHmOA95McmQ+8rlOKAIfOvJtL3ejBSOM6RLkiRJUsOphaT3DuDzMcarymutvxEYAF471sExxq0xxg2VC3B++fhJEdJHlmAzpEuSJElSw6lq0gshZIFTgesr22KMpfL9s/bzaV4HfD3G2D/xLaw9Fo6TJEmSpMZ1IOukHwzTgTSwcY/tG4Gjn+jB5bnrx5EE9fGOaQaaR22q6yr09qRLkiRJUuOq96T3OuDuGOPN+zjm3UDvqMuaQ9Gwg8XCcZIkSZLUuKqd9B4nKfo2a4/ts4AN+3pgCKGdZK32Lz7Ba3wE6B51mfekWloDCsUSpZjctnCcJEmSJDWeqia9GGMOuA14TmVbCCFVvn/jEzz8pSTD2P/rCV5jOMa4o3IBdj61VlfPcKE0cts56ZIkSZLUeKo9Jx2S5deuDiHcCtwMvB1oB64CCCF8BVgbY3z3Ho97HfC9GOOWQ9jWqsqNCun2pEuSJElS46l6SI8xfiOEMAP4ADAbuAN4foyxUkxuPlAa/ZgQwlHA04HnHsKmVl2lJ70pFUinQpVbI0mSJEmaaFUP6QAxxiuBK8fZd+4Y25YDky6lWjROkiRJkhqbaa+OVIa7O9RdkiRJkhqTaa+OVIa7WzROkiRJkhqTIb2OjIT0jB+bJEmSJDUi014dqcxJz6b92CRJkiSpEZn26og96ZIkSZLU2Ex7dWSkcJw96ZIkSZLUkEx7dcTCcZIkSZLU2AzpdcQl2CRJkiSpsZn26kilcFyzIV2SJEmSGpJpr44M5yuF4xzuLkmSJEmNyJBeR3JFC8dJkiRJUiMz7dWRXT3pfmySJEmS1IhMe3UkV0zmpNuTLkmSJEmNybRXR+xJlyRJkqTGZtqrI66TLkmSJEmNzZBeR3IjId2PTZIkSZIakWmvjrhOuiRJkiQ1NtNeHRlZgs2QLkmSJEkNybRXR0YKxxnSJUmSJKkhmfbqiIXjJEmSJKmxGdLrSKVwnMPdJUmSJKkxmfbqiIXjJEmSJKmxmfbqyLA96ZIkSZLU0Ex7dSTnnHRJkiRJamiG9Dqyq3CcH5skSZIkNSLTXh1xuLskSZIkNTbTXh2xcJwkSZIkNTbTXh1xCTZJkiRJamymvToRYxw1J93CcZIkSZLUiAzpdSJXLI3cbs74sUmSJElSIzLt1YnKUHeAbNqPTZIkSZIakWmvTgyPCukWjpMkSZKkxmTaqxMjRePSKUIIVW6NJEmSJOlgMKTXiV1F4/zIJEmSJKlRmfjqRGWNdJdfkyRJkqTGZeKrEzl70iVJkiSp4Zn46sTIcPeMa6RLkiRJUqMypNeJ0YXjJEmSJEmNycRXJypz0pszfmSSJEmS1KhMfHViOG9PuiRJkiQ1OhNfncgVK3PS/cgkSZIkqVGZ+OpEpSe9ucnCcZIkSZLUqAzpdWK46HB3SZIkSWp0Jr46MZy3cJwkSZIkNToTX50Ydgk2SZIkSWp4Jr46UVkn3Z50SZIkSWpcJr46UelJt3CcJEmSJDUuQ3qdqPSkZ5v8yCRJkiSpUZn46sRwoVw4zpAuSZIkSQ3LxFcn7EmXJEmSpMZn4qsTzkmXJEmSpMZnSK8TDneXJEmSpMZn4qsTDneXJEmSpMZn4qsTu4a7+5FJkiRJUqMy8dWJnCFdkiRJkhqeia9OWDhOkiRJkhqfIb1OWDhOkiRJkhqfia9OWDhOkiRJkhqfia9OONxdkiRJkhqfIb1O2JMuSZIkSY3PxFcnXIJNkiRJkhqfia9OVArH2ZMuSZIkSY3LxFcHSqVIvhgBe9IlSZIkqZGZ+OpArlgaud2csXCcJEmSJDUqQ3odqMxHB8im/cgkSZIkqVGZ+OpAZT56CJBJhyq3RpIkSZJ0sBjS68Bwvrz8WjpFCIZ0SZIkSWpUhvQ6UJmTbtE4SZIkSWpspr46UOlJt2icJEmSJDU2Q3odqPSkWzROkiRJkhqbqa8ODOeTwnHNGT8uSZIkSWpkpr46UFmCzZ50SZIkSWpspr46kCs4J12SJEmSJgNDeh2o9KRb3V2SJEmSGpuprw7kiuU56YZ0SZIkSWpopr46MLIEmyFdkiRJkhqaqa8OjBSOM6RLkiRJUkMz9dWBkcJxTRaOkyRJkqRGZkivA8MF56RLkiRJ0mRg6qsDOYe7S5IkSdKkYOqrAy7BJkmSJEmTg6mvDlg4TpIkSZImB1NfHRi2cJwkSZIkTQqG9Dpg4ThJkiRJmhxMfXXAwnGSJEmSNDmY+uqAw90lSZIkaXKoekgPIbw5hLAqhDAUQrgphHDGExzfE0L4bAhhfQhhOITwYAjhgkPV3mqwcJwkSZIkTQ5N1XzxEMLLgSuANwI3AW8HrgshHBVj3DTG8VngZ8Am4CXAWuAIYPshanJV5JyTLkmSJEmTQlVDOvAO4PMxxqsAQghvBF4IvBb46BjHvxaYCpwdY8yXt606BO2sKnvSJUmSJGlyqFrqK/eKnwpcX9kWYyyV7581zsNeBNwIfDaEsDGEcE8I4R9CCA09WTs3MifdkC5JkiRJjayaPenTgTSwcY/tG4Gjx3nMIuDZwDXABcAS4N+ADPD+sR4QQmgGmkdt6nzyTa4OC8dJkiRJ0uRQb12zKZL56H8ZY7wtxvgN4EMkc9rH826gd9RlzUFv5QSrrJPucHdJkiRJamzVTH2PA0Vg1h7bZwEbxnnMeuDBGGNx1Lb7gdnl4fNj+QjQPeoy70m3uEoc7i5JkiRJk0PVUl+MMQfcBjynsi2EkCrfv3Gch90ALCkfV3EksL78fGO9znCMcUflAuyckDdwCA0b0iVJkiRpUqh26rsCeH0I4TUhhGXAvwPtQKXa+1dCCB8Zdfy/k1R3/3QI4cgQwguBfwA+e4jbfUjlnJMuSZIkSZNCVZdgizF+I4QwA/gAMBu4A3h+jLFSTG4+UBp1/OoQwvOATwJ3kayT/mngY4ey3YfaSE96ptq/qUiSJEmSDqZqr5NOjPFK4Mpx9p07xrYbgacd5GbVjEKxRLEUAcimDemSJEmS1MhMfTUuVxwZSGBPuiRJkiQ1OFNfjRvO7wrp9qRLkiRJUmMz9dW4Sk96OhVoMqRLkiRJUkMz9dW4Sk+6y69JkiRJUuMz+dW44UIRgKwhXZIkSZIansmvxo0sv2ZIlyRJkqSGZ/KrcZWQbk+6JEmSJDU+k1+Ny430pKer3BJJkiRJ0sFmSK9xlTnpDneXJEmSpMZn8qtxDneXJEmSpMnD5FfjchaOkyRJkqRJw+RX43b1pDsnXZIkSZIanSG9xtmTLkmSJEmTh8mvxlUKxzknXZIkSZIan8mvxg3bky5JkiRJk4bJr8a5TrokSZIkTR6G9BrnOumSJEmSNHmY/GqcheMkSZIkafIw+dW4XUuw+VFJkiRJUqMz+dW44bw96ZIkSZI0WZj8alyuaOE4SZIkSZosDOk1znXSJUmSJGnyMPnVOAvHSZIkSdLkYfKrcRaOkyRJkqTJw+RX43YVjnNOuiRJkiQ1OkN6jRsuOtxdkiRJkiYLk1+NG85bOE6SJEmSJguTX43L2ZMuSZIkSZOGya/GVeak25MuSZIkSY3P5FfjhgsWjpMkSZKkycKQXuNyhWROenPGj0qSJEmSGp3Jr8aNrJOe9qOSJEmSpEZn8qthMcZdhePsSZckSZKkhmfyq2H5YiTG5HZz2jnpkiRJktToDOk1bLg8Hx3sSZckSZKkycDkV8Ny5fno4Jx0SZIkSZoMTH41rFI0LpMOpFKhyq2RJEmSJB1shvQalnONdEmSJEmaVAzpNWxk+bUmPyZJkiRJmgxMfzWsUjiu2ZAuSZIkSZOC6a+G5exJlyRJkqRJxfRXw4ZH5qT7MUmSJEnSZGD6q2EWjpMkSZKkycWQXsMqc9Id7i5JkiRJk4Ppr4Y53F2SJEmSJhfTXw1zCTZJkiRJmlxMfzXMnnRJkiRJmlxMfzXMwnGSJEmSNLkY0muYheMkSZIkaXIx/dWw4bzD3SVJkiRpMmmqdgM0vlzRwnGSJElSoyqVSuRyuWo3QxMkm82SSj317GZIr2G7etKdky5JkiQ1klwux8qVKymVStVuiiZIKpVi4cKFZLPZp/Q8hvQalismc9Id7i5JkiQ1jhgj69evJ51Oc/jhh09I76uqq1QqsW7dOtavX8/8+fMJITzp5zKk17BKT7rD3SVJkqTGUSgUGBgYYO7cubS1tVW7OZogM2bMYN26dRQKBTKZzJN+HtNfDavMSbcnXZIkSWocxfKI2ac6LFq1pfJ5Vj7fJ8v0V8Os7i5JkiQ1rqcyJFq1Z6I+T9NfDausk27hOEmSJEmaHAzpNWxkuHvGj0mSJElS41iwYAGf+tSn9vv4X/3qV4QQ2L59+0FrU62wcFwNGykclzakS5IkSaquc889l5NOOumAwvV4brnlFtrb2/f7+LPPPpv169fT3d39lF+71hnSa5g96ZIkSZLqRYyRYrFIU9MTx8wZM2Yc0HNns1lmz579ZJtWV0x/NWxXT7pz0iVJkqRGFWNkIFeoyiXGuF9tvPTSS/n1r3/Npz/9aUIIhBD48pe/TAiBH//4x5x66qk0Nzfz29/+lhUrVnDRRRcxa9YsOjo6OP3007n++ut3e749h7uHEPjCF77AxRdfTFtbG0uXLuUHP/jByP49h7t/+ctfpqenh+uuu45ly5bR0dHB85//fNavXz/ymEKhwNve9jZ6enqYNm0a73znO3nNa17Dn/zJnzzpz+pQsCe9ho0UjrMnXZIkSWpYg/kix/zzdVV57fs+8Dzask8cCz/96U/z4IMPctxxx/GBD3wAgHvvvReAd73rXVx++eUsWrSIKVOmsHr1ai644AI+9KEP0dzczFe+8hUuvPBCli9fzvz588d9jfe///3867/+Kx//+Mf5zGc+w6te9SoeffRRpk6dOubxAwMDXH755Xz1q18llUrx6le/mssuu4xrrrkGgI997GNcc801XHXVVSxbtoxPf/rTfO973+O888470D+mQ8r0V8NyBZdgkyRJklR93d3dZLNZ2tramD17NrNnzyZdHvH7gQ98gPPPP5/FixczdepUTjzxRN7whjdw3HHHsXTpUj74wQ+yePHi3XrGx3LppZfyyle+kiVLlvDhD3+Yvr4+br755nGPz+fz/Md//AennXYap5xyCm95y1v4+c9/PrL/M5/5DO9+97u5+OKLOfroo7nyyivp6emZkD+Pg8me9Bo2XA7pWUO6JEmS1LBaM2nu+8DzqvbaT9Vpp5222/2+vj7e9773ce2117J+/XoKhQKDg4M89thj+3yeE044YeR2e3s7XV1dbNq0adzj29raWLx48cj9OXPmjBzf29vLxo0bOeOMM0b2p9NpTj31VEql0gG9v0PNkF7DdvWkOyddkiRJalQhhP0acl6r9qzSftlll/Gzn/2Myy+/nCVLltDa2spLXvIScrncPp8nk8nsdj+EsM9APdbx+zvHvpbZRVvD7EmXJEmSVCuy2SzFYvEJj7vhhhu49NJLufjiizn++OOZPXs2q1atOvgNHKW7u5tZs2Zxyy23jGwrFov84Q9/OKTteDLq9+eaBlcqxV1LsBnSJUmSJFXZggULuOmmm1i1ahUdHR3j9nIvXbqU7373u1x44YWEEHjPe95TlSHmb33rW/nIRz7CkiVLOProo/nMZz7Dtm3bCCEc8rYcCNNfjaoEdLAnXZIkSVL1XXbZZaTTaY455hhmzJgx7hzzK664gilTpnD22Wdz4YUX8rznPY9TTjnlELcW3vnOd/LKV76SP//zP+ess86io6OD5z3vebS0tBzythyI0Ahj9g9ECKEL6O3t7aWrq6vazRlX72CeE9//UwCW/8vznZcuSZIkNYihoSFWrlzJwoULaz4wNpJSqcSyZct42ctexgc/+MEJf/59fa47duygu7sboDvGuGNfz+Nw9xpVKRoHkE3bky5JkiRJB+LRRx/lpz/9Kc961rMYHh7myiuvZOXKlVxyySXVbto+mf5q1HAhKciQbUrV/JwJSZIkSao1qVSKL3/5y5x++umcc8453H333Vx//fUsW7as2k3bJ3vSa9RwwaJxkiRJkvRkHX744dxwww3VbsYBMwHWqJwhXZIkSZImHRNgjdrVk27BOEmSJEmaLAzpNcqedEmSJEmafEyANWp04ThJkiRJ0uRgAqxRw3l70iVJkiRpsjEB1qhcMQnp9qRLkiRJagQLFizgU5/61Mj9EALf+973xj1+1apVhBC44447ntLrTtTzHCouwVajKsPdLRwnSZIkqRGtX7+eKVOmTOhzXnrppWzfvn238H/44Yezfv16pk+fPqGvdbAY0muUheMkSZIkNbLZs2cfktdJp9OH7LUmggmwRlWWYHO4uyRJkqRq+9znPsfcuXMplUq7bb/ooot47Wtfy4oVK7jooouYNWsWHR0dnH766Vx//fX7fM49h7vffPPNnHzyybS0tHDaaadx++2373Z8sVjkda97HQsXLqS1tZWjjjqKT3/60yP73/e+93H11Vfz/e9/nxACIQR+9atfjTnc/de//jVnnHEGzc3NzJkzh3e9610UCoWR/eeeey5ve9vb+Pu//3umTp3K7Nmzed/73nfgf3BPgj3pNcrCcZIkSdIkESPkB6rz2pk2COEJD3vpS1/KW9/6Vn75y1/ynOc8B4CtW7fyk5/8hB/96Ef09fVxwQUX8KEPfYjm5ma+8pWvcOGFF7J8+XLmz5//hM/f19fHH//xH3P++efzX//1X6xcuZK//uu/3u2YUqnEvHnz+Na3vsW0adP43e9+x1/+5V8yZ84cXvayl3HZZZdx//33s2PHDq666ioApk6dyrp163Z7nrVr13LBBRdw6aWX8pWvfIUHHniA17/+9bS0tOwWxK+++mre8Y53cNNNN3HjjTdy6aWXcs4553D++ec/4ft5KgzpNcrCcZIkSdIkkR+AD8+tzmv/wzrItj/hYVOmTOEFL3gBX/va10ZC+re//W2mT5/OeeedRyqV4sQTTxw5/oMf/CD/8z//ww9+8APe8pa3POHzf+1rX6NUKvHFL36RlpYWjj32WNasWcNf/dVfjRyTyWR4//vfP3J/4cKF3HjjjXzzm9/kZS97GR0dHbS2tjI8PLzP4e3/9m//xuGHH86VV15JCIGjjz6adevW8c53vpN//ud/JpVKMtgJJ5zAe9/7XgCWLl3KlVdeyc9//vODHtJNgDVqOG/hOEmSJEm141WvehXf+c53GB4eBuCaa67hFa94BalUir6+Pi677DKWLVtGT08PHR0d3H///Tz22GP79dz3338/J5xwAi0tLSPbzjrrrL2O++xnP8upp57KjBkz6Ojo4HOf+9x+v8bo1zrrrLMIo0YQnHPOOfT19bFmzZqRbSeccMJuj5szZw6bNm06oNd6MuxJr1GXnrOQF54wl65WPyJJkiSpoWXakh7tar32frrwwguJMXLttddy+umn85vf/IZPfvKTAFx22WX87Gc/4/LLL2fJkiW0trbykpe8hFwuN2FN/frXv85ll13GJz7xCc466yw6Ozv5+Mc/zk033TRhrzFaJpPZ7X4IYa85+QeDCbBGTW3PMrU9W+1mSJIkSTrYQtivIefV1tLSwotf/GKuueYaHn74YY466ihOOeUUAG644QYuvfRSLr74YiCZY75q1ar9fu5ly5bx1a9+laGhoZHe9N///ve7HXPDDTdw9tln86Y3vWlk24oVK3Y7JpvNUiwWn/C1vvOd7xBjHOlNv+GGG+js7GTevHn73eaDxeHukiRJkqT98qpXvYprr72WL33pS7zqVa8a2b506VK++93vcscdd3DnnXdyySWXHFCv8yWXXEIIgde//vXcd999/OhHP+Lyyy/f7ZilS5dy6623ct111/Hggw/ynve8h1tuuWW3YxYsWMBdd93F8uXLefzxx8nn83u91pve9CZWr17NW9/6Vh544AG+//3v8973vpd3vOMdI/PRq6n6LQBCCG8OIawKIQyFEG4KIZyxj2MvDSHEPS5Dh7K9kiRJkjQZPfvZz2bq1KksX76cSy65ZGT7FVdcwZQpUzj77LO58MILed7znjfSy74/Ojo6+OEPf8jdd9/NySefzD/+4z/ysY99bLdj3vCGN/DiF7+Yl7/85Zx55pls2bJlt151gNe//vUcddRRnHbaacyYMYMbbrhhr9c67LDD+NGPfsTNN9/MiSeeyBvf+EZe97rX8U//9E8H+KdxcIQYY3UbEMLLga8AbwRuAt4OvBQ4Ksa416z8EMKlwKeBo0ZtjjHGjfv5el1Ab29vL11dXU+t8ZIkSZJ0gIaGhli5ciULFy7crVCa6tu+PtcdO3bQ3d0N0B1j3LGv56mFnvR3AJ+PMV4VY7yPJKwPAK/dx2NijHHDqMt+BXRJkiRJkmpZVUN6CCELnApcX9kWYyyV7+9db3+XjhDCoyGE1SGE74cQjt3HazSHELoqF6BzotovSZIkSdJEqnZP+nQgDezZE74RGG/1+eUkvewXAa8meQ+/CyGMV4bv3UDvqMuacY6TJEmSJKmqqh3SD1iM8cYY41dijHfEGH8NvBjYDLxhnId8BOgedal+TX1JkiRJksZQ7XXSHweKwKw9ts8CNuzPE8QY8yGE24El4+wfBoYr9yvr4EmSJEmSVGuq2pMeY8wBtwHPqWwLIaTK92/cn+cIIaSB44H1B6ONkiRJknQwVHulLU2sifo8q92TDnAFcHUI4VbgZpIl2NqBqwBCCF8B1sYY312+/8/A74GHgR7g74AjgC8c6oZLkiRJ0oFKp9MA5HI5Wltbq9waTZRcLgfs+nyfrKqH9BjjN0IIM4APkBSLuwN4/qhl1eYDpVEPmQJ8vnzsNpKe+LPLy7dJkiRJUk1ramqira2NzZs3k8lkSKXqrlSY9lAqldi8eTNtbW00NT21mB0m2xCL8jJsvb29vXR1dVW7OZIkSZImoVwux8qVKymVSk98sOpCKpVi4cKFZLPZvfbt2LGD7u5ugO4Y4459PU/Ve9IlSZIkabLJZrMsXbp0ZIi06l82m52QURGGdEmSJEmqglQqRUtLS7WboRrj5AdJkiRJkmqEIV2SJEmSpBphSJckSZIkqUZM2jnpO3bss6CeJEmSJEkT4kDy52Rcgu0wYE212yFJkiRJmnTmxRjX7uuAyRjSAzAX2FnttuyHTpIfFOZRH+3V5OR5qnrhuap64bmqeuG5qnpRK+dqJ7AuPkEIn3TD3ct/IPv85aJWJL8nALDziRa8l6rF81T1wnNV9cJzVfXCc1X1oobO1f16bQvHSZIkSZJUIwzpkiRJkiTVCEN6bRsG3l++lmqV56nqheeq6oXnquqF56rqRV2dq5OucJwkSZIkSbXKnnRJkiRJkmqEIV2SJEmSpBphSJckSZIkqUYY0iVJkiRJqhGG9BoVQnhzCGFVCGEohHBTCOGMardJk1sI4d0hhFtCCDtDCJtCCN8LIRy1xzEtIYTPhhC2hBD6QgjfCSHMqlabpRDCu0IIMYTwqVHbPE9VE0IIh4UQ/qt8Lg6GEO4OIZw2an8IIXwghLC+vP/6EMLSarZZk08IIR1C+GAIYWX5PFwRQnhPCCGMOsZzVYdcCOGZIYQfhhDWlf+v/5M99j/heRlCmBpCuCaEsCOEsD2E8MUQQschfSNjMKTXoBDCy4ErSJYJOAW4E7guhDCzqg3TZPcs4LPA04DzgQzw0xBC+6hjPglcCLy0fPxc4LuHuJ0SACGE04E3AHftscvzVFUXQpgC3ADkgRcAxwB/C2wbddjfA28D3gicCfSTfB9oObSt1ST3TuCvgLcAy8r3/x5466hjPFdVDe0kOenN4+zfn/PyGuBYku+2fww8E/jcwWrw/nIJthoUQrgJuCXG+Jby/RSwGvhMjPGjVW2cVBZCmAFsAp4VY/y/EEI3sBm4JMb47fIxRwP3A2fFGH9fvdZqsin/Cv4H4E3APwF3xBjf7nmqWhFC+ChwTozxGePsD8A64BMxxsvL27qBjcClMcavH7LGalILIfwvsDHG+LpR274DDMYYX+25qloQQojAxTHG75XvP+F5GUJYBtwHnB5jvLV8zPOBHwHzYozrDv07SdiTXmNCCFngVOD6yrYYY6l8/6xqtUsaQ3f5emv5+lSS3vXR5+4DwGN47urQ+yxwbYzx+j22e56qVrwIuDWE8K3yFKLbQwivH7V/ITCb3c/VXuAmPFd1aP0OeE4I4UiAEMKJwNOBH5f3e66qFu3PeXkWsL0S0MuuB0okPe9V01TNF9eYpgNpkl95RtsIHH3omyPtrTy641PADTHGe8qbZwO5GOP2PQ7fWN4nHRIhhFeQTBU6fYzdnqeqFYtIhhBfAXyY5Hz9/0IIuRjj1ew6H8f6PuC5qkPpo0AX8EAIoUjyPfUfY4zXlPd7rqoW7c95OZtkVOiIGGMhhLCVKp+7hnRJT8ZngeNIfkmXakYI4XDg08D5McahardH2ocUcGuM8R/K928PIRxHMnfy6uo1S9rLy4BXAZcA9wInAZ8KIawr/6AkaYI53L32PA4UgT0rDc8CNhz65ki7CyFcSVJY47wY45pRuzYA2RBCzx4P8dzVoXQqMBP4QwihEEIokBSHe1v59kY8T1Ub1pPMhRztfmB++XblfPT7gKrt48BHY4xfjzHeHWP8KkkBzneX93uuqhbtz3m5geQ7w4gQQhMwlSqfu4b0GhNjzAG3Ac+pbCsPLX4OcGO12iWVl7G4ErgYeHaMceUeh9xGUqV49Ll7FMkXTs9dHSo/B44n6empXG4lqd5aue15qlpwA3DUHtuOBB4t315J8iVx9LnaRTJP0nNVh1IbyRzd0YrsyhGeq6pF+3Ne3gj0hBBOHfW4Z5Oc2zcdonaOyeHutekK4OoQwq3AzcDbSZYYuKqajdKk91mSoW4XATtDCJW5Or0xxsEYY28I4YvAFeW5PDuAzwA3WjFbh0qMcSdwz+htIYR+YEulfoLnqWrEJ4HfhRD+AfgmcAbwl+ULMcYYQvgU8E8hhIdIvnB+kKRa8feq0WBNWj8E/jGE8BjJcPeTgXcAXwLPVVVPeSWXJaM2LQwhnARsjTE+9kTnZYzx/hDCT4DPhxDeSFJY9krg69Ws7A6G9JoUY/xGeXmrD5AULbgDeH6Mcc/CB9Kh9Ffl61/tsf0vgC+Xb/8Nya/t3wGagetIlsCSaonnqaouxnhLCOFi4CPAP5N8gXz7qGJcAP9K8iP954Ae4Lck3west6BD6a0k4ebfSIYGrwP+k+R7aoXnqqrhNOCXo+5fUb6+GriU/TsvX0USzH/Oru8GbzuYjd4frpMuSZIkSVKNcE66JEmSJEk1wpAuSZIkSVKNMKRLkiRJklQjDOmSJEmSJNUIQ7okSZIkSTXCkC5JkiRJUo0wpEuSJEmSVCMM6ZIkSZIk1QhDuiRJkiRJNcKQLkmSJElSjTCkS5I0yYQQUiGEd4cQVoYQBkMId4YQXlLed24IIYYQXhhCuCuEMBRC+H0I4bg9nuNPQwj3hhCGQwirQgh/u8f+5hDCx0IIq8vHPBxCeN2hfJ+SJNWjpmo3QJIkHXLvBl4NvBF4CHgm8F8hhM2jjvk48NfABuDDwA9DCEfGGPMhhFOBbwLvA74BnA38WwhhS4zxy+XHfwU4C3gbcCewEJh+kN+XJEl1L8QYq90GSZJ0iIQQmoGtwB/FGG8ctf0LQBvwOeCXwCtijN8o75sKrAEujTF+M4RwDTAjxvjcUY//V+CFMcZjQwhHAsuB82OM1x+q9yZJUiOwJ12SpMllCUkY/1kIYfT2LHD7qPsjAT7GuDWEsBxYVt60DPj+Hs97A/D2EEIaOAkoAr+e0JZLkjQJGNIlSZpcOsrXLwTW7rFvGFg8Aa8xOAHPIUnSpGThOEmSJpf7SML4/Bjjw3tcVo867mmVGyGEKcCRwP3lTfcD5+zxvOcAD8YYi8DdJN8xnnWw3oQkSY3KnnRJkiaRGOPOEMLlwCdDCCngt0A3ScjeATxaPvSfQwhbgI3Ah4DHge+V930CuCWE8B6SwnFnAW8B3lR+jVUhhKuBL4UQKoXjjgBmxhi/efDfpSRJ9cvCcZIkTTIhmYz+NuCvgEXAduAPJFXcUySF4y4EPgosBe4AXh9jvGvUc/wp8IHy/vXAZ2KMl4/a31J+vlcA04DHgA/HGK86uO9OkqT6ZkiXJEkjQgjnkoT0KTHG7VVtjCRJk5Bz0iVJkiRJqhGGdEmSJEmSaoTD3SVJkiRJqhH2pEuSJEmSVCMM6ZIkSZIk1QhDuiRJkiRJNcKQLkmSJElSjTCkS5IkSZJUIwzpkiRJkiTVCEO6JEmSJEk1wpAuSZIkSVKNMKRLkiRJklQj/n+bZFRqAMrtPwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure(figsize=(12, 6), dpi=100)\n", - "plt.ylabel(\"AUC\")\n", - "plt.xlabel(\"epoc\")\n", - "plt.plot(history.history[\"auc\"], label=\"training\")\n", - "plt.plot(history.history[\"val_auc\"], label=\"validation\")\n", - "plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "729e9d0a", - "metadata": {}, - "outputs": [], - "source": [ - "y_test = y_test[:,1]\n" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "f26345a1", - "metadata": {}, - "outputs": [], - "source": [ - "y_train = y_train[:,1]" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "a3ab788a", - "metadata": {}, - "outputs": [], - "source": [ - "#y_pred = model.predict(X_test)[:,1]" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "id": "06ffc6fe", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 1, 1, ..., 1, 1, 1])" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_pred = np.argmax(model.predict(X_test), axis=-1)\n", - "y_pred" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "59fc30dc", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0., 1., 0., ..., 0., 1., 1.], dtype=float32)" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_test" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "a01c6cc2", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0., 1., 1., ..., 1., 0., 0.], dtype=float32)" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y_train" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "id": "901211d7", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AUC-ROC score sobre test: 0.8989031128123646\n", - "AUC-ROC score sobre train: 0.8995022715899801\n", - "Accuracy sobre test: 0.8387839705204975\n", - " precision recall f1-score support\n", - "\n", - " Bajo valor 0.93 0.87 0.90 5283\n", - " Alto valor 0.56 0.71 0.62 1230\n", - "\n", - " accuracy 0.84 6513\n", - " macro avg 0.74 0.79 0.76 6513\n", - "weighted avg 0.86 0.84 0.85 6513\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAG2CAYAAABmhB/TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABDrAAAQ6wFQlOh8AABjdklEQVR4nO3ddZxc1f3G8c8TN2IECQSnEKBQKBR3dysULaWlAhRKcXfXYsXhh3uRICG4heAuCRICARIIceLy/f1x7iSTyexmJzvJzuw+77zua3buPffcM5PZ/c6Re44iAjMzM6t+zRq6AGZmZlYeDupmZmaNhIO6mZlZI+GgbmZm1kg4qJuZmTUSDupmZmaNhIO6mZlZI+GgbmZm1ki0aOgCmJlVA0kbAlsCo4ArwjN3WQVyUDczmwNJPYCHgU7Atg7oVqnc/G5VQ9KLkkLSGQ1dFgBJt2blubWhy1LpJC0n6S5JP0iamr1vLzZgeSLbNq1D2hbAPUA34K8R8fw8Lp7ZXHNQb0TygkxuW34O6ReSNDkv/eNlLs+mks6QdGA587XqIqkL8CqwL9AdGAP8CIxoyHKV4BxgQ+D0iLi9oQtjVhsH9cbtT3M4vh/Qch5ef1PgdODAMuX3LTAA+LlM+dn8sQ+wKCmIrxARXSNi0YjYvQHLNCDbxteWSNJ2wHHArRFx1vwomFl9uE+9cfoGWAo4QNJptfT/HViQvqJFxAENXQabK7/OHl+IiC8atCSZiOhZx3S9ceXHqog/rI3Tx8D7wJLAZsUSSFod+A0poL80vwpmTVLb7PGXBi2FWRPgoN543Zo9HljD8dz+24EaR/JKaidpX0l3SvpA0s+SJkn6TtL9kjYucs7SkoLU9A6wSUFf/ywDlCQNyvYdKKmzpAsl9Zc0XtKovHRFB8oVybumbZbz6kLS5pL6SBop6RdJ70o6XFKdfnckrSnptuw1TpQ0WtLrkv4tqU2p5SnIe2dJ/8v+LyZJ+knS25LOlbRiDeesI+mevHOGS3pe0p9qek2FAwKzz8NrksZIGpv9vEeR817MPgcHZrv+VOwzUJcBh7WlkdRS0qGSXpE0QtIUScMkfZqdt1ORc2odKCepa/Y+fpj9v4+T9ImkiyQtXMM5m+byzZ6vpDQ4cEj2Xn8p6QJJHWp6nWb1FhHeGslGCuQBPA4sBEwm1Y46FKRrCfwETAeWyz+vSJ4HZscCmEbqF52Qt286cGzBOUsAQ7NrR1aOoQXb+nnpB2XpjgW+yn6eSBpQNSov3YvZsTMKrleYd+EWxc6rw/t5RN65AYwEpmY/P5D3vt1aw/mnZ+9P7vwxeecH8A7QbS7+nzsAvQrKNgoYm/d8tjIBJxZ5PVPynvcB2tfyuboVuC77eSowuiC/wwrOeyh7/3OflwnFPgNzeh9rSwM0B54t8rom5z3/uEh+uWObFjm2esHnZjwzP8tBGtOxTpHzNs1LsyUwLu//ZlresX5Ay4b+e+GtcW6uqTdSETEM6A20B/YsOLwDKei/GhFfzSGrkcDFwPqkP/hdgXbA0sAVgIALJP0u79qDI2JR4JJs12uRBkblb68VudZppC8c2wHtIqIjsFYdXmth3jM24Kos2RTSH/86kbQ+8J/s6SPAUhHRhXSf8nHA7sCutZx/CHAG6f07Algwez3tstf3BfBbZraolOIOYCdSYD0NWDQiOkfEAqQvVP/M8s8vz+7AednTe4AlstfTETic9P5sDVxdy3V3Jg2+PAToGBGdgGWBl7PjF0nqmkscEbtn/wf3Zbvuq8NnoFT7AluQvjAcSPrcdAHaAItl5X2hrplJ6kT6wrQI8DUpOLePiA7ABsBnwIJAr5pq7Jn7SV+ul4mIzqT3Ofelal3goDq/QrNSNPS3Cm/l2yiocQO7Zc9fKkj3SLb/L8XOK/GaN2fn3lLk2BnZsRfnkMcgZtbof11Luhcpocadvf7p+a+1hNeVq/29BbQocvx0aqgVk/6AjyYFyvVqyH85ZtbkfltCubbJu+6+dTxHQP/snKcAFUlzaF6+K9fwuQpgvyLnLgZMyo4fUMvn8tYaylfr8drSANdk+68r8f+3aE0dOImZtfPla3ito7I0FxYc2zQv36dreJ8fy44/X0p5vXmr6+aaeuP2BDAc2EjSspDuTQe2J/3ReqAM13gse9ywDHn1joiPy5BPbiDgHaSAdmlE3FLCuV2BzbOnF0XE1CLJLiPVDovZgxTY+0ZEv2IJIrWQvJ493bquZWNm/3S/iLi7juf8Bsj1sZ8VEVEkzfXAD9nPe9eQz7fAbNeMiB+AN7Onvy48Po+Nzh67lym/P2SPd0bEl4UHs9d6XfZ0n1ryuaCG9/mR7HF+v0/WRDioN2IRMZn0R1hA7naw3L3pD0XE2LrkI6l7NmjozWzA2LS8AUEPZ8kWK0ORiwbAUklalNSE2p7UBHpciVmsQXrPILUOzCZ7796u4fz1s8e1JQ2tactLt2QJZVsve3yihHPWzB7HMfOLxCwiYhozm6nXLJYGeLuGQAXwffbYpYRylcOT2ePOkp6U9AdJi8xNRpJaMTPY1tZVkzu2RPYluZi3atjfUO+TNREO6o3fbdnjAZLEzJrerXU5WdIGpKbbk4DfAZ1JweEn0qxgI7Ok7ctQ1mH1zSAbUf4IqW/5I2CfiJheYja5P9RTIo1NqMn3NezP1Rrbkvpma9pyo9/blVC2XMD6poRzcq9nyBzei++yx5r6imv7Ejgxe5yXkxnNJiJeIfVVTyGNVbgPGCrpK0nXSKrpC0oxXUkD76Dm/1uY+T5BDe9VLV+Yc++T5wixecJBvZGLiHdI960vQxqw9RtSM+oc569WmvP6blJT8rvAtsACEdExIhaJNAiqcBBefUwrQx43AeuQvnTsFBENcW90LjDcHBGqw3ZgA5Sx0YiIC0hjFI4htcyMIA3gOwR4W9J5tZxu1qg4qDcNudr6Rdnj7bU0o+Zbj9Q0PA3YOSL6FAmSc9XUOS9IOonUvTAJ2C0iSqnN5svVzltK6lZLusVr2P9j9lhKs3pdDc0elyrhnNzr6T6H++t7ZI8/lVyq+smNWajtvv1OtWUQ6Y6LSyNiJ9LCK+sws2voREkb1aEcI5j5xbKm/1uY+T7B/H+vzGrloN403En6Y5VrGr2tlrT5lsgeh0VETc2RW9Zyfq6pV7WkKQtJu5EW3oC0klZ9bpd6j5kT8mxSw/U6UHPfc+7aG0jqXI9y1Jb3jiWck+v7b08KdrPJgv1mBennl1wXTo9iB7Nuozo3o0fyJqkVKffFbtM6nDeZ1GUD6Ta5muQ+89/OoXvGbL5zUG8CImIocBRwKXBCsVG9NciNLF6k2D25klYl3SdckzHZY+c6Xm+uFIx0Py8i7qxPfhExAngue3qcpOZFkv2bmvvCHyD1P7cDLqztWpLaZwO06urW7HFdSbWNvs73IWnxEoBTsiBZ6GBmDna8t4TylEMukP5OUrFR7Psx8wvmLGp777LBf1Oyp3Wdve/+7HF/ScsUuV534B/Z03vqmKfZfOOg3kRExJURcUxE1BpkCvQlDYoTcJ+ypVyzaTl3B56h9vm8c7enrSypaA2xvrLm8dxI94eAU8qUde4+9LWB+yUtkV2vnaSjgTOZ+aVnFtmXgtyI+78rTae7Wl6ZW0haQ9LZwEBqHphWLO9nSK8T4DZJp+R/4ZLUQ9Jxkk7LOydIAx0h3c54u6TFs/RtJR0GXJ4dvzUiPqtrecrkMdItlq2Ae3LBNHuv/wHcyMzafKFHJN0oaWtJHXM7szs2rgByyw/3rmNZrgEGk76QPSNps9yXIEnrkb7sdSY1u19awms0my8c1K1GETEKOD57uinwhaQxpED+P9JI3iNqyeJF0sxmLYDXleYZH5Rt65apmL9mZi1uU2BILbeRHVPXTLPm+yOzp7sD30oaQQrkl5AC6yO1nH8daeDWNFIz8AdKc9kPJ71v75K+gCxMLXPv1+BPpFu5WgJnAz9mtxqOJQWkC0kDxfLL8xBwcvZ0f2Bw9nrGkGbda0n6knZYiWWpt4gYSZoiGFJ3x0BJo0nv9XWk9Ql61XB6O+CvpCluR0kalb0PPwD/ytKcFxGv1rEso4FdSOMiliMNKP1F0i+kro+VSH3vu7jp3SqRg7rVKiL+S/oj9wqp1t6CNH3mRaT7uWu89SebtGULUpPxt8ACpAFeS1H35tBSdKX2W8hKWkgjIq4g9Z8+QwowrUitD/8C9qrD+ZcCK5OC5qekAN+RFBReAc4FVq9lvEJN+f5C6lPfgzTa+0dSS8U40v3R52R5F553Hune+PuAIaT3Yyzpy9efgW0jYlwpZSmXiLiG9OUp1zrUjDQ3/p8i4h+1nHo4cAIpqH9F+ny2IvWl3wdsFhEn13x60bK8B6xCmlb3k2x3M9KtnZeQZtwrer+/WUNT3QZBm5mZWaVzTd3MzKyRcFA3MzNrJBzUzczMGgkHdTMzs0bCQd3MzKyRcFA3MzNrJBzUzczMGgkHdTMzs0aiRUMXoJK0XeMwz8RjFWXkW1c3dBHMimrTYt6vvgj1/7s84b2r50s5K4Vr6mZmZjWQ1EHSd5JC0lp5+1/M9hVuPQvO7yTpZkkjJI2V9GCx1QglrS+pn6QJkr6RdHwNKyrWyjV1MzOrXGrwuuep1Bwr+5IWbso3qOD5faS1BA4mLeZ0LtBb0lrZ+hhkK2D2Ia0zcQqwGnABab2IS0oprIO6mZlVrtIrq2W8tHoC/wSOJq0YWGhUbYv7ZMv1bgNsExFPZ/sGAJ+RFjC6P0t6LDAc2DsiJgPPSVoIOFnSVRExqa5lbvCvQGZmZjVSs/pt9XMVKZgPmMvztwNGkWrgAETEAOB9YPuCdI9kAT3nXqAzsF4pF3RQNzMzKyBpD2BV4Kxakm0iaZykiZJekrRxwfGewICYfTnUz7JjSGoPLEFa2jdffyBy6erKze9mZla56tn8Lqkj0LFg95iIGFPLOe2Ay4CTImJMDePVXgJuB74AFiP1rT8raZOI6Jel6UKqqRcaCXTNfu6cPc6SLiImSxqfl65OHNTNzKxy1b8J/Sjg9IJ9ZwJn1HLOKcCPwP/VlCAiZslT0uPAJ6SBddsXPWk+cFA3M7PKVf+BcpcBNxXsq62WvhRpYNxuQKeslt4hO9xBUoeI+KXwvIgYJ+kJYI+83SNJTeuFugAjsp9HZY+dCsrRCmiXl65OHNTNzKzRyprZawziRSwDtAKeKHLsBeANYN065tUf2FKSCvrVewIfZeUbJ2kws/edrwiI2fvaa+WBcmZmVrnm/+j394HNCrYjs2MHA4cWLWYa8LYj8Fbe7t6kWvkWeelWANYAnixIt4uklnn79iLV4l8rpfCuqZuZWeWaz/epR8Qo4MVZizCjDO9ExLuSNiLdW/4wabKZxUhN9osCe+bl1U9SH+AWSUczc/KZD4GH8i5xMbAfcI+ka0ij7o8FTi64zW2OHNTNzKxyNfyMcsUMITXRnwcsCIwj1agPjog3C9LuRerXv4EUc58GDs/NJgcQEV9K2jpL9yQwjDS479JSC+agbmZmlasBZ5TLiYgXYeYCNhHxJbBtHc8dDRyUbbWle42699XXqCK/ApmZmVnpXFM3M7PKVZnN7xXLQd3MzCpXBTS/VxMHdTMzq1yuqZfE75aZmVkj4Zq6mZlVLtfUS+KgbmZmlauZ+9RL4aBuZmaVyzX1kvjdMjMzayRcUzczs8rlW9pK4qBuZmaVy83vJXFQNzOzyuWaekkc1M3MrHK5pl4Sv1tmZmaNhGvqZmZWudz8XhIHdTMzq1xufi+Jg7qZmVUu19RL4q9AZmZmjYRr6mZmVrnc/F4SB3UzM6tcbn4viYO6mZlVLtfUS+J3y8zMrJFwTd3MzCqXa+olcVA3M7PK5T71kjiom5lZ5XJNvSQO6mZmVrlcUy+JvwKZmZnVQFIHSd9JCklrFRw7SNLnkiZK+kDSjkXO7yTpZkkjJI2V9KCk7kXSrS+pn6QJkr6RdLxU+jcaB3UzM6tcala/rf5OpUirtqS9gRuB+4DtgH7Aw5LWLUh6H7A1cDCwH7Ai0FtSi7y8lgf6AEOAHYHLgbOAo0strJvfzcyscjVg87uknsA/ScH1uoLDZwL3RsSp2fMXJK0GnAZsn52/HrANsE1EPJ3tGwB8BuwO3J+deywwHNg7IiYDz0laCDhZ0lURMamuZXZN3czMKpakem31dBUpmA8oKNOywArMDMo59wJbSGqdPd8OGAU8k0sQEQOA98kCf166R7KAnp9XZ2C9UgrsoG5mZlZA0h7AqqRm8EI9s8f+Bfs/A1oBy+SlGxARUSRdz+w67YEliuTVH4i8a9WJm9/NzKxi1be2Lakj0LFg95iIGFPLOe2Ay4CTImJMkTJ0yR5HFewfmT12zUtXmCaXLpemc7G8ImKypPF56erENXUzM6tcqucGRwGDC7aj5nDVU4Afgf8r50uZH1xTNzOzilWGfvHLgJsK9tVWS1+KNDBuN6BTdv0O2eEOkjows0beCRiad3quBj8iexxJalov1CUvzai8vPLL0Qpol5euThzUzcys0cqa2WsM4kUsQ+oXf6LIsReAN4B9s+c9mXUQXU9gMjAwe94f2FKSCvrVewIfZeUbJ2kws/edr0hqayjsa6+Vm9/NzKxiNcDo9/eBzQq2I7NjBwOHRsRA4HNgz4Jz9wKeyxvF3ptUK98i7/WsAKwBPJl3Xm9gF0ktC/IaBbxWSuFdUzczs4pVhub3kkTEKODFGsrwTkS8m/18BnCXpK9INfi9gHWAjfPy6iepD3CLpKOBicC5wIfAQ3mXuJg0Mc09kq4hjbo/Fji54Da3OXJQNzOzijW/g3pdRcQ92Sj5E7JtALBbRPQrSLoXqV//BlLMfRo4PCKm5uX1paSts3RPAsOA04FLSy2Xg7qZmVWuCojpEfEiRUoSETcDN8/h3NHAQdlWW7rXgMIpZkvmPnUzM7NGwjV1MzOrWJXa/F6pHNTNzKxiOaiXxkHdzMwqloN6adynbmZm1ki4pm5mZhXLNfXSOKibmVnlckwviYO6mZlVLNfUS+OgbmZmFctBvTQeKGdmZtZIuKZuZmYVyzX10jiom5lZ5XJML4mDupmZVSzX1EvjPnUzM7NGwjV1MzOrWK6pl8ZB3czMKpaDemkc1M3MrGI5qJfGfepmZmaNhGvqZmZWuVxRL4mDehP20JUHs91Gvwbgjl6v8/fT75wtTZ8bj2DjtX5Vaz5Pvvwxvz/iuhqPb73Byvx5t/X53a+XoluXDkydNp3vfxzFK+98yXX3vcTHX/xQ47mdOrTl0H03YadNf8NyS3SjefNmfDtkBE++9DH/uf1Zho8aV8dXa9Xo/ffe5dWXX+Ljjz/m++8GM2LEcCZOnESXLp3pudLKbL/DTmy3w45Fm2i322pzfvjh+1rz32uf/TjplNNqTTN8+HDuufN2Xn75JX74/jumTJnCgt26sWLPldh0083ZZbfd6/UarXZufi+Ng3oT9Ydt15wR0Ovil/GT+GX8pKLHRo0ZX+N5/z11H/6y+wYzno8dN5FWLZuzwtKLsMLSi/CnXdblqIse4MYHXp3t3J7LLsqjVx/Kkt27AjBuwiSmTZvOSst2Z6Vlu7P/zuuw4yFX1/qlwKrb3XfdQZ/eT8543q5dO1q0bMGwYcMYNuwlXnn5JR763wNccfU1tG/foWgeHTp0oHXrNjUeq82Lzz/HKSefwNgxYwBo3bo1LVq04PvvvuP7777jiwEDHNTnMQf10jioN0FdOrbjomN+z6ix4xkybDQrLdt9judcfvtznHv9k3NMl++AXdadEdCvu+9lLr65Dz8MG40kVu/Zg4uP+T0b/HZ5LjtuT15550v6Dxw649y2bVry0BUHs2T3rgwcPIxDzrqbl9/+AoDVVlic/566D2v9emkeueoQVt/9nBq/cFh1+93a67DOOuux6mqr0aPHErRr3x6An4cN4+GHHuTa/17FW2++waUXXchpZ55dNI/jTjh5rgLv6/1e4+gjj2Dq1CnsuPMu/Pmgv7H88qnVasyYMXz4wXt88P77c/3arG4c1EvjgXJN0IVH784iC3bktKt6MWzEL/PsOvvusDYAL7/9BUdecD8/DBsNQETw3meD2f2I6xg7biItWjRn581+M8u5B+66Psv06Ma0adPZ6+gbZwR0gA8//57d/3Udo8dOYPFFunDEH7eYZ6/BGtaef9ib3+/5B1ZYseeMgA7QbaGF+Ns/DuHPB/0NgCce78WUKVPKdt3x48Zx+iknMXXqFA78y1859/yLZgR0gI4dO7LhRpvwz8OPKNs1zcrBQb2J2WydFfnjzuvy5odfc9ODfefptRbt1hGAdz/9tujxMb9M5ItvfgKgQ7vWsxzbZsOVAXju9f5Fm9eHjfyFux5/A4D9d1q7bGW26rLqqqsBMHHiRMaMHl22fB995GGGDh3CwosswmEO3A1L9dyaGAf1JqRN65ZcffLeTJkyjcPOvZeImKfXG/TDcADWWGmJosc7dmjDr5ZaGID3Pps18Of60T8f9GON+ff/OjXXL714N5ZfcuF6l9eqz3vvvgOkvvauCy5YtnyfeLwXAFtttQ0tW7UqW75WOkn12pqaqulTl9QGuB+4JCJebujyVKPTDtmBZZdYiP/c9iwffV77qOBCe2+/Fgfssi6LduvIL+MnMeDroTz+4kfc+OCrjB03seg5Nz/Yl202WIVNfrcC/znhDzP61AFW79mDS47dgwXat+Hlt7/gkec+KJpH8+Y1f+9s3mzmsZWXW5Qvv/2ppNdk1Wn8+PEMHTKEx3o9wm233gLAvvsfUOMf8NtuvYWrrriMkSNHscACHfjVCiuy1dbbsMtuv6d169azpZ80aRKfffopACutvAqDvh7I9dddwxv9+jFmzGi6dVuI3629Dgf+5a8st/zy8+6FGuA+9VJVTVCPiImSNgH+09BlqUar9+zB4fttxrdDRnDOdaUNeANYfsmFmTR5CuMmTKbzAm1Zb/XlWG/15fjHXhuzx7+vL/ol4bEXP+Sk/zzMmYftzMF7bczBe208Y/R761YtGTJsNBfc+BTn3/jUbK0G3w4ZkY1yX7TGMq28/GIzfu6+UOeSX5NVj5+HDWOLTTecbX+LFi3ZZ7/9OfSwf9V47ldffkGbNm1o27YNI0eO5M03XufNN17n/vvu4ar/Xk/3xRabJf2QH75n6tTUP//NoK855+wzmDhhAq1bt6Z169YMGfIDvR59mKd6P8G5F1zE1ttsV94Xa1YP1db8/jSwdUMXoto0ayb+e+q+tGjRnCMvuJ/xEyfX+dyX3/6Cg069naW3PJHO6xzJYpscR4/NTuDf59/P6LETWLJ7Vx69+lC6dmpf9Pz/3P4cfzzhFkaMTveTL9C+Da1btQSgdasWdOzQhjatZ/9u+UzfzwDYdO0VWXvVpWc73mORzuy3w8y+9AU6FL9lyRqHZs2bs+CC3VhwwW60yprDJbH/Hw/gz3/5K82bN5/tnM0234JL/3MlL77ajzfe+YBXX3+bZ198hX8efgQtW7bki88/55+H/J0pk2f9fRiT3b4GcPNNN9ChfQeuvvYGXn/7ffq+8Q73/+9RVlnl10yePJlTTzqBb7/5Zt6++CZufje/S9pe0kuShkmaJGmgpMskdcpLc6ukKLJtW5BXK0kXSxoqaZykZyStWOSaPbNj47K0F0maq36fagvq/wfsL+nq7I1fU9Jv87eGLmAlOmL/zfntykvy6HPv8+TLH5d07rnXP8ndj7/Jj8PHztg3csx4rr//Zbb7x5VMnjKV7gt14og/bj7bue3atOLeS/7KvZf+jXc//ZbND7yMRTY6hqW3PJG9jrqB4aPGceg+m/LcLUfRsSAo3/rIawweMgKAey/9G3ts/VsWaN+GNq1bssW6PXnsmsNo0WLmxzemTy/pdVl16dq1K8+/3JfnX+7LG+98wBN9nmWf/fbnjttv5fe77si777w92znHnXgyW269DV26dJ2xb6GFFubvBx/KJZddAaRa/KOPPDzLedPzPkvTp0/n7PMuYKONN6FZ1t2zYs+eXPHfa2nbth0TJ07kzttvnQev2HIaoE+9K/AGcDCwDXAZcADwQEG6gcB6BVu/gjRXAn8DTgJ2B1oDzxV8QegCPA+0ytKcBPw9u27Jqi2oPw4sDhya/fwm8Fa2vZ091omkjpJ65G8xre412Gqx9OILcvLB2zPmlwkcfdGDZc37vc8G80CfNFBp+41Xne34BUfvzi5brM7Lb3/BTof+l34fDGTMLxP5cfhYer3wIVv8+TKGjRzLr3+1GMf8edYGmHETJvP7f1/PDz+NovtCnbjjwr/w06uXMPL1//D4tYex7BLdOOrCmb9jI8dMKOtrs8rVrFkzevRYguNPPIUjjz6OkSNHcvyxRzFhQt0/A5tuvgW/XXMtAF568YVZjrXPu3Vu2eWWZ/0NZm/2X2ihhdl+hx0BeP311+bmZVhdzefR7xFxZ0QcFxH/i4gXI+Jq4ERgK0n5fTUTIuL1gm3GLRiSegB/BY6LiFsiog+wK9AZ+EdePgcDHYHdIqJPRNwCHAccXHC9Oqm2oL5ZwbZ53pZ7XldHAYPzt6k/vV/OslaEi47enfZtW3PJ/z3DqLHjad+21Sxb82bpU9+iebMZ+0r5dvvWR6npcZkes4487tCuNX/edT0ArrjjuaLnDhv5C3c//iYAO2+22mzHP/r8e377+3M59apevPrul3zzw3D6DxzKXY+/wcZ/vIRn+/WfkTZ3a5w1LX/Yex9atWrFTz/+SN9XShs/u+pq6TP33XeDZ9m/0MIz76RYZpllazx/6ezYj0OH1pjGGo3h2WMpTeJbk2LsjNpHRIwgdSNvn5duO+DZ7FjO/dm5JXc3V81AOYCIeKmM2V0G3JS/o8XCqw+uIW3VWnKxFGzPOnxnzjp85xrT7bPD2uyT9VGvs9f5fFji6PhCv1pqYVq0SP2cA7/7ucZ0X347DIClFit+O9LoXyZwyS1Pc8ktT892bLctVwdg8pSpvPup+zWbotatW9Opc2eG/fQTgwcXnw+hVJ07d6Fbt4X4+edhdTvBo7PnqfqOfpfUkVQTzjcmIsYUS593XnOgJbAycBrQKyIG5SVZXtJooC3wEXB2RDySd7wn8FNEjCzI+jPgoIJ0t+QniIhRkoZkx0pSbTV1ACStIukfkk7MHlcpNY+IGBMR3+Vvau77UUv1u1WXAmDQ98Nn2T99+szR7Ll7zotZuOsCAIyp4ba42uy93e8A6PX8B4yb0Pi6TmzOxo8bx8gR6W9mu3btSjr3ow8/BGDxHj1mO7bu+usD8PXXA2s8f1B2bLHFFi/pulaaMvSpz9Yqm+2bk2+ACcA7wBBg37xj7wFHA7sAfwB+Bh6WtEdemi7AqCL5jiT125eark6qqqYuqTVwB/B7Um/JJNLAg5D0IPDHiPBf9zzr7n1Brcdzq7DVtEpbbX6zYg/23GZNgNkG4A0Y9CMTJk6mbZtW/G3PjXi676eznd+uTSv22zG1Drz50aCSrr3jpquy8+a/YerUaVx66zMlnWvVYerUqbRoUfufqDtuv3XG7We/Xet3M/ZHRK01vJdfenHG4LpNNt1stuM777Ibj/d6lIFffUnfV19hgw03muX4sGE/8eQTjwOw8cab1O0F2VwpQ0PIbK2yQK219Mz2QHtgFeAU4DFJW0XEtIi4YtYyqhfwGnAWUN7BSyWqtpr6ecAOpIEFnSOiLWnQwcHZ/vMarmiNzzF/2Zrrz9ifLddbaZbR6Z0XaMtf99iQ3jf8i1YtWzBk2Gguv33WfvOJk6Zw26OvA7DjJqty89kHsEyPbgC0aNGMdX+zDE/fdATLLrEQAFffNetgJYBj/rwVu2+5Bgt2njlwabGFOnHS37fjzgv/AsC5N/Tm/f7flfeFW0X48osv+OO+e9HrkYdn6beOCL768kvOO+csrv3vVQBstfU2/OpXK8xIc8F553DBeefwzttvzTKA7udhw7j5xus55sh0X/tyy/+KXXedfbGXddZdjw032hiA004+kVdfeWnGqPgB/ftzxGGHMmHCeDp16sz+fzqw7K/dZqpvTb1Yq+ycmt4BIuLDiOgXETeRauSbAbvVkHY68D9gJUlts90jgU5FkncB8vvP65quTqqqpg7sDZwYETfmdmT/OTdKakcaMXhMQxWusWndsgUH7LIuB+yyLgCjx05g2vTpdF6g7YzbewYOHsZeR9844z70fCdd/jArLr0Im62zIvvuuDb77rg24yZMolWLFrRsmfrbp02bzilXPMpLb30+2/lbrb/yjLXcx0+YzNRp0+jYIf2+TJkyjTOveZwLbnxqnrx2qwwffvA+H37wPpD6z9u1a8f48eOZNGnmqnybbrY5Z5934SznjR83jl6PPsw9d92BJDossABEMHbszFsze660MldcdU2N08Cef+El/O2gA+n/2af88+C/06ZNG1q0aMEvv6RFkDp27MR/rryahRbyFMVNwIfAFKCUKQT7A4tI6lLQr94zO5afbpa+8+yWt+4F6eqk2oJ6V2p+kf2Zi/4Hq9lDz7xL8+Zi3dWWZdklutG1U3vatmnNTyN+4ZMvf6DX8x9w52Nv1DiZzYSJU9jhkKvZa9s1+cN2a7F6zyVYsHN7pk6bxjdDhtP33a+4/v6Xee+z4uMT/3v3CwwZNprfrrwki3brSPPmzfjim594/o3+3PjAq3zypddRb8yWXmYZLrjoUt5843U++fgjfv75Z0aPHkWrVq1YZtll+fWvV2OHnXZmvfU3mO3cPffam65du/LBB+8z5IcfGDVqJNOnT2ehhRdmpZVWYetttmXb7XegZcuWNV6/Y6dO3Hn3fdxz91089eTjDBr0NVOmTGGppZdmo4024YA/H8QiiywyL98Co2LGIa5DGjRXdJCFpGbAnsAnEZFrGnoamE7qLr4pS9eFNKI9f53g3sBJkjpHxKhs357ZubOPEJ4DzetFPcpJ0nvAxxHxxyLH7gB+HRFrzG3+bdc4rHreDGsSRr51dUMXwayoNi3mzxpoKx7fp15/lwdcuE1J5ZT0EGnekw9JA+V+AxwL/AT8jlSDvg24B/iS1Ex+CKl5/vcR8XBeXtcBe5EG5n1PmlhmeWCV3D3tWaD/BPic1IW8OGkcwF0RcVipr7faaupnAw9IWprUf/EjsDCwB2k2nz0brmhmZlZuDVBTf5MUiE8gjTsbBNxIWkxssqSxwGjS4LmFgcmkLwHbZRPM5DsC+AW4AFgA6AtsmT9JTUSMlLQFcBXwCDCWVLM/eW4KX1VBPSIekrQbcDpwKWkEfADvk2bjeawBi2dmZlUuIi4gBeGajo8gDZyrS16TSOO8ah3rFRGfAVuWUMwaVVVQB4iIXkAvSe1JI99HRcTso7TMzKzqNWtWGZ3q1aLqgnpOFsgdzM3MGrEKGShXNSo+qEu6soTkERFHzLPCmJnZfFXfaWKbmooP6sBOJaQN0sAEMzOzJqfig3pELNPQZTAzs4bhinppKj6om5lZ0+Xm99JUZVCXtDywAtCm8FhEPDT/S2RmZvOCg3ppqiqoZ+viPgxsmtuVPebPONR8fpbJzMzmHcf00lTbKm0XAosCG5EC+m6kAH8z8DWwboOVzMzMrIFVW1DfFjgXeCN7/kNEvBwRfwceJS1ab2ZmjUR9l15taqqq+Z00z+7giJgmaRywYN6xJ0nzwZuZWSPRBONyvVRbTX0w0C37+Qtg57xj6wET53uJzMxsnnFNvTTVVlN/hjTp/cPAf4DbJK1DWiVnbdIiL2ZmZk1StQX144F2ABFxh6RfSMuutgUOA65vwLKZmVmZNcHKdr1UVVCPiPHA+LznD5Nq7WZm1gg1xSb0+qiqPnVJfSUdKmmhhi6LmZnNe1L9tqamqoI6MAS4BPheUh9JB0haoKELZWZm84YHypWmqoJ6ROxBuq3tr8BU4CbgR0n/k/R7Sa0btIBmZmYNqKqCOkBE/BIRt0fEDkB34EigK3Av8GODFs7MzMrKze+lqaqBcoUiYrikvsBSwIrAIg1cJDMzK6Om2IReH1UZ1CUtB+ydbSuTauj3A/c0ZLnMzKy8HNNLU1VBXdJRpEC+JjCaNC3sEcCLETG9IctmZmbW0KoqqANnAb2As4GnImJKA5fHzMzmITe/l6bagvrC2QQ0ZmbWBDiml6aqgroDuplZ0+Kaemmq7pY2MzMzK85B3czMKtb8nlFO0vaSXpI0TNIkSQMlXSapU0G6nSR9IGmipM8l/blIXq0kXSxpqKRxkp6RtGKRdD2zY+OytBdJalVy4XFQNzOzCtYAk890Bd4ADga2AS4DDgAemFkmbUhaTKwfsB1wH3CzpD0K8roS+BtwErA70Bp4Lv8LgqQuwPNAqyzNScDfs+uWrKr61M3MrGmZ333qEXFnwa4XJU0CbpC0WET8AJwKvBERB2dpXsjmTzkLeBBAUg/SlOaHRsQt2b63gG+BfwAXZeceDHQEdouIEVm6FsA1ks7LrldnVVdTV7KDpPMlXZ89bi+PpjAza3QqZJrY4dljq2yNkc3Iq7ln7gVWkrR09nxrUoydkS4L2k8D2+edtx3wbC6gZ+7Pzt261IJWVVDPmileAx4jfdPZOHt8HOgrqXPDlc7MzBoLSc0ltZH0W+A0oFdEDAKWA1oC/QtO+Sx77Jn3+FNEjCySrmfe856FeUXEKNKqpPnp6qSqgjpp2dXlgG0iomtErBQRXUn9Hstlx83MrJGo70A5SR0l9SjYOtbh0t8AE4B3SAF232x/l+xxVEH6XPDumpeuME0uXde853VNVyfVFtR3Bo6PiGfyd2bPTwR2aZBSmZnZPFGG5vejgMEF21F1uPT2wPqkgW4rAY9Jaj5PXmQZVdtAufbUvLzq0Oy4mZk1Es3q3zF+GXBTwb4xczopIj7MfuyXDXB7H9gN+DTb36nglFwNPtc3PrJImly6/P7zuqark2qrqb8HHFb4bUlSM+Bw4N0GKZWZmVWkiBgTEd8VbHMM6gU+BKYAywNfZT8X9nfnnvfPe1wkGwtWmC6/D71/YV7ZLW/dmb3ffo6qLaifCGwOfCnpckknSvoP6U3eNDtuZmaNRIWMfl+HNDhuYERMAl4ACu9J3wv4LBtMB2mU+3Tg9zNfi7qQRrQ/mXdeb2DLgoHee2bnPl1qQauq+T0iXpa0AXAyadBCrnniVeDciHBN3cysEZnfdytLegh4m1Q7nwD8Bjg2e/5Iluxs0v3r15BuP9uMFJP2yuUTEd9Jugm4WNI04HvSxDKjgevzLnkdqaX5EUnnAYsDFwPXlXqPOlRZUAeIiHdIs+6YmVkj12z+z0DyJik4n0BqzR4E3AhcEhGTASLiVUm7A+cAB5EmlPlrRBTeu34E8AtwAbAA0BfYMiJG5xJExEhJWwBXkb40jCWNATh5bgpfdUHdzMxsXomIC0hBeE7pegG95pBmEnBMttWW7jNgyxKKWaOKD+qSegFHR8QX2c+1CVJz/JvALdkbamZmVcqThZam4oM6qckiN9q9Iylw12ZxYD/SwIYD512xzMxsXnNML03FB/WI2Czv503rco6kfUn9E2ZmVsWEo3opKj6oz6XnSKvlmJlZFWuAgXJVreqCejbRzObACkCbwuMRcVlE/AhcMb/LZmZm1pCqKqhLWhR4kRTQA2a0y+T3s8/VwvJmZlZ5PFCuNNU2o9xlpHVtlyAF9HWApUkL1n9BCvZmZtZIVMiMclWjqmrqpPXT/0VaBg9AEfEtcJ7S17mrSQvOm5lZI1CGBV2alGqrqXcChkXEdNIqOwvnHesHbNggpTIzM6sA1RbUvyatXAPwCfDHvGO7MRfL1JmZWeVy83tpqq35/QnSCjf3k+bcfVTST6Rl8BYFjm/AspmZWZl5oFxpqiqoR8SJeT/3lrQ+aXGXNsAzEdG7wQpnZmZl55hemqoK6oUi4m3SEnlmZmZNXlUHdUkrA6sAPwMvR8S0Bi6SmZmVkUe/l6bkoC7ptHJdPCLmOJVrdqvasaRm9pbAA8CFpPVmDyTdrx7AJ5I2j4ify1U+MzNrWA7ppZmbmvoZzHmltLqqy/zsxwDnA4+SFo8/BViNdD/6McBnwKqkBeVPI93HbmZmjYAHypVmboL6y5QvqNfFn4GzI+IMAEn/Ax4GjoiIq7M0T0maCvwTB3Uzs0bDC7qUpuSgXtflT8toGeCFvOfPk1pk3ilI9zZp+lgzM7MmqRoGyrUGJuQ9z/08qSDdZKrj9ZiZWR25+b001RIEizX3z88uADMzawCO6aWplqD+gqTpBfteKdhXbVPempnZHLimXpqyBnVJbYA9SAurLAa0p+Y7EiIitqhDtmeWqXhmZmaNWtmCuqRNgHuARZh57zjMDOr5zeWijs3nEeGgbmbWRHn0e2nKEtQlLQM8BnQAPgWeAY4AfgEuJwX6zYHlSLO/XQ9MLce1zcys8XLze2nKVVM/mhTQnwJ2iYgpko4AfomIGTPQSfo7cDWwRkTsWKZrm5lZI+WQXppyDS7bktScfkpETKkpUUTcQJr5bTtJh5Tp2mZmZkb5gnoPYBrwXt6+IN1jXui67NgBZbq2mZk1Us2kem2lkrSnpEclfSdpnKT3Jf1Fef0Akl6UFEW2ngV5dZJ0s6QRksZKelBS9yLXXF9SP0kTJH0j6fj865WiXM3v04FREZE/+G0c0FFS8/zV0yJirKQxwIpluraZmTVSDdClfhQwiNStPAzYCriRNGNp/sDtvqT1R/INKnh+H2kl0YOBicC5QG9Ja0XEVABJywN9SGPRcmubXECqKF9SauHLFdS/B5aRpLzAPhjomRVwRg1eUiegM7PPCGdmZjaLBhgot1PBap/PS1oQOErS2RGRmx9lVES8XlMmktYDtgG2iYins30DSIuQ7Q7cnyU9FhgO7B0Rk4HnJC0EnCzpqogoKVaWq/n9c9KyqPm1777ZY+E3mbOzxy/KdG0zM2ukpPptpaph+e73gI6kuVfqajtgFKkGnst7APA+sH1BukeygJ5zL6nyu14J1wPKF9SfIw1S3C5v37WkvvO9JX0k6S5JH5BWUgvg/8p0bTMzs3lpQ+D7iBibt2+TrM99oqSXJG1ccE5PYEBBtzSkmnpPAEntSc36/QvS9CfFyZ6UqFzN7/cDawBtcjsi4j1JRwGXkvoUVilIf3mZrm1mZo3U3Ax2yyepI6mWnW9MRIyp4/kbAnuT+thzXgJuJ7U4L0ZqkX5W0iYR0S9L04VUUy80Euia/dw5e5wlXURMljQ+L12dlSWoR8RQ0rrnhfuvlPQ0aerYJYDRQJ+IeK4c1zUzs8atDF3qRwGnF+w7EzhjztdWD9JgtxeAK3P7I+L0gnSPA58ApzJr0/p8N88XdImI/sA58/o6ZmbW+JRhoNxlwE0F++ZYS5fUGehNGsT2+7wBcrOJiHGSniBVYHNGkiqzhboAI7KfR2WPnQqu3Qpol5euzqpllbb54uuX/tPQRTCbxdBRExu6CGZFLd2tzZwTVYCsmb1OTe05ktoCj5OC7XoRMXouLt0f2LLgrjBI/eQfZWUbJyl3p1i+FUnj1Ar72ueo7MuVSlpd0nGSrpZ0c8GxlpIWK3bzvZmZWaFm9dxKJakFadzXSsC2EfF9Hc5pD+wIvJW3uzepVr5FXroVSOPPnixIt4uklnn79iLV4l8rtfzlXKWtK3ArsENuF2n03kF5yVoC7wLdJK0RER+V6/pmZtb4NMB96teQAvTRpAnU1s079h6wNune8odJk80slqVdFNgzlzAi+knqA9wi6WhmTj7zIfBQXp4XA/sB90i6Blg1y//kgtvc6qRcq7S1Bp4mfQOZALwOrE/BNLERMV7SjaT53/cka4IwMzMrpgGWXt06e7y0yLFlgCFAK+A8YEHS7KmvAQdHxJsF6fci9enfQIq3TwOH52aTA4iILyVtnaV7kjSL3ek1XH+OylVTPxj4LWkSmu0i4mtJQ4CFi6T9HymoF97TZ2ZmNov5HdQjYuk6JNu2jnmNJrVWHzSHdK8B69aWpq7K1ae+N6mp/V8R8fUc0n5EmtO25JvqzczMrGblqqmvRArUz88pYURMkzSaNIDAzMysRg3Qp17VyhXUWwPj8/sJ5qAtadCAmZlZjRqgT72qlav5fSiwQHazfq0krUoK6t+W6dpmZtZIze8FXapduYL6y9njfnVIewqp/91TxZqZmZVRuYL6FdnjGZLWLpZAUkdJ15JuZZsGXF2ma5uZWSPVTKrX1tSUa0GXdyWdRbq37hVJfclWxZF0A7AksAFpLluA4yPiy3Jc28zMGq+yT3vayJVtRrmIOFPST8D5wKZ5hw4izS4HMBY4LiKuL9d1zcys8WqCle16KeuCLhFxraQ7SSvVrA90B5oDP5Jm3HkgIkZCao6v63q2ZmZmNmdlX6UtIsYC/5dts8kWrD8S+Bdpij0zM7OimmK/eH3Mt6VX84L5ERSsHWtmZlaMY3pp6hXUJW0FHAisQhrPMBC4LSIezkvThhTMjyUFcwHjmX3RejMzs1l48pnSzHVQl3QecHzuafa4CrCTpGsj4rBsopkHgF9laUaRbmW7IiKGz3WpzcysSXDze2nmKqhL2hg4IXv6M/AmKWivTeonP0TSK8BVQDfgJ+AS4LqI+KW+hTYzM7PZzW1N/e/Z48vArhExCkBSV+ARYEPgdqAlcCVwUkSMr1dJzcysyXFFvTRzG9TXJU31emQuoANExAhJRwJvZXlfHRH/rm8hzcysaXKfemnmNqgvCkwF3i9y7L3sWHNS87uZmdlcEY7qpZjbGfjaAcMjIgoPRMR0IDcIbuDcFszMzMxKM0/vU4+IafMyfzMza9zc/F6a+Tb5jJmZWakc1EtTn6DeVdLzNR0DqOU4QETEFvW4vpmZNXLy8PeS1Ceot2LW1diKqe34bP3xZmZmNvfmNqjfVtZSmJmZFeHm99LMVVCPiD+XuyBmZmaF3PpeGg+UMzOziuW530vjoG5mZhXLze+lmdvJZ8zMzBodSXtKelTSd5LGSXpf0l9UMAxf0kGSPpc0UdIHknYsklcnSTdLGiFprKQHJXUvkm59Sf0kTZD0jaTjC69XVw7qZmZWsaT6bXPhKGA8cDSwE9AbuBE4bWaZtHe27z5gO6Af8LCkdQvyug/YGjgY2A9YEegtqUVeXssDfYAhwI7A5cBZ2fVLpiIzvTZZQ8dM8ZthFWXiZE/KaJVp6W5t5kvD+H/7DqrX3+V/brB0SeWU1C0ifi7YdwOwF9AlIqZLGgC8ExH75qV5DRgVEdtnz9cDXgO2iYins30rAp8Be0fE/dm+64FtgBUiYnK27zzgEGDRiJhUSvldUzczs4o1v2vqhQE98x7QEWgvaVlgBeD+gjT3AltIap093w4YBTyTl/cA0kJo2+edtx3wSC6g5+XVGViv1PI7qJuZmdVuQ+D7iBgL9Mz29S9I8xlpUrZlsuc9gQFFFj77LJeHpPbAEkXy6k+aoK0nJfLodzMzq1j1Hf0uqSOplp1vTESMqeP5GwJ7M7OPu0v2OKog6cjssWteusI0uXS5NJ2L5RURkyWNz0tXZ66pm5lZxWom1WsjDXwbXLAdVZdrS+pBGuz2AnDlvHmF5eWaupmZVawyzD1zGXBTwb451tIldSaNfB8O/D4ipmeHcjXyTsDQvFNyNfgReemWKJJ1l7w0o/Lyyr92K6BdXro6c1A3M7NGK2tmr1NTe46ktsDjpGC7XkSMzjuc6//uCQzI298TmAwMzEu3pSQV9Kv3BD7KyjZO0mBm7ztfERCz97XPkZvfzcysYpWh+b0k2T3k9wMrAdtGxPf5xyNiIPA5sGfBqXsBz+WNYu9NqpXPWGJc0grAGsCTeef1BnaR1LIgr1GkW+JK4pq6mZlVrAaY+v0a0iQwRwMdCyaUeS+7b/wM4C5JX5H62/cC1gE2ziWMiH6S+gC3SDoamAicC3wIPJSX58WkiWnukXQNsCpwLHBywW1udeKgbmZmFasBmpO3zh4vLXJsGWBQRNwjqR1wQrYNAHaLiH4F6fci9enfQIq3TwOHR8TUXIKI+FLS1lm6J4FhwOk1XH+OPKNcHs8oZ5XGM8pZpZpfM8rd9vbgev1d/tNaSzSpJWHcp25mZtZIuPndzMwqVpOqZpeBg7qZmVWsuRnB3pQ5qJuZWcVySC+N+9TNzMwaCdfUzcysYrn1vTQO6mZmVrHkqF4SB3UzM6tY7iMujYO6mZlVLNfUS+MvQWZmZo2Ea+pmZlaxXE8vjYO6mZlVLDe/l8ZB3czMKpb7iEvj98vMzKyRcE3dzMwqlpvfS+OgbmZmFcshvTQO6mZmVrFcUS+N+9TNzMwaCdfUzcysYjVzA3xJHNTNzKxiufm9NA7qZmZWseSaekkc1M3MrGK5pl4aD5QzMzNrJFxTNzOziuWBcqVxUDczs4rl5vfSOKibmVnFclAvjfvUzczMGgkHdTMzq1iq57+5uqa0vKTrJL0vaaqkj4ukeVFSFNl6FqTrJOlmSSMkjZX0oKTuRfJbX1I/SRMkfSPpeM3FajZufrdZjBwxnP/ddxf9Xn2ZoT98z5QpU+i6YDeWX2FFNth4M7bbadfZzhn+8zDuv+s2Xu/7CkOH/ECz5s1YbPEl2GTzrdhz3z/Stm27kspw2QVn8+j/7gNg9d+uxRXX31qGV2bVKCJ46bmneKb3Y3z1eX/GjhlNy5atWKT7Yqyx1rrsuuc+LLpYj1nOuePma7nzluvqfI0+fT+oU7qrLjmXxx++H4DV1liLi6++ue4vxOZas4Zpfl8F2AF4g1T5rakC3Bc4pmDfoILn92X5HQxMBM4FektaKyKmQvoSAfQBngFOAVYDLgCmAZeUUnAHdZuh70svcN6ZJ/PL2DEAtGrdmhYtWjDkh+8Y8sN3DPzy89mC+gfvvs0pxx3BmNGjAWjXvj3Tp03ny8/78+Xn/XnqiUe5/NpbWHiRRetUho8+eJdeD91f1tdl1WnypEmcffLRvNnvlRn72rVrz6RJkxg08EsGDfySJx99kBPPvJD1Ntp0Rpo2bdvRpeuCteY9auQIIoIVeq5Sp7J88uF7PPHIA3P1Oqx+Gmjymcci4lEASbcCa9WQblREvF5TJpLWA7YBtomIp7N9A4DPgN2B3B+7Y4HhwN4RMRl4TtJCwMmSroqISXUtuIO6AfD2G/047YQjmTp1KltvvxP7HnAQyyy3PABjx47hkw8/4JOPZq3R/DzsJ04+9l+MHTOGFVdamaNPPJ0VV1qFiODD997hwnNO4/vB33LiUYdxw+330bx581rLMGXKFC4+9wyaNWvO8iusyIDPPplnr9cq3z233zQjoP/xoEPY+fd707FTZ6ZNm8YnH77H1Zeexzdff8VFZ53ErQ88QafOXQDYc98/see+f6ox3x++G8xf9t4JgK132GWO5ZgyZQqXX3gWzZo1Z7lfrcjn/f25bOwiYnqZstoOGEWqgefyHiDpfWB7Zgb17YCHsoCecy9wIrAe8GJdL+g+dWP8+PFcePapTJ06lX0O+Asnn3n+jIAOsMACHVl3g4046ODDZjnvvjtvY+yYMbRt147zL7uGFVdKtR5J/Oa3a3HuxVfSvHlzvvy8P08/+dgcy3Hn/93AN18P5A/7HcAyyy4/x/TWuD3X53EAttpuZ/b/y8F07NQZgObNm7PaGmtxxgVXADB+/DjeeeO1Ouf7zJOPEhG0atWaTbfcbo7p7739Jr4dNJDd996fpZZZrvQXYvUi1XdTR0k9CraOZSreJpLGSZoo6SVJGxcc7wkMiIgo2P9ZdgxJ7YElgP4FafoDkUtXVw7qxlOPP8JPPw5loYUX4aCDD6/zea+/9jIAW227Awt26zbb8WWWW5511t9oxjVqM2jgV9x1600s2n0xDvzbIXUvvDVaI4b/DMCveq5c9PhiPZZggY6dAJgwYXyd8pw+fTrPPJW+YK6/8WYs0LH2v+3ffP0V991xM4ssuhj7/+XguhbdyqgMA+WOAgYXbEeVoWgvAUcA2wJ/AtoBz2ZN7jldSDX1QiOBrtnPnbPHWdJltfbxeenqxM3vxjO9U41ok823omXLlnU+78chQwBYcqlla0yz1DLL8torL/Lh++8yaeJEWrdpM1uaiODic09nypQp/Pu4k2nTpm1pL8AapUW7L87gb77mi/6fFj3+w3eDGTsmjeX41YrFA3+h995+g2E/DgVg6+1rb3qPCC6/8CymTJnCP48+0Z/LBlKGgXKXATcV7BtT30wj4vT855IeBz4BTiU1rTeIqqmpS2oh6bfZ4AErk0mTJvF59kfzVz1X4ttBX3POqcez2zabsOX6a/CHnbbi/DNOZtDAr2rMY/r0aTUfmzYtSzOdb775umiaRx64l48/fJ9Nttia9TbcpB6vxhqT7XfZA4BnevfizluuY8zoUQBMmzaND997mzNOOAKALbbdkRVWqtuAt6efeASAhRZZlDV+t26taR976D4+/eh9NtpsK9ZZv7BV1eaX+tbUI2JMRHxXsNU7qBeKiHHAE8CaebtHAp2KJO8CjMh+HpU9zpJOUitS7X8EJaimmvp04HXSN6BnG7gsjcaPQ35g6tSpAHz37Tf854JzmDhxAq1at6ZVq9b8OHQITz3xKM8/05uTzjyfzbbcZsa5i3TvzreDvubrgV/WmP/XX808NnzYT7DiSrMc/+nHodxwzeW0b9+Bfx19QplfnVWzXfbYh2E/DuHh++/ijpuv5Y6br6Vd+w5MmjiRadOm0n2xHvztsKPYfa8/1im/X8aO4bWXXwBgq213olmzmus0w376kf+77krate/AIUccV5bXY01Sf2BLSSroV+8JfATpy4Ckwczed74iIGbva69V1dTUs9GIA0nfcKxMxo6d+YX1rltvol379lx4+TX0efktnnzxdW6+60FWXGkVJk+ezPlnnMx3g7+dkX6d9TYE4LmnezPkh+9ny7v/px/zVt4ApnHjxs2W5vKLzmX8uHEcdMjhdFto4XK+NKtyzZs352+HHc3hx5xMq1atARg/7hemTUtfQidNmsi4sWOZNq3mlqJ8Lzz7FJMnT0ISW++wa61pr770PMaPH8eBf/snC/pz2aDqO1Bu/pVT7YEdgbfydvcmxawt8tKtAKwBPFmQbhdJ+f2fe5Fq8XUfBUoVBfXMecCpkhZr6II0FjF95p0b06dP56QzzmXdDTaeUYtZfoWenH/Z1bRt25ZJkybywN23z0i/574H0L59ByZPmsSxh/+D1/u+wsSJExg/bhwvPvc0Jx19+Cy3sTUr+A174dk+9H35BVZcaRV223OfefxKrdqMGjmcY/75Z668+BzW33gzrr75Hh55ph93PNSHY04+GxB333YjJx91CNOy1qba5JreV119Tbov3qPGdC8//zSvv/oiK/RchZ1+v3eZXo3NLdVzm6trSu0k7SFpD2ApoGPuuaSFJG0kqZekP0vaTNJ+wCvAosBZuXwioh9pUplbJO0paSfgQeBD4KG8S14MLAzcI2lzSUeQ7l0/t+A2tzmqpuZ3gD2BhYCBkj4EfiQN+c+JiJjzjaek2xyAWYa+fj745zmOhm1s2rZvP+PnpZdZjt+tu8FsaRbsthBbbLMDjz/yIO+8OXOehUUW7c7ZF13OaccfyeBvB3H8v2cdtd62bVsOOeIYrrr0AoBZ3tuxY8dw5SXn07x5c4456fRam0Ktabro7FP45MP32XLbnTj21HNm7G/brh1bbb8zK6y0Cv/8y9588O5bPPX4w+yw65415jVo4Jd8ns17UFst/ZexY7j28gtp1rw5/zruVH8uK0BhZWA+WRgonG0o93wz4DugFamiuSAwjlSjPjgi3iw4by/SYL0bSDH3aeDw3GxyABHxpaSts3RPAsOA04FLSy14tQX1Dszav9ChHnkdRXrTZrj+v5dzzImn1SPL6tOt28ymxSWXXqbGdLljP2Ujh3PWXHtdbn+gFw/dfzfvvvUGw38eRrt27VltjTXZa/8/8ePQmel7LLn0jJ9vveEaRgz/mZ1335MeSy7N+PGz3pKUa2KdNn36jGOtW7ee4wQ21jh8O2jgjHvP96hhIpmlllmOtdfbiL4vPUffl5+vNag//eSjQJqRbqPNtqwx3R03X8eI4T+z/S570GOJpZhQ0+dy2rQZx1r5c9noRMQg5lzR37aOeY0GDsq22tK9BtQ+erMOqiqoR8RmZcxuttsc/vHPfw8uY/5VoVPnznRdsNuMe4LnpNj6Agt2W4i/HXpE0fSvvPDcjDTdF1t8xv6hQ34AoNdDD9DroZqn3/zo/XfZbpO1ATjn4ivYaNMtakxrjcc3Xw+c8XNtTeWLL7EkkAZ81mTa1Kk83+cJADbeYptab037cWjK58lHH+TJRx+sMd0nH77Hrlul25FPP/8/rL/x5jWmtfrxyqulabJtS8Vuc2hqTe85a62T/jh9O6j4LWf5xxbtXvfhDBHBs33SWJCtt9+pHiW0pqZZ3s3JPw0dUmO6kSOGA2nNgZq80e+VGenqMi2sVZiG6FSvYlVVUweQtAZwErAhaaadEaQBCudHxHsNWbZqte0Ou/D0k48x6OuveLNfX9Zeb9Z+9eE/D+O5rKaz7oZ1v1/3f/fdxRcDPqN9+w7s/od9Zzl27iVX1nru+WeczFNPPOpV2pqo5VaYeXfP4w/fz6FHzn6744jhP8+4RW2lVVarMa+nn0hN7z2WXJpVVl291uueccHltR6/5JxTeaZ3L6/SNh810IIuVauqauqSNgL6Ab8D7gFOyx5/B7wmacMGLF7VWnPtdWdM53r+mSfzet9XmJ6Niv/y8/6cdPThTJgwgY6dOvGHfQ+Y5dwbrv4Pr/d9ecbMXgDfDf6WKy45j6svuxBJ/OvYE+u8SpsZpNnk1l4vfSZ7/e9err/y4jTPAWn1trde78sx//wz434ZS4sWLdhp9+Kj1EeNHM6br6VFYVxLt6ag2mrqF5BWq9kxf+SgpGNJM/lcQKrBW4lOPfsCjjz0r3wx4DOO//chtG7dhhYtWjBu3C9AGrl+zkVXsGC3WSf0e+7p3tx1W6qxtG3XjpgeTJw4AYDWrdtwxLEnsq3/mNpcOPrkMznh3wfz9Zef89B9d/LQfXfStm07Jk2aOONLZ8tWrTj6pLNYYqmli+bxXJ8nmDZtKs2aN2fLbd0FVI0aZvB79aq2oL4GsEd+QAeIiGmSriTd/2dzYYGOnbj2/+7mofvv5rk+TzL420FMmTqFJZZcmnU32Ii99j+QhRZeZLbzDvjrwfR75SW++mIAI4YPR83EMssuz9rrbcBuf9h3lsFxZqXo3GVBrrrpbp56/GFefeEZvv7qC34ZO5aWrVqxyKKLsfqaa7PLHvvMcldFoVzT+1rrrD/bF1KrDo7ppdHsK8JVLknDgGMj4tYix/4MXBQRc/2bO3TMlOp5M6xJmDi5brOlmc1vS3drM1/i7Vtfj67X3+XfLdOpSX0vqKo+deAx4EJJs9xomj0/H+jVIKUyM7N5ogxLrzYp1db8fjSwCtBH0hjgJ9LMPx1J8+0e04BlMzMza1BVFdQjYmS2AP2OpAFxueXrXgWeyBZ9MTOzRsID5UpTVUEdZqzW1gs3tZuZNXqO6aWp+KAuqWsp6SOipAXlzcysgjmql6TigzrwM7OuxDYnXlnBzMyapGoI6n+htKBuZmaNRFMcwV4fFR/Ui92TbmZmTYMHypWm4oO6mZk1XY7ppam6oC5pY+DvwApAm8LjEVHzck1mZmaNWFXNKCdpG+B5oBuwFjCYNJBuRaA98HbDlc7MzMrO66mXpKqCOnAmcDmwQ/b81IjYnFRrn0IK+GZm1kh4mtjSVFtQXwnoDUwnjYhvDxAR3wBnAKc0WMnMzKzspPptTU21BfWJQLNIS8sNAZbLOzYWWKJBSmVmZvOEW99LU20D5T4g9Z8/AzwHnCzpZ1LT+znARw1YNjMzswZVbUH9cmCZ7OeTSEux5uaA/w7YrQHKZGZm80pTrG7XQ1UF9Yh4Mu/n7yWtCSwPtAX6R8TkBiucmZmVXVMc7FYfVRXUJW0FPJv1qZM9ftGwpTIzs3mlKQ52q49qGyjXB/hB0hWS1m3owpiZmVWSagvqqwG3kO5Tf03SQEnnSlq1gctlZmbzQEOMfpe0vKTrJL0vaaqkj2tId5CkzyVNlPSBpB2LpOkk6WZJIySNlfSgpO5F0q0vqZ+kCZK+kXS8VHo7RVUF9Yj4OCJOjojlgXWBR4E/Ae9L+kjSiQ1bQjMzK6uGuadtFVLl8Uvg06LFkvYGbgTuA7YD+gEPF2lFvg/YGjgY2I90B1dvSS3y8lqe1BI9BNiRNCj8LODoUguurHu6amXfZHYErgW6R8Rcr6c+dMyU6n4zrNGZOHlaQxfBrKilu7WZL73d/YeMr9ff5Z7d25VcTknNImJ69vOtwFoR8euCNAOAdyJi37x9rwGjImL77Pl6wGvANhHxdLZvReAzYO+IuD/bdz2wDbBCbsC3pPOAQ4BFI2JSXcteVTX1fJJaS9oDeID0TWhh4OmGLZWZmZVTQ8wolwvoNZdJy5KmJ7+/4NC9wBaSWmfPtwNGkeZWyeU9AHgf2D7vvO2ARwru4LoX6AysV0rZqyqoS2ouaXtJdwA/MTOYHw0sFhHbNWgBzcysKeiZPfYv2P8Z0IqZ86n0BAbE7E3in+XykNSeNBtqYV79SdOh96QEVXVLGymQdyZ9yzkbuDcivmvIApmZ2bxT3zZ+SR2BjgW7x0TEmHpk2yV7HFWwf2T22DUvXWGaXLpcms7F8oqIyZLG56Wrk6qqqQNXAitFxJoRcYkDuplZI1f/gXJHkZbpzt+Omo+vYL6qqpp6RJzZ0GUwM7P5pwwzyl0G3FSwrz61dJhZI+8EDM3bn6vBj8hLV2yhsS55aUbl5TWDpFZAu7x0dVJVQd3MzKwUWTN7fYN4oVz/d09gQN7+nsBkYGBeui0lqaBfvSfZAmQRMU7SYGbvO1+R1NZQ2Ndeq2prfjczsyakEtdTj4iBwOfAngWH9gKeyxvF3ptUK99i5uvRCsAawJN55/UGdpHUsiCvUaRb4urMNXUzM6tYDTH1u6R2zLzlbCmgY3YLNcBLETEMOAO4S9JXwAukILwOsHEun4joJ6kPcIuko4GJwLnAh8BDeZe8mDQxzT2SrgFWBY4FTi51obKqn3ymnDz5jFUaTz5jlWp+TT7z1bAJ9fq7vNxCbedm8pmlga9rOLxZRLyYpTsIOAFYktQMf1JEPF6QVydSv/7upIr008DhEfFDQbr1s3SrA8OA/wIXFrkdrvayV2tQl9SWdCvAqIiYUI48HdSt0jioW6VqzEG9mlVdn7qkHSW9BYwFvgPGSnpL0vZzONXMzKqM6vmvqamqoC5pV9IiLpNJ9xnuS5pNbhLQS9IuDVc6MzMrt0ocKFfJqqr5XdJ7wCcRsX+RY3cCq0TEGnObv5vfrdK4+d0q1fxqfh/088R6/V2eX+WsFFVVUyfdx3d7DcfuoMQ5cs3MrMI1zNKrVavagvoI0g35xaxIiTPvmJmZNSbVdp/6fcB5kiYAD0bEqOx2gT2Bc0gL1puZWSPRFAe71Ue1BfUTSRMB3ABcL2kK0JLUyPIQcFIDls3MzMqsKQ52q4+qCuoRMQn4vaRVgY2YOSn+qxHxUYMWzszMys4xvTRVFdQlbQy8mwXwjwqOtQfWjIiXG6RwZmZmDazaBsq9AKxcw7Ge2XEzM2skfJ96aaqqpk7tLTHtgbJMF2tmZpWiCUbmeqj4oC5pXWD9vF37StqwIFkbYBfgs/lWMDMzm+eaYm27Pio+qAPbAKdnPwfwryJpppAC+qHzq1BmZmaVptqmiZ0OrBsRb86L/D1NrFUaTxNrlWp+Tb/6w6jJ9fq7vFjnVk2qrl8NNfUZIqLaBvaZmVk9uPm9NBUf1CX9tpT0EfHuvCqLmZnNX55RrjQVH9SBt0l96XOiLF3zeVscMzObbxzTS1INQX2zhi6AmZlZNaj4oB4RL9U1raRl5mVZzMxs/nJFvTQVH9TnRFI3YC9gX2Bd3PxuZtZoeKBcaaoyqEtqB+xGCuRbklZqew84siHLZWZm5eWBcqWpmqAuqTmwLSmQ7wy0A4aSXsPeEXF/AxbPzMyswVV8UJe0ASmQ7wl0A4YDdwJ3Ax9nz4c2WAHNzGzecUW9JBUf1IFXSLeqvQBcBjwdEVMBJHVqyIKZmdm85ZhemmoI6h8BqwKbANOAbpIejoixDVssMzOb1zxQrjQVP+1qRPwG+DVwMfAr4FZgqKT7SSuzeb52MzMzqiCoA0TEpxFxUkQsC2xECuybZI8AR0jauIGKZ2Zm84jq+a/k60kHSooi2wUF6Q6S9LmkiZI+kLRjkbw6SbpZ0ghJYyU9KKl7Pd6OOaqG5vdZRERfoK+kf5GWZd2HVGPfVdI3WeA3M7NGoAGb37cFRuc9/z73g6S9gRuBc4HnSXOlPCxpo4h4Pe+c+4BVgIOBiVn63pLWyo0NK7eqWnq1JpLaArsC+0TEznObj5detUrjpVetUs2vpVdHjp9Wr7/LXdo1L6mckg4E/g9YKCJ+riHNAOCdiNg3b99rwKiI2D57vh7wGrBNRDyd7VsR+Ix5eBt2VTS/z0lETIiIe+oT0M3MrPJI9dvKXx4tC6wAFAble4EtJLXOnm8HjAKeySWIiAHA+8D25S9Z0iiCupmZWZl9ImmapIGSTswmQAPomT32L0j/GdAKWCYv3YCYvTn8s7w8yq7q+tTNzKzpqO80sZI6Ah0Ldo+JiDE1nDIEOB14g3R31c7AOcDiwGFAlyzdqILzRmaPXbPHLkXS5NJ1LbK/LBzUzcysYpWhCf0oUpDOdyZwRrHEEdEH6JO362lJE4AjJZ1b79LMY25+NzOziqV6bqSZSJco2C4rsRj3k1YAXZ2ZNfLCGU1zNfgR2ePIImly6UYU2V8WrqmbmVmjlTWz19TUPjdyfek9gQF5+3sCk4GBeem2lKSCfvWepJlS5wnX1M3MrHKVoapeBnuTpil/LyIGAp+TFhnLtxfwXERMzp73JtXKt5jxUqQVgDWAJ8tWsgKuqZuZWcWa3+upS+pDmlAmV5veGfg7cEVE5FYEPQO4S9JXpMXG9gLWAWbMbBoR/bK8bpF0NDMnn/kQeGheld9B3czMKlYDzCjXHzgI6EFqzf4c+DdwVS5BRNwjqR1wQrYNAHaLiH4Fee1F6r+/gRRvnwYOn1ezyUEjmVGuXDyjnFUazyhnlWp+zSg3bnL9glT7Vk1rnTfX1M3MrGI1qYhcBg7qZmZWuRzVS+KgbmZmFWt+D5Srdg7qZmZWsZpWj3j9eaCclV021/JRwGW1zK9sNl/5c2lNgYO6lZ2kHsBgYImI+K6hy2MG/lxa0+AZ5czMzBoJB3UzM7NGwkHdzMyskXBQt3lhDGm9Yg9Gskriz6U1eh4oZ2Zm1ki4pm5mZtZIOKibmZk1Eg7qZmZmjYSDupmZWSPhoF7lJJ0hKfK2iZI+k3ScpJL/fyW9KOnxeVHWuSVpkKSrG7ocVj+SPsg+oxsVObZpdmytvH1nSFp//pZyziQdmJW1W0OXxayQF3RpHCYAm2c/twU2Ay4gfWm7oMS8DgWmla9oZiBpFWC17Om+wCt1OO104BfgtXlVLrPGxkG9cZgeEa/nPX9B0qrA7pQY1CPi07KWrIJIahsRExq6HE3UfsB04CVgT0n/iogpDVymBiWpOdCsqb8PVl5ufm+8xgIt83dIukDSR5J+kfS9pHskdS9IM1vzu6SNJb0maYKknyXdIqlrTReW1F7SOEnHFDn2oKR+eemuljRA0vismf06SZ3m9OIk7S7p/ay74QdJl0lqk3c815y7Q3bNMcADc8rXyk+SgH2A54HLgAWBbedwTm4CjYvzupY2zY61yf6/f8j+/9+XtNsc8jtD0ghJhb8Tv87y3iZ7voOkZyT9JGmMpDck1VrW7Lyu2e/Fz9nvyWuSNi5I86KkxyX9SdIAYBLwmznlbVYKB/VGQlKLbFtA0s7A74EHC5ItDJwH7AAcASwNvCSpxhYbSWsCz5C+JOwJHA/sBPTOahqziYhxQC9g74K8FsiufXe2qx3QHDgZ2A44BdgEeGQOr3Xn7LV9CuwKXAQcDNxZJPkNwFfAbsAlteVr88z6pM/a3UAfYDipCb4262WPV2U/rwe8m+27C/gH6f99V9Ln4H/Z56Im9wBdgG0K9u8D/AQ8mz1fBngM+CPpd6gv8GTuC0Ux2e9Bb9LvxfGk35NfgGey3598awHHAqcB25NWjTMrn4jwVsUbcAYQRbZ7gea1nNccWDxLu3Xe/heBx/OePwR8A7TM27d1dt5OteS/c5bmV3n7DgCmAovUcE4LYIPsvBXy9g8Crs57/i7wWsG5f8/OWzV7vmn2/NqG/j9q6hvwX9K4j07Z8+uAcUCHvDS5/6+18vYFcExBXqtl+/9RsP814J05lONd4K6CfV/lf7YKjjXLPpN9gLvz9h+YlaFb9jz3Wd8mL03L7Pfmf3n7XgQmk5Z+bfD/F2+Nc3NNvXGYAPwu2zYk1cK3BW7MTyRpu6xZcDQpuObWlF6hlrw3Ah6NvH6/iHgaGJVdqyZPZWnya+t7Ay9ExI95ZfqjpPck/QJMAV6trUySOgCrM3srxH3ZY2GZnqiljDaPZa1AewJPRsTobPfdpFaaWpvMa5AbOV/YlXIfsIak9rWcew+ws6S2WdnWBpbN9ufK20PSbZK+J/2OTCF9iZ3T78iYiOiT25H9vjzE7J/HDyPCtXObZxzUG4fpEfF2tvWNiCuBs4A/S/o1gKTfkZrEfyA1La4HrJud36ZYppkuwI9F9v8I1NivHhGTgf+RBXVJCwJbMbPpnawf9HbgTeAPWXlyf+hrKlNnQIVlygLGpCJlKlZ2m3+2BhYCHpPUWVJn4CNgCHNugi+mCzAlIkYU7P+R9LnoXMu59wLtSc3kkJrevyEbXa90C2gvUiA+jXQXye9ITetz+h35qcj+Yr8j/jzaPOXR743XZ9njKsDHpGA5GvhDREwHkLRUHfIZQeqLL7RIdqw29wAHSVqN9CViGqn2krMn8H5E/CO3Q9Imc8hzFKmpc5YyZYPrWhcpk1csali5wP1/2ZZvIUkLR0SxgFiTEUBLSV0iYmTe/kVI/9ejajoxIgZL6gvsLelB0hfJOyIi9xlZHlgD2DUiHs2dl6vZz6FMdf0d8efR5inX1BuvX2ePP2ePbUlNifl/VParQz6vArvmD6aTtBWpRvRqTSdlXgSGkmpE+wC985pgc2WaXHBOrWWKiF+A94E9Cg79Ia+8VgEktQN2IQ183Kxg24dUqdirliymMHsNOff/u2fB/j2B9yIN0qzNPaQBajsCi5HX9E76PELeZzL74rvBHPJ8Fegoaeu881qQvkj782jzlWvqjUMzSbmm9FbAmqSR5J8CL2f7nwH+DVwl6WFSzfmPdcj7XFLz5OOSriLVPi4gNZk/WduJETFN0v2kgUULUzAaPivTfyWdCvQj/bHdog5lOgN4RNKdpBHvK5JG9f8vIj6qw/k2f+wCdACujIgXCw9KOo5Uk7+qhvM/A3aR9AppYN2AiPhQ0kPAZVkNegCwP2mE/S51KNMDwBXAtcCnEfFB3rH+pHEmF2Qj2juQ1l//fg55PkH6fbhT0gmkJvbDge6kz6XZfOOaeuPQlhQU+wHPkf6g3AlslhvgFhFPkm632YXUb7gxqbZSzIzafES8Q+oX7UjqI7+Y9Edsu4ioy8xz9wCLAuOBwulnrwcuzcr7ELAEdehnjYhepJrZqsCjwAmkW9f2r0N5bP7ZF/iW1GJTzG3AupKWq+H4P0l/o3oDb5G+rEL6f76R9P/+KOlzsEdEPDanAkXEMNLvSGEtnYiYRJqwaRIp+J9F+lL70hzynEb6QvoE6ffjf6Tfl62z3x+z+UYzu5PMQNI7wMcR8aeGLouZmZXGNXUDQNKikvYl3Qf8VkOXx8zMSuegbjl7kyYJuRe4uYHLYmZmc8HN72ZmZo2Ea+pmZmaNhIO6mZlZI+GgbmZm1kg4qJuZmTUSDupmZmaNhIO6WQWSNEhSSDqwYP/S2f6QtPS8vJaZVR8HdWu0JN2aFwDzt18k9Zd0o6TfNHQ5zczKxUHdmoIppEU2clsb0iIwfwXelnRwA5atVFNIi5gMyH42M5vBQd2agtciYtHcBrQjLVLzJWmlwv9WS409Ir6PiJ7ZNqfVw8ysiXFQtyYnIiZHxDOkFeumkH4Pqqm2bmZWlIO6NVkR8SnwdvZ0LQBJB2b97oOy59tJ6i3pJ0nTJf07Pw9Jv5J0raTPJY2XNFbS+5JOl9Sppmsr+YektyWNkzRc0rOStq2tzHUZKCepjaTDJL0gaZikSZIGZ8+PkLRgLfm3lnSKpM8kTZD0s6RHJK0+h3J1lXSupA+zMQvjJH0i6SJJC9d2rpmVT4uGLoBZA/sue5wtAEs6GriEtL78aGB6wfGDgGuBltmu8UBr4DfZ9idJW0XEVwXnNSet5b1ntmsaaQ3vzYHNJR0xty9G0q9I69avkO2aDowCFgJ6AJtmr+XWIqcvALxK+oIzKTt3QVKLxlaSNouIN4tcc3XgKWCRbNeE7NyVs+0vknaIiDfm9nWZWd24pm5N3VLZ48iC/YsAFwLXAN0jogvQAXgQQNL2wI3AVOB0YLGIaE/qr9+A1AKwDPCQpMLfs2OZGdDPBLpGRFdgcVKwv5QUhEsiqTPQhxTQfwT+CHSMiAWzcq0KnFvkteacCXQDtgXaZ693Y9IXn3bAlUWu2QnoRXq/vga2BNpHRAfS+/AZ6YtBL9fYzeaDiPDmrVFupNpoAC/WcPx3pFpyAFdk+w7Mngdwdw3nNQe+ytLsWUOarsAPWZrd8/a3I9WUA/hPkfMEPJdXhgMLji+dd2zpgmPnZ/vHAiuU8D4Nys4bDyxf5Pjv8665ZMGxk+Zw7mKkloIALmzoz4Q3b419c03dmhxJi0n6I6mG2QyYTFpLvtDFNWSxCbAs8E1EPFAsQUSMAHpnT7fOO7Q10JHUPH1hkfMCOK8OL6OYP2WPV0XE53Nx/oMR8WWR/b1IQRng1wXH/pA93lns3Ij4Abgue7rPXJTJzErgPnVrCjaRFDUcG0+qDRcGwQnABzWcs3722F3S0Fqu2yF7XDJv35rZY/+IqOncV0nN+nX+/cwGzXXPnj5R1/MKvFVsZ0RMkfQTqYm9S941WzEzyD9bS77PAscDS0haKCKGzWX5zGwOHNStKZgCjMh+zjUVfwe8AtwQEd8WOWd4REwvsh9mBs9WzBwcVpt2eT/n+sprvMc8IiZJ+hlYtA555+SX45sSzss3tpZjE7PHlnn7upK6IqCW18PMwYgACwMO6mbziIO6NQWvRcSmJZ4zrZZjuUD2XERsOXdFMjMrP/epm5Xux+xxyVpTFZerpS5WU4KsWbtbifnmN+UvVWOq8hrBzC8/i9eSrkfezz/Nu+KYmYO6Weleyx5/JWmFWlPO7p3ssaekmpruN6TEVrSI+IY02h5gxxLLNFciYjLwUfZ0i1qS5lozvnV/utm85aBuVrrnmdlvfXk2mUxRklpK6pC362nSLW3NgeOKpBdw4lyW69bs8bC5+LIxt+7PHveXtEzhQUndgX9kT++ZT2Uya7Ic1M1KFBFTgENJt6VtBzwtab3cJDOSmklaWdIJwOfA6nnnjgcuyJ4eKek0SQtk5y0K3Ea6ZW78XBTtYtIEMB2AlyTtJ6ldXplWk3S5pN3mIu+aXAMMJg0GfEbSZtkXEyStR7rnvjOp2f3SMl7XzIrwQDmzuRART0raH7iZNL3ra8AkSb+Q7kPPHyVeeDvdxaRb2/YgzeJ2mqQxpOAHcARwNCX2jUfEqGzu+CeA5YE7gWmSRpECfess6ful5DuHa46WtAvpnvzlSK0Y47NbCNtnyUYAu7jp3Wzec03dbC5FxD3Ar0g17/dJ86V3Jt0a9gZwGbBhRPQtOG8aadKWg4F3SZPfQAqIO0TEVfUo0+fAasCRQF9gDGlO95+AF4B/kSaTKZuIeA9YhTRpzifZ7mZAf9Lc+StHxOvlvKaZFac0gZWZmZlVO9fUzczMGgkHdTMzs0bCQd3MzKyRcFA3MzNrJBzUzczMGgkHdTMzs0bCQd3MzKyRcFA3MzNrJBzUzczMGgkHdTMzs0bCQd3MzKyRcFA3MzNrJBzUzczMGgkHdTMzs0bCQd3MzKyR+H/rvwIROslflAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/axel/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/sequential.py:425: UserWarning: `model.predict_proba()` is deprecated and will be removed after 2021-01-01. Please use `model.predict()` instead.\n", - " warnings.warn('`model.predict_proba()` is deprecated and '\n", - "/home/axel/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/sequential.py:425: UserWarning: `model.predict_proba()` is deprecated and will be removed after 2021-01-01. Please use `model.predict()` instead.\n", - " warnings.warn('`model.predict_proba()` is deprecated and '\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAGoCAYAAAB13vBmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABDrAAAQ6wFQlOh8AACRRUlEQVR4nOzdd1zV1f/A8ddhD0GGqCjg3nuPzD1KzdQ0U8uyYe49M3OUlpWjMkdL+9Yv98q9LVNLy8y9t+IEFNlwz++PDyAgKCD4YbyfPu6De89nvS8gvDnnfN5Haa0RQgghhBAZy8rsAIQQQgghciJJsoQQQgghMoEkWUIIIYQQmUCSLCGEEEKITCBJlhBCCCFEJpAkSwghhBAiE0iSJYQQQgiRCSTJEkIIIYTIBJJkCSGEEEJkAkmyhBBCCCEygSRZQgghhBCZQJIsIUS6KMNzSqn/U0qdUUrdV0qFKKVOK6VWK6VeVUo5mh1nZlFKNVZK6WQekUqpa0qpDUqpLo85R0ul1EKl1HmlVGjs43xsW8vHHOuglHpbKbVWKXVVKRWulApUSh1VSn2vlGqVse9YCJFWShaIFkKklVIqH/AL0OIxuzbRWu/M/IiePqVUY2BHKnadoLWemORYZ+B/QMfHHLsc6KG1Dk1yfHVgCVDiUQdrrVUq4hNCZBLpyRJCpIlSygHYSOIEayXQFWgKvALMA4IzMQarLNhLNhBoCLwBXEvQPlwpZZtk36QJ1g9Am9jH/ATtL8XuG08pVRrYyoMEKwL4EmgHNAPeBlYBMel+J0KIjKG1loc85CGPVD+AUYBO8Bibwn5eQMHY540THpNkvzcSbLuQoL1okutUBr4ArmIkECMTbAsH3JOct2OC7ed50HM/E9gJXAbuA5GAP7AWaJOGz0PjJPE1TrBteJJtBRNsa55k2/Rkzv1lkn2aJdi2IUF7VMLrJjlHJbO/V+Qhj9z+kJ4sIURavZHg+Vng4+R20lrf0lpfz8DrLsPoLSqE0Qt/Cvgtdps98HKS/V9L8Pw7rXXc3IhBQCPAB3AGbIGCGL1Ia5VS/TIwZoAw4FaC168keB4NfJLMMVNityU6RilVEEg41+onncJwrNb6cHqCFUJkHBuzAxBCZB9KKSegbIKmLVpry1O6fAlgGsZQWT6MBO9bjIQJjKRqXmyc7kDr2PYYEg/BfQScAAKAUIwErQZGYgPwoVJqntY6YZKTGpWUUjEYPXCDE7TP0FonHLqrkuD5Ja31zaQn0lpfV0pdiT1XwmOqAwnnWW1KY4xCiKdIkiwhRFq4J3l95ylee6bWenjCBqXUaeArjLieUUoV11qfw+jVsovdbZ3WOuEcqbXAEKAuRg+WfZLruGMkkkfSGN+XSV7fAD7SWs9K0u6W4PlDCVaS44smOcbMz78QIo1kuFAIkRaBSV57PsVrL0/aoLUOB35K0BQ3RPhqgrZv454opZoDfwBdgCI8nGDF8XiiSA35gWpKqaQ/Z4OS7JOSAskcY+bnXwiRRpJkCSFSTRulBI4naGqulEpNmYBEtWKUUgl70b1SeXn/FNq/SfD8VaVUUeCZ2NdXMCaKxxnJgx7800B3jDsCGyc5Z3p+NjYBnIA+gAVjWO9NjBsFEjqU4LmfUuqhREspVQBjzlic/2I/HiDx5/KRtbSEEOaSJEsIkVYLEjwvycNJBGDU0oqdqA0P98AkTCDapvK6yRb101ofBfYmiOcrHsxb+iHJfCi/BM+/1Fr/orXeRQaVO9Bah2mt55L4czQ2SSK1MMFzG4zEL6kxJJ7OsSj2/NcxymfEeU0p9WxysSilKqYhdCFEJpAkSwiRVl8C/yR4/bFSaplS6uXYKuidlVKzgDM8mCR/jsR3y/2slOqjlFqJ0ZP0pL5N8DwuabNg1J9K6FyC528rpdoqpXpgFFbNSJMwyiuAcQfj6LgNWuutwOoE+w5TSn2rlHo+9vEdxh2QcVZprbcleD2YB0mrLbBZKTVDKdVGKdVUKfWGUmopcDBj35IQIq2k4rsQIs2UUl7A/5GGiu9KqTlA72T2OQxUin1+UWtdNHb/ohj1reIU01pfSCEeZ4wCoK4JmjdqrZ9Psl8LYHMyp9iOUUj1obhTkkzF90THKKW+xxguBKOMQwmttX/stjwYn792j7oGRjL2qtb6fpJrS8V3IbIB6ckSQqSZ1voWRr2m1hi9QOcwyiGEYZRW+BXoAfyV4LDhwByMmlERwL8Yc6KmZ0A8ITzcG/VtMvttAV7EmNsUhpGYzeTxyU56JKx15YgxBBgXx32t9YsYn7/FwEWMgqrhsc8XA6211u2TJlixxx8AKgLvAOsx5qtFAncx5szNB57LhPckhEgD6ckSQgghhMgE0pMlhBBCCJEJJMkSQgghhMgEkmQJIYQQQmQCSbKEEEIIITKBJFlCCCGEEJlAkiwhhBBCiEwgSZYQQgghRCawefwuuYNSyh6j6vQtMmgdMyGEEEJkedYYC9Uf1lpHZOSJJcl6oBKw3+wghBBCCGGKWsDfGXlCSbIeuAWwb98+vL29zY5FCCGEEE+Bv78/tWvXhtg8ICNJkvVADIC3tzc+Pj5mxyKEEEKIpyvDpwrJxHchhBBCiEwgSZYQQgghRCaQJEsIIYQQIhNIkiWEEEIIkQkkyRJCCCGEyASSZAkhhBBCZAJJsoQQQgghMkGWSbKUUiWVUnOVUgeVUtFKqSOpPE4ppUYrpS4ppcKUUnuVUnUzO14hhBBCiEfJMkkWUAFoA5wBjqXhuFHARGAG0BbwBzYrpYpneIRCCCGEEKmUlZKsNVprX611J+BAag5QSjkAY4BpWusZWuttwCtAADA880IVQgghhHi0LJNkaa0t6TisPuAKLElwnkhgBdA6g0ITQgghhEizLJNkpVPZ2I8nkrQfB/yUUo5POR4hhBBCCCD7LxDtDkRorcOTtAcCKnZ7WHIHKqVcMXrB4hTMlAiFECK78feHXbvAkp4BhiSio2H7dvDwSHmfbdsgb94nvxYQZhVDhJUmBk2M0kTfuUXM2TPEONgR6mhDiK3GAsRYQYyCGCtNjIJoK7hvC2E2Gq0gyspoi7aCKCvNSQ8LXqEKrUBjPCyKB68TfLQk2CfpduMYHb/9lIcmf6gyYo2PCaJjPx7OZ6HQfYWK3T+OVrEf09WmH27LsHM/fM5k21J5Hv88GocosEm4MYNoixVRf9cC68CMP3ms7J5kPYmhwHizgxBCiDSJiYGLF1PefvgwrFkD+/dDvnyPP9/27eDkBDaxvw7u3YvfpIlNMqyNpCPMFu7bJU5Aoq2Mtvt2xi/G6CTbzrtBnkiItIYoWysjYfEEt/DYZMIKoosbCcb1Qi6EWFuwsyhCrS385xpKgQhbACxoLCrBRwUxaCwqrh2irR71mzgy9pF5lAYrVOw/Yh8q/qMVoLRCJdjHgibYKooSMa5YayusUdhghbVWWKMoguJmvjBKx7gZ14i7Fg8yF5Xg+iTZniC/SaHtEedL7Tn048+RuC0NcYbDNasQysS4k9H2/laBA3+WpWiJE1zgVIafH7J/khUI2CulHJL0Zrlj/Hx4VHo6HfguweuCwP6MD1EIIWL99x+cPv3ofc6dg5s3wdZILqKxEEYUEdERRMybzS3n2ARDPUhS4p7fdDZ+4Vnikh2LG9EebsQozSXHSGwtiigrTYh1DEddwnGIUUSVdSVKWbjirghT0djgQoQlCn/bpAMEGSFxz5iXkxc2VjbxD2sra+6E3qGYezEKOOWjJRAVE0URtyJYYYWVSv5hbWUd//xGyA3K5SuHtbKOP2fC56FRofi6+sa3J92uUHg6eWJjZYOtlW18bHbWduSxy4NSRnpkpazinyulkn+7IssJCgonLCwKb28Xrl0LZtu2czRu7IGf36JMuV52T7Li5mKVAf5L0F4WuKS1TnaoEEBrfQ+I/5NN/pMIIR4pIADu33+oOSoqnCv7thJ+5SKRd25w49BeYlyciVSaKCsLUUcOcbagPU7RioiocE7kA4do+NcbXCKMHp5IazjlabRDbO8REGwHloQzZ4elNeig2EdiNlY2KBT5nPJRIE8B7KztyG9lS0BYAKU8S5HXPi82VjaERYdR0r0ktta22FrZYmttS3BEMMXdi2NrbZsoQYKHk6a4xMXFzgUnW6f489hY2cjPXPFUaa1ZvPgoQ4ZsombNQqxZ05VChVx47bUqXLlyJdOum92TrD0YiVJnYpMspZQt0BFYb2JcQoisTGvYscMYGtu2DQ4ehD/+MOYNWVtzJm8M15xiuOmkCbS38G+e+zhFGT1F/nngjhMEOcD5pCMYjkCdJG1lACIeCsHHoQDHo4Kp4loKZytb6ljZcj3iDlVcS2Hr7IpNHldsrWyJiIkgr31eCuQpgL21Pfcj71PCo0SKPTUA+ZzyPUhyYrfZWNmQxy4PeezyxO8nRG5w5kwA/fqtZ/Pms1SqlJ8xYxo8tWtnmSRLKeXEg7ILRQBXpVSn2Ne/aa1vKaW2AUW01iUBtNbhSqmPgQlKqVvAYaAv4Al8/nTfgRDCFGFhEBRkPD92DEJDH9olZud2/PNAKFFc0/fwX/kT/i5wwxnuOsB/ZcC1KIR4RLLb4+HeqjhO2BJBDPmtXADoYFsUa6wood0pW6oe9l4FsctXABtrO/I758fW2hY7azuslTX5nPLhaOuIvbU9dtZ20pMjxFOwZMlRevRYibW1FZ991oJBg+pga/v0/sjIMkkWkB9YmqQt7nUTYCdgzcMxT8WYHzcc8AIOAq201ucyK1AhRCa5devBHW0XLhjzkyZONOYx5csH1sn8cPT357wbnMhnDMFddYH/ChrzlCKtjd6nK0lvXOv04KmbrQuO9nkICg+iuncVWjvkxcvJi2bFmuGb1xcHGwd8XX0p7Fo4k960ECKjRUdbsLGxolatQrRrV4bPP2+Jn1/G3MGaFkrrTLgvMhtSSvkAly9fvoyPj4/Z4QiR80VEwOXL8N57Rm/U2rXJ7nY9DxzJD4fql+DXwvdRQIiK5oB9AG4WO4JVFJFWiSdU+zoU4F50CDVcy+Bq7Uxx58Ior/xUyF8BB2sHXB1cKepZklKepbCztnsKb1YI8TTcvBnCiBFbiIiIZtGiTo8/ALhy5Qq+vr4AvlrrDJ2glZV6soQQOU1U1IOSADt3wrvvgoOD0SN16VL8brec4FBDHxYVvM3dymX4O+YyeZQ9Jy23iCR2Njhn4/dvVKQRLW2dCIkKoXL+yuR3zk8x92JUzF+RcvnKYW9j//TeoxDCdBaL5vvvDzBq1Fbu3Ytg8OC6WCwaKytzh+UlyRJCPLmAAPj9d/jnHzh0CA4cMCaXX72aaLcgB9hW1JF99Yvyo6s9rthz2jbuJt/YPyCj/6O0Z2ksVra083oG7zzeVClQheLuxalduDbOds5P970JIbK0Eydu89Zbv7Jnz2Xq1CnMvHltqVIla9QXlyRLCPFkVq+G9u0far7tZseSXtU46hDMLx5XCYpffCEMY+UruEEEr1Z+lbCoMNqVaUcFrwrUKFTjqYUuhMj+tNacORPAnDlt6NWrhum9VwlJkiWESJ2ICIiMhG++MSalz5mDxSsfJ2JucLQ8HG5WkagaVfnhxiZuht3CqK79LwBuDm742uWjRfEWlPcqz5vV3sTdMeMrOAshcoc1a06yb99VPvywKeXKeXHx4mAcHLJeSpP1IhJCmCc6Gr7+Gtatg/z5jfXr7Ozg1i0i799lX2HYWRT2FYaDA+Fy3hsJDj4CF47Ev+pWqRvtSrejefHmeDp5PvW3IoTIeS5fvsvAgRtZteoEpUt7Mnp0A5yd7bJkggWSZAmRe8UlVFu3GsmUtzecOJFol0ul8vNTocssfCkPRx0TH+5o40jtApWonL8yLUu0pGrBqvjm9cXe2l5qQAkhMlR0tIUvv/yLDz7YQVSUhQkTGjFqVIMsm1zFydrRCSEyhtbGZPSOHY27+2xsjMKdsQIc4bzWnOtRk2NWt/mtfmGUvT3bz2+P3SMYgPcavEejoo1oVqyZVA0XQjw1x47dYsSILTRpUpTZs9tQunT26B2XJEuInMpiMcomjB4N+x+sfa6BvzrXY02DEmzIe4u7Bd04F3wJY4WqvwFQ1y6i0bQv257Xq7zOC6VfkKRKCPFUBQWFs3XrOTp1Kk/lygXYt+9tqlf3zlY95ZJkCZETaA2zZ8OWLeDlBbt3w8mT8dXTo61geVNvfn6uEMdtgzgbuDf+UPvQCDqW60ijIo3wdfWljk8dCrkUMuudCCFyOa01CxceYciQTQQEhFG3rg8+Pq7UqJH9fi5JkiVEdletmrHAcQI6rysry1hY37gwfxd34L+Qs4A/3PcH4J3q7/B29bepVahWtvqrUAiRs506dYe+fdexbdt5qlQpwK+/voKPj6vZYaWbJFlCZCdr1xp3/sXEwJo1cP36g23PPsvxWeOZc3U1X+37KrbxKp4WT7pV6kZe+7yMbzSeAnkKmBK6EEI8ytWr96hSZS7W1opp01oycGAdbGyszA7riUiSJUR2cOECfPgh/PCD8TpPHqNmlYcH/kU96TWoOHuv/82dlc0BqF24Nvmc8vHV819R3L24eXELIcRjXLgQRNGibhQu7Mr06S1p06a0KYs5ZwZJsoTIqi5dMgp/LloEZx+s2xcy50t+qeXAsVvHOBVwivWn18P50wC8XuV1ulbsSquSrcyKWgghUuXGjfsMHbqZpUuP8t9/vSlXzos+fWqZHVaGkiRLiKwkKgp8feHGjcTthQsTMXEc/fLu5vujA2Gt0VzMrRjvVH+HzuU706RYE2ys5L+0ECJrs1g033zzD6NHb+X+/UiGDq2Hr2/O6LlKSn4iC5FVLF0KL7/84PXrr6Nr12Zh6QjmXF7BH5d6x6+h3LNqT2a0mkFeh5z5g0kIkTOFhETSvPlP/PnnFerX92Xu3DZUqpRz54lKkiWE2UJCoHFj+NuoUWXp1pU/PnyHz/6azvbzIwjdHQpAIZdCvF3tbcY3Ho+Vyt6TQYUQuYvForGyUjg721GlSgHefLMqb71VPUst5pwZlNba7BiyBKWUD3D58uXL+Pj4mB2OyA1OnYIyZeJfnvaAXn192WlzOb6tfdn2POv3LN0rdZe7AoUQ2dKqVScYPXorGzZ0p1ixrLcw/JUrV/D19QXw1VpfychzS0+WEE9br17GeoHnzwPwb0GY3r04P7ucAy5TpUAVmhZrSq8avSibr6y5sQohRDpdvBjEwIEb+fXXk5Qp40lAQFiWTLIykyRZQmSm6GijttWUKYmWtrnlBBM6O7GqnOKaVQhwjtKepfmg4Qd0r9zdvHiFEOIJWSyaadP2MGHCb8TEWPjwwyaMGFEfe/vcl3LkvncsxNOwd68xkX3GjPimSGuY37UcW/PdY5nbVcCYa9Wzak8G1RlElYJVTApWCCEyjlKwc+dFGjTw4+uvW1OypIfZIZlGkiwhMpLFAlWqwJEj8U1/FrNl3NBqbL2zDzgOgJOtEyPrj2Rco3EyiV0Ike0FBIQxfvwOxox5lkKFXFi8uBPOzra5ftkuSbKEyCgxMVCzJhw5wnk3mPdRexZFHuDivUtwZx9F3YoysPZAXir/En55/cyOVgghnpjWmp9/PsSwYZu5fTuU6tW96dmzGnny2JkdWpYgSZYQGWHqVPw/Gs2mknC4JUyvD9xeBUDTYk356vmvKO9V3tQQhRAiI504cZs+fdaxc+cFqlUryNq13ahdu7DZYWUpkmQJ8SQCAtjxXBkWFbjNN8MfNFcpUIVBdQbRvXJ37KzlLzohRM4zaNBG/v77GjNntqJfv9rZfjHnzCBJlhDpERUFAwYw95959GlrNNVxLU//ZmNoXLQxPq5Sa00IkfNs3nyWGjW88fR0Ys6cNtjZWePj42p2WFmWJFlCpMbdu/DDD7BmDeTPz9X1i/mwEcxrC05Rin/e2U/ZIjXMjlIIITKFv38wQ4ZsYvHiowwfXo/PPmtJ8eK5q+ZVekiSJURytIZ582D2bDhzBsLCjGbgw8aKiUPAYgV9q7zNlOc+lzUEhRA5UkyMhXnz/mHMmG2EhkYxZkwD3n+/odlhZRuSZAmRVL9+RnKVwMU6ZZjaQLHK6w7+4bcAWP3KatqVaWdGhEII8VT06bOOb789QIMGfsyd24YKFfKbHVK2IkmWEHGOHIFKlR68dnfn/PblDDnxBatPrjbawmFE/RF82ORD7G3szYlTCCEyUXBwBEop8uSxo3fvmtSt68Mbb1TN8Ys5ZwZJsoQIDQUvL+NjLMu1q8y+vIIBq5sC8ErFV2hTqg3dK3XP9cX1hBA5k9aaFSuOM2jQRl56qRxffPE81at7U726t9mhZVuSZIncKToa/voLuneHixfjmy9/9RGzywTzyTdGrZdCLoWY1nIar1R8xaxIhRAi050/H0j//htYv/405crl46WXpK5fRpAkS+QuV67AW2/B5s2JmiPGjKBfzZt8f/h92ANF8hbh7epvM6TuEJztnE0KVgghMt+CBQfp23cdWsOUKU0ZNqw+dnbWZoeVI0iSJXKPr7+G/v0fvO7cGbp353TtknRa3Y1Dhw/RsEhDPm3+KXV86pgXpxBCPAVaa5RSlCzpQePGRZk1q7WUZchgUp5V5GwXLsArr4Cz84MEa9gwuH0bvXgxXaMXUfqbihy6cYgpTafw2xu/SYIlhMjRbt8O5a23VvPBBzsAaNDAj/Xru0uClQmkJ0vkTBYL+PrCtWsP2kqXhjlzoGlTwqPDabmgEbsu7QLgWN9jlPMqZ1KwQgiR+bTW/PjjfwwfvpnAwHCGDKlrdkg5niRZIuf55x9o0gSCg43Xs2YZvVmentwNv8vSA98xdfdUzgScoWmxpmx5bQtWSjp1hRA514kTt3n33bX8/vtFatYsxKZNbahRo5DZYeV4kmSJnENrWLoUunR50BYYCG5uAGw+u5kuy7oQFB6Ep6MnP3X4iVcqviIJlhAix7t4MYiDB6/z1VfP06dPTayt5efe0yBJlsgZvvgCBg9+8LpZM9i6FYATt0/w2srX+Pva3+R3zs+3L3xLt0rdcLJ1MidWIYR4CjZuPMOVK/d4++3qtGpVkgsXBuHu7mh2WLmKJFki+xs82EiyAMqXh19+gcqVuXrvKl/t+4qpu6cCkMcuD3+/8ze+eX3Ni1UIITLZtWvBDB68kaVLj1GxYn7eeKMqNjZWkmCZQJIskb316QNz54K7OyxeDC1aEBoVypy90xm+ZTgAjYo04rMWn1GrcC2TgxVCiMwTE2Nh9uz9jB27nfDwaMaOfZaxY5/FxkaGBs0iSZbIvr7/3kiwAP79F4oUYfGRxby+6nUiYiIo6VGSeW3n0bRYU3PjFEKIp2Dr1nMMHLiRRo2KMGdOG8qV8zI7pFxPaa3NjiFLUEr5AJcvX76Mj4+P2eGIxzl/HooXByDw/77jA7eDzNo/CwBXe1cmNp5In5p9ZBFnIUSOdvduOAcPXqdRo6Jordm8+SwtW5aQNVbT4MqVK/j6+gL4aq2vZOS5pSdLZD8hIVCnDhrYUNeTN66O4dbpWwB0Lt+ZuW3n4uHoYW6MQgiRibTWLF16jMGDNxIaGsWlS0NwdbWnVauSZocmEpAkS2Qvly+Dnx8HvKHTeDfOqzs4Rzmz6KVFvFzhZfnrTQiR4507F0i/fuvZuPEMFSp4sWRJZ1xdpdc+K5IkS2QPWkPr1rBxI8vKQ+eXAYIYVm8YExtPlEWchRC5wpEjN6lV61uUgqlTmzNkSF1sbWUx56xKkiyR9f30E3z6KTFHj/BVXRjynNG8pNMSOlfobG5sQgjxFNy5E4qnpxMVKngxbFg93n67OkWLupkdlngMSbJE1hUTA40aoXfvZkJj+HoE3HGCygUqs67bOnxc5QYFIUTOdutWCCNGbGHdutMcP96PfPmc+OgjuWM6u5AkS2RNWkOzZtzfv5tXX4HVZY3mKU2nMKz+MOys7cyNTwghMpHFopk//19GjtxKUFA4gwbVwd5ehgWzG0myRNazaRP07MkSD3/eHgbB9tCkaBPmvzifIm5FzI5OCCEy1e3boXTosJg//rhErVqFmDevLdWqeZsdlkgHSbJE1qE1zJ1LdP++9HoB5lczmme0msGgOoPkzkEhRK7g7u6Ak5Mts2e3plevGrKYczaWZb5ySqmySqktSqkQpdR1pdSnSqnHjgkppTyVUnOVUpdijz2ilOr9NGIWGeirr8DKioOT+lLtXSPBqlygMndG3mFw3cGSYAkhcrR1607xzDM/cO9eBNbWVmzc2J0+fWpJgpXNZYmeLKWUO7AdOA10BAoD0wEnoP9jDl8KlAXeAy4BrYE5SqkYrfW3mRa0yDjdu6N/+YUv6sK4pqAdHJj/whxer/K6JFdCiBztypV7DBq0kRUrjlOihDuXL9+lQoX88rMvh8gSSRbQG3AFOmitAwCUUjbAbKXUFK31teQOUkoVBJoAPbXWC2KbtyulagGvAJJkZXWffUb0ol/o3AVWlTOa/uv1F5ULVDY3LiGEyETR0RZmzdrHuHE7iIiIZty4howZ0wBHR1uzQxMZKKv0Qz4PbI1LsGItwYiv5SOOi/tuvJuk/S4gfwZkA2HTplLvLSPBqu9bn9D3QiXBEkLkeFprvv/+X2rVKsShQ32YNKmJJFg5UFZJssoCJxI2aK2DAP/YbcnSWl8GNgPvKaXKK6VclFIvYyRmX2deuOKJBQezakALvN66w9+FYVi9YfzR8w8cbR3NjkwIITJFUFA477+/ndDQKGxtrdm2rQfbtvWgbNl8ZocmMklWGS50B4KSaQ8EHrfSb0dgMXA09nUMMEBrvfxRBymlXDGGKOMUTFWk4onFxEQzq4Urg5+HgsHwie8b9GvxmcxBEELkSFprFi8+ypAhm7h+/T41axaiffuy5M8vy4HldFklyUoXZfxWng+UArph9Hy1AGYqpQK11osecfhQYHzmRykS2nlhJ92/a82156GqP2yfdht3Z0+zwxJCiExx5kwA/fqtZ/Pms1SqlJ8VK16mXj1fs8MST0lWSbICgbzJtLsDAcm0x2kDdAYqa60Px7btVErlB6YBj0qypgPfJXhdENif6ohFmmitmX9wPm+vfgttCy+egGU/hmFj52B2aEIIkSm01rRvv4jz54P47LMWDBpURxZzzmWySpJ1giRzr5RSeQFvkszVSqI8xvDgkSTt/wJvK6WctNahyR2otb4H3EtwvXSELVIjPDqcEZtHMGv/LAoFw84FUGryHJAESwiRA/3xxyVq1y6MnZ01Cxa0J39+Z/z8kutHEDldVpn4vgForpRyS9DWGbBgTGxPyUXAGkh6O1oN4GZKCZZ4em6H3qbK3CrM2j+LF0/AuS+g1O9HoLfUixVC5Cw3b4bQo8dKnn12Pl9/vQ+AmjULSYKVi2WVnqy5wABglVJqCkYx0s+AuQlrZCmltgFFtNYlY5vWYxQgXaaUmogxJ6sl8AYy38p0//r/S/VvqgPQ5IYTqxaFwuuvQ4UKJkcmhBAZx2LRfP/9AUaN2sq9exEMG1aPd96pYXZYIgvIEkmW1jpQKdUM+ApYBQRjzJcam2RXaxLErLUOjj1uMjAVcAPOY0xqn5XpgYsURcVExSdY4/N1YsKEZcaGL74wMSohhMh4r7yyjKVLj1G3rg9z57ahShW5WV0YskSSBaC1Pg40f8w+jZNpOwN0yaSwRDporXll+SsAfOr3NiPejL2/4O5dcHV9xJFCCJE9hIRE4uBgg7W1Fa+9VplmzYrxzjs1sLKS+b3igawyJ0vkEFprBm8czIrjK/CItmXYW7EJVo8ekmAJIXKEX389Sfnys/n6a+OG9BdeKMO779aUBEs8JMv0ZInsLyomCruP7ABocDcvO2fexUoD8+fDG2+YGpsQQjypS5fuMnDgBlavPkmpUh5UqpTf7JBEFidJlsgwH/3+EQDeth78NjPASLBu3YJ8smSEECJ7++abfxg6dBPR0RYmTmzMyJHP4OAgv0LFo8l3iHhi0ZZoBqwfwNx/5tKyREvWvr7ZSLD27JEESwiRIzg42FCvni+zZ7emVClZpUKkTrrnZCml7JRSfZRSS5VSW2PbnlVKNVRK5cm4EEVWFhIZQvP/NWfuP3PpWrEri7++ia0FcHKCevXMDk8IIdIlMDCMPn3WsmDBQQBee60ymze/KgmWSJN09WQppZyBHRhFPxWgYzcNB9oCA4GvMyJAkbU1/V9T9l3dx+SmkxkTXgv1Z0tjw+nT5gYmhBDpoLXml18OM3ToZm7dCsHd3RGQVUFE+qS3J2sCUBMjwUro29i29ukPSWQXs/fPZt/VfdQqVIv3NoWiWsYmWL/+CoUKmRucEEKk0alTd2jR4idefXUlhQq5sHfvW0yZ0szssEQ2lt4k6yWM3qvXkrTvjv1YJt0RiWzhl8O/0G99P2ytbFl/vj5Mnmxs+OkneOEFc4MTQoh02Lr1HH/+eYXp01uyf/871KnjY3ZIIptTWuvH75X0IKUiMIYaHYFwQGutrZVSjkAIEKm1zlar/yqlfIDLly9fxsdH/mOlRGvNgA0D+Hr/11T3rs7KA6Xxm7fI2HjyJJQubW6AQgiRBlu3niMqKobnny9FTIyFGzdCKFTIxeywxFN05coVfH19AXy11lcy8tzpvbvwLuAJJM1GWsV+DEpvQCJrm/P3HL7e/zXlPMuybs49Ch6MTbAuXgQ/P3ODE0KIVLp+/T7Dhm3ml18OU7euD889VxJraytJsESGSm+S9QfwIrA4rkEpNRt4HWMYcdeThyayksiYSNr+0pYt57bQ2Ko4W4acwibaYmzct08SLCFEtmCxaObN+5sxY7YREhLFyJH1+eCDRjKxXWSK9M7JmgxEAdV5cGfhuxjDh1HAlCcPTWQVV+9dpercqmw5t4X8du4s+eSckWANHgxnzkCtWmaHKIQQqfK///1H377rqVAhPwcO9GLq1BY4O9uZHZbIodLVk6W1/kcp9QIwGyiRYNNZoI/W+t+MCE6YLyg8CJ8Zxqjwc/nqsb7/XuOW0vfeezDZXQghsrDg4AguXrxLxYr56d69Evb21nTpUlHWGhSZLt0V37XWW4BSSqlSgBdwS2stxZFymFdXvApAk2hfNvTfazR++SUMGGBiVEII8Xhaa1atOsHAgRuxtbXi5Mn+2Npa07VrJbNDE7lEuoYLlVLblVLbALTWp7XWe+ISLKXUJKXUxIwMUpjjy7++ZN3pdXSxlGf7R5eNxqJFJcESQmR5Fy8G0a7dIjp2XIKzsy0//PAitrbWZoclcpn0lnCwEFu2IS3bsjIp4ZDY0ZtHqTinIrYxcP1z8AgDzp83kiwhhMjC/vjjEq1a/YzFonn//WcZPrw+9vayVK9IXmaWcEj32oXJUUpVyMjzCXOsObmGZvMbYxsDW/4HHgNGwv79kmAJIbK00NAoAGrU8KZr14ocOdKHsWMbSoIlTJPq7zyl1Hjgg9iXOrYtJpldNeD/5KEJM8zZP4e+6/tiGwMbf4ZG32yCuOVyhBAiCwoICGPUqC3s2XOFf/99F0dHW777rp3ZYQmR5p4slcrHkgyMUTwlwRHBDNgwgNIuxTgyG5petoEWLcwOSwghkqW15n//+48yZWbx/ff/0rRpUaKikvvbXwhzpKUP9SDwY+zzuKKj/0uwXQOBwH4kycp2LNrCsM3DiNExTLJvRek7c2HaVJACfUKILOjq1Xu8+upKdu68QPXq3mzY0J2aNWVhepG1ZPjE9+wqt058P+B/gFFbR7H13FYA/Fx9OfJlNC7aDk6dAjsp0ieEyHqCgyOoW/d73n23Bn371sLGJkOnGItcJMutXai1lu/mbC4iOoKXlrzEutPrACjsUpj2Zdszc+YJbC5sgxkzJMESQmQpmzef5dtvD7Bo0Uu4uNhz6FBvrK3l15HIutJ9y4VSyhZ4HiiDsZxOIlrrSU8Ql8hE9yLu0fr/WrP78m7yOeVjz5t7KOVZCo4fhy3ljZ369jU3SCGEiOXvH8yQIZtYvPgoRYu6cenSXYoVc5cES2R56UqyYofWdgDFH7GbJFlZTLQlmg92fMDHf3wMwOzWs+lds7exMOrs2dCvn7Hj4MHSiyWEMF1MjIW5c//mvfe2ExoaxZgxDXj//YY4OdmaHZoQqZLenqwPSbxmYVJpn+glMtWqE6t4dcWrhESFUDBPQWY9P4uXyr8EUVFQqBDcvm3s+OOP8Oqr5gYrhBDAvXsRTJz4G1WqFGDOnDZUqJDf7JCESJP09rU2w0ik4pbP0cALwG7gDNDmyUMTGSEiOoLGCxrTYXEHQqJCmNtmLlebrOWlSUvBwcHosYpLsObNgx49wEq64IUQ5rh3L4KZM//EYtG4uzuyd+9b7Nz5hiRYIltKb09WgdiPM4DxAFrrdUqp/4BLQDtg45OHJ9Lrq7++YvHRxey7uo8oSxSlPUuz4uUVVJi1GD7s/WDHF16AwoWNRZ9tpQteCGEOrTUrVhxn4MCNXLsWTPXq3jRsWIQSJTzMDk2IdEtvkhUO5AFCY5/bK6VKASGx218GZOa0SSb9NonxO8cDUNKjJOMajqPHaScoWAniSnbMnQsdO4KXl4mRCiEEnD8fSP/+G1i//jTlyuVj4cKXaNiwiNlhCfHE0ptk3cRIsjyA80BZYCcQV2pX5mSZZPre6fEJ1vV3TlGgYh0IfP3BDn5+Rq/Viy+aFKEQQjwQGRnDM8/8QGBgOFOmNGXYsPrY2eWYEowil0tvknUQY+J7dWAFMBYoiLGkDsDaJ45MpNmhG4eYsHMCAH/vq0qBCaUfbGzSBIYNgzYyXU4IYb7//rtO5coFsLOz5rvv2lG2bD6KF3c3OywhMlR6k6yRwCyMSe7bAFegE2APrAEGZ0RwIvWu3LtCtXnVsGgLh2dDxZsHjQ1t2sCvv8pkdiFElnD7diijRm3hhx8OsnRpZzp1Kk/r1qXMDkuITJHeiu/nMYYJ4wyKfQiT7L28F4u28LX321S8+R306mXMu5K1B4UQWYDWmh9//I/hwzcTGBjOwIG1adnyUZWAhMj+0l3xPSVKqebAh1rrehl9bpGyIzePANBq9HdGw5AhkmAJIbIErTVt2vzChg1nqFmzEJs2taFGDVnMWeR8aUqylFJFgFcBX4zJ7yu01gdjt9UGPgMaZHCMIhW2n95EsUAoEYhRkqFsWbNDEkLkcpGRMdjZWaOUom3b0rRuXYo+fWrKcjgi10h1kqWUqoZxB2GeBM1jlFJvAE7AbIzipgq5u/CpGrhhIH/4/8WrlzDqXq1ebXZIQohcbuPGM/Ttu46vvnqeNm1K07dvLbNDEuKpS0tP1njAJUmbNTATsIt9DrAfeP+JIxOpcuL2Cb7a9xUeMfZ8vT4CwlbLMKEQwjTXrgUzePBGli49RvHi7jg7yzqoIvdKS5JVD6OHai3wLUaP1dsYy+kAXAEGaq1XZWSA4tF2XdwFwNeHfHB1CpAESwhhmrlz/2bkyC2Eh0fz/vvP8t57z+LoKCtJiNwrLUmWZ+zH17XWQQBKqd3AbWLXLtRa/5ex4YnHOXbrGACNt50Fi5PJ0QghcjN/f2M5nDlz2lCunKwmIURaZh9aAcQlWLHPAxI8lwTLRF4hQCmpNSOEeHru3g1n4MAN7Nx5AYBx4xqxY8frkmAJESvNJRyUUudS0a611lIA5SkIjgzGI1xhrTVs2GB2OEKIXEBrzdKlxxg8eCP+/vfx8nKiceOi2NjIXYNCJJSeOllJV+3USdrl7sKn6FboLdwt9kA4eHubHY4QIoc7ezaA/v03sHHjGSpU8GLJks40aOBndlhCZElpTbJkVnUWExwRjEeEFTRvbnYoQohcYN68f/jttwtMndqcIUPqYmsrizkLkZJUJ1laa+kHzoICwgJwuxsKjo5mhyKEyKF+++0Crq72VKvmzQcfNKJv31oULepmdlhCZHmSOGVz/934D7+7QEiI2aEIIXKYW7dCeOONVTRu/CMffLATgDx57CTBEiKVMnztQvH0aG1MfYuyAurUMTcYIUSOYbFo5s//l5EjtxIUFM6QIXWZOLGx2WEJke1IkpWNRVmiACgVADg4mBuMECLH+PzzPYwatZXatQszd24bqlWTm2qESA9JsrKx8OhwAByiAU/PR+8shBCPEBISSWBgOD4+rrzzTnXc3Bx4661qspizEE9A/vdkYwFhRi1Ypyggf35zgxFCZFvr1p2iQoXZvPLKMrTWuLs70qtXDUmwhHhC8j8oG7t09xIAhe8hdxcKIdLsypV7vPTSEtq2XYitrTXjxzdCyfqnQmSYJxouVEo9DzQF3LXWbyul4irSXdNaRz9xdOKR4haH9ggD7GSleyFE6m3ceIbOnZcSGRnDBx80ZMyYZ3FwkBkkQmSkdP2PUkrZACuANgma3wZ+AhrEPp//xNGJFGmt2X5hOwC1rgGlS5sbkBAiW4iOtmBjY0XVqgVp3rw4n3zSjDJl8pkdlhA5UnqHC0cBbTEqwCfsW/469nXHtJ5QKVVWKbVFKRWilLqulPpUKZWq7hmlVGGl1I9KqVtKqTCl1HGlVPe0xpCdvL7qdbaf30532+q4RiDDhUKIRwoKCqdv33W0a7cQrTUFC+Zh5coukmAJkYnSm2S9hrE+4XtJ2nfEfqyYlpMppdyB7YAdRoL2HtALmJ6KY72BvUCh2GPaAnMA+7TEkJ1sPruZnw79REGn/PxvcRRYW4OLi9lhCSGyIK01CxcepmzZWcyZ8ze+vq5ERsaYHZYQuUJ6B+CLxn6cCUxJ0H439mPBNJ6vN+AKdNBaB0D8kORspdQUrfW1Rxz7KXAZeE5rHfeTY1sar5+tzPl7DgB//V0Nq0OboE8fcHIyOSohRFZz4UIQvXqtYcuWc1SqlJ+VK7tQr56v2WEJkWuktycrNPajR5L2+rEf07rGy/PA1rgEK9YSjPhapnSQUsoVeBmYnSDByvH+uvIXzYo1w+/geciTBz7/3OyQhBBZkJWV4r//bvD55y34559ekmAJ8ZSlN8naH/vxm7gGpdRIYBHGMOK+NJ6vLHAiYYPWOgjwj92WkuoYQ4xRSqnflFJRsfO5piqlbB91QaWUq1LKJ+5B2nvfTBEaFYr/fX+qHbwOp07B6NHSiyWEiLd9+3mGD98MgJ9fXi5cGMSwYfWxtbU2OTIhcp/0Jlmfxn58HiOpAvgYyB/7+rM0ns8dCEqmPZCHe8sSikuMvgP+xuj1mgEMBiY95ppDMYYZ4x77H7171nD13lUA3A6eNBreecfEaIQQWcXNmyG89tpKmjX7H0uWHOXWLWNAwdHxkX9vCiEyUbqSLK31NuAt4B4P7jBUGHOy3tZa73jE4RkpLv6tWuthWusdWuupGEneEKXUo265mw74JnjUytxQM8bVYCPJKhQYDa1aSaV3IXI5i0XzzTf/UKbMLBYuPMzw4fU4dqwfXl7OZocmRK6X7spzWusFSqmlGPOwvIBbwB6tdVrnY4HRY5U3mXZ3ICCZ9oTHgXFnYkLbgLFASeBwcgdqre9hJIkA2abK8fnA8wDU8AdeqG1uMEII0124EMSAARuoXt2buXPbUKVKtpj5IESukN5ipB8DP2qtTwBbMiCOEySZe6WUygt4k2SuVhLHHnNehyeMK0vZdXEXo7eNBqBoEFC9uqnxCCHMcf9+JGvXnuKVVypSvLg7e/a8SbVq3lhZZY8/FoXILZ6kGOlRpdTfSqmBSimvJ4xjA9BcKeWWoK0zYAE2p3SQ1voiRk9V8ySbWgBhPD4JyzYCwgJo80sbbobcZErejkYBUllKR4hcZ/XqE5Qv/zVduy7n+PFbANSoUUgSLCGyoCdZIFph3N03A7iqlFqrlOqilEpPEdC5QDCwSinVUinVE2Ne1dyENbKUUtuUUmeSHDsWaKeUmqmUaqGUeg8YDkxP59BllvTGqjcIjgxm06ubGOPS2mj083v0QUKIHOPSpbu0b7+I9u0X4+hoy7ZtPShX7kn/vhVCZKb0JllFgZEYd+QpjGHH1sAvwA2l1LdpOZnWOhBoBkQDq4BPMO4YHJpkV2uSDHFqrdcAXTF6s9ZiVH0fD4xLSwxZldaa11e9zppTa3C1d6VF8RYQGWlsdHU1NzghxFMRFBRO5cpz2LjxDBMnNubQod40bVrM7LCEEI+RrjlZWutLwOfA50qpIhhDey8DNTEqt78JpKm2gNb6OA8P+yXdp3EK7YuBxWm5Xnbx9f6v+d9//6Nx0cYs7bzUmKAfl2TJcKEQOdrFi0EUKeKGm5sD06a1pGHDIpQq5Wl2WEKIVHqS4cI49zDuAAzE6IkSGSQqJooBGwbgbOvMplc3kc8pH4SGwuDBxg6SZAmRIwUGhtG791pKlPiSffuMsi1vvVVdEiwhspn03l3oDnTA6MFqmuA8CogAfs2Q6HK5kl+VBGBcw3HYRURD/94wf/6DHWRRaCFyFK01v/xymKFDN3PrVgh9+tSkdGlJrITIrtJbJ+s6iRMrDewG/gcs1VrfTelAkTrh0eFcunsJgGH1hoJNgl6r2rVh+3awlUrOQuQU0dEWWrf+P7ZsOUfVqgX59ddXqFPHx+ywhBBPIL1JVtxv99PAT8DPWusLGRKRAGD5seUALC0+GpuECVZUFNiku4asECKLsVg0VlYKGxsrKlcuQOvWpejfvzY2Nhkxm0MIYab0/i+eDdTTWpfRWn8kCVbGOh94nvd3vA9A6/d/NBrr1IHwcEmwhMhBtmw5S8WKszly5CYAn3/eksGD60qCJUQOkd61C/trrf/K6GCEoe/6vlwIusC438Dpkj8UKQJ//gn26SlBJoTIaq5fv0+3bstp2fJnQkOjCAwMMzskIUQmSHW3iFJqO6C11s1inz+K1lo3e7LQcqc9l/ew8cxGPtgJE3cCxYrB+vUmRyWEyAhaa+bN+4fRo7cSEhLFqFHPMG5cQ5yd5U5hIXKitIw9NcaY4J70eVLqEdvEYwzcMBAPBw+G7Q0AKys4d87skIQQGUQpxR9/XKJixfzMmdOGSpUKmB2SECITpSXJuoSxlmDcc0mkMtiui7v4x/8futpWxzUiAPr2NjskIcQTCg6OYOLE3+jduyYlS3owb15bHB1tZa1BIXKBVCdZWuuiyT0XGefbA8ZqRF9MPmA0vP++idEIIZ6E1ppVq04wcOBGrly5h4+PK4MH15WhQSFykfQWI/0AY97Vh8lsa4qx8XHztkQCa06u4adDP/FcoYZ4hf5uNHp7mxuUECJdLl4Mon//Daxde4qyZfOxY8frNG5c1OywhBBPWXrrAUzAGC58KMkCtmIMK0qtgVSyaAu91vbC3cGdJf1jE6yFC80NSgiRbqNGbWXr1nN89FETRox4Bjs7a7NDEkKYIEMTIaWUa9zTjDxvTrf06FKu37/OtIMFcIld+5kuXUyNSQiRNrt3X6JIETd8fFz5/POWTJ7clBIlPMwOSwhhorSUcHgdeD1JW9IhQb/Yj0FPFlbuEW2J5qNdH+Fh70bPjTeMxv37QUmeKkR2EBAQxqhRW/juu395661qfPddO3x8XB9/oBAix0tLT1ZREpduUECjJPvEZQa/P1FUuciiI4s4cvMI89aAezgwdSrUrGl2WEKIx9Ba89NPhxg2bDN37oTSv38tPvqoqdlhCSGykLQkWUHAxdjnRTCSrUsJtmsgENgPjM+I4HI6rTUTtn8AQLfDQP36MHy4uUEJIVJlzJhtTJ26m+rVvdmwoTs1axYyOyQhRBaTlhIOXwBfACilLLFtxTIprlxh2/ltnL17nnf/hjw93oZvvzU7JCHEI4SFRREREYObmwNvvlkNb+889OsnizkLIZKX3onvTTI0ilzqgL9RD6v/PuDKbHODEUI80qZNZ+jbdz0NGvjx44/tKV3ak9KlPc0OSwiRhaVl4ntDAK3178TOy4prS07sfuIRtp7bime4FRXyFgdbW7PDEUIkw98/mCFDNrF48VGKFnWjS5cKZockhMgm0tKTtZMH9a928uhldXQaz53raK3Zc3kPtW9bo0LDzA5HCJGMFSuO07PnakJDoxgzpgHvv98QJyf5g0gIkTppTYRUCs9FGp26c4qQqBCeOw7UqmV2OEKIBLTWKKUoWdKDmjUL8eWXz1GhQn6zwxJCZDNpSbJ6pvBcpMPMP2cC0OQ8MLaXqbEIIQz37kXwwQc7sFg0X375PJUrF2Dbth5mhyWEyKbScnfhj8k9F2kXER3B3H/m0vaMFbWuWeC558wOSYhcTWvN8uXHGTRoI9euBfP229Xie7OEECK90rtAtD3gDERorUNil9PpB3gBG7XWmzMwxhwlMiaSBvMbANDxiAXeekuquwthogsXgujXbz3r15+mfHkvFi16iWefLWJ2WEKIHCC9xV1mAbeAuMqZW4CPgEHABqVUpwyILUeqNKcSf1/7m9eKvkjPg4CdndkhCZGrXb9+n99+u8DHHzfj33/flQRLCJFh0nsHYJ3Yj2uVUuWAWkAMEI7RwzUYWPbE0eUwl+9e5tSdUxRzK8aCmReMxurVTY1JiNxo166LHDx4nQED6lC3rg+XLw/B3d3R7LCEEDlMenuyfGM/ngbisoRJQO3Y52WeJKic6vt/vwdg3jOfYHXwP6PxrbdMjEiI3OX27VDefHM1DRsuYNq0vYSFRQFIgiWEyBTpTbLsYz9GARUw6mL9A5yJbc/zhHHlSKcDTgPQcJVR6Z333pP5WEI8BVpr5s//l7JlZ/Hjj/8xaFAdDh3qg6Oj1LwSQmSe9A4XXgOKAfOBBrFtx4CCsc9vP2FcOc7ZgLP8cvgXulfqjv13h4zGjz4yNyghcon9+6/x5pu/UrNmITZtakONGrKYsxAi86W3J2s1RjHSzkAh4LDW+gJQI3b7kScPLWeZ9888AN6u/jaEhxuN0oslRKYJDY1i+/bzANSuXZhNm17lzz/fkgRLCPHUpLcnaxzgBDwDXOTBXYalgN+AhU8eWs5xN/wu0/ZOo3bh2jQq0gj274eGKS77KIR4QuvXn6Zfv/X4+wdz4cJgChbMQ8uWJcwOSwiRy6QrydJahwJ9kmn/DPjsSYPKaSbsnIBFW/isxWeon3+G+/fBRpZ2FCKjXb16j8GDN7Fs2TGKF3dn9epXKFhQpogKIcyR7t/0Sikb4HXgOYwipLeBDcCPWuvojAkvZ/j11K/kscvDs7ecoEfsEh3Dhz/6ICFEmly6dJeKFWcTHh7N++8/y3vvPSsT24UQpkpvxXcHYDPGcGFCHYCeSqnmWuvwJw0uu9t9aTcjt47kXOA5Xq7wMiouwfrxR3j+eXODEyKHCAgIw8PDET+/vAwfXp+XX65A2bL5zA5LCCHSPfH9PYy7ClUyj3qx23O993e8z57Le6jrU5ev//KE48eNDT1kwVkhntTdu+EMGLCeYsW+4PLluwB88EEjSbCEEFlGepOslzFqYy3FmOzuEPtxCUai9XKGRJeNBYQFsPPCTl4o/QJ73/6TfJ/PMTbs2WNuYEJkc1prFi8+QtmyXzNr1n5efrk8zs6yPJUQIutJ75ysorEf39VaB8U+P6uU6o2RYBVN5phc5e1f3wagx9rLDxr37IF69UyKSIjsLzg4gs6dl7Jp01kqVszPsmWdeeYZP7PDEkKIZKU3yQoDbIESGJXe45RIsD1XO3rrKF4xDnT65aDRcOMG5M9vakxCZHd58tjh4GDD1KnNGTKkLra21maHJIQQKUpvkvU30AxYp5T6EbgM+GDcbRi3xE6udurOKTqcin1x9KgkWEKk086dFxg7djsrV3Yhf35nVq7sgpJCvkKIbCC9SdbnQFOM0g0JaxEojCTr8yeMK1vTWgNgYwF69YLy5c0NSIhs6NatEIYP38L//vcfPj6unD8fSP78zpJgCSGyjXRNfNdabwLeBYJJfGdhMNBba70xwyLMhvZd3QdAhZtA//7mBiNENmOxaL7//gBly37N//3fIYYOrcuxY32pU8fH7NCEECJN0l2MVGv9nVJqEVAfyIdRjHSP1vp+RgWXXS09thSAngcBP5mUK0Raff/9v5Qs6cG8eW2pWrXg4w8QQogsKM1JllKqKA8Wgj6gtd6coRFlc9GWaFaeWEktXQi/u9fA3t7skITI8kJCIvnssz0MHlwXNzcHVq9+BQ8PR6yt01tlRgghzJfqJEsZEyHmAG9jDA3Gtc8H3tFxE5FyuSVHl3Au8ByTz1YFroGd1O8R4lHWrj1F//7ruXjxLkWK5KVnz2p4eTmbHZYQQjyxtPyZOADoxcMV3nsCgzM8smyq5+qe+Lr60ml/iNFgJX+JC5GcK1fu0bHjYl54YSG2ttZs2fIaPXtWMzssIYTIMGnJAN6M/RgJ/AqsASIwEq03Mjas7OmXw78QGRNJ02JNsYmIkvlYQjxC167LWbfuNOPHN+Lw4T40b17c7JCEECJDpWVOVmmM8gzPa613AiilmgDbMJbUydViLDEM2TQEgE9bfAoXCkDPniZHJUTWsm/fVSpU8MLZ2Y6vv26Nvb01ZcrIWoNCiJwpLT1ZDgBxCVasuOe5fnb3qhOruBlyk2ktp5H/erDRGBJiblBCZBFBQeH07buOunW/Y+rU3QBUrlxAEiwhRI6WnrsLfUkw8T2ldq31pScLLXsZsWUEee3z8nb1t6FVO6OxXTtzgxLCZFprFi48wtChm7hxI4R3363BkCF1zQ5LCCGeivTUybqQ5LVOpl2n89zZ0oWgC5wPOk/b0m1xtXeFoCBjQ8eOpsYlhNn69l3H3Ln/ULlyAVau7EK9er5mhySEEE9Nem59S3p3YUqPtJ1UqbJKqS1KqRCl1HWl1KdKqTTVP1BKDVZKaaXU2rRe/0l8+8+3APSv1R/+/BP++89IsBwdn2YYQmQJERHRREREA/DyyxX4/PMW/PNPL0mwhBC5Tlp6m37nQa9VhlJKuQPbgdNAR6AwMB1wAlK1Lo1SqiAwHriZGTE+ypQ/plDKoxStSraCUrH5ZbNmTzsMIUy3fft5+vRZR/fulfjgg0Y0aVKMJk2KmR2WEEKYItVJlta6cSbG0RtwBTporQMAlFI2wGyl1BSt9bVUnONTjNISRTIvzIcdv3UcgIr5K8LixQ829OnzNMMQwlQ3b4YwbNhmfv75EL6+rlSv7m12SEIIYbqsUinzeWBrXIIVawlGfC0fd7BSqgHQHhidKdE9wvLjywHoX7s/vPee0XjuHKg0j5gKkS0tXnyEMmVmsXDhYUaMqM+xY/1o27a02WEJIYTpssrk9LLADwkbtNZBSin/2G0pUkpZA7OAyVprf/WUk5ufDv0EQJOiTYzkCqCYDI+I3MPJyZZy5fIxd25bKlcuYHY4QgiRZWSVJMsdCEqmPRDweMyxfQFnYEZaLqiUcsUYooxTMC3Hg1GA9NSdUzxf8nnUv/8aja+/ntbTCJGt3L8fyYQJO/Hzy8vAgXV44YUytG1bmqf9B44QQmR1WWW4MF2UUvmBScBQrXVkGg8fClxO8Nif1utvObcFgGd8n4HevY3G115L62mEyDZWrz5B+fJfM23aXo4fvxXfLgmWEEI8LKskWYFA3mTa3YGAZNrjTAIOAbuUUm5KKTeM3jmb2NeP6qmbDvgmeNRKa9BDNw0F4LUqr0FEhNHYtGlaTyNElnfp0l1efHER7dsvxtHRlm3bejBnTluzwxJCiCwtqwwXniDJ3CulVF7AO3ZbSsoCDTGStKQCMSbUb0zuQK31PeBeguulKeD/rv/H8dvHaVemHX55/SAmBp57Tia8ixxp9+5LbNp0hkmTGjNy5DPY22eVHx1CCJF1pfsnpVLKExgJNAXctdYllVLdYs+5UWudlnpVG4D3lFJuWuug2LbOgAXY/IjjBgNuSdpmAmHAGIxerkzx3YHvAJjafCocPgxHj0K5cpl1OSGeur17L+Pvf5+OHcvxyisVadDAD1/f5DqchRBCJCddSVbsXKg/MWpSKR4UKX0O6I6R4HyahlPOBQYAq5RSUzCKkX4GzE1YI0sptQ0oorUuCaC1PphMbEHA/SQLWWeoaEs0c/+ZS+UClSmbryw0rmhskKFCkQMEBoYxevRWvvnmAOXK5aN9+7JYWSlJsIQQIo3SOyfrQ6AoEJOkfQFG0vVCWk6mtQ4EmgHRwCrgE+A7jMnpCVmTBYY4j9w8QrQlmubFmhvDhEePGhukAKnIxrTW/PzzIcqUmcW33x6gb9+a7NnzFlZWMgQuhBDpkd6EpQ1G71UrYFuC9n2xH0uk9YRa6+NA88fs0zgV53nsPk9q54WdAHSp2AVWrTIaR47M7MsKkanWrDnFa6+tpGrVgqxd243atQubHZIQQmRr6U2yvGI/7k5hu2c6z5st/HL4FwCqe1eHr2OLzMeVcBAiGwkPj+bkydtUqVKQtm1L8/PPHejSpSI2NlnlxmMhhMi+0vuT9Hbsx6TV2LvGfnzqizQ/Tfuv7cfV3hUbKxs4csRolCrvIpvZsuUslSrNoWXLnwkJicTKStG9e2VJsIQQIoOk96dp3BDhqrgGpdR6YA7GMOK2ZI7JEc4EnAHgjSpvQGQk3LoFPj7mBiVEGly/fp9u3ZbTsuXPREXF8MMP7XB2tjM7LCGEyHHSO1w4CWiHMfk97s7CVhiT3u9iTIzPkdadWgdAjyo94MYNo/Hll02MSIjUO3ToBg0bzickJIpRo55h3LiGkmAJIUQmSVeSpbU+o5R6FmO9wEYYd/3FAL8BQ7TWZzMuxKxl+4XteOfxNuZjdeliNNasaW5QQjxGWFgUjo62lC/vxcsvV2DAgNpUqiSLOQshRGZK9+QLrfVhrXVzjEWWfQAXrXVzrfXhDIsui4mMiWTbuW3GgtBKwblzxoaOHc0NTIgUBAdHMHToJipUmM39+5HY2FjxzTcvSIIlhBBPwRPXnNJah2FUWM/xdl/aTUhUCM+VfA4sFvjnH6hUCeztzQ5NiES01qxceYKBAzdw9Wowb7xRlaiopGXthBBCZKb0Vnx/3E9rrbU2vWhoRtt4ZiNWyormxZvD558bjXXrmhuUEEncvh3KG2+sYt2605Qtm4+dOzvSqFFRs8MSQohcJ72JUK4sAb3q5Crq+tTF3cENRo0yGidONDUmIZJycbHj6tVgPvqoCSNGPIOdnbXZIQkhRK6U3iTrxySvrYFiQH0gFFj6JEFlRSGRIZy6c4rGRRrDgQNGY4EC4O1talxCAOzefYnPP9/LwoUv4eBgw99/v4O1tdS7EkIIM6X37sKeybUrpVoBG4ADTxJUVrTvqrFiUD3fejBrjtEYt6SOECa5cyeU0aO38t13/+LtnYfTp+9QqVIBSbCEECILyNCfxFrrTcB9YGBGnjcrWH96PRC7lM7u3cZkd5mPJUyitebHHw9StuzXfP/9v/TvX4vjx/vJXYNCCJGFpHfie8Nkmh2A54E8QI4bQ1vw3wJsrGyo5FURTpyAKlXMDknkYmFh0YwfvxM/v7xs2NCdmjULmR2SEEKIJNI7J2snDyq9J6WBg+k8b5bUbXk3bofeplf1XqgTJ4zGihXNDUrkOmFhUXzzzT/061cbJydbtm9/HT+/vLLWoBBCZFFPUmYhpTsMLwF9n+C8Wc6ms5sA+Lzl5/D8i0Zj166POEKIjLVp0xn69l3PuXOBFC3qxosvlqV4cXezwxJCCPEI6U2ykpv4HgFcBv7SWkenP6Ss5XzgeQLCAuhfqz8udnlgxw5jQ+vW5gYmcoVr14IZMmQTS5YcpVgxN9at60br1qXMDksIIUQqpDnJUkrZA4GxL/dqrW9lbEhZS1wv1gtlXoBPPzUaX3kFVK4sFSaeIotF07Tpj5w7F8h77zVg7NiGODnZmh2WEEKIVEpzkqW1jlBKLcO4MzHHz7b9dPen5HPKR8MiDWHhSKNx8mRzgxI52tGjNylXzgsrK8WsWa0pVMiF8uW9zA5LCCFEGqV3xuwZjDlZOXoxtBhLDFeDr1Lftz4Ot4Pgv//AxQWKFzc7NJED3bsXwaBBG6hceS7ff2+UmmvevLgkWEIIkU2lN8maEPtxslLKLoNiyXJ+u/gbkTGRPFfiORg61Gj8+GNzgxI5jtaaZcuOUa7c13z55T7eeKMKHTuWMzssIYQQTyi9E9/7AHeBd4DOSqlTQFiC7Vpr3exJgzPbxjMbAWhctDGEGM/p18+8gESO1KPHKn7++RDly3uxaNFLPPtsEbNDEkIIkQHSm2Q1wqiHpQB3oHaCbYqUa2hlKxeCLgBQzqsc/PsvlJPeBZExoqJisLGxQilFixbFqVDBi6FD68lizkIIkYOkOslSSvXA6KH6CaMWVo5IpB4lICyAagWrgdZw+bIkWSJD/P77RXr3XsvYsc/SvXtlevSQ1QOEECInSktP1gLAAvyktS6aKdFkMVGWKOxt7I0EC6BhcqsJCZE6t2+HMnLkFubPP0ihQi7kzetgdkhCCCEyUVqHC3NVcaiomChsrWyNtQoB2rc3NR6Rff3f/x1i4MCNBAWFM2hQHSZNaoKrq73ZYQkhhMhET7KsTo4XZYnC0dYRQkONBjc3U+MR2dfNmyEUL+7OvHltqV49x62fLoQQIhnpqfi+PRW75Yi7C88GnKV24dpw5ozR4CDDOyJ1QkOj+PDD36hXz5d27cowcGAdBg6sg7W1LOYshBC5RXp6sho9ZnuOubswr0NergVfg4gIoyFfPnMDEtnC+vWn6ddvPRcuBDFkSF3atSsjyZUQQuRC6Umycs28LIWibL6ycCc2Z3R3NzcgkaVdvXqPQYM2snz5cUqUcGfjxu60alXS7LCEEEKYJD1JVrEMjyKLitEx2FjZQEzs6kFW0hshUvbjj//x668nGTeuIWPGNMDRURZzFkKI3Cw9C0RfzIxAsqJoS7SRZFksRoO1FIoUie3ff5WoKAv16/sybFg9XnqpHGXKyLCyEEKI9K9dmCvEJ1nSkyWSuHs3nP7911OnzneMHLkFAHt7G0mwhBBCxEtLT9YljGKkucZDSZb0ZOV6WmuWLDnK4MGbuH79Pu+8U51PPmludlhCCCGyoFQnWbmlyntC0ZZorJX1g+FClWvm/IsUfP/9v7zzzhoqVszP8uUvU7++r9khCSGEyKKkGGkKYiwx3Iu4h7Ods9GTJb1YuVZERDTXr9+nSBE3unatSHh4NO++WwNbW/meEEIIkTKZZJSC80HnAfBw9DB6siTJypV27DhPlSpzadduEdHRFpyd7ejfv7YkWEIIIR5LkqwU7Lq4C4BibsXg2jUZKsxlbt4M4fXXV9G06f8ICYli4sTGWFvL94AQQojUk+HCFOy6ZCRZDfwawP73ISrK5IjE07J79yVeeGEh9+5FMHRoXSZObEKePHZmhyWEECKbkSQrBZExkQD4uPrAuXPw4osmRyQyW0yMBWtrKypWzM+zzxZh4sTGVK1a0OywhBBCZFMyXJiCU3dOUd+3PmrBAqPBzc3McEQmCgmJZNSoLTRp8iMWiyZvXgdWr35FEiwhhBBPRJKsFJy8c5IKXhVg82ajYeRIcwMSmWLt2lNUqDCbTz/dg59fXkJDZVhYCCFExpDhwmRYtIV7Efdwd3CHi0eMxvLlzQ1KZKjr1+/Tt+86Vq48QalSHmzd+hrNmhU3OywhhBA5iCRZyQiOCAbgXsQ92LsXypY1OSKR0aytFX/+eYUJExoxalQDHBzkv4IQQoiMJb9ZkhFtiQaghEcJcHCAokXNDUhkiL/+usLPPx/iyy+fx8vLmbNnB+LoaGt2WEIIIXIomZOVDIs2ltGx0kB4OFSubG5A4okEBYXTt+866tX7niVLjnHp0l0ASbCEEEJkKunJSkaMNhaEtrp7z2gIDzcxGpFeWmsWLjzC0KGbuHEjhHffrcHHHzfD3d3R7NCEEELkApJkJSOuJ8tax1b4rlTJxGhEet26Fcq7766leHF3Vq7sQr16spizEEKIp0eSrGQkGi4EsJJR1ewiIiKa5cuP061bJfLnd+a3396gcuUC2NjI11AIIcTTJUlWMuKTrLgGWRw6W9i27Rx9+67n1Kk7FCvmRr16vlSv7m12WEIIIXIp+fM+GdKTlb3cuHGfV19dQfPmPxEeHs3q1a/I0KAQQgjTZZnsQSlVVim1RSkVopS6rpT6VCn1yFV5lVLesfsdVEoFK6WuKKV+UUoVeZJYYiyxE9/jkizpycqywsOjqVZtHosWHWHEiPocO9aXdu3KmB2WEEIIkTWGC5VS7sB24DTQESgMTAecgP6POLRG7P4/AH8C+YBxwD6lVEWt9a30xPPQxHfpycpyLl26i59fXhwcbPj00xZUrlyAypULmB2WEEIIES9LJFlAb8AV6KC1DgBQStkAs5VSU7TW11I47g+grNY6Oq5BKbUHuAT0AKalJxiZk5V13b8fyYQJO5k58082bnyV5s2L8+qrUsdMCCFE1pNVumieB7bGJVixlmDE1zKlg7TWQQkTrNi2K8AtoFB6g4mMiQTAyhLbID1ZWcLq1ScoX/5rpk3bS7dulaTnSgghRJaWVXqyymIM+cXTWgcppfxjt6WaUqo0kB84nt5gbobcBMDDxsVokJ4sU2mt6dx5KcuXH6d0aU+2betB06bFzA5LCCGEeKSskmS5A0HJtAcCHqk9iVJKAV8C14CFj9nXFWOIMk7BuCdB4UYo+QMiUntpkQksFo2VlUIpRcWK+alSpQAjRz6DvX1W+bYVQgghUpbTxsEmAM2AHlrrkMfsOxS4nOCxP27D9fvXAciPs9Hg6ZnhgYpH27PnMtWrz2PPnssATJjQmHHjGkmCJYQQItvIKklWIJA3mXZ3ICCZ9ocopd4BPgDe1VpvS8Uh0wHfBI9acRv+8f8He2t7CkXHrnFXQOb+PC0BAWG8++4annnmB65fv8/du7JupBBCiOwpq3QLnCDJ3CulVF7AO3bbIymlOgBzgA+01j88bn8ArfU94F6Cc8Rv+/PKn9T3rY/dyQtGg4NDak4pntAvvxxm8OCN3L4dSt++NZk8uRlubvK5F0IIkT1llZ6sDUBzpZRbgrbOgAXY/KgDlVKNMeZffau1/vBJA4mMieTknZPULFQTQmJHHPPle9LTilTYs+cyhQu78uefb/P1120kwRJCCJGtZZWerLnAAGCVUmoKRjHSz4C5CWtkKaW2AUW01iVjX5cDVmEUMf1JKVU3wTlvaa3PpjWQc4HnsGgLpTxKQcx/4ORkPESGCw+P5uOPd9GhQzmqVi3Ip5+2wM7OWhZzFkIIkSNkiSRLax2olGoGfIWRNAUD3wFjk+xqTeKY62DM5coL7E6y74/AG2mN5eTtkwCU9iwNxxfJUGEm2bLlLH37rufMmQC0hqpVC+LkZGt2WLme1prbt28THh5OTEyM2eEIIUS6WVtb4+DgQL58+RJNCXqaskSSBaC1Pg40f8w+jZO8XgAsyMg4DvgfAMDH1Qe2bwcXl4w8fa53/fp9hg7dxMKFRyhSJC9r13alTZvSZoclMBKsq1evEhwcjJ2dHdZSH04IkY1FRkZy//59IiIiKFy4sCmJVpZJsrKKaItRQL5oTGxy1bGjidHkPBMn7mTp0mOMGvUM48Y1xNn5kWuAi6fo9u3bBAcHkz9/fjylbIkQIge4c+cON2/e5Pbt23h5eT3160uSlcTle5dxtXfFeslSo6FMGXMDygH+/dcfFxd7Spb0YNKkJvTrV5uKFfObHZZIIjw8HDs7O0mwhBA5hqenJ0FBQYSHm1MOSGYYJxESGYKVsoLx442GHj3MDSgbCw6OYMiQjdSs+S2jRm0FwMvLWRKsLComJkaGCIUQOY61tbVpc0ylJyuJ6yHXebbUs2D3N+TJA4ULmx1StqO1ZsWK4wwatJGrV4N5442qfPrpI6fbCSGEEDmO9GQl4R/sT2E7T/D3h+eeMzucbOnTT3fTqdNSXF3t2bnzdebPfxEvL2ezwxJCCCGeKkmykoiKiaLw+TvGiyJFzA0mG4mKiiEgIAyAV1+tzMcfN+Pgwd40alTU3MBErjRhwgSUUvEPT09PGjRowPr165PdPzAwkBEjRlCiRAns7e0pUKAAXbt25fjx48nuf//+fSZOnEjFihVxcnLC2dmZ2rVrM336dNPmfjwtM2bMwM/PD2tra9q3b5/h50/4dUvpsWDBgie6xsGDB5kwYQKhoaGpPqZz586MGDHiia6bHa1Zs4YqVarg4OBA6dKlmT9/fqqOO378OK1bt8bZ2Rl3d3dee+01bt++/dB+J06coEWLFjg7O1OwYEFGjhxJZGRk/Pbg4GA8PDzYvTtplabsQYYLkxF156bxZPRocwPJJv744xK9e6+leHF3Vq9+hcKFXRk9uoHZYYlcztHRke3btwNw7do1pkyZwgsvvMCuXbuoX79+/H7Xr1+nYcOGBAYGMnbsWKpVq8aVK1f4/PPPqVWrFuvXr6dhw4bx+9++fZsmTZpw+fJlBg8eTIMGxvf63r17+eSTT7C2tmbQoEFP980+JadPn2bYsGGMGjWKF154gXyZsBrG3r17E72uV68eAwYMoFu3bvFtJUqUeKJrHDx4kIkTJ9K/f3+cUlFs+sCBA6xZs4Zz58490XWzmz/++IMOHTrw9ttvM3PmTLZv385bb72Fi4sLnTp1SvG4e/fu0bRpU3x8fPjll18IDQ1lzJgxtGnThr1792JlZfTvBAYG0rRpU0qVKsWKFSu4evUqQ4cOJTQ0lFmzZgHg4uLCgAEDeO+99/jtt9+eyvvOUFpreWgN4ANohqC/bVNQa9A6KkqLlN2+HaLfemu1hgna2/tzvWTJEW2xWMwOS6TT+fPn9fnz580OI0OMHz9eOzs7J2q7cuWKVkrpXr16JWrv0KGDtre318ePH0/Ufv/+fV2uXDlduHBhHRYWFt/euXNn7eTkpA8fPvzQde/cuaN3796dge8k9UJDQzP9GmvWrNGAPnv27BOfKzw8XMfExDx2P0B/9tlnT3y9hObPn68BfevWrVTt36NHD92uXbsMufbT+DpllJYtW+r69esnauvatasuV67cI4/7+OOPtaOjo75+/Xp82/79+zWgV6xYEd82ZcoU7ezsrO/cuRPfNm/ePG1tba2vXr0a33bhwgUN6IMHD6brfTzuZ9vly5c1oAEfncG5hQwXJsPOYgXu7mAjHX0p2bLlLGXLfs38+QcZMKA2J070p3PnCqZV1RXicQoXLoyXlxeXLl2Kb7t48SKrVq2iR48elC2baI16nJ2dGTt2LFevXmXp0qXx+y9btozevXtTsWLFh67h4eGRqJcsOcePH6djx454eHjg5ORElSpVWLhwIQAXLlxAKcWyZcsSHTN48GCKFi0a/3rBggUopdi7d2/8UMuIESNo3Lgxbdu2feias2bNwtHRkbt37wLGH9eff/45pUuXxt7enuLFizNjxoxHxv3GG2/wwgsvAEZPUsJhu4sXL9KpUyfy5s2Ls7MzrVq14vDhw4mOL1q0KP379+fTTz+lSJEiODo6EhAQ8MhrpmTBggVUrlwZBwcHChcuzNixYxPdPRYUFMQ777xD4cKFcXBwwNfXl1deeSX+2J49ewLg5eWFUirR5zapkJAQli9f/lDPzd69e2nXrh2FChXC2dmZqlWr8tNPPyXaZ+fOnSilWLduHZ06dcLV1ZXOnTvHx9i3b1+8vb2xt7enRo0abN6ceKnedevW0aJFC/Lnz4+rqyt16tRh48aN6fqcpVVERAQ7duyIjzfOK6+8wvHjx7lw4UKKx/77779UqVKFAgUKxLfVrFkTT09P1qxZE9+2YcMGmjdvjoeHR3zbyy+/jMViSfS5KFKkCLVr137iYWIzSBaRDNsoCzRpYnYYWZLWGqUUJUp4ULZsPmbMaEXNmoXMDkuIx7p//z4BAQEUK1Ysvu33339Hax2fPCQV1/7777/z2muvsWvXLrTWPJfOm2JOnz5NvXr18PX15csvv6RgwYIcOXIkUeKXFt26daNXr1689957ODk5cfDgQQYMGEBAQECiX1wLFy6kdevW5M2bF4BBgwbx3XffMXbsWOrUqcOePXsYNWoUjo6O9O7dO9lrjRs3jvLlyzNq1ChWrFiBt7c3JUqUIDg4mMaNG2NlZcXcuXNxcHBg8uTJNGzYkEOHDuHr6xt/juXLl1OqVCm++OILrK2tcXZO+w0x06dPZ+TIkQwZMoRp06Zx/Pjx+CTrk08+AWDo0KFs2LCBTz75hKJFi+Lv78+GDRsAaNOmDe+//z4fffQRGzduJG/evNjb26d4vb179xISEsIzzzyTqP3ixYs888wz9O7dGwcHB3bv3s1bb72FxWLh9ddfT7Rvr169ePXVV1m5ciXW1tZERkbSokULbty4weTJkylcuDA///wzbdq04cCBA1SqVAmA8+fP88ILLzB8+HCsrKzYsGEDrVu3Zvv27TRu3DjFmLXWqSpZYG1tneIfxmfPniUqKuqhPz7KlSsHGHOpUkpOw8PDk/2c2tvbJ5rneOLECd58881E+7i5ueHt7c2JEycStdevX58tW7Y89j1lNZJkJcM2MhrspBJ5QmFhUUyevIsrV+6xYEF7ihd3Z9eunmaHJZ6GPn0gSa/EU1WpEsyZk65Do6ONFRyuXbvGyJEjcXFxSTRf6urVqwD4+fkle7yrqytubm5cuXIlVfs/zoQJE7Czs2P37t24uroC0Lx5+sub9O7dm1GjRsW/LlmyJAMGDGD58uW88847gJEM7N27lyVLlgDGL89Zs2Yxd+5cevXqFR9DaGgoEydOpFevXvFzZhIqUaIEpUsbS2BVq1Yt/hfsl19+ycWLFzl69Gj8L+BGjRrh5+fHzJkzmTZtWvw5oqKi2LBhQ7qSKzAmQY8fP56RI0cyZcoUAFq0aIGdnR1Dhw5lxIgReHp6sm/fPrp165Yo2YnryfLy8oqf01WjRo3Hzivbv38/efLkoXjx4ona484HRlLTsGFDrly5wrx58x5Kstq1a8fUqVPjX8+fP5+DBw/y33//Ub58eQBatWrF6dOn+fDDD+O/Vv37948/xmKx0KRJE44ePco333zzyCTrt99+o0kqOgp27NiR4nkCAwMBI+lJyN3dHeCRvZClSpVi/vz5hIWF4ejoCMClS5fw9/cnT548ia6R9Pxx10h6/ipVqvDFF18QHByMSzZa7k6SrGR4n78NRSXJirNx4xn69VvPuXOBdO5cnqioGGxtpWilyNpCQkKwtX2w6Li1tTWrV6+mTAas4pDeYfFt27bFDxtlhDZt2iR67enpSYsWLVi0aFF8krV48WLy5MkTP4y4datRGPill16KT0LBSLSmTp3K5cuXKZKGO6t37dpFxYoV4xMsMIZNW7RowR9//JFo38aNG6c7wQLYs2cP9+/fp3Pnzg/FHhYWxpEjR2jUqBHVq1dnwYIFeHt789xzzyU7tJta/v7+ySZigYGBjB8/ntWrV3P16tX4nqPkVkxI+nXavHkzlSpVonTp0oneR4sWLfj555/jX1+5coWxY8eydetW/P394+YPU6NGjUfGXKNGDfbv3//Y95YR/xeS88477/DFF1/w7rvv8sknnxAaGhqfvKf3/06+fPnQWnPjxg1JsrK7mtcAk6rDZiX+/sEMHryJJUuOUqyYG+vXd+P550uZHZZ42tLZi2Q2R0dHfv/9dywWC6dPn2b06NH06NGDI0eO4O3tDRjztMD4K7tKlSoPnSM4OJigoCB8fHwe2j+uVyct7ty5Q6FCGTe8nnDOS5yuXbvy+uuvc/36dQoWLMjChQvp0KEDDg4OgHF3pNY6xR6ctCZZgYGBycZRoEABjhw58th40yKuBED16tWT3X758mUAvvrqKzw8PJg2bRojRozA19eXMWPG0KdPnzRfM6WhrzfeeIM9e/bwwQcfUKFCBVxdXZkzZw6LFy9+aN+k7/v27dv8+++/if4IiBO36oLFYqFdu3bcvXuXSZMmUbJkSZydnfnggw8eO7ycJ08eqlat+tj39qgVHuJ6rOLm8cWJ6+FKOBydVJkyZfj+++8ZNGhQ/Dy1jh070rp1a4KDgxNdI+n5466R9PxxX4OwsLBHvaUsR5KsZNjHIIVIgYCAMNauPcV77zVg7NiGODk9/ANBiKzKysqKmjVrAlC7dm3KlClDnTp1mDRpEnNiE8eGDRvGT0xObl7W2rVr4/dLuP+mTZvSNczn6enJtWvXUtwelwglrBMED36xJZVcr8CLL76Ivb09S5YsoVWrVhw8eJCPP/44fruHhwdKKf744w/skpkWkdbeDQ8PD06ePPlQ+40bNx76RfmkN8bEnW/FihWJ5nrFiZtvlzdvXmbOnMnMmTM5fPgwX3zxBX379qVixYo8++yzab5mUFBQorbw8HDWrl3L9OnTGTBgQHy7xWJJ9hxJ37eHhweVK1fm+++/T/G6Z86c4d9//2XVqlW8+OKL8e2pSTIyYriwRIkS2NracuLECVq1ahXfHjdXKulcraR69OjBK6+8wqlTp3B3d6dw4cJUqFCBdu3axe9TtmzZh+Ze3b17F39//4fOH/c1yG5rq0qSlYSPygvchQRd37nJP/9cY/v284wY8QwVKuTn8uUheHg4mh2WEE+sZs2adO3alfnz5zN+/HgKFixIkSJFaN++PT/++CNDhw5N1DsVGhrK5MmT8fHxib/Dys/Pj06dOjFnzhx69uwZP58mTlBQEMePH6devXrJxtC8eXOWLVvG1KlTkx3yyJ8/P7a2tokmB0dGRqapPpCLiwtt27Zl4cKFBAQE4OXllSghbNasGWD0qqU04T8tGjRowLJlyzh58mR8ghYYGMjWrVvj53xllHr16uHk5MSVK1fo0KFDqo6pVKkSM2bM4Pvvv+f48eM8++yz8cllagrHlilThlu3bhESEhI/1BkREYHFYkmUpAYHB/Prr7+mKqbmzZuzfv16ChUqlGLPZlwylfAaFy9eZPfu3Y/tRc2I4UJ7e3uaNGnCsmXLEs1jXLx4MeXKlXvkHZlx7Ozs4odqt2/fzqlTp3jjjTfitz///PNMmTKFoKCg+LlZS5cuxcrKipYtWyY614ULF8ibNy8FCxZ87HWzlIyuCZFdH8TWyarW08GokXXzZoo1NXKiu3fD9YAB67WV1UTt5fWpDgjIPrVcRMbI6XWytNb6xIkT2traWo8aNSq+zd/fX5cqVUrnz59fz5w5U//222/6l19+0dWrV9fOzs76t99+S3SOW7du6QoVKmg3Nzc9ceJEvXXrVr1161Y9efJkXbBgQT1z5swU4zp16pTOmzevrly5sv7555/1tm3b9FdffaWnTp0av0+XLl20m5ubXrBggV67dq1+7rnntJ+fny5SpEj8Po+r87RixQoNaG9vb923b9+Htvfv31/nzZtXf/TRR3rLli16/fr1eubMmfrFF19MMXattV65cqUGEn2f3Lt3TxctWlSXKFFCL1y4UK9cuVLXrFlTu7m56UuXLsXvV6RIEd2vX79Hnj85JKmT9fnnn2sHBwc9cuRIvX79er1p0yY9Z84c/dxzz+mQkBCttdb169fXn332md6wYYPevHmzfvXVV7WdnZ0+duyY1lrrAwcOaECPHj1a//nnn/rQoUMpXv/kyZMa0Lt27UrUXqtWLe3n56eXLl2qV65cqevUqaOLFSuW6Ptux44dGtD79+9PdGx4eLiuUaOGLlWqlJ43b57esWOHXrlypf7ggw/06NGj4/fx8fHRlStX1mvWrNELFy7UpUuX1kWLFtUVKlRI8+cxPXbt2qWtra11nz599I4dO/QHH3yglVJ6yZIlifaztrbWb775Zvzr+/fv6+HDh+tff/1Vb968WU+aNEk7Ojrqjz76KNFxAQEB2tvbWzdq1Ehv2rRJ//DDD9rNzS3Z75OXX35ZP//88+l6H2bWyTI9uckqj7gk65mXiP205A4Wi0UvWXJEe3t/rmGCfuut1fr27RCzwxImyA1JltZad+/eXbu6uuqgoKD4toCAAD18+HBdrFgxbWtrq728vHSXLl3ifyknde/ePT1hwgRdvnx57eDgoJ2cnHStWrX0jBkzEhUuTc7Ro0d1u3bttKurq3ZyctJVq1bVixYtit9+8+ZN3b59e+3q6qoLFy6sZ86cqQcNGpSmJCs8PFznzZs32eRAa+P//VdffaUrVqyo7ezstIeHh65Xr56ePn36I2NPLsnS2igW2bFjR+3i4qKdnJx0ixYtHkpcMirJ0lrrhQsX6lq1amlHR0ft6uqqq1WrpseNG6ejYgtIjxgxQleqVEnnyZNHu7q66meeeUZv2rQp0TkmTJigfXx8tJWVVaLPbXIqVaqk33vvvURtp0+f1k2bNtVOTk7a19dXf/bZZw9936WUZGmt9d27d/WQIUO0n5+ftrW11d7e3rp169Z67dq18fvs27dP16pVSzs4OOhSpUrpH3/8Ub/++utPLcnSWuvVq1frSpUqaTs7O12yZEn9/fffP7QPoF9//fX416GhobpVq1ba09NT29vb6ypVquj58+cne/5jx47pZs2aaUdHR50/f349fPhwHRERkWifyMhI7eHhkey1U8PMJEtpI8HI9ZRSPsDlVi/ARofOEHsLbU538uRtypX7mvLlvZg7ty0NGqTv1nSR/cUVF0zNMIAQuclXX33FF198wenTp6XgsgnWrVtHt27duHr1aqISEKn1uJ9tV65ciZvj56u1vpLuQJMhFd+TKHAfSFJ0LqeJjIxh61ZjDa4yZfKxadOrHDjwriRYQgiRjLfffpuwsLBE1crF0zNt2jSGDRuWrgTLbJJkJRFlDTyi+m929/vvF6ladS6tWv3M6dN3AGjRogR2dlL3SgghkuPo6MiCBQseuutTZL779+/TqFEjhgwZYnYo6SJ3Fybhcw/Igd3Bt2+HMmLEFhYsOEjhwi4sXdqZkiVTrnMihBDigRYtWpgdQq6UJ08exo8fb3YY6SZJVhL5QoF0LpmRVd25E0rZsrMIDAxn8OA6TJrUBBeXnNtbJ4QQQmQFkmQl4RIJeHmZHUaGCAgIw8PDEU9PJ4YPr0/LliWoXt3b7LCEEEKIXEHmZCVhGwM4Zu/im6GhUYwZsxU/vxmcPGksQzF6dANJsIQQQoinSHqykrCPAR6zXEBWtn79afr1W8+FC0G88kpF8uZ1MDskIYQQIleSJCsJGxs7eMSimVlVZGQM3botZ/ny45Qo4c6mTa/SsmUJs8MSQgghci1JspIomyf1q89nJXZ21tjb2zBuXEPGjGmAo6Ms5iyEEEKYSeZkJZG3YFGzQ0i1/fuv0rDhfC5cCALg5587MGlSE0mwhBBCiCxAkqwklI+P2SE81t274fTvv546db7jxInbnDsXCCDLPQgRa8KECSil4h+enp40aNCA9evXJ7t/YGAgI0aMoESJEtjb21OgQAG6du3K8ePHk93//v37TJw4kYoVK+Lk5ISzszO1a9dm+vTphIeHZ+ZbM92MGTPw8/PD2tqa9u3bZ/j5E37dUnosWLAg3edv3Lgxbdu2zbB4Dx8+jIuLC7du3cqwc2YHd+/e5a233sLDwwMXFxc6deqEv7//Y4/TWvPpp59SrFgx7O3tqVixIosXL052v08++QQ/Pz8cHR2pV68ef/75Z6J9Jk+enPXrl2X0YojZ9UHsAtHnhw5JcRFJs1ksFr1o0WFdsKCxmPM77/yq79wJNTsskUPktAWiHR0d9d69e/XevXv18uXLdY0aNbSVlZXevXt3on39/f11qVKldL58+fSMGTP0zp079c8//6yrVq2qnZ2d9W+//ZZo/1u3bumKFSvqvHnz6vHjx+stW7boLVu26EmTJmkvLy89c+bMp/lWn6pTp05ppZQePXq03r17tz558mSGXyPuaxb3APSAAQMStd28eTPd5z969Kg+ceJEhsXbrl073b9//ww7X3bRqlUr7ePjoxcvXqxXr16tK1asqKtUqRK/SHdKpk6dqm1sbPSECRP0pk2bdL9+/bRSSv/666+J9vv444+1nZ2dnj59ut66davu0KGDdnFx0WfPno3fJzAwULu6uurt27c/8ppmLhBtenKTVR5xSdaF5UtT/EKYzWKx6Oee+1lXrDhb7959yexwRA6T05IsZ2fnRG1XrlzRSindq1evRO0dOnTQ9vb2+vjx44na79+/r8uVK6cLFy6sw8LC4ts7d+6snZyc9OHDhx+67p07dx5K4p6W0NDM/4NrzZo1Gkj0iy69wsPDdUxMzGP3A/Rnn332yH2exntPztmzZ7VSSh84cOCJzxUdHa0jIyMzIKrMt2fPHg3oTZs2xbedOHFCK6X04sWLUzwuIiJCu7i46KFDhyZqb9u2ra5cuXL867CwMO3q6qrHjBmT6NgiRYroPn36JDq2Z8+e+sUXX3xkvGYmWTJcmISyylp3FkZERPPxx7vw9w9GKcVPP3XgwIFe1K/va3ZoQmQrhQsXxsvLi0uXLsW3Xbx4kVWrVtGjRw/KJind4uzszNixY7l69SpLly6N33/ZsmX07t2bihUrPnQNDw8P6tev/8g4jh8/TseOHfHw8MDJyYkqVaqwcOFCAC5cuIBSimXLliU6ZvDgwRQtWjT+9YIFC1BKsXfvXlq0aIGzszMjRoxIcShs1qxZODo6cvfuXcD44/rzzz+ndOnS2NvbU7x4cWbMmPHIuN944w1eeOEFAEqUKJFo2O7ixYt06tSJvHnz4uzsTKtWrTh8+HCi44sWLUr//v359NNPKVKkCI6OjgQEBDzymsmZMGECefLkYd++fdSrVw8HBwe+/vprAEaPHk2lSpXIkycPhQsXpmvXrg8NYSX9HMWd7/DhwzRo0AAnJycqVqzIpk2bHhvL//73P4oXL061atUStacljh9//JEyZcpgb2/Pf//9B8C6deuoU6cOjo6OeHl50adPH0JCQuKPDQkJoX///pQpUwYnJyeKFi1K796947++mW3Dhg24ubklGqorU6YMVatWTXFIHuDs2bMEBwfTsmXLRO2tWrXi0KFD8f839+zZw71793j55Zfj97Gzs6Njx44Pnb9z586sW7eO27dvZ8Rby3Byd2ESSmWdvHPHjvP06bOOkyfvYGdnzbBh9cmXz8nssITIlu7fv09AQADFihWLb/v999/RWscnD0nFtf/++++89tpr7Nq1C601zz33XLpiOH36NPXq1cPX15cvv/ySggULcuTIkUSJX1p069aNXr168d577+Hk5MTBgwcZMGAAAQEBeHg8WJt04cKFtG7dmrx58wIwaNAgvvvuO8aOHUudOnXYs2cPo0aNwtHRkd69eyd7rXHjxlG+fHlGjRrFihUr8Pb2pkSJEgQHB9O4cWOsrKyYO3cuDg4OTJ48mYYNG3Lo0CF8fR/8Qbh8+XJKlSrFF198gbW1Nc7Ozul635GRkXTr1o0hQ4YwZcoUPD09Abh58ybvvfcehQoV4tatW0ybNo1GjRpx7NgxbGxS/nUXFRVF9+7dGThwIOPGjWPq1Km89NJLXLx4Mf7cydm6dWuySXVq4/j777+5cOECkyZNwt3dHV9fX5YtW0aXLl3o2bMnEydOxN/fn9GjRxMYGMiiRYsACA0NJSYmhsmTJ+Pl5cXly5eZPHky7du3Z8eOHY/83MXExMSN3qRIKYX1I0oZnThxgjJlyjw0D7hcuXKcOHEixePi5iva2yde1i3u9fHjx/Hz84s/R9I/fMqVK8elS5cICwvDMbZoeL169YiJiWHnzp106tTpke/LDJJkJaGszE+ybt4MYfjwzfz00yF8fFxZubIL7dtn3wKpInvrs7YPh28efvyOmaRS/krMaTsnXcdGR0cDcO3aNUaOHImLiwuDBg2K33716lUA/FJYr9TV1RU3NzeuXLmSqv0fZ8KECdjZ2bF7925cXV0BaN68ebrOBdC7d29GjRoV/7pkyZIMGDCA5cuX88477wBGL9PevXtZsmQJYPQmzJo1i7lz59KrV6/4GEJDQ5k4cSK9evXCKpmfgyVKlKB06dIAVKtWLb5n7csvv+TixYscPXqUcuXKAdCoUSP8/PyYOXMm06ZNiz9HVFQUGzZsSHdylfA8kydPpkuXLonaf/jhh/jnMTEx1KtXDx8fH7Zv3/5Q70lCkZGRfPLJJ7Ru3RowemWKFSvGhg0bePXVV5M9RmvN33//nezk/9TGERAQwP79++MTUa01w4cPp0uXLnz33Xfx+3l7e9O6dWvGjRtHhQoV8PLyYs6cB/8noqOjKVasGA0aNODUqVPxX6fkNGvWjN9++y3F7WB8/Xbu3Jni9sDAQNzc3B5qd3d3f2TvZFwP6L59+2jcuHF8e9yE9rhjAwMDsbe3x8EhcTFtd3d3tNYEBgbGJ1lubm74+fnx119/SZIlUuedd9awbt0phg6ty8SJTciTx87skITIdkJCQrC1fVDOxNramtWrV1OmTJknPnd67+Tdtm0bnTp1ik+wnlSbNm0Svfb09KRFixYsWrQoPslavHgxefLkiR8i27p1KwAvvfRSfBIKRqI1depULl++TJEiqa8XuGvXLipWrBifYIExbNqiRQv++OOPRPs2btz4iROsOEnfOxjDWB9++CFHjx7l3r178e2nTp16ZJJlZWWVKNktWrQojo6O8cl1cgIDA4mIiMArmbVuUxtH5cqVE/X0nTp1iosXLzJz5sxEX5tGjRphZWXF33//TYUKFQD46aefmD59OqdPn040lPi4JGvevHkEBwenuB3AxcXlkdvTy9XVlVdffZWpU6dSqVIl6taty5o1a+KHy9P7/ypfvnypurPRDJJkJWVSGYTDh29QuLArHh6OfPppcyZObEzVqgVNiUWIhNLbi2Q2R0dHfv/9dywWC6dPn2b06NH06NGDI0eO4O1trONZuHBhAC5dukSVKlUeOkdwcDBBQUH4xJZ2Sbj/o36RpeTOnTsUKlQovW/pIQUKFHiorWvXrrz++utcv36dggULsnDhQjp06BDfK3D79m201uTLly/Zc6Y1yQoMDEw2jgIFCnDkyJHHxpseTk5O5MmTJ1Hb/v37adeuHS+++CKjR48mf/78KKWoW7fuY8tqODo6YmeX+I9ZOzu7Rx6X0tBXWuJI+vmIm1fUoUOHZK95+fJlAFauXEmPHj3o1asXkydPxtPTE39/fzp06PDY91qyZMlUDRc+iru7e3wsCQUGBiYapk7OjBkzuH79enyvYb58+fjwww8ZPnx4/P9Ld3d3IiIiCA8PT9SbFRgYiFIKd3f3ROe0t7cnLCzskdc1iyRZST3l4cKQkEgmTfqN6dP/pHfvGnz1VWvKlEn+h58QIvWsrKyoWbMmALVr16ZMmTLUqVOHSZMmxQ+1NGzYEKUU69atS3Ze1tq1a+P3S7j/pk2b0jXM5+npybVr11LcHvcLJTIyMlF7YGBgsvsn98vwxRdfxN7eniVLltCqVSsOHjzIxx9/HL/dw8MDpRR//PHHQ4kFkOaePg8PD06ePPlQ+40bNx76hZtRtfySO8/KlSvJmzcvS5YsiR/uvHjxYoZcLzlx7y0oKCjdcSR9H3HnnDVrFnXq1Hlo/7gEfenSpVStWpV58+bFb3vcEGCcjBguLFu2LFu3bkVrneg9nDhxgkqVKj3y3J6enmzevJlr164REBBAqVKl+PXXX7Gzs6N69erx5wc4efJkoj9+Tpw4EV83K6GgoKD4Hr6sRpKspJ5iT9aaNSfp338Dly7dpXv3Srz/fsOndm0hcpuaNWvStWtX5s+fz/jx4ylYsCBFihShffv2/PjjjwwdOjRR71RoaCiTJ0/Gx8eHzp07A8ZcrE6dOjFnzhx69uxJ+fLlE10jKCiI48ePU69evWRjaN68OcuWLWPq1KnJDsnkz58fW1vbREVQIyMjU/0LFIyhnrZt27Jw4UICAgLw8vJKlBA2a9YMMHrVUprwnxYNGjRg2bJlnDx5Mj5BCwwMZOvWrfFzvp6GsLAwbG1tE/3S/7//+79Mu56DgwN+fn6cP38+w+IoW7YsPj4+nDt3jn79+qW4X1hY2EMJcmqvkRHDhc8//zwffvgh27Zti//eOnXqFP/++2+iOYKPUqhQIQoVKkRMTAxz5syhS5cu8detX78+rq6uLF26ND7JioqKYsWKFfE9YHEsFguXLl3izTffTNV1nzZJspJ6SknW2LHbmDLlD0qV8mDr1tdo1qz4U7muELnZuHHjWLRoETNnzuSTTz4BYPbs2TRs2JBnn32W9957j2rVqnH16lU+//xzLly4wPr16xMNWcyePZvGjRvzzDPPMGTIEJ555hkA/vrrL7766itGjx6dYpI1fvx41q5dS4MGDRg5ciTe3t4cO3aM0NBQRo4ciZWVFR07dmTWrFmULFmSfPnyMWvWrId6DB6na9eudOzYkYsXL9K5c+dEd7SVLl2afv368dprrzFixAjq1KlDVFQUp06dYseOHaxatSpNn9OePXsyY8YM2rRpw0cffRR/d6GNjQ2DBw9O07meRIsWLZg5cyYDBgygQ4cO7N27l59++ilTr/nMM8/wzz//ZFgcSimmT59Ot27dCAkJoU2bNjg7O3Px4kXWrVvHlClTKF26NC1atKBfv358+OGH1KtXj/Xr17Nt27ZUXSMj5iTWq1ePVq1a8eabbzJt2jQcHBwYO3YslStXpmPHjvH7TZo0iUmTJnH27Nn4Iej/+7//IywsjJIlS3Lt2jXmzZvH+fPnEyWJDg4OjBkzhgkTJuDl5UWlSpWYPXs2d+7cYfjw4YliOXnyJPfv3+fZZ5994veVKTK68FZ2fRBbjPTyxo0pFix7UlFRMTo01Cg29/ffV/WECTt0WNijq+MK8bTk9GKkcbp3765dXV11UFBQfFtAQIAePny4LlasmLa1tdVeXl66S5cu+tixY8me4969e3rChAm6fPny2sHBQTs5OelatWrpGTNmJCpcmpyjR4/qdu3aaVdXV+3k5KSrVq2qFy1aFL/95s2bun379trV1VUXLlxYz5w5Uw8aNEgXKVIkfp/58+drQN+6dSvZa4SHh+u8efNqQO/ateuh7RaLRX/11Ve6YsWK2s7OTnt4eOh69erp6dOnPzL2lStXauCh75MLFy7ojh07ahcXF+3k5KRbtGihDx06lGifIkWK6H79+j3y/MkhSTHSR31tp06dqn18fOJjOHXq1EPHN2rUSLdp0+ax54ur6P8oy5cv1w4ODvrevXtPHEdCmzdv1o0aNdLOzs7a2dlZV6hQQQ8bNiz+ezY6OloPGzZMe3l5aRcXF92pUyf9559/akAvXfp0CmoHBQXpN998U7u5uek8efLojh076qtXrybaZ/z48Q99v/z000+6bNmy2t7eXnt6eurXXntNX758+aHzWywWPWXKFO3j46Pt7e11nTp19J49ex7ab9q0abpIkSLaYrGkGKuZxUiVfswEuNxCKeUDXL68aRM+j7gLJb3++usK7767liZNijJjRvpq7AiRmS5cuACQqOilECJlUVFR+Pn5MXXqVHr06GF2OLlSrVq1eOGFF/jggw9S3OdxP9uuXLkSd5enr9Y65VtK08H8olBZTQYPFwYGhtGnz1rq1fsef//71KpVOEPPL4QQwhy2traMHj2aL774wuxQcqXff/+ds2fPMnDgQLNDSZHMyUoqA5OsdetO8eabv3LrVgjvvluDKVOa4e7u+PgDhRBCZAu9e/fm3r173L59O8WyGCJz3Lt3j//973/JFkbNKiTJSioDkywXF3sKFXJh9epXqFvXJ8POK4QQImuwt7dn3LhxZoeRKyW3TmdWI0lWUk+QZIWHRzN16h9YW1vx/vsNadiwCP/80wsrK3MKnAohhBDCPJJkJZXOJGvr1nP07buO06cDePnlCvG3XEuCJYQQQuROMvE9qTQmWTdu3OfVV1fQosVPRETEsHr1Kyxe3CnDKhsL8bRYW1sTExNjdhhCCJGhYmJisLa2NuXakmQllcZldf799zqLFh1hxIj6HDvWl3btnrzQmxBmcHBwIDIykjt37pgdihBCZIg7d+4QGRmZqKDw0yTDhUmlogfqv/+uc/ToLbp1q8Rzz5Xk7NmBFCnilvmxCZGJ8uXLR0REBDdv3iQoKMi0v/yEECIjxMTEEBkZiYuLi2l3fkpPVhrcvx/J8OGbqVHjG0aO3EJERDSAJFgiR1BKUbhwYfLly5fswsFCCJGd2NnZkS9fPgoXLmzaFJ4s05OllCoLfAXUB4KB/wHva60jH3OcAkYBfQEv4CAwRGv9ZzoDSbZ51aoTDBiwgStX7tGjRxU++6wF9vZZ5tMnRIZQSuHl5WV2GEIIkSNkiSxBKeUObAdOAx2BwsB0wAno/5jDRwETgdHAIaAfsFkpVVVrfS4dwTzUtGvXRTp0WEyZMp5s396DJk2Kpfm0QgghhMhdskSSBfQGXIEOWusAAKWUDTBbKTVFa30tuYOUUg7AGGCa1npGbNsu4BQwHKN3K21i/4qPiorhyJGbVKvmTYMGfvz0Uwc6dy4vvVdCCCGESJWsMifreWBrXIIVawlGfI9arbk+RnK2JK4hdnhxBdA6XZE4ObFnz2Vq1PiGxo1/5PbtUNT/t3fn0XaV5R3Hvz8IJICQhDCEKQwGCEMpArYMDgkEFKktaoNLwCagUFRawjwqk0gpZVhWkSUUiFSQFhErhTImSA0IrAKVIRZaCSEmEDUDZITw9I/3PWRzcu69554h53D377PWXvec9+x372fvd527n/Pud+8tcfTRezjBMjMzs7p1S5I1BphRLIiIBcCc/Flv9aiuC7wAjJLU7wcFnnHG/RxwwA3Mm7eE73//zxgxws8aNDMzs/7rlq6Z4cCCGuXzgY37qLc8IpbVqKf8+dJaFSVtROoFq9gK4NZbpzNx4kc5/fT9GTp0CLNnz65vC8zMzOx9Z86cOZWXLb9vTbckWZ1wCnD+6sXXM2XK9UyZssbjMTMzs87ZDpjZygV2S5I1Hxhao3w48Ica5cV6gyUNqerNGg5E/rwnVwLXF96PAn4B7Au4+6p7jASeAD4MzO1wLPZebpvu5HbpTm6X7rUV8Bgwq9UL7pYkawZVY68kDQW2YPXxVtX1AHYGnimUjwFeiYiapwoBImIRsKiwvsrL2RHxat2RW1sV2mWu26W7uG26k9ulO7ldulehbXq9L2cjumXg+z3AeEnDCmUTgHeA+3qpN52UKE2oFEhah3SvrbtbH6aZmZlZfbolybqWdJf3OyUdIukY4HLg2uI9siQ9KOmlyvt8ivBS4DRJJ0k6ELgVGAH8wxrdAjMzM7OCrjhdGBHzJR1EeqzOnaSE63rg3KpZ12b1mC8jXUl4Gqseq/OJBu72voh05/hFfc1oa5TbpXu5bbqT26U7uV26V9vaRhHR6mWamZmZlV63nC40MzMzG1CcZJmZmZm1gZMsMzMzszZwkmVmZmbWBqVIsiSNkXS/pMWS5kr6e0nr1lFPks6S9IqkpZIelbTvmoi5DBppF0lb5PmelvSGpFcl3SJp2zUVdxk0+p2pWsZkSSHprnbFWTbNtIukrSRNkTQv/z97QdJR7Y65DJo4xoyQdG0+xiyW9KykE9ZEzGUgaXTev09LelvSs3XWa9mxvytu4dBOkoYDDwEvkm5SuhXpkTrrAyf2Uf1M0mWdZwH/DXwNuE/Sng3cIsIKmmiXvfP8N5Aeg7AJ8HXgcUm7R8S8dsZdBk1+ZyrLGEl6NujrbQqzdJppF0lbAI8CvwaOJ12qvhswuI0hl0KT35d/JT2h5BzgFeBTwPckrYyI69oWdHnsBhwG/JLUqVRvx1Lrjv0RMaAn4GzgTWDjQtnxwNvAlr3UGwIsBL5VKFsXeBm4ptPb9X6fmmiXYcCgqrKtSU8HOLXT2zUQpkbbpmoZPwCmANOAuzq9TQNhaqZdgJtJz2Zdu9PbMdCmJv6XjSQ9Y3dSVfnDwIOd3q6BMAFrFV7fBDxbR52WHvvLcLrwUOCBiCg+aPpfSBntIb3U2x/YKM8LQESsAO4g/dqw5jTULhGxICLerip7FZgHbNmOQEuo0e8MAJI+AhxO+hVordNQu0jaCDiCdIBY2d4QS6nR78s6+e/CqvKFpBtsW5Mi4p0GqrX02F+GJGsMVQ+ZjogFwByqHkpdox7VdYEXgFGS1mtVgCXVaLusRtJOwGaktrHmNdw2ktYGvgNcEhFz2hVgSTXaLnuRfom/JelhSW/lcUOX5We9WnMaapeImEV6Nu85knaVtKGkI0iJ2XfbF671oaXH/jIkWcOBBTXK5wMb91FveaTnI1bXU/7cGtdou7yH0uPTvw38lvTcSmteM23zVWAD4KoWx2SNt8vI/Pd64EnSQfwqYDJwUevCK61mvi+fBV4DniONk7sFODkiftzKAK1fWnrsH/AD323AuwA4CPhkRCzucCylJmkz0kH7r3L3unWHyo/pByLi1Px6qqQNgdMkXRQRSzsUW2nlH4g3AjsCR5J6vg4GrpY0PyJ+1Mn4rDXKkGTNB4bWKB8O/KFGebHeYElDqjLa4aTBivNbF2IpNdou75J0HPAN4EsR8WALYyu7RtvmItKVOI9IGpbLBgGD8vs3q8fTWb80878M0hVwRQ8C5wKjgV81HV15NdouhwETgD0iorL/p+UfK1cATrI6o6XH/jKcLpxB1XlxSUOBLVj9nGt1PYCdq8rHAK/4l1/TGm2XyryfAb4HfCMibmhLhOXVaNuMAT5G+idUmQ4APpFfj29HsCXSaLs838dyhzQZV9k12i67AiuB6ns3PQVsKWn9VgZpdWvpsb8MSdY9wPjCL2tIvx7eIQ067Ml00jnyCZWCPEj0s8DdrQ+zdBptFySNJY2/ui4iLm5TfGXWaNtMBsZVTc+Q7mc2Dni8DbGWSUPtEhEzST1V1UnuwcBS+k7CrHeNfl9mAmsDe1SV7w28HhFLWhmk1a21x/5O38diDdwnYzhpUPQ00oDPY0i/qr9TNd+DwEtVZWcBy4CTgAOB2/PO36HT2/V+nxptF2AX0iDTX5Eutd23MH2w09s1EKZmvjM1ljUN3yer4+0CfJp00L+alFydA6wAvtnp7Xq/T038L9uQlGi9CBxNGlt6Gal367xOb9dAmEg3hP3LPE0l3fC18n7TWu2Sy1p27O/4TlhDO3oX4AFgCelKjsuBdavmmQa8XFUm0o3mZuUd/hiwX6e3Z6BMjbQLMIl0XrzWdFOnt2mgTI1+Z2osx0lWl7QL8HnSqanlpBsrng2o09s0EKYmjjGjgduA2cDi3D4n4ZvGtqpdtuvleDG2l3Zp2bFfeYFmZmZm1kJlGJNlZmZmtsY5yTIzMzNrAydZZmZmZm3gJMvMzMysDZxkmZmZmbWBkywzMzOzNnCSZWZmZtYGTrLMzMzM2sBJltkAIOkmSdHLtF0/l/dyrjetPRH3uN5asS+UNFXSp9q43nf3X6FsmKQL8jS2av7tCvFd0K64eoh1bI19tCK32bWSNmti2ZPz9k5qYchmpTWo0wGYmfVhI2AsMFbSURFxyxpa7zDg/ML7aWtovY1YB9gW+GtgP0l7RcTKBpYzOS/nYeCmlkVnVlLuyTIbeMZFhKqmlzsdVD/NjAgBQ4DTCuWXtmNlETGpsq/qnP/lwr69oB0x1WlKjnkn4De5bA/Sw9PNrMOcZJmVRD799UNJL0haIOktSXMl3S5ptzrq7y3prlxnef47VdKXq+Y7SNK9kubn+X4t6TxJ6/Q35ohYDlwJLMxFoyRtmtezlqQTJT0laYmkxZIerz7VJWm0pB9Jmp3jmSdpuqSzC/O853RhPgX4m8Jizi+cmhtb63ShpOfy+/+qWv/EwryH5jJJOkHSkznuJZIek3REf/dR3k8vAj8pFG1TWP8nc3u8KmmppGWSZki6WNJ6eZ6xedu3zdU+Xut0qKQJkh6RtCgv5xlJX5FUV3JqVjY+XWhWHsOAI6vKNgc+B4yTtEtEvF6roqQNgHuBEVV1NwcWA9fn+SYBN5CeYl+xE3AxsK+kT0djT6WvdRCfAhxdVfZh4EZJu0bEGbnsZ8CYwjyb5GkjWtszdnNe3ockjY6Il3J5JXGaC9yXX98ATKqq/6fAbZK2jYjLG1h/cR8V23Ff4JCqeXcGzgO2Z/V9WHvh0vnABVXFewDXALsDX+tHrGal4J4ss4FnatWg6Kdz+XxSQrUN6TTcB4Dj8mcbs3oCVjSGVQnW54B1ga2BvyAlMUj6AHA16WB/T17P+sA5ud5hQL8Gr0saDJxKSogAZkXEPEkfY1Vy8GiOZUdgRi47TdLOkkawKsE6BRgMjCQlHT/oab35FOD2haILC6cHp/VQ7YfAO/n1hBz/MGB8Lrs1IlZK+girEqxLgKGkpK/SE3VRjrtuknYEPpPfvgb8Z+HjfyedPtyUNHZrC+Du/NmRkjaOiGn5tOPMXP5w8XSo0oUTX8+f3QhsRmqT7+ayr0ravT8xm5WBe7LMSiIiFuaD5Xmk3qUNqmbZuZfqs4GVwNqkHovRwHPALyLi93me/UkJA8ChwKwayzmQdNDvy7YqXOlXUDnQH1oouyQiZgNIugK4jpToHULqZVlESgiOJG3zc8BjEXF/HXHULSJmKV2NeSCp9+pS4HBSQgqppwvem2iem6eiIaR9+bM6VjtR0sTC+xnAFyNiWaFsNvBNUrI3kpRoVYiUnP6yj/UcQmp7gGPyVG0c8GwdMZuVhnuyzAae6oHvewJIOhm4AvgQqydYAOv1tMCImAv8LWls1IHAZcBdwNx8GglST0lfNq57K1Z5A/g5cHhETMllmxQ+n9XD603zFXbHkHp39iGdtrwDmC3pugZi6UslkdpT0mhyjxbwbEQ8VYmrjuU0sp8g9Ry+++NZ0lqkdjqG1LNYa1xcj+1e0M6YzQYsJ1lm5VE54C8jjf8ZBPxRvZUj4hrSwfZPgKNIPVKDSIPCtwbmFWY/u8YVjgKOrXN1Mwv1NoqIj0fETwuf/67weuvC622q54mIO4AtgT1JPUw3k3pwvizpgN42uc5Yi34MLMmvjwcOzq9vLsxT3E/71dhHaxWSyb5MISVOE4C3gVHATyRVTq+OJiXVAA8Am+d1XNHD8nra5mLMX+gh5gvrjNmsNJxkmZXH4Pw3SL1Dw1h9IHNNkjaX9HfAXsD/kZKJ6ZWPST1L01l1FeApksZJGixpM0lHSPo5q65ea9Z/FF6fI2krSTuQxl1B2sb7cuz/CHwUmAP8lFWDz6H3Hpr5hddj6rk6MiLeAO7Mb08mJUDvkMZrVdxTeH2lpF0krStpB0l/Q0qG6hYRb0fE7aRTo5BOCZ6eXw8uzLocWCppH+CLPSyuss2jJA0tlN9HOl0McKGkfXLMW0s6FngKM1uNkyyz8qiM8VkPeJ7U07NnnXXXA84EHsv1lpEGbUM6Rfd8RLxJSiyClLw8lOd7DbiNlOi0REQ8DNya3x4AvAr8L7BLLrsqIiqD4E8k3Uj0NVKiUelVWpi3p6d1LAL+J7/9PLAiX0jQ11jWyvIr8z1UGTOWl/sIq270uR+pLZbn+L8NfLCP5ffkW6QrPQFOyoPnZwCVqxwPI41Pe4KUZNfyRP67PbAgb+/4fJ+1i/NnO+X5lpPa/p+AP24wZrMBzUmWWXlcSrr673XgTeB24At11v09KQF4itTb8RZpQPUtwPiIWAEQETeSTpHdm+dbAbxCuprtOOC3rdkUIF1dOBl4hpTMLQWeBL4UEacW5ruMNLD7dznuucC/5bjn9rGOiaSEYmk/4ro/r6Pi5hrzHAuckJe9JE8v5nm/0o91vSsiXiO1EcCGwJkR8Rbw58BUUgI2i3S15j/3sJjzSftmQY3lX0g63foIKUlbxqpezaMaidlsoFNjt6wxMzMzs964J8vMzMysDZxkmZmZmbWBkywzMzOzNnCSZWZmZtYGTrLMzMzM2sBJlpmZmVkbOMkyMzMzawMnWWZmZmZt4CTLzMzMrA2cZJmZmZm1gZMsMzMzszZwkmVmZmbWBk6yzMzMzNrg/wH4obZddO9WkwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "print(\"AUC-ROC score sobre test: \", \"%0.16f\" % roc_auc_score(y_test, model.predict(X_test)[:,1]))\n", - "print(\"AUC-ROC score sobre train: \", \"%0.16f\" % roc_auc_score(y_train, model.predict(X_train)[:,1]))\n", - "print(\"Accuracy sobre test: \", \"%0.16f\" % accuracy_score(y_pred, y_test))\n", - "print(classification_report(y_test, y_pred, target_names=[\"Bajo valor\", \"Alto valor\"]))\n", - "graficar_matriz_confusion(y_test, y_pred)\n", - "plot_roc_curves(model, X_test, y_test, X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d7d5da66", - "metadata": {}, - "outputs": [], - "source": [ - "prediccion = model.predict(X_train)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1bf41bd7", - "metadata": {}, - "outputs": [], - "source": [ - "prediccion[:20]" - ] - }, - { - "cell_type": "markdown", - "id": "6493408c", - "metadata": {}, - "source": [ - "# Conclusion parcial" - ] - }, - { - "cell_type": "markdown", - "id": "91f15e6d", - "metadata": {}, - "source": [ - "Como dato: probe varios optimizadores y varios learning rates y varias configuraciones de redes. El optimizador es este o el adam. El learning rate mas chicho no sirve y mas grande overshootea mucho. La red si la complejizas mas se va todo a la mierda rapidamente" - ] - }, - { - "cell_type": "markdown", - "id": "d4b37f36", - "metadata": {}, - "source": [ - "Visualizando lo obtenido identificamos que empeoro notablemente. Y no solo empeoro sino que la red es completamente inútil ya que su output es siempre o casi siempre 0 (bajos ingresos). No nos explayaremos en la explicación teórica de este fenómeno pero es algo que entedemos puede suceder al usar función de activación Relu en las neuronas. Basicamente sucede que a partir de cierto punto la red \"muere\" y se vuelve inservible. Dejamos una discusión de referencia en el siguiente link: https://datascience.stackexchange.com/questions/5706/what-is-the-dying-relu-problem-in-neural-networks\n", - "\n", - "Para buscar solucionar este problema empecemos probando un método de regularización de la red. Es valido aclarar que otras posibles soluciones podrian ser modificar el optimizador e cambiar el learning rate " - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "953cb4fd", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Dataset inicial con 20 features...\n", - "Dataset nuevo con PolynomialFeature con 30 features...\n" - ] - } - ], - "source": [ - "clf_2 = tree.DecisionTreeClassifier(random_state=10, criterion = 'gini', max_depth = 7, min_samples_leaf =50)\n", - "X_reducido = reduccion_rfecv(\n", - " estimator=clf_2,\n", - " X_df = X_df,\n", - " y_df = y_df,\n", - " min_features_to_select=20,\n", - " step=5,\n", - " n_jobs=-1,\n", - " scoring=\"roc_auc\",\n", - " cv=5\n", - ")\n", - "\n", - "X_reducido = get_dataframe_polynomial(X_reducido, 2, False)\n", - "X_train, X_test, y_train, y_test = train_test_split(X_reducido, y_df, random_state=10, test_size=0.20, stratify=y_df)\n", - "X_train = get_dataframe_scaled(X_train,StandardScaler())\n", - "X_test = get_dataframe_scaled(X_test,StandardScaler())\n", - "clf_2 = GradientBoostingClassifier(random_state=10,max_depth=7,min_samples_leaf=50)" - ] - }, - { - "cell_type": "markdown", - "id": "ea8e8b33", - "metadata": {}, - "source": [ - "### Quinto entrenamiento" - ] - }, - { - "cell_type": "markdown", - "id": "78b6138b", - "metadata": {}, - "source": [ - "#### Diseño" - ] - }, - { - "cell_type": "markdown", - "id": "2bbdcfc4", - "metadata": {}, - "source": [ - "Ahora agrandamos la red" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "ad9c9afe", - "metadata": {}, - "outputs": [], - "source": [ - "seed(0)\n", - "tensorflow.random.set_seed(0)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "2811f52c", - "metadata": {}, - "outputs": [], - "source": [ - "model = Sequential()\n", - "model.add(Dense(16,input_shape = (40,),activation='relu', kernel_regularizer=l2(0.0001)))\n", - "model.add(Dense(16,activation='relu', kernel_regularizer=l2(0.0001)))\n", - "model.add(Dense(8,activation='relu', kernel_regularizer=l2(0.0001)))\n", - "model.add(Dense(4,activation='relu', kernel_regularizer=l2(0.0001)))\n", - "model.add(Dense(1, activation=\"sigmoid\"))" - ] - }, - { - "cell_type": "markdown", - "id": "cd3b01df", - "metadata": {}, - "source": [ - "Compilamos y mostramos un resumen de la red" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "a1423a1c", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"sequential\"\n", - "_________________________________________________________________\n", - "Layer (type) Output Shape Param # \n", - "=================================================================\n", - "dense (Dense) (None, 16) 656 \n", - "_________________________________________________________________\n", - "dense_1 (Dense) (None, 16) 272 \n", - "_________________________________________________________________\n", - "dense_2 (Dense) (None, 8) 136 \n", - "_________________________________________________________________\n", - "dense_3 (Dense) (None, 4) 36 \n", - "_________________________________________________________________\n", - "dense_4 (Dense) (None, 1) 5 \n", - "=================================================================\n", - "Total params: 1,105\n", - "Trainable params: 1,105\n", - "Non-trainable params: 0\n", - "_________________________________________________________________\n" - ] - } - ], - "source": [ - "opt = tensorflow.keras.optimizers.RMSprop(lr=0.0001)\n", - "model.compile(loss='binary_crossentropy', optimizer=opt,metrics=['AUC','accuracy'])\n", - "model.summary()" - ] - }, - { - "cell_type": "markdown", - "id": "1965df33", - "metadata": {}, - "source": [ - "Tenemos 1200 params, mientrás que anteriormente teniamos aproximadamente 800" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "62e2f059", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/200\n", - "814/814 [==============================] - 2s 2ms/step - loss: 6.9633 - auc: 0.5235 - accuracy: 0.7032 - val_loss: 0.5430 - val_auc: 0.6671 - val_accuracy: 0.7883\n", - "Epoch 2/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.5426 - auc: 0.6560 - accuracy: 0.7906 - val_loss: 0.4781 - val_auc: 0.7468 - val_accuracy: 0.7940\n", - "Epoch 3/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.4726 - auc: 0.7591 - accuracy: 0.7948 - val_loss: 0.4432 - val_auc: 0.8245 - val_accuracy: 0.7915\n", - "Epoch 4/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.4311 - auc: 0.8151 - accuracy: 0.7974 - val_loss: 0.4187 - val_auc: 0.8421 - val_accuracy: 0.7935\n", - "Epoch 5/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.4240 - auc: 0.8330 - accuracy: 0.7918 - val_loss: 0.4065 - val_auc: 0.8546 - val_accuracy: 0.7940\n", - "Epoch 6/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.4041 - auc: 0.8478 - accuracy: 0.7991 - val_loss: 0.3958 - val_auc: 0.8628 - val_accuracy: 0.7944\n", - "Epoch 7/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.4095 - auc: 0.8521 - accuracy: 0.7955 - val_loss: 0.4064 - val_auc: 0.8672 - val_accuracy: 0.7921\n", - "Epoch 8/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3869 - auc: 0.8623 - accuracy: 0.7964 - val_loss: 0.3915 - val_auc: 0.8717 - val_accuracy: 0.7926\n", - "Epoch 9/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3826 - auc: 0.8664 - accuracy: 0.7984 - val_loss: 0.3787 - val_auc: 0.8754 - val_accuracy: 0.7966\n", - "Epoch 10/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3817 - auc: 0.8662 - accuracy: 0.7954 - val_loss: 0.3767 - val_auc: 0.8777 - val_accuracy: 0.7961\n", - "Epoch 11/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3878 - auc: 0.8669 - accuracy: 0.7959 - val_loss: 0.3789 - val_auc: 0.8786 - val_accuracy: 0.7946\n", - "Epoch 12/200\n", - "814/814 [==============================] - 1s 950us/step - loss: 0.3801 - auc: 0.8664 - accuracy: 0.7997 - val_loss: 0.3737 - val_auc: 0.8794 - val_accuracy: 0.7966\n", - "Epoch 13/200\n", - "814/814 [==============================] - 1s 958us/step - loss: 0.3705 - auc: 0.8753 - accuracy: 0.7988 - val_loss: 0.3702 - val_auc: 0.8803 - val_accuracy: 0.7958\n", - "Epoch 14/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3809 - auc: 0.8741 - accuracy: 0.7946 - val_loss: 0.3795 - val_auc: 0.8770 - val_accuracy: 0.7966\n", - "Epoch 15/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3790 - auc: 0.8733 - accuracy: 0.8084 - val_loss: 0.3778 - val_auc: 0.8763 - val_accuracy: 0.8253\n", - "Epoch 16/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3781 - auc: 0.8708 - accuracy: 0.8275 - val_loss: 0.3716 - val_auc: 0.8817 - val_accuracy: 0.8279\n", - "Epoch 17/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3690 - auc: 0.8770 - accuracy: 0.8302 - val_loss: 0.3857 - val_auc: 0.8669 - val_accuracy: 0.8187\n", - "Epoch 18/200\n", - "814/814 [==============================] - 1s 929us/step - loss: 0.3745 - auc: 0.8756 - accuracy: 0.8315 - val_loss: 0.3676 - val_auc: 0.8825 - val_accuracy: 0.8290\n", - "Epoch 19/200\n", - "814/814 [==============================] - 1s 888us/step - loss: 0.3805 - auc: 0.8728 - accuracy: 0.8252 - val_loss: 0.3918 - val_auc: 0.8780 - val_accuracy: 0.8214\n", - "Epoch 20/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3654 - auc: 0.8818 - accuracy: 0.8335 - val_loss: 0.3953 - val_auc: 0.8807 - val_accuracy: 0.8270\n", - "Epoch 21/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3696 - auc: 0.8787 - accuracy: 0.8312 - val_loss: 0.3644 - val_auc: 0.8847 - val_accuracy: 0.8316\n", - "Epoch 22/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3643 - auc: 0.8792 - accuracy: 0.8287 - val_loss: 0.3634 - val_auc: 0.8848 - val_accuracy: 0.8322\n", - "Epoch 23/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3623 - auc: 0.8827 - accuracy: 0.8368 - val_loss: 0.3751 - val_auc: 0.8841 - val_accuracy: 0.8310\n", - "Epoch 24/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3621 - auc: 0.8825 - accuracy: 0.8340 - val_loss: 0.3642 - val_auc: 0.8856 - val_accuracy: 0.8328\n", - "Epoch 25/200\n", - "814/814 [==============================] - 1s 942us/step - loss: 0.3642 - auc: 0.8813 - accuracy: 0.8331 - val_loss: 0.3751 - val_auc: 0.8842 - val_accuracy: 0.8310\n", - "Epoch 26/200\n", - "814/814 [==============================] - 1s 909us/step - loss: 0.3663 - auc: 0.8833 - accuracy: 0.8333 - val_loss: 0.3716 - val_auc: 0.8857 - val_accuracy: 0.8303\n", - "Epoch 27/200\n", - "814/814 [==============================] - 1s 963us/step - loss: 0.3709 - auc: 0.8803 - accuracy: 0.8313 - val_loss: 0.3650 - val_auc: 0.8851 - val_accuracy: 0.8328\n", - "Epoch 28/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3713 - auc: 0.8800 - accuracy: 0.8341 - val_loss: 0.3638 - val_auc: 0.8866 - val_accuracy: 0.8331\n", - "Epoch 29/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3649 - auc: 0.8810 - accuracy: 0.8335 - val_loss: 0.3661 - val_auc: 0.8866 - val_accuracy: 0.8331\n", - "Epoch 30/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3726 - auc: 0.8826 - accuracy: 0.8339 - val_loss: 0.3901 - val_auc: 0.8838 - val_accuracy: 0.8277\n", - "Epoch 31/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3629 - auc: 0.8821 - accuracy: 0.8328 - val_loss: 0.3609 - val_auc: 0.8870 - val_accuracy: 0.8311\n", - "Epoch 32/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3646 - auc: 0.8800 - accuracy: 0.8356 - val_loss: 0.3680 - val_auc: 0.8837 - val_accuracy: 0.8294\n", - "Epoch 33/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3639 - auc: 0.8855 - accuracy: 0.8338 - val_loss: 0.3753 - val_auc: 0.8747 - val_accuracy: 0.8205\n", - "Epoch 34/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3816 - auc: 0.8876 - accuracy: 0.8346 - val_loss: 0.3632 - val_auc: 0.8881 - val_accuracy: 0.8313\n", - "Epoch 35/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3609 - auc: 0.8839 - accuracy: 0.8336 - val_loss: 0.4260 - val_auc: 0.8396 - val_accuracy: 0.8070\n", - "Epoch 36/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3638 - auc: 0.8813 - accuracy: 0.8304 - val_loss: 0.3638 - val_auc: 0.8876 - val_accuracy: 0.8310\n", - "Epoch 37/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3622 - auc: 0.8839 - accuracy: 0.8338 - val_loss: 0.3605 - val_auc: 0.8873 - val_accuracy: 0.8323\n", - "Epoch 38/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3579 - auc: 0.8867 - accuracy: 0.8322 - val_loss: 0.3582 - val_auc: 0.8887 - val_accuracy: 0.8346\n", - "Epoch 39/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3644 - auc: 0.8834 - accuracy: 0.8342 - val_loss: 0.3822 - val_auc: 0.8866 - val_accuracy: 0.8293\n", - "Epoch 40/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3577 - auc: 0.8861 - accuracy: 0.8347 - val_loss: 0.3580 - val_auc: 0.8901 - val_accuracy: 0.8365\n", - "Epoch 41/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3534 - auc: 0.8883 - accuracy: 0.8332 - val_loss: 0.3660 - val_auc: 0.8804 - val_accuracy: 0.8244\n", - "Epoch 42/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3665 - auc: 0.8810 - accuracy: 0.8299 - val_loss: 0.3558 - val_auc: 0.8908 - val_accuracy: 0.8363\n", - "Epoch 43/200\n", - "814/814 [==============================] - 1s 921us/step - loss: 0.3641 - auc: 0.8851 - accuracy: 0.8349 - val_loss: 0.3703 - val_auc: 0.8801 - val_accuracy: 0.8187\n", - "Epoch 44/200\n", - "814/814 [==============================] - 1s 975us/step - loss: 0.3561 - auc: 0.8872 - accuracy: 0.8343 - val_loss: 0.3644 - val_auc: 0.8901 - val_accuracy: 0.8320\n", - "Epoch 45/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3628 - auc: 0.8837 - accuracy: 0.8287 - val_loss: 0.3599 - val_auc: 0.8870 - val_accuracy: 0.8274\n", - "Epoch 46/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3580 - auc: 0.8854 - accuracy: 0.8375 - val_loss: 0.3619 - val_auc: 0.8848 - val_accuracy: 0.8254\n", - "Epoch 47/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3499 - auc: 0.8919 - accuracy: 0.8394 - val_loss: 0.3555 - val_auc: 0.8900 - val_accuracy: 0.8328\n", - "Epoch 48/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3539 - auc: 0.8889 - accuracy: 0.8346 - val_loss: 0.3593 - val_auc: 0.8873 - val_accuracy: 0.8293\n", - "Epoch 49/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3563 - auc: 0.8872 - accuracy: 0.8348 - val_loss: 0.3571 - val_auc: 0.8906 - val_accuracy: 0.8329\n", - "Epoch 50/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3527 - auc: 0.8887 - accuracy: 0.8354 - val_loss: 0.3625 - val_auc: 0.8893 - val_accuracy: 0.8305\n", - "Epoch 51/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3556 - auc: 0.8866 - accuracy: 0.8342 - val_loss: 0.3563 - val_auc: 0.8896 - val_accuracy: 0.8308\n", - "Epoch 52/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3518 - auc: 0.8864 - accuracy: 0.8378 - val_loss: 0.3512 - val_auc: 0.8914 - val_accuracy: 0.8323\n", - "Epoch 53/200\n", - "814/814 [==============================] - 1s 906us/step - loss: 0.3567 - auc: 0.8871 - accuracy: 0.8311 - val_loss: 0.4960 - val_auc: 0.8050 - val_accuracy: 0.8025\n", - "Epoch 54/200\n", - "814/814 [==============================] - 1s 938us/step - loss: 0.3587 - auc: 0.8840 - accuracy: 0.8327 - val_loss: 0.3557 - val_auc: 0.8916 - val_accuracy: 0.8342\n", - "Epoch 55/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3573 - auc: 0.8855 - accuracy: 0.8312 - val_loss: 0.3552 - val_auc: 0.8917 - val_accuracy: 0.8343\n", - "Epoch 56/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3566 - auc: 0.8853 - accuracy: 0.8368 - val_loss: 0.3552 - val_auc: 0.8925 - val_accuracy: 0.8351\n", - "Epoch 57/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3528 - auc: 0.8882 - accuracy: 0.8333 - val_loss: 0.3570 - val_auc: 0.8893 - val_accuracy: 0.8296\n", - "Epoch 58/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3529 - auc: 0.8906 - accuracy: 0.8389 - val_loss: 0.3508 - val_auc: 0.8924 - val_accuracy: 0.8334\n", - "Epoch 59/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3504 - auc: 0.8927 - accuracy: 0.8367 - val_loss: 0.3615 - val_auc: 0.8855 - val_accuracy: 0.8303\n", - "Epoch 60/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3699 - auc: 0.8847 - accuracy: 0.8333 - val_loss: 0.3531 - val_auc: 0.8935 - val_accuracy: 0.8342\n", - "Epoch 61/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3540 - auc: 0.8867 - accuracy: 0.8340 - val_loss: 0.3556 - val_auc: 0.8874 - val_accuracy: 0.8251\n", - "Epoch 62/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3545 - auc: 0.8883 - accuracy: 0.8328 - val_loss: 0.3545 - val_auc: 0.8907 - val_accuracy: 0.8310\n", - "Epoch 63/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3466 - auc: 0.8915 - accuracy: 0.8401 - val_loss: 0.3535 - val_auc: 0.8918 - val_accuracy: 0.8353\n", - "Epoch 64/200\n", - "814/814 [==============================] - 1s 886us/step - loss: 0.3501 - auc: 0.8907 - accuracy: 0.8383 - val_loss: 0.3655 - val_auc: 0.8895 - val_accuracy: 0.8408\n", - "Epoch 65/200\n", - "814/814 [==============================] - 1s 878us/step - loss: 0.3574 - auc: 0.8864 - accuracy: 0.8364 - val_loss: 0.3583 - val_auc: 0.8909 - val_accuracy: 0.8314\n", - "Epoch 66/200\n", - "814/814 [==============================] - 1s 922us/step - loss: 0.3497 - auc: 0.8903 - accuracy: 0.8365 - val_loss: 0.3534 - val_auc: 0.8930 - val_accuracy: 0.8326\n", - "Epoch 67/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3431 - auc: 0.8926 - accuracy: 0.8391 - val_loss: 0.3513 - val_auc: 0.8935 - val_accuracy: 0.8323\n", - "Epoch 68/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3454 - auc: 0.8944 - accuracy: 0.8384 - val_loss: 0.3613 - val_auc: 0.8890 - val_accuracy: 0.8402\n", - "Epoch 69/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3495 - auc: 0.8911 - accuracy: 0.8377 - val_loss: 0.3538 - val_auc: 0.8918 - val_accuracy: 0.8371\n", - "Epoch 70/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3504 - auc: 0.8909 - accuracy: 0.8337 - val_loss: 0.3469 - val_auc: 0.8951 - val_accuracy: 0.8385\n", - "Epoch 71/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3485 - auc: 0.8918 - accuracy: 0.8373 - val_loss: 0.3582 - val_auc: 0.8925 - val_accuracy: 0.8311\n", - "Epoch 72/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3469 - auc: 0.8926 - accuracy: 0.8357 - val_loss: 0.3605 - val_auc: 0.8904 - val_accuracy: 0.8293\n", - "Epoch 73/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3566 - auc: 0.8875 - accuracy: 0.8341 - val_loss: 0.3556 - val_auc: 0.8906 - val_accuracy: 0.8319\n", - "Epoch 74/200\n", - "814/814 [==============================] - 1s 998us/step - loss: 0.3526 - auc: 0.8882 - accuracy: 0.8310 - val_loss: 0.3566 - val_auc: 0.8912 - val_accuracy: 0.8283\n", - "Epoch 75/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3543 - auc: 0.8887 - accuracy: 0.8287 - val_loss: 0.3508 - val_auc: 0.8935 - val_accuracy: 0.8328\n", - "Epoch 76/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3472 - auc: 0.8894 - accuracy: 0.8333 - val_loss: 0.3524 - val_auc: 0.8926 - val_accuracy: 0.8297\n", - "Epoch 77/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3495 - auc: 0.8895 - accuracy: 0.8332 - val_loss: 0.3604 - val_auc: 0.8917 - val_accuracy: 0.8342\n", - "Epoch 78/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3543 - auc: 0.8876 - accuracy: 0.8302 - val_loss: 0.3592 - val_auc: 0.8914 - val_accuracy: 0.8274\n", - "Epoch 79/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3537 - auc: 0.8875 - accuracy: 0.8309 - val_loss: 0.3528 - val_auc: 0.8914 - val_accuracy: 0.8300\n", - "Epoch 80/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3463 - auc: 0.8918 - accuracy: 0.8389 - val_loss: 0.3496 - val_auc: 0.8933 - val_accuracy: 0.8319\n", - "Epoch 81/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3458 - auc: 0.8916 - accuracy: 0.8339 - val_loss: 0.3708 - val_auc: 0.8873 - val_accuracy: 0.8220\n", - "Epoch 82/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3477 - auc: 0.8930 - accuracy: 0.8321 - val_loss: 0.3513 - val_auc: 0.8927 - val_accuracy: 0.8285\n", - "Epoch 83/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3641 - auc: 0.8870 - accuracy: 0.8313 - val_loss: 0.3571 - val_auc: 0.8914 - val_accuracy: 0.8363\n", - "Epoch 84/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3475 - auc: 0.8942 - accuracy: 0.8356 - val_loss: 0.3511 - val_auc: 0.8935 - val_accuracy: 0.8310\n", - "Epoch 85/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3381 - auc: 0.8968 - accuracy: 0.8377 - val_loss: 0.3536 - val_auc: 0.8930 - val_accuracy: 0.8311\n", - "Epoch 86/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3474 - auc: 0.8911 - accuracy: 0.8337 - val_loss: 0.3517 - val_auc: 0.8937 - val_accuracy: 0.8311\n", - "Epoch 87/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3487 - auc: 0.8941 - accuracy: 0.8354 - val_loss: 0.3557 - val_auc: 0.8938 - val_accuracy: 0.8329\n", - "Epoch 88/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3488 - auc: 0.8936 - accuracy: 0.8353 - val_loss: 0.3525 - val_auc: 0.8912 - val_accuracy: 0.8287\n", - "Epoch 89/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3495 - auc: 0.8927 - accuracy: 0.8369 - val_loss: 0.3527 - val_auc: 0.8929 - val_accuracy: 0.8354\n", - "Epoch 90/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3511 - auc: 0.8885 - accuracy: 0.8355 - val_loss: 0.3514 - val_auc: 0.8932 - val_accuracy: 0.8294\n", - "Epoch 91/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3405 - auc: 0.8944 - accuracy: 0.8362 - val_loss: 0.3557 - val_auc: 0.8905 - val_accuracy: 0.8311\n", - "Epoch 92/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3459 - auc: 0.8938 - accuracy: 0.8354 - val_loss: 0.3596 - val_auc: 0.8858 - val_accuracy: 0.8268\n", - "Epoch 93/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3559 - auc: 0.8886 - accuracy: 0.8272 - val_loss: 0.3587 - val_auc: 0.8913 - val_accuracy: 0.8362\n", - "Epoch 94/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3470 - auc: 0.8912 - accuracy: 0.8335 - val_loss: 0.3542 - val_auc: 0.8940 - val_accuracy: 0.8349\n", - "Epoch 95/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3518 - auc: 0.8886 - accuracy: 0.8304 - val_loss: 0.3509 - val_auc: 0.8936 - val_accuracy: 0.8319\n", - "Epoch 96/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3440 - auc: 0.8955 - accuracy: 0.8359 - val_loss: 0.3494 - val_auc: 0.8948 - val_accuracy: 0.8329\n", - "Epoch 97/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3488 - auc: 0.8938 - accuracy: 0.8322 - val_loss: 0.3536 - val_auc: 0.8920 - val_accuracy: 0.8311\n", - "Epoch 98/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3518 - auc: 0.8905 - accuracy: 0.8328 - val_loss: 0.3554 - val_auc: 0.8944 - val_accuracy: 0.8336\n", - "Epoch 99/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3502 - auc: 0.8924 - accuracy: 0.8341 - val_loss: 0.3556 - val_auc: 0.8897 - val_accuracy: 0.8334\n", - "Epoch 100/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3534 - auc: 0.8917 - accuracy: 0.8353 - val_loss: 0.3657 - val_auc: 0.8903 - val_accuracy: 0.8337\n", - "Epoch 101/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3548 - auc: 0.8891 - accuracy: 0.8307 - val_loss: 0.3614 - val_auc: 0.8920 - val_accuracy: 0.8340\n", - "Epoch 102/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3473 - auc: 0.8940 - accuracy: 0.8340 - val_loss: 0.3540 - val_auc: 0.8934 - val_accuracy: 0.8328\n", - "Epoch 103/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3491 - auc: 0.8921 - accuracy: 0.8328 - val_loss: 0.3495 - val_auc: 0.8950 - val_accuracy: 0.8359\n", - "Epoch 104/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3498 - auc: 0.8912 - accuracy: 0.8334 - val_loss: 0.3510 - val_auc: 0.8942 - val_accuracy: 0.8317\n", - "Epoch 105/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3421 - auc: 0.8947 - accuracy: 0.8358 - val_loss: 0.3501 - val_auc: 0.8949 - val_accuracy: 0.8345\n", - "Epoch 106/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3461 - auc: 0.8938 - accuracy: 0.8342 - val_loss: 0.3495 - val_auc: 0.8955 - val_accuracy: 0.8359\n", - "Epoch 107/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3537 - auc: 0.8900 - accuracy: 0.8300 - val_loss: 0.3494 - val_auc: 0.8943 - val_accuracy: 0.8325\n", - "Epoch 108/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3479 - auc: 0.8910 - accuracy: 0.8335 - val_loss: 0.3526 - val_auc: 0.8936 - val_accuracy: 0.8296\n", - "Epoch 109/200\n", - "814/814 [==============================] - 2s 2ms/step - loss: 0.3503 - auc: 0.8915 - accuracy: 0.8335 - val_loss: 0.3610 - val_auc: 0.8937 - val_accuracy: 0.8320\n", - "Epoch 110/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3518 - auc: 0.8902 - accuracy: 0.8371 - val_loss: 0.3562 - val_auc: 0.8930 - val_accuracy: 0.8328\n", - "Epoch 111/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3476 - auc: 0.8920 - accuracy: 0.8358 - val_loss: 0.3541 - val_auc: 0.8952 - val_accuracy: 0.8314\n", - "Epoch 112/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3491 - auc: 0.8957 - accuracy: 0.8361 - val_loss: 0.3569 - val_auc: 0.8938 - val_accuracy: 0.8334\n", - "Epoch 113/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3517 - auc: 0.8910 - accuracy: 0.8343 - val_loss: 0.3499 - val_auc: 0.8944 - val_accuracy: 0.8314\n", - "Epoch 114/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3532 - auc: 0.8892 - accuracy: 0.8332 - val_loss: 0.3501 - val_auc: 0.8935 - val_accuracy: 0.8302\n", - "Epoch 115/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3377 - auc: 0.8953 - accuracy: 0.8395 - val_loss: 0.3526 - val_auc: 0.8954 - val_accuracy: 0.8354\n", - "Epoch 116/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3420 - auc: 0.8968 - accuracy: 0.8382 - val_loss: 0.3655 - val_auc: 0.8923 - val_accuracy: 0.8314\n", - "Epoch 117/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3525 - auc: 0.8928 - accuracy: 0.8338 - val_loss: 0.3592 - val_auc: 0.8896 - val_accuracy: 0.8291\n", - "Epoch 118/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3505 - auc: 0.8950 - accuracy: 0.8352 - val_loss: 0.3513 - val_auc: 0.8943 - val_accuracy: 0.8302\n", - "Epoch 119/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3448 - auc: 0.8942 - accuracy: 0.8350 - val_loss: 0.3519 - val_auc: 0.8952 - val_accuracy: 0.8385\n", - "Epoch 120/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3462 - auc: 0.8921 - accuracy: 0.8378 - val_loss: 0.3989 - val_auc: 0.8688 - val_accuracy: 0.8216\n", - "Epoch 121/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3540 - auc: 0.8885 - accuracy: 0.8318 - val_loss: 0.3545 - val_auc: 0.8940 - val_accuracy: 0.8317\n", - "Epoch 122/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3569 - auc: 0.8934 - accuracy: 0.8341 - val_loss: 0.3693 - val_auc: 0.8912 - val_accuracy: 0.8291\n", - "Epoch 123/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3459 - auc: 0.8958 - accuracy: 0.8353 - val_loss: 0.3555 - val_auc: 0.8925 - val_accuracy: 0.8310\n", - "Epoch 124/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3439 - auc: 0.8953 - accuracy: 0.8353 - val_loss: 0.3500 - val_auc: 0.8971 - val_accuracy: 0.8368\n", - "Epoch 125/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3531 - auc: 0.8930 - accuracy: 0.8363 - val_loss: 0.3635 - val_auc: 0.8870 - val_accuracy: 0.8305\n", - "Epoch 126/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3374 - auc: 0.9000 - accuracy: 0.8385 - val_loss: 0.3507 - val_auc: 0.8971 - val_accuracy: 0.8359\n", - "Epoch 127/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3395 - auc: 0.8999 - accuracy: 0.8405 - val_loss: 0.3898 - val_auc: 0.8752 - val_accuracy: 0.8236\n", - "Epoch 128/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3463 - auc: 0.8929 - accuracy: 0.8359 - val_loss: 0.3496 - val_auc: 0.8954 - val_accuracy: 0.8323\n", - "Epoch 129/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3489 - auc: 0.8921 - accuracy: 0.8356 - val_loss: 0.3504 - val_auc: 0.8954 - val_accuracy: 0.8317\n", - "Epoch 130/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3508 - auc: 0.8926 - accuracy: 0.8335 - val_loss: 0.3517 - val_auc: 0.8956 - val_accuracy: 0.8336\n", - "Epoch 131/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3465 - auc: 0.8953 - accuracy: 0.8379 - val_loss: 0.3513 - val_auc: 0.8952 - val_accuracy: 0.8356\n", - "Epoch 132/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3483 - auc: 0.8937 - accuracy: 0.8351 - val_loss: 0.3533 - val_auc: 0.8939 - val_accuracy: 0.8314\n", - "Epoch 133/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3506 - auc: 0.8912 - accuracy: 0.8355 - val_loss: 0.3610 - val_auc: 0.8935 - val_accuracy: 0.8323\n", - "Epoch 134/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3439 - auc: 0.8964 - accuracy: 0.8388 - val_loss: 0.3482 - val_auc: 0.8968 - val_accuracy: 0.8357\n", - "Epoch 135/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3470 - auc: 0.8940 - accuracy: 0.8367 - val_loss: 0.3498 - val_auc: 0.8962 - val_accuracy: 0.8337\n", - "Epoch 136/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3511 - auc: 0.8930 - accuracy: 0.8339 - val_loss: 0.3646 - val_auc: 0.8900 - val_accuracy: 0.8385\n", - "Epoch 137/200\n", - "814/814 [==============================] - 2s 2ms/step - loss: 0.3555 - auc: 0.8920 - accuracy: 0.8353 - val_loss: 0.3527 - val_auc: 0.8967 - val_accuracy: 0.8372\n", - "Epoch 138/200\n", - "814/814 [==============================] - 2s 2ms/step - loss: 0.3415 - auc: 0.8959 - accuracy: 0.8364 - val_loss: 0.3513 - val_auc: 0.8961 - val_accuracy: 0.8379\n", - "Epoch 139/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3477 - auc: 0.8934 - accuracy: 0.8356 - val_loss: 0.3573 - val_auc: 0.8947 - val_accuracy: 0.8314\n", - "Epoch 140/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3485 - auc: 0.8941 - accuracy: 0.8348 - val_loss: 0.3610 - val_auc: 0.8940 - val_accuracy: 0.8353\n", - "Epoch 141/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3437 - auc: 0.8948 - accuracy: 0.8362 - val_loss: 0.3546 - val_auc: 0.8973 - val_accuracy: 0.8365\n", - "Epoch 142/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3439 - auc: 0.8962 - accuracy: 0.8347 - val_loss: 0.3513 - val_auc: 0.8980 - val_accuracy: 0.8365\n", - "Epoch 143/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3390 - auc: 0.8980 - accuracy: 0.8404 - val_loss: 0.3532 - val_auc: 0.8944 - val_accuracy: 0.8320\n", - "Epoch 144/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3393 - auc: 0.8966 - accuracy: 0.8392 - val_loss: 0.3611 - val_auc: 0.8853 - val_accuracy: 0.8306\n", - "Epoch 145/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3545 - auc: 0.8911 - accuracy: 0.8344 - val_loss: 0.3613 - val_auc: 0.8928 - val_accuracy: 0.8380\n", - "Epoch 146/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3437 - auc: 0.8965 - accuracy: 0.8419 - val_loss: 0.3494 - val_auc: 0.8957 - val_accuracy: 0.8340\n", - "Epoch 147/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3508 - auc: 0.8944 - accuracy: 0.8360 - val_loss: 0.3542 - val_auc: 0.8950 - val_accuracy: 0.8356\n", - "Epoch 148/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3441 - auc: 0.8956 - accuracy: 0.8380 - val_loss: 0.3502 - val_auc: 0.8966 - val_accuracy: 0.8382\n", - "Epoch 149/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3442 - auc: 0.8966 - accuracy: 0.8407 - val_loss: 0.3468 - val_auc: 0.8973 - val_accuracy: 0.8365\n", - "Epoch 150/200\n", - "814/814 [==============================] - 2s 2ms/step - loss: 0.3415 - auc: 0.8959 - accuracy: 0.8404 - val_loss: 0.3498 - val_auc: 0.8977 - val_accuracy: 0.8383\n", - "Epoch 151/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3483 - auc: 0.8952 - accuracy: 0.8418 - val_loss: 0.3522 - val_auc: 0.8970 - val_accuracy: 0.8362\n", - "Epoch 152/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3503 - auc: 0.8952 - accuracy: 0.8414 - val_loss: 0.3474 - val_auc: 0.8984 - val_accuracy: 0.8412\n", - "Epoch 153/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3448 - auc: 0.8957 - accuracy: 0.8396 - val_loss: 0.3457 - val_auc: 0.8986 - val_accuracy: 0.8428\n", - "Epoch 154/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3442 - auc: 0.8961 - accuracy: 0.8403 - val_loss: 0.3482 - val_auc: 0.8988 - val_accuracy: 0.8422\n", - "Epoch 155/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3415 - auc: 0.8980 - accuracy: 0.8429 - val_loss: 0.3516 - val_auc: 0.8948 - val_accuracy: 0.8394\n", - "Epoch 156/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3441 - auc: 0.8961 - accuracy: 0.8430 - val_loss: 0.3553 - val_auc: 0.8916 - val_accuracy: 0.8328\n", - "Epoch 157/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3438 - auc: 0.8953 - accuracy: 0.8450 - val_loss: 0.3518 - val_auc: 0.8932 - val_accuracy: 0.8376\n", - "Epoch 158/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3401 - auc: 0.8983 - accuracy: 0.8424 - val_loss: 0.3556 - val_auc: 0.8949 - val_accuracy: 0.8391\n", - "Epoch 159/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3447 - auc: 0.8978 - accuracy: 0.8442 - val_loss: 0.3560 - val_auc: 0.8972 - val_accuracy: 0.8409\n", - "Epoch 160/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3447 - auc: 0.8959 - accuracy: 0.8384 - val_loss: 0.3491 - val_auc: 0.8986 - val_accuracy: 0.8419\n", - "Epoch 161/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3457 - auc: 0.8977 - accuracy: 0.8419 - val_loss: 0.3500 - val_auc: 0.8988 - val_accuracy: 0.8455\n", - "Epoch 162/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3521 - auc: 0.8954 - accuracy: 0.8402 - val_loss: 0.3479 - val_auc: 0.8964 - val_accuracy: 0.8377\n", - "Epoch 163/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3398 - auc: 0.8983 - accuracy: 0.8429 - val_loss: 0.3469 - val_auc: 0.8996 - val_accuracy: 0.8437\n", - "Epoch 164/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3429 - auc: 0.9002 - accuracy: 0.8441 - val_loss: 0.3551 - val_auc: 0.8986 - val_accuracy: 0.8432\n", - "Epoch 165/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3449 - auc: 0.8970 - accuracy: 0.8420 - val_loss: 0.3419 - val_auc: 0.9005 - val_accuracy: 0.8481\n", - "Epoch 166/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3403 - auc: 0.8984 - accuracy: 0.8432 - val_loss: 0.3513 - val_auc: 0.9005 - val_accuracy: 0.8458\n", - "Epoch 167/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3456 - auc: 0.8967 - accuracy: 0.8426 - val_loss: 0.3553 - val_auc: 0.8950 - val_accuracy: 0.8331\n", - "Epoch 168/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3473 - auc: 0.8954 - accuracy: 0.8423 - val_loss: 0.3507 - val_auc: 0.8959 - val_accuracy: 0.8402\n", - "Epoch 169/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3464 - auc: 0.8955 - accuracy: 0.8407 - val_loss: 0.3413 - val_auc: 0.9015 - val_accuracy: 0.8462\n", - "Epoch 170/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3450 - auc: 0.8955 - accuracy: 0.8421 - val_loss: 0.3494 - val_auc: 0.8955 - val_accuracy: 0.8408\n", - "Epoch 171/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3442 - auc: 0.8979 - accuracy: 0.8437 - val_loss: 0.3456 - val_auc: 0.8983 - val_accuracy: 0.8345\n", - "Epoch 172/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3466 - auc: 0.8971 - accuracy: 0.8434 - val_loss: 0.3417 - val_auc: 0.8998 - val_accuracy: 0.8376\n", - "Epoch 173/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3454 - auc: 0.8969 - accuracy: 0.8417 - val_loss: 0.3471 - val_auc: 0.8997 - val_accuracy: 0.8455\n", - "Epoch 174/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3504 - auc: 0.8939 - accuracy: 0.8386 - val_loss: 0.3493 - val_auc: 0.8993 - val_accuracy: 0.8431\n", - "Epoch 175/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3399 - auc: 0.8974 - accuracy: 0.8422 - val_loss: 0.3505 - val_auc: 0.8990 - val_accuracy: 0.8429\n", - "Epoch 176/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3414 - auc: 0.8982 - accuracy: 0.8419 - val_loss: 0.3377 - val_auc: 0.9011 - val_accuracy: 0.8457\n", - "Epoch 177/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3417 - auc: 0.8972 - accuracy: 0.8456 - val_loss: 0.3557 - val_auc: 0.8898 - val_accuracy: 0.8357\n", - "Epoch 178/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3419 - auc: 0.8985 - accuracy: 0.8449 - val_loss: 0.3511 - val_auc: 0.8949 - val_accuracy: 0.8314\n", - "Epoch 179/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3428 - auc: 0.8956 - accuracy: 0.8434 - val_loss: 0.3441 - val_auc: 0.9008 - val_accuracy: 0.8449\n", - "Epoch 180/200\n", - "814/814 [==============================] - 2s 3ms/step - loss: 0.3425 - auc: 0.8998 - accuracy: 0.8445 - val_loss: 0.3425 - val_auc: 0.9014 - val_accuracy: 0.8440\n", - "Epoch 181/200\n", - "814/814 [==============================] - 1s 2ms/step - loss: 0.3435 - auc: 0.8975 - accuracy: 0.8421 - val_loss: 0.3861 - val_auc: 0.8868 - val_accuracy: 0.8383\n", - "Epoch 182/200\n", - "814/814 [==============================] - 2s 2ms/step - loss: 0.3382 - auc: 0.8997 - accuracy: 0.8443 - val_loss: 0.3520 - val_auc: 0.9003 - val_accuracy: 0.8446\n", - "Epoch 183/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3405 - auc: 0.9009 - accuracy: 0.8457 - val_loss: 0.3477 - val_auc: 0.8987 - val_accuracy: 0.8422\n", - "Epoch 184/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3382 - auc: 0.9001 - accuracy: 0.8465 - val_loss: 0.3515 - val_auc: 0.8993 - val_accuracy: 0.8440\n", - "Epoch 185/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3399 - auc: 0.8999 - accuracy: 0.8480 - val_loss: 0.3418 - val_auc: 0.9018 - val_accuracy: 0.8468\n", - "Epoch 186/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3464 - auc: 0.8948 - accuracy: 0.8434 - val_loss: 0.3416 - val_auc: 0.9018 - val_accuracy: 0.8468\n", - "Epoch 187/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3328 - auc: 0.9038 - accuracy: 0.8489 - val_loss: 0.3505 - val_auc: 0.8979 - val_accuracy: 0.8422\n", - "Epoch 188/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3429 - auc: 0.8955 - accuracy: 0.8445 - val_loss: 0.3456 - val_auc: 0.8989 - val_accuracy: 0.8455\n", - "Epoch 189/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3424 - auc: 0.8975 - accuracy: 0.8441 - val_loss: 0.3468 - val_auc: 0.9011 - val_accuracy: 0.8446\n", - "Epoch 190/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3413 - auc: 0.8991 - accuracy: 0.8458 - val_loss: 0.3470 - val_auc: 0.9001 - val_accuracy: 0.8412\n", - "Epoch 191/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3509 - auc: 0.8975 - accuracy: 0.8420 - val_loss: 0.3610 - val_auc: 0.8941 - val_accuracy: 0.8380\n", - "Epoch 192/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3485 - auc: 0.8976 - accuracy: 0.8419 - val_loss: 0.3436 - val_auc: 0.9003 - val_accuracy: 0.8426\n", - "Epoch 193/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3393 - auc: 0.8995 - accuracy: 0.8469 - val_loss: 0.3440 - val_auc: 0.8998 - val_accuracy: 0.8423\n", - "Epoch 194/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3428 - auc: 0.8997 - accuracy: 0.8452 - val_loss: 0.3402 - val_auc: 0.9033 - val_accuracy: 0.8466\n", - "Epoch 195/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3491 - auc: 0.8946 - accuracy: 0.8394 - val_loss: 0.3440 - val_auc: 0.9014 - val_accuracy: 0.8468\n", - "Epoch 196/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3398 - auc: 0.8987 - accuracy: 0.8467 - val_loss: 0.3491 - val_auc: 0.8998 - val_accuracy: 0.8435\n", - "Epoch 197/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3399 - auc: 0.8968 - accuracy: 0.8456 - val_loss: 0.3491 - val_auc: 0.9014 - val_accuracy: 0.8465\n", - "Epoch 198/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3431 - auc: 0.8971 - accuracy: 0.8452 - val_loss: 0.3558 - val_auc: 0.8951 - val_accuracy: 0.8340\n", - "Epoch 199/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3418 - auc: 0.8999 - accuracy: 0.8475 - val_loss: 0.3468 - val_auc: 0.8975 - val_accuracy: 0.8377\n", - "Epoch 200/200\n", - "814/814 [==============================] - 1s 1ms/step - loss: 0.3424 - auc: 0.8989 - accuracy: 0.8408 - val_loss: 0.3483 - val_auc: 0.9008 - val_accuracy: 0.8435\n" - ] - } - ], - "source": [ - "history = model.fit(X_train.values, y_train,epochs=200,verbose=1,validation_data=(X_test.values, y_test))" - ] - }, - { - "cell_type": "markdown", - "id": "525dbcf1", - "metadata": {}, - "source": [ - "#### Métricas" - ] - }, - { - "cell_type": "markdown", - "id": "7af173ee", - "metadata": {}, - "source": [ - "Obtenemos las curvas de aprendizaje y demás metricas para establecer conclusiones" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "ee893ba9", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAIaCAYAAACDAnZjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAADksUlEQVR4nOydd3xTVf/H3yfp3qUtHdAyy957DxERFUFUFBDFvefjHj/no48bFfcGJ4qKA0Gm7L336qJ0l+6RJrm/P869SdqmC4oMz/v16ivJzc29J/cm6f2cz3cITdNQKBQKhUKhUCgUCoVCcXZgOt0DUCgUCoVCoVAoFAqFQlF/lJBXKBQKhUKhUCgUCoXiLEIJeYVCoVAoFAqFQqFQKM4ilJBXKBQKhUKhUCgUCoXiLEIJeYVCoVAoFAqFQqFQKM4ilJBXKBQKhUKhUCgUCoXiLEIJeYVCoVAoFAqFQqFQKM4ilJBXKBQKhUKhUCgUCoXiLEIJeYVCoVAoFAqFQqFQKM4ilJBXKBQKheIkEUJMF0JoQoiWp3ssZzJCiGeEEFqVZYlCiC9O0f7UeVEoFArFOYkS8gqFQqE4ZQgh2gghPhRCHBFClAkhCoQQq4UQ9wohfE/3+BSKE0UIcZE+SXBMCKGupxQKhULxj+JxugegUCgUinMTIcTFwA9AOTAL2AV4AUOAV4HOwC2nbYCKM4X2gP0UbXs28B3yM9jYTAUSgZbAecDiU7APhUKhUCjcooS8QqFQKBodIUQrpIBKAs7TNC3N5el3hRBtgYsbaV/+mqYVN8a2/m0IIfw0TSs5nWPQNO1UiGxj2zbA1tjbFUL4A+OBx4DrkaL+jBTy6vuhUCgU5yYqFEyhUCgUp4KHgQDgxioiHgBN0w5pmvYWgBCipR6iPL3qevryZ1weP6Mv6ySE+EYIcRxYJYR4UF/ews02XhJCWIQQofrjoUKIH4QQyUKIciFEihDizfqG+gshOgshlgohSoUQR4UQT1LD/1MhxFghxEohRLEQolAI8YcQonM99tFECPGaEGKnEKJIT0n4UwjRvcp6I/T3fZUQ4kUhRLq+r1+FELFV1l0uhNglhOgthFghhCgBXtSf8xZCPCuEOORyTF4RQnhX2YYmhJgphJigb6tcCLFbCHGhm/cwRAixUU+pOCyEuLWG91opR17fR01/LfV1ugkhvnBJ2UgXQnwmhAirsm23OfInel5cuAzwRUacfAdMFEL4uHlvPvpn9oA+zjQhxE9CiDYu65j0VJOd+jpZQogFQog++vMn/f1oyDHT120mhPhUyLSBciFEghDifSGElxCitb6P+928bpD+3OQGHEuFQqFQnADKkVcoFArFqWAccETTtDWnaPs/AAeBxwEB/A68AkxChu27Mgn4S9O04/rjKwE/4H0gB+gH3A0015+rESFEFLAM+f/zf0AxMj2g1M2604AvgYXAI/o+b0dOPPTUNC2xll21Bibo7zMBiARuBf4WQnTSNO1YlfWfADTgZaApcB+wWAjRQ9M017GFAX8ixedXQIaQ+d2/IlMePgL2Al2B+4F2+jhcGQJMBN4DCoF7gLlCiDhN03L0994V+AvIAp7Rj9ezQEYt79lgmptlL+jvq0h/PBp5jD4H0nGmaXQWQgzQNE1zsw30sZ3MeTGYCizTNC1dCPEd8rMwDnm+jP2YkZ/LUcjj/RYQqI+9C3BYX/VTYDryvHyCPFZDgQHApnqMxR1Vvx9Qz2MmhIgBNgAhyM/DPqAZcAXgp2naESHEav0YvOnmuBQC805w3AqFQqGoL5qmqT/1p/7Un/pTf432BwQhReUv9Vy/pb7+dDfPacAzLo+f0Zd942bdNcCmKsv66utPc1nm6+a1jyLztOPqGOub+vb6uSyLAPL05S31ZQHAceCjKq+P1Nf9qI79eAMmN8epDHjKZdkIfb9HgUCX5Vfqy+9xWbZcX3Zrle1egww/H1Jl+a36+oOqnI9yoI3Lsm768rtclv2MnNyIc1nWEbDKS49K+0kEvqjlWDxUz3N4tb7eUJdl0xvzvOjrNgUqgJtclq2u+nlHhtxrwP1utiH025H6Om/Vsk5LGuf7Ud9j9qX+eehTy5hu0V/XweU5T+TETY3nUv2pP/Wn/tRf4/2p0HqFQqFQNDZB+m3hKdzHB26WfQ/0dg1bBq5CCk+HQ6i5ONRCCH8hRDhyEkAAPevY70XAOk3TNrhsLwv4usp6o5GO5rdCiHDjDymQ1iMFXI1omlauaZpdH6NZD38uAvYDvdy8ZJamaa7H+0cgTR+vK+VIR9aVK5Eu/L4qY12qP191rIs1TTPcZDRN2wEUIN1ew4kegxS2yS7r7UW64PVGCDESeAl4R9O02S7bcj2HPvp41+mL3B0fg5M6LzpXIyd95ros+xYYK/T0DZ3LgWzgnaob0DRNc1lHQ0Yr1LTOiVDt+1GfY6ZHZ0wAftM0rVo0gMuY5iAnlaa6PD0GCEdGeigUCoXiFKOEvEKhUCgamwL9NvAU7iPBzbIfkALrKgAhhECK1D81TTPGhBAiTs8VzkWK4yzgb/3p4Dr22wIZslyV/VUex+u3S/Xtu/5dgHR1a0TPm75fCHEQKb6z9dd2q2GMlcakC65DSDfXlVRN0yxuxtrZzTgP6M9XHWsy1TkOGCI2Apk/Xp/jVCNCiObIyZnVwANVnmsihHhLCJGBdP6zcH4majuHJ3VedK5Bhp6HCSHaClm4cSuyI4NrakYbYL+madZattUGOKZpWm499tsQqn0/6nnMIpATcbtq27imaXnAb8AUl8VTgVScE0AKhUKhOIWoHHmFQqFQNCqaphUIIY4h84Dr9RJ3C3Vntyaq5aRrmnZMCLESmRP/IjLHOA6ZB+26zUVAE2Q++T5knnsz4Asab4Lb2M40ZD5yVWoTdyBzm58HPgOeAnKRkxQzOLkxVjtu+vZ2UkUsu5BS5XFNVeBFDcsbjBDCCxlVUA5MciOG5wCDkPUQtiEnZEzAAmo/Pid1XoQQ8ch0DXA/UTEVmVfemDTK94MTP2Y1MQu4UggxCPn5uRR4z4gkUSgUCsWpRQl5hUKhUJwKfgduEUIM1DRtbR3rGkXoQqosr1aBvh58D7wnhGiPdOZLkM6hQVdkAbfrNE2bZSwUQoyu5/aTcLq6rrSv8tgIPc/UNO1E2pJdgSymdqPrQiFECNKdr0p8lfUE0BbYUY99HQa6A0tOMpzbIAspJOtznGribaAHMEzTtEoF8vTw9VHA05qmPeey3N3+qnKy52UqMj9+GtUnNIYA9+hF/5L1ffUXQnhqmlZRy3jGCCGa1OLKn/T3owHHLAsZUVOfSbgF+vpTkWkJfsDsWl+hUCgUikZDhdYrFAqF4lTwCtLp/kQIEVn1SSFEGyHEvSAdfKQ4HVZltTtOYL9zkQJrMjLM+Xetcg9tQ3w53GNd9N5bz+3PBwYIIfq5vD6CyrnCIHPBC4DHhRCeVTeiv6Y2bFRxuIUQVyIjB9xxrRDCNZXhCiAaWQm9Lubo273ZzTh9heyZXm802bt9ITBBCBHnsq2OyDzqWhFCXI8stHenay0CF6qdQ5376jG8kz0vU4GVmqZ9r2naj65/OLslGK3X5iJzxu9ysx/hso4Anq5pnUb6ftTrmOlu+i/AOKG3v6th3OhREt8iI2CmAzv1egkKhUKh+AdQjrxCoVAoGh1N0w4LIaYgHfK9QohZyLxbL2R475XIUHaDT4BHhRCfIFtuDUM65w3db6YQYhkyTDxQ378r+5Au6GtCiGZIUXc5zvzuungF6cYuEEK8hbP9XBIyf90YR4EQ4nakQ7lFb1GWhQz1vxiZ911N4LnwO/B/QojPkYX4uiJF5JEa1s9Ftk/7HFmB/T5kjvzH9XhPs5Fi7AO9uNxqwAx00JePoeFt0J4GLgRWCiHeQ15v3A3sxuU4VUUvwPYesAcoF0JcU2WVn/VjuwJ4WBfjqcj89lZ1DepkzosQoj8yymFmDdtOFUJsQZ6nl5Gh59cCb+gTPysBf+B8/T3O0zRtmRBiNtLJj8cZ5j4U2ebQ2NdJfT8aeMwe15/7WwhhtCOMRn5nhyCr+xvMQrYfHIlLCotCoVAoTj1KyCsUCoXilKBp2q9CiG7I9mHjkb26y5Hh3v+hssh8Dllo6wqkePwTGAtknsCuv0eKpUKkg+46pgohxDhk6PZjyMrbPyMF0/Z6vKc0Xey+g2xZl4OsEH4M2Q/cdd1v9FoBjyKPgTdSQK2keuX4qryIFH1TkCkCW5BC83+1rN9Nf0+BwBLgDk3TSurxnuxCiAnIvvHXApchUxKOIHufH6j51TVuc4cQYgzwBvLcHkWK+2hqEfLI9nA+QCfch2m3Qk6eTEGegzuRLvNfyM/LsXqM7UTPixF18Vst6/wGPCOE6KYfg4uAJ/TxXo78vKxC5pQbXI/8TtyIdPXzkWJ9jcs6jfH9qNcx0yck+iNrNExFFr9L1fdZUmXdzUKI3cjWglU7NygUCoXiFGL0A1UoFAqFQnGWIYQYgXRur9TDuxUuCCFuRLrZsZqmHT3d4zkXEUJsBXI1TRt1useiUCgU/yZUjrxCoVAoFIpzlWhk1ffGbu+mAPQ8+h7IEHuFQqFQ/IOo0HqFQqFQKBTnFHqBxSuA24C19UkxUNQfIUQXoDcyRSaN6rUoFAqFQnGKUY68QqFQKBSKc42OyHzzQ8iK6orG5QpkPQFPYLKmaWWneTwKhULxr0PlyCsUCoVCoVAoFAqFQnEWoRx5hUKhUCgUCoVCoVAoziKUkFcoFAqFQqFQKBQKheIsQhW7c4MQQgAxyB7ECoVCoVAoFAqFQqFQ/BMEAse0OnLglZB3Twyg+s0qFAqFQqFQKBQKheKfpjmQWtsKSsi7pxAgJSWFoKCg0z0WhUKhUCgUCoVCoVCc4xQUFBAbGwv1iAxXQr4WgoKClJBXKBQKhUKhUCgUCsUZhSp2p1AoFAqFQqFQKBQKxVmEEvIKhUKhUCgUCoVCoVCcRSghr1AoFAqFQqFQKBQKxVmEypE/QTRNw2q1YrPZTvdQFI2A2WzGw8MD2XlQoVAoFAqFQqFQKM5clJA/ASwWC2lpaZSUlJzuoSgaET8/P6Kjo/Hy8jrdQ1EoFAqFQqFQKBSKGlFCvoHY7XYSEhIwm83ExMTg5eWlXNyzHE3TsFgsZGVlkZCQQHx8PCaTyjpRKBQKhUKhUCgUZyZKyDcQi8WC3W4nNjYWPz+/0z0cRSPh6+uLp6cnSUlJWCwWfHx8TveQFAqFQqFQKBQKhcItynY8QZRje+6hzqlCoVAoFAqFQqE4G1DKRaFQKBQKhUKhUCgUirMIJeQVCoVCoVAoFAqFQqE4i1BCXnFCtGzZkhkzZtR7/eXLlyOEIC8v75SNSaFQKBQKhUKhUCj+Dahid/8iRowYQY8ePRokwGti48aN+Pv713v9QYMGkZaWRnBw8EnvW6FQKBQKhUKhUCj+zSghr3CgaRo2mw0Pj7o/FhEREQ3atpeXF1FRUSc6NIVCoVAoFAqFQqFQ6KjQ+kZA0zRKLNZ//E/TtHqPcfr06fz999+89dZbCCEQQvDFF18ghODPP/+kd+/eeHt7s2rVKg4fPsz48eOJjIwkICCAvn37snjx4krbqxpaL4Tgk08+4bLLLsPPz4/4+Hh+/fVXx/NVQ+u/+OILQkJCWLhwIR07diQgIIALL7yQtLQ0x2usViv33HMPISEhhIWF8cgjj3DdddcxYcKEEzpPCoVCoVAoFAqFQnEuoBz5RqC0wkan/1v4j+93z3Nj8POq3yl86623OHDgAF26dOG5554DYPfu3QA8+uijvPbaa7Ru3ZrQ0FBSUlK46KKL+O9//4u3tzezZs1i3Lhx7N+/n7i4uBr38eyzz/LKK6/w6quv8s477zB16lSSkpJo0qSJ2/VLSkp47bXXmD17NiaTiWuuuYYHH3yQr7/+GoCXX36Zr7/+ms8//5yOHTvy1ltv8csvvzBy5MiGHCaFQqFQKBQKhUKhOKdQjvy/hODgYLy8vPDz8yMqKoqoqCjMZjMAzz33HKNHj6ZNmzY0adKE7t27c+utt9KlSxfi4+N5/vnnadOmTSWH3R3Tp09n8uTJtG3blhdffJGioiI2bNhQ4/oVFRV88MEH9OnTh169enHXXXexZMkSx/PvvPMOjz32GJdddhkdOnRg5syZhISENMrxUCgUCoVCoVAoFIqzFeXINwK+nmb2PDfmtOy3MejTp0+lx0VFRTzzzDP88ccfpKWlYbVaKS0tJTk5udbtdOvWzXHf39+foKAgMjMza1zfz8+PNm3aOB5HR0c71s/PzycjI4N+/fo5njebzfTu3Ru73d6g96dQKBQKhUKhOIvY+AkUZ8PwR0CI0z0aheKMRAn5RkAIUe8Q9zORqtXnH3zwQRYtWsRrr71G27Zt8fX15YorrsBisdS6HU9Pz0qPhRC1im536zck71+hUCgUCoVCcY5RVgB/PAho0LwvtB11ukekUJyRqND6fxFeXl7YbLY611u9ejXTp0/nsssuo2vXrkRFRZGYmHjqB+hCcHAwkZGRbNy40bHMZrOxZcuWf3QcCoVCoVAoFIp/kLRtgG7srHv/dI5EoTijOXttZEWDadmyJevXrycxMZGAgIAa3fL4+Hh++uknxo0bhxCCp5566rSEs99999289NJLtG3blg4dOvDOO+9w/PhxhAqxUigUCoVCoTg3ObbVef/QIsg6ABHtTt94FIozFOXI/4t48MEHMZvNdOrUiYiIiBpz3t944w1CQ0MZNGgQ48aNY8yYMfTq1esfHi088sgjTJ48mWuvvZaBAwcSEBDAmDFj8PHx+cfHolAoFAqFQqH4B0jVoy9Nut+4/oPTNxaF4gxGqJzk6gghgoD8/Px8goKCKj1XVlZGQkICrVq1UoLyH8Zut9OxY0cmTZrE888/3+jbV+dWoVAoFAqF4jQzoxvkJcGwh2DFq+DpB/fvBj/37YwVinOJgoICgoODAYI1TSuobV0VWq84Y0lKSuKvv/5i+PDhlJeXM3PmTBISEpgyZcrpHppCoVAoFAqForEpzpEiHmDgXbB/AWTshC1fwpD7T+/YzmY0DebeBIkrKy8PaApTf4TAqNMzLgBLMRz5G7IPQM5ByD4EJTlw8evQevjpG9dZgBLyijMWk8nEF198wYMPPoimaXTp0oXFixfTsWPH0z00hUKhUCgUCkVjk6bnxzdpA74hMOB2mHcHbPhYCnuzZ60vV9TA0U2w68fqy4syYO9v0O/mf35MBnNvhv1/VF++5u2ahfzun+XkRJeJp3ZsZzhKyCvOWGJjY1m9evXpHoZCoVAoFAqF4p8gVRfyzfTaTF0uh8VPQ0Eq7P1VPq4vBWlgr4CQuMYf59nGju/kbYdLYMRj8v6WWbDhQzi68fQJeVsFHF4q73ccB007yxSKPx+WLn1ZAfhUTnPmeBL8MF3WUIgfDd6B//iwzxRUsTuFQqFQKBQKhUJx+jEq1sf0lLeePtDnRnm/Ia3o7Db49AL4YCiU5TfuGM82rBbYNVfe73M9RHWRf+0ukMuObqz5taeatB1gLQXfULhyFox8DPrfCmHxchLm0KLqr9n9k7y1W6Eo858d7xmGEvIKhUKhUCgUCoXi9HNMr1gf49Itqc8NYPaSgtOoaF8XxxMhPxnK8iBte2OPsnZSN0Nh+j+7z9o4+BeUHoeAKGg1wrm8WW95m3tE1ib4h8gsLOPo8RL5IHmtvI0dACYXWdrhYnm7z03I/c65zvsl7sd99HgJ7yw5SHp+WSOM+MxFCXmFQqFQKBQKhULROGz6HFa+0fDXFaRBYRoIE0R3cy4PjISWQ+X9jF3121bWPuf99J0NH4vBxk9k5fz6dvlKWgsfj5KF5c4UjLD6rleA2SWr2jcUwtvL+6mbqr+uohR+vRu2ftVoQ8krsXDhjJUMeXkZN36xkdx9f8sn4gZUXrHDJfL2wF9gLWfPsQIKyioga78sfmjgRsin5JYw6YO1vL7oADd8sZFyq63Rxn+moYS8QqFQKBQKhUKhOHmKc+D3+2HJs9IVbwhGWH1EB/Dyr/xcQKS8rcGBrUbmXuf9ExXyFaUw/yFY+gIk1bNm05ZZgAYZu09sn41ETlE5t8zaxPcrdsCBhXJh98nVV2zeV966C6/f/bN8P/PuhCXPu53MsFjt5BZb6j2uT1clONZfsi8De9I6ADba21desVlvec4thexfP5+L3l7JxPfWYNlepWBfcXalh8fySpnyyTqO6U78nrQC/vfnPs5VlJBXKBQKhUKhUCgUJ0/CckAXfLkJDXtt1fx4V4we8vUV8o3hyOelgGaX9zd+Wvf6lhJZkA+gNBes5fXfV3lhw8dXA3a7xn9+2M5fezLYvegLsFkgUs+Lr0rzPvLWnZDf/6fz/srX4Ld7Ze0BIL+0gveWH2LIy0vp99/F/Lr9WJ3jyi+p4IvViQA8eXFH7u4hCBcFlGueTJ1fzooDWc6VTSZofxEA2ZtkTvyhzELyNnwrn/fWC+CVOIV8ZkEZUz9ZT0puKS3C/HhpYlcAPl+dyJK9GXWO72xECXmFQqFQKBQKhUJx8hxa6rxv9IOvL478eDdC3j9c3tY3lzvTRchn7WuYqDbIS3be3/tb3YXV9v0BliLn4yIpHvNKLGQX1bL/3b/AS7HS+bZZGz7OKny2OoHl+6UovlTofeO7XVVtvbwSC1u1ePng6GaHSAdkgTyjmny/W2S6w5YvKf1mGi/+upVBLy3hlQX7ySwsx2rX+M+cbaw8mFVtH658ujqBwnIrHaICuWFwK/7TLheAZN8OWPBk1trEyi/Qw+vjc1cisNNZJNHUkoLV5O1sO6dP7GQXlTPlk/UkZBfTPNSXb24ewOR+cVw/uCUAD/6w/ZzMl1dCXlFvWrZsyYwZMxyPhRD88ssvNa6fmJiIEIJt27ad1H4bazsKhUKhUCgUilOEpjnFH8g2YQ157bEqredc8QuTt/Vx5O02yD4g7wuzrG6edQLh1XmJLtus0MPma2H7t5UfF6Yzf2caQ15exuD/LWX22kQ0d7n2KesBTeaif3+NdPbrYueP8M1VUFRZPO88ms/LC+R7vakz9DEdwKYJslpdWmm9UouNie+t4fK5xykXvmApdB4zkKkEliLwbwoXvgxXfond5IXvoT8YvPEeii1W2kcG8vqV3bmkWzQVNo3bZm9m51H3HQLySyv4fLWM0LhnVDwmk4BkGVYf3kn2il+6L5O0/FLni1oNpcLDn6biOGNCjvF8G/m+Ftt6kOURBYBWnM3vO45x8dsrOZRZRHSwD9/ePIBmIb4APDq2A51jgjheUsH932/DZq9nrYOzBCXkFSdMWloaY8eObdRtTp8+nQkTJlRaFhsbS1paGl26uAkJUigUCoVCoVCcfrL2Q6FLiHVDHPm8ZCnSTZ4yDLwqDRHyuQlgKwcPX4gbKJedSHi94cgHRsvbzV9Udq1dKUyHI8v09WMA+H7pBu74egtF5VbKrXaemrebW2Zv5njVnPKSXOf9A3/CVxNllfnaWPk6HFgAa2c6FhWVW7n72y1U2DTGdI7kieY7AFht78J7m4srvfylP/dyJLsYOyY2W1sBUJ64zmUcC+RtuwvAZOIvrR/XVTxCmebJcPMOfhjvz4L7hnJ57+a8Pqk7g9uGUWyxMf3zDSRkV94XwOerEygss9IuMoALO0sRblSsD+0wnP6tmmDXYM7Go84XeXiz2VOG/t8YtouehXKS6JeKgXy5TUY+bN9/mLu+2UpGQTktw/z4+qb+xDbxc2zC28PMO5N74udlZu2RHN5ffqj243qWoYS84oSJiorC29v7lO/HbDYTFRWFh4dH3SsrFAqFQqFQKP55DDfe7CVvG+LIG258ZGfwcHNt2RAhn6UXuotoD9Hd5f2TEfL9bpEV3vNT4KCbvuYAO3+Q+fSx/SmNkhEFew5Ih/vW4a156pJOeJlNLNqTwYVvrWDxngx2Hs1nQ0IuOdmyVV1S3EQsHoGQvJacmedz+MhB9/uyWSFHF6RbZzvSBv5v3i4Sc0qICfbh5YldETu+B2CubSjfrE8ms0CGlq84kMWstfLc3H1eW3YKGV6/cul88kosMjrCyI9vN5Y5G1O47avNrKzoyB7//gD0LV+PEAKQYvmDa3rTOSaInGIL1362noMZzpz/grIKPluVoO9Pd+OLMiH3MCAgti+T+8UBMGdTisM1zygo45sCmefeO3MuIv8odq8A9vj3Y1+h/hkpycbLw8T957djwX3DaB0RUO1wtY4I4LnxcnLoy7VJFJeffPrCmYIS8o2BpoGl+J//q28rDOCjjz4iJiYGu91eafn48eO54YYbOHz4MOPHjycyMpKAgAD69u3L4sWLa91m1dD6DRs20LNnT3x8fOjTpw9bt26ttL7NZuPGG2+kVatW+Pr60r59e9566y3H88888wxffvkl8+bNQwiBEILly5e7Da3/+++/6devH97e3kRHR/Poo49itTq/mCNGjOCee+7h4YcfpkmTJkRFRfHMM8/U+3gpFAqFQqFQKBqAIeQ7jZe3DXDkS5P09mfu8uMB/PQc+foIeSM/vmlHiJJC8ISEvDEREd4OekwFoHDVh8zZmILFWvl6mu1SNGe1nsAvB6VrH+uZz8fX9uGxsR25cUgrfrpjEK0j/MkoKOemWZsYN3MVkz5cS/JR6UL/91ALLi1+gkwthLDiQ2TPvqn6fkAeV5vu6pfkMOPt1xj8v6X8tCUVk4C3JvckJGMtHE9A8/Qns9n5lFvtfLjiCHklFh76cTsA1w1swX8uaM+o0bJne2zJHiZ9uJZv5y+CvCRsJk9eOxzNw3N3YNdgUp/mdB+l59objr1OoI8nX1zfjxZhfqTkljL6zRVM/WQdC3al8+nKBArKrLRtGsBFXfXoBj2snqadwDeUC7tEEezrSWpeKSv0XPt521JZZutBBR6YKqTLb+pwCa9NGchxAgGI8Sxh0f3DuPf8eHw8zTWeyst7NeOxsR34/e4h+HufO8bgufNOTicVJfBizD+/38ePVW/PUQNXXnkld999N8uWLWPUqFEA5ObmsmDBAubPn09RUREXXXQR//3vf/H29mbWrFmMGzeO/fv3ExcXV+f2i4qKuOSSSxg9ejRfffUVCQkJ3HvvvZXWsdvtNG/enB9++IGwsDDWrFnDLbfcQnR0NJMmTeLBBx9k7969FBQU8PnnnwPQpEkTjh2rXAkzNTWViy66iOnTpzNr1iz27dvHzTffjI+PTyWx/uWXX/LAAw+wfv161q5dy/Tp0xk8eDCjR4+u1zFTKBQKhUKhUNQDazkkrpL3e18vHeriLGk8Vb1WPbZV9llv1gcG3c2i3AgC1i1loAn3+fHgrFpfXiALsXl41TwWhyPfobKQ1zTQXWR32Owa329MITzAi1EdIzEbjnxIHBVh7fFcOxP/5GW8fWgx24724cXLjG3vgoydaGYv7trekl4V28ETJnfwxL9TpGP7XZoF8/vdQ3hx/l4W7MrAyyzw8TLTtLgY7BDbrDn2gO58bvsfjyTfRlf7Xn7dlsIVfVpUPtQZeysJuEF585hh6YFJwGNjO9I3LgQ+eQYA0XMqt7XtxtrPNvD1+iQSsovJKCindYQ/j47tCEDbniNhCcSbUknLyCQxewl4wsqKTsxcJaMFbhvehkcubI8ojobf9HNYmA6BUY5xRAR689WN/Xnu9z0s2ZvB6kM5rD7knHi5+7y2mE368TeEvN4/3sfTzOW9mvPZ6gS+XZ/MyPZN+WlLKoX4kRXej5jsNfpBvJx+rZrw7NXD4SeIMBchwurWQqIsj1uD10NxZwjqXuf6ZwtKyP9LCA0NZezYsXzzzTcOIf/jjz8SHh7OyJEjMZlMdO/u/GA///zz/Pzzz/z666/cdddddW7/m2++wW638+mnn+Lj40Pnzp05evQot99+u2MdT09Pnn32WcfjVq1asXbtWubMmcOkSZMICAjA19eX8vJyoqKi3O0GgPfee4/Y2FhmzpyJEIIOHTpw7NgxHnnkEf7v//4Pk0kGmnTr1o2nn34agPj4eGbOnMmSJUuUkFcoFAqFQqFoTJLXgbVU9v5uMQi8g6E8X4anN+1Yed1t38rQ8JxDsOM7vO3d6SKOAJDk3Z4WbjaPT4isnK7ZZWu3wJqvEys58uHtZKh/eYF0skNb1viymUsP8eZiGQ7fMczMn3prs8MVTbjvx0QesnVlmHknU81LeHl9U7o1C+bqfnGw4zsA9gUOYn26RjvfcNDA31K9iruflwcvTOjKCxO6Ohf+rxTK4KlJQ2U6gL0X1hfuxc9ezm/L1jCxV5wMR9fZuW0jPYFNdKKX2E8/037mX92EiDa9iAj0loXwjm0Fr0AY9jDD/MPpHhvC9pQ8lu7LxGwSvDmpB75euoMd0BRCWmDKS+LxHiX0T94NJZDadBjD/SO4qGsUV/WNc67brDekbpb96XtfV+n9xTbx4+Nr+3D0eAlfr0/m+40p5BZbiG8awCXdXExPPT/eUcMAmNwvls9WJ7BkXybL92eyL70QL7OJkJ6XwaI1Mr2hzUgAusS3BkBYiqCiDDx9ajyvABzbBr/cDmFt4e7Nta97FqGEfGPg6Sfd8dOx3wYwdepUbr75Zt577z28vb35+uuvufrqqzGZTBQVFfHMM8/wxx9/kJaWhtVqpbS0lOTk5Lo3DOzdu5du3brh4+P8Ig0cOLDaeu+++y6fffYZycnJlJaWYrFY6NGjR4Pex969exk4cKAjNwdg8ODBFBUVcfToUUcEQbdu3Sq9Ljo6mszMOlqHKBQKhUKhUCgahhFW3+Y86XqHxkkX/HhSdSGvO+aloR3wyt3PMJMM9S7TPPk2yY9HO7vZvskEvk1k3/CSnJqFvK3CWX09ogM5ZRqegW0JytvDK1/8wCKtH69e2Z0esSGVXrYxMZe3lsjX+XuZqchNAm8owJ+xH+3EYrXzs88YhrGT6b4rmV/Un5fnldO+qR89d/wAwJuZMi3gsmG94W+gsB69y+02KNMrvfvqUQcmM6JpB0jfjs/xfSzem8EFeoG4sgobqYe20RMwtRmByasN7P2NTqk/Qo+BMjJiiW6aDbkXAiIQwH2j4rn+C9kr/q6Rbele5f3TvC/kJTE5ZB/s3wXA1Gm3MDXETVRuuwtrFPKOzYX68ciFHbh3VDxrj+TQKTrI6cZbiiFNnnPDkQeIjwykb8tQNiYe54E58vnzOjTFr+8wyNoGbc8Hs6dc2ScYTB6yI0FJNgQ3r/04Z+pRGlU/i2c5Kke+MRBChg3903+1hAe5Y9y4cWiaxh9//EFKSgorV65k6lSZ8/Pggw/y888/8+KLL7Jy5Uq2bdtG165dsVgsdWy1/nz33Xc8+OCD3Hjjjfz1119s27aN66+/vlH34Yqnp2elx0KIajUCFAqFQqFQKM4J7LYG1U9qVFyFPECI7qu7y5PXHfObjl/LcMubLAwYT4VHID/ZhvDT1gysthqu1Ry95LNrHEZx2gGwV2Ax+TL6syP0fmExC7IjAPDO2cPBzCKmfbKeLcnOqvB5JRbu/XYrdg0m9mzGhifO5+H+0phKsYdjsdoZ0T6CR++7HwJj8K3I4zfvJ9nqeT0tv+gJRenkEcAye0+mD2pJr86d5IYL0+o+bqV5gH7OfEMdi816SkBHUzLvLT/saFs3a20iza0pAHTt0Rf63ChfsP17KC+CjZ/IKIjAaBhwp2N7I9pHMG1ACyb2asZd57WtPo7mfeXtps9k1EPTzuBOxIMU8iCr9FfU3pvdx9PMyPZNiQxyccyPbgLNBkHNISS20vpG0btcvbL/Zb2aSc0z4T1n73iQGqghBRAz98jbpp3qXvcsQjny/yJ8fHyYOHEiX3/9NYcOHaJ9+/b06iVzkVavXs306dO57LLLAJnznpiYWO9td+zYkdmzZ1NWVuZw5detW1dpndWrVzNo0CDuuOMOx7LDhw9XWsfLywubrYbWHi77mjt3LpqmOVz51atXExgYSPPmdczIKRQKhUKhUJxrVJTBl5fA8UQY9X/Q4xrpYv8TFGVBumx1RusR8tYIYa9aub44B4pldOTWsijaxUYx5KZpaGYTr764mOOF5aw8lM3I9k0rvWzdkRwiir1pA/y5YTfZmS0J9PYgu6icY3llpOWXknK8hBbpi3nXE/ZYozmYJfuxZ/m3g/K/uaLZcVabmrAhIZdrP93Alzf0pVdcKI/O3cmx/DJahvnx3IQu+Ht7cEGMBbZBWPN2vDugFxd1jZLXnONmwKoZ2LMPYirJIpQCAH6yDiE+ugmPXdQBKvSK7WV5UFEKnr41H7tSvfWcdzCYXWRZpBScHU1HmZGSx/qEXDrHBPHeskNMFjIK2DOyI4S3hyZtZAX4jR/Dqhny9SMfBy9n5K4Qgucn1NLG2RDyVl2YtxtT87pRXWWLvcJjkLgS4utIWT24WNY0iBsoHfUq+fGuXNQ1mmd+3U1BmZUQP89qn4NK+IVDUUatEzsOlCOvOBeYOnUqf/zxB5999pnDjQeZQ/7TTz+xbds2tm/fzpQpUxrkXk+ZMgUhBDfffDN79uxh/vz5vPbaa5XWiY+PZ9OmTSxcuJADBw7w1FNPsXHjxkrrtGzZkh07drB//36ys7OpqKiotq877riDlJQU7r77bvbt28e8efN4+umneeCBBxz58QqFQqFQKBT/Gv5+GY5ulAXmfr0bPhtTrVL7hoRc+rywiLmbj9awEfhuQzIzlx7Ebm+As39kubyN6ipzqKFmR14Pqz+qhRMbGcEX1/fF39sDLw8T43s0A+DHKuPLLbZw+1ebOVAoC9yt3nmAp37ZxX3fb+OFP/by2eoE/tyVzq7UAtoi3WpbWAc+uKYXW58azZ2TpUnVrOwQX1zflwGtm1BUbuXaTzfw9K+7WbA7HU+z4J3JvQgwKprr446Ka8fF3aKd6ZztxsANf2J6+BAJN+1hsvYiN1r+w0zTFN6Z0hNvD7MM+/bQxXtheu3HznCT/UIrL4+U+QW9faRof3/5YT5emYB3aSaBohRNmKWAN5mgzw3yNYuflZMHER2h+5Ta91uVqK5gdmn7Z7ju7hDCKfSrVK+vRtIa+Ppy+HIcvNoW5t4Me+bJ59wIeR9PM1f2kS79hB7N8PKo5brev56OvN3uIuTd5W2cvSjV8y/jvPPOo0mTJuzfv58pU5xf8jfeeIPQ0FAGDRrEuHHjGDNmjMOtrw8BAQH89ttv7Ny5k549e/LEE0/w8ssvV1rn1ltvZeLEiVx11VX079+fnJycSu48wM0330z79u3p06cPERERrF69utq+mjVrxvz589mwYQPdu3fntttu48Ybb+TJJ59s4NFQKBQKhUKhOMs5thVW6+18e04DrwA4ugE+HA4LHpd9x4FPVh4hu8jCi/P3UmKp3kt7X3oBj/60k9f+OsC3G+tXIwmoHlYPEKoL+SqOvD1DCqoD9uY8OrYDIX7O6vNX9JZRlYt2Z5Bf4jRyXpq/l+MlFVh9ZA758GaCMZ0jGdQmjEu6RXPLsNY8M64TH07rza0dZUh27z4DubBLNKH+XhClO9H5KfhZC/h8ej8GtQmj2GJz9FN/5MIOdG0e7ByoMe6awsuBVs2bcfvUSWTFnMeLk/rTxuhhLgQE6tXq6xTyuiNv5Mcb6IIzzJKKvyjj7wNZfPj3YdqaUuUumrRyVu7vMQU8fHCE6I9+trK7Xx88vCBaL3rtFwbN+9S+fvux8nb/gtrTORJWOO+X5cHOOZC5Wz6Oq15LC+ChMe15e3JPHh3bofYx+NWdagFAfjJUFMuih01a177uWYYKrf+XYTKZqrVzA+mEL126tNKyO++8s9LjqqH2WpUv7oABAyr1eq+6jre3N59//rmjtZzBSy+95LgfERHBX3/9VW18Vfc1fPhwNmzYUG09g+XLl1db5trzXqFQKBQKheKsx2qBeXfJnOPOE2H8TBjxGCx8HPb8AuvehfC2FHaZxvIDsop6TrGFbzekcOOQVpU29dbig477L83fx4j2TWkWUktYOEgR507IOxz5yhMCWUe2EQkkmeOY2ja80nOdY4LoEBXIvvRCft1xjGkDWrD2cA4/6A59n47xsGMho1t6MPqiGoTmcv09uIZQ+wTL8eQlQcYufFsN49Pr+nLzrE2sOpTNiPYR3DC48rHApfVcbQxrF8GwdhHVnwiMlmkOdeXJG6H1flWEfEAE+EcgirO4Pt7CzAM+lFvtDG2SCyXIkHoDvybQ5XLY9jW0HArxF9S+z5qI6y8ngOLHgKnmnuwAtBomow4KjkLGbudkSVWO6pG3F74MMT1g/3w4uEgK6hry1X08zVzavR5tveubI2+48eHtGz7BcYajHHmFQqFQKBQKheJsZNWbkLFLipqLXpXLgpvBpC9hpB6puO1bluzNxGK1OyqHf/j3YcoqnDWJdh/L589d6QgB8U0DKCq38vhPO6sZKSm5JcxYfICjx2X+OVu/gqJ0KepiXUKlDQFcng+lzsJyJanSjfWO6VItbFoI4XDlf9x8lHKrjSd+kekBU/vHER3dTN9IDcLNapEt7UD2kHfFtZ884Otl5rPpffnqxv58OK13pfZugFPIG5EFDcWoqn+ijjw4wuuntCx0LBrXTL8f0a7yuqOfg6EPwmUfNrgYtoMhD8hJoNHP1b2up6+zHkJN4fV2uyxsB3KSIG6A3PYda+Hqr0++hoNR/LCkDkfeUeju3MqPByXkFQqFQqFQKBSKs46E3RvQVujifewrTmFj0Ota2Xv96AY2bJZRjDcPbU10sA+ZheUOpxucbvwl3WJ4/5reeHmY+PtAFnO3pDrWWXUwm3EzVzFj8UFumbUZ26q34de75JN9bqjcy9vLD/z1fHk9TN1u1wgpkkWO47u4d9Qn9GyGh0mwPSWPh3/cwZGsYsIDvHn4wg51O7C5h2U7Mq/A6u3IjLBxl7oBXh4mhsSHy7x2V8oLnU55cOWq6vUmMFreFtUh5Gty5MERXh9TfoQXL+vKkxd3JKZCn2BwdeRBnvtRT8lJnBPFrwmMeFRGA9SHuvLkcw/LcHoPH4ispdDeiWJ8HuoKrT9HC92BEvIKhUKhUCgUCsVZxYKdqRR8fyvCXoG93UUytLoqgZGOcPeYpN8AmNirGbcNbwPAB8sPY7Ha2ZWaz197MhAC7h3VlrZNA7j/fOn4PvfbbjIKyvh4xRGu/Ww9eSUVgMalWR9iXvyU3M/Au+CCFxy7/WpdEu8tP4RmuPJ64bht+w4SSgF2BN179nf7vsIDvBmhVyqft02mgj49rhPBvp51C3mHYOtQ3ZWu4sjXiuHG+4aCT1Dd67ujER15MnYxpX8cNw1tjciSve6rOfKnA0PIH90kOxdUxQirj+np7P/emDgc+TpC6zN0Rz7y3Cp0B0rIKxQKhUKhUCgUZw0J2cV89+McupuOUKD58mvz/9QcTt3tagAuFSuIj/CnXWQgV/WNJTzAm9S8Un7ZmsoM3Y2/tHsMbZsGAnDz0FZ0bRZMQZmVi99eyX/n78WuwZU9o/ir1Rxu85ATA4VDn5IiXg+T/mpdEk/+sotXFuznKLqzqzvyO7bKtmO5ntF4+QbU+P6M8HqA4e0iuKSb7m4brnVxDcItS/anrxZWD04hn7UPrOU17htwyY8/wbB6cDryJ5ojD44WdGTslrUISo87WvcRfgYI+aAYPdJBc+/KG0K+rsJ5J0p9cuRtFZCtT34oR15hUDVnSHH2o86p4pxm7XuwZfbpHoVCoVAoToJSi43bv9pMW6sU32vsXXhldT7lVpv7F3S4mDLhS5wpi5tbShHo42nm1mGyevcrC/exeG8GJgH3jIp3vMzDbOLVK7vhaRZkF1kwmwTPjOvEK5GLaZc2DxsmHqq4hcczRzkmEVYezOLpX3c7trHomB5qn5eE3a6RdXgbAJo7oe3CeR2aEtvEl0AfD54f38XZ+s3VgXV3zVZbCHVQM+mw261OwV8T9Sx0Vyv1duT1+gG+odWfi+ggUyNKc2W/dMOND2oG3oEnPrbGpP3F8nb//OrPOYR831Oz7/pUrc85DPYK2cnhRNMkzmBOu5AXQtwphEgUQpQJIdYLIfrVsf59Qoj9QohSIUSKEOJNIYRPDes+KoTQhBAzGmu8np4yNKSkpKSxNqk4QzDOqXGOFYpzhrwUWPgY/H6fLAakUCgUirMOTdN44ued7EsvpI+XdLkTvNpyLL+M7zakuH1NvtWTP2zy0nqMbblj+ZT+cYT6eZJdJP8nTOjRzNk+TadDVBD/ndCVPi1C+fqm/kzv5ofQ29ylDXuFufYR/Lb9GCsPZnEos5A7vt6Cza4xoUcM7SMDOWDRHdPjSWxKOk60JRGA0Jbdan2fXh4mfr9rKMseHEFcmJ/zCcOBtZWDpbj6C2tz5IVw5mln7K7+vCv1aD1XJwH1FPK1OfKevrJXPMgxZ++X988EN96ggy7kDy+tfE4sxc7jfKqEvDGxU3oc7DVMZLkWujvRIoBnMKe1Br8Q4irgDeA2YD1wH7BQCNFe07RMN+tPAf4H3ACsAdoBXyAbJz5QZd2+wK3AjsYcs9lsJiQkhMxMOTw/Pz/nTKHirETTNEpKSsjMzCQkJASzuY6WGwrF2Ua6/jNot8owvxOtwgvSBVG/eQqFQnFKKS63sv1oHuEB3kQH+xDo48k3G5L5aWsqZpNgeGAqFEC7HkNhNcxcdohJfWLx9ap8DbNwTzo/W4dwudffBB/+HSreAE8f/L09uGloa15duB+zSXC3ixvvyqS+sUzqqzuZv98v+3E3603zkTdxbdEevliTyFO/7MKmaRSWWenbMpSXr+jGrtR83vhwDQClWUeYvzONsXoPdI9I923HXAn2c2OqePrJwmnWMunKe7tMPFjLpfsKNYdQR3SAxJWQtb/2necZQv5kQut1IV9eAOVFlcfqipEjb0xSVCWyE+QclKK4KEMui2jvft3TQWRnZ2u/w0uh4zi5/NhW0OwyeiCoHq3kTgRHXQFNHkd3RfocQr7uz9zZyOlupvcA8LGmaZ8DCCFuAy5GCvX/uVl/ELBa07Rv9MeJQohvgUoVM4QQAcDXwM3Ak4096Kgo+eU0xLzi3CAkJMRxbhWKcwpX9+FEhbzVAh+fJwv/XPf7ybeNUSgUCoVbbHaNG77YyPqEXMeyQG8PSvV2cY+PaobvygQAhg4bTbPdu0jNK+WrdUncrIfMG/yxI4119o4UekcSWJ4hc5k7TwDgukEt2ZNWQM/YEFqF+9c+qKwDsPlLeX/08yAED1zQjj92ppGYIyMa45r48eG0Pnh7mOndogk9u/WAfWDKT2HBzlTuFXqV/Ka1h9bXiBBS8BakypZjrv/Lcg6BZgPvYGd+elUMAWzkTNfEybaeAxn67ukvJz6KMtwLeU1zOvLuit2BjCLYM08KUiMX/Exy5IWADpfAundh3x9OIX+q8+NB9oT3CZGV8UtyahDyRrqFEvKNihDCC+gNvGQs0zTNLoRYDAys4WVrgGuEEP00TdsghGgNXARUTfx8F/hD07TFQog6hbwQwhvwdllUa+KJEILo6GiaNm1KRUVFXZtXnAV4enoqJ15x7uJapbcgteb1aiPnEGTo20ndDLGnKFROoVAo/uV8svII6xNy8TKb8PUyk19aQWG5FYALOkVyQ+sCWAkENccruCn3nh/Pwz/u4P2/DzO5fxwB3vLy/nixhdWHstEwYe18JWyZCTu+dwj5AG8P3p3Sq36DWvKsFMrtL4KWgwEI8vHkyYs7cu932wj08eCz6X1p4u/leMnNlwzDts+ENxaaFB0k1LsITZgQJyNEHUI+t/LybFkzgPD4mqPGjP3W25E/idB6IaQrn3tYhteHtam+jqUYbHq6m7vQenAK0IzdUJYv759JjjzI8Pp178L+P8FmlQLb6B9/qsLqDfzDdSFfQ578OdxDHk6vIx8OmIGMKsszALdTdZqmfSOECAdWCRnP7gF8oGnai8Y6QoirgV5AQz45jwFPN2B9QIbZK/GnUCjOeDJ2Oe8X1FFBtyaMCxuAPb8oIa9QKBQnSGFZBQ/9sIO4MD8eGtMeT7MzwmlvWgGv/yUd4+cndOaqvnEUl1tJyy8lt7iCHrEhiA3vyZVjegAwsWcz3l9+mITsYj5Yfphx3WM4XmJh2b5MrHaNjtFBhA6YJoX8wb9kcbCqPedrI2kt7PtdFl47/5lKT13aPQZ/Lw9ahvvRtmll1zk4wI8S30j8StM4z7QVABHaUuZ+nyg1VSrPPSJv3QlmA0MAH0+Qofge3tXXKc1zCuaTLY4WGK0L+Rr+7xrvwewt0wbcYbRMy9onK7BD9R7yp5vY/vK8lORA8hpoOfTUF7oz8AuXRoO7gneWEsiVkSvnqiN/VsVGCiFGAI8DdyDF+kTgYiHEU/rzscBbwFRN08oasOmXgGCXv+a1r65QKBRnCeVFzn9kAAXHTmw7x12F/K/uKwYrFAqFok6+XJPIgt3pfLTiCDd8sZHCMinQyq027v9+GxabnfM7NmVSHykk/b09aNs0kH6tmuDlYYK0bXJD0T0AWWH+vvNljvvMZYcYM2MFV3+0jg9XSHF7cdcoGc4e3UPWStn1U/0Hq2mwSO8X3+vaam6wEILzO0U62tZVxbepDPUfZZZCnoiTdEZrFPJ6fnyTWoR8QKQMvdfsznz6quTrRQP9wmvOa68vdVWudy10V1MUQUgLGaJvswCarG7fkEmYfwKzB7QbK+/v+0Mew6IMMHno7elOIY5OBm6EfPZ+QJPn0l3Y/TnA6RTy2YANiKyyPBKoqcTj88BsTdM+0TRtp6ZpPyOF/WNCCBMyVL8psEUIYRVCWIHhwD36Y7f2uaZp5ZqmFRh/QOHJvz2FQqE4A8jci6wHqlN4gkLe1ZHPT4ZjW9mYmMtnqxJU60aFQqFwoazCxt60ArfPlVisfLY6EQCTgJUHs7nyg7Wk55fx5qKD7EsvJMzfi5cmdqu5mPKxbfJWd+QBLukWw8DWYQgBoX6etA73p3eLUCb0iOGaAXqud+fL5G3iyvq/mb2/SnfV0w9GPFb/1+mI0JYA9DAZhehOMD/ewBDyVR1YY8K6SeUaAZUHIyBCD6/PriG8vjEq1hs4hHxNjnwd+fEg69G4FgcMb39mFpw1qtfv+wNSNsj7UV1PLvqiPhgpCVVTLQAy9LD6ehRXPFs5baH1mqZZhBCbgVHALwC6GB8FzKzhZX6Avcoyo9+AAJYAXas8/zmwD3hZ07QaehMoFArFOYqR1y7MMr/xZB15kyfYK7Du/oVb1w8lt9hCbBM/RneqOierUCgU/z40TePmWZtYeTCb/17Whan9KxdM+25DCrnFFuKa+PH25J7cPGsT+9ILGTdzFdlF5QC8OLErEYFuwr4BygtlKDE4HHkAs0nw7S0DsNs1TKYahJ4RXmy8vi7KCmDB4/L+oLudwrQh6JXfhTGhfLIhzq695F0xHPawWoQ8yDz5oxudPdmr0hg95A3qdOT1HvI15ccbNO3kDFWPOIMK3bnSZqSc7MlPgU2fy2WnOqweau8lf45XrIfTH1r/BnCzEOI6IURH4H3AHym+EULMEkK85LL+b8DtQoirhRCthBCjkS79b5qm2TRNK9Q0bZfrH1AM5Oj3FQqF4t9Fuv7TFzdA3p6okDcc+a5XAlC+/Wdyi+VF54JddfTJVSgUin8J321MYeVBKSr++8dekvWK7gAWq52P9HD324a3oUdsCD/dPoi2TQPIKixH0+CK3s0Z07kWwZy+E9BkWy834cI1iniQheBAit6a+m67svgZKDgqxfjge+te3x1VK7+76/HeEBwOrIuQLy+CIv3/UG2OPDgL3tXkyDeqkNer59ck5B2OfGjt2zHy5OHMy4838PSFNufJ+0mr5O0/IeRrC613VKw/NwvdwWkW8pqmfQ88CDwHbAN6ABdqmmYUwIsDXHtIvAC8rt/uAT4FFiL7xSsUCoWiKkbrufjR8rYwDexVA5vqQNOcFzf9bgIPX/yLk+kkpLhfsi8Dq80OO+bA2z0hZWMjDV6h+BeRsQfe7iW/R4rqlBfJFpi/3FE/EXoaOJZXyn//kOKhib8XJRYbD/24HbtdutE/bz1KekEZTQO9ubx3MwBim/gx97ZBjO0SxaA2YfzfON09tBTLXtzVdrJN3rq48fUmJE4WVrOVO3PBayJhJWz6VN6/9B3wqqM9XY37dBHywuycTDhRHDnyLqHUx/Wwet8mdYtiI8e/Lkf+ZFrPGRiOfFE9cuRrw1XIn2kV613pcEnlx6ey9ZxBrY78ud16Dk6/I4+maTM1TWuhaZq3pmn9NU1b7/LcCE3Tprs8tmqa9qymaW01TfPVNC1O07Q7NU3Lq2X7IzRNu++UvgmFQqE4E7HbnUK+zShZcdhuheKsWl9ms2ss3pPBf+ZsZ/n+TBn+V67ne0Z0pKTFSADGmjcQ6O1BXkkFu7asgXl3ycrBu38+le9KoTg32f+HLNilvj/uSVghW19u+xqWPHe6R1MNTdN44uedFJVb6RknnXY/LzPrE3L5cm0iNrvG+8tl+PetQ1vgvepV2PsbAMF+nrx/TW++uXkAQT6ecvJ0zrXw0QjY+WPlHRmF7lzy4+uNyex0rLNrCa+3FMOvd8n7va+H1sMbvi8DV0HcpLX7SvENwSHkXYSbEVZflxsPTkc+56D7CSFH67nGEPL1deTrEVpvcCb1kK9KuzFysgbkeQptder36W5iB+R1i1ET6GSjQM5gTruQVygUCsUpIi8JLIVg9pKhZf5N5fIaCt7lFlt4f/lhhr+6jJtmbWLulqPc/e1Wjh/TL/j8m4KXH8tMAwG4wmcTY7tE4ksZMUvulC4PON0RhUJRf/J0h7TMfZG0fz2pm533V89wH7lQlAWHlzU86uhk+ekWct8ewZr9qXiZTbx6RTdahvvz2EUypPflBft4b9khEnNKCPHzZGrQdlj+Evx4g/vq6YeXwKHF8v6KVyu/n5Nx5AHC28rbnIM1r7P0v3A8UYbvjz7JSZOAKPk/CE6+0B04HVjX0Pr6tJ4zCG0poxKsZU733cA1+qwxQusD9NoxliJZ26Aq9XXk/ZrIQoMD72qccZ0q/JpAi0HyfvO+/0xRPn83EzvgdOOD48An6NSP4zShhLxCoVCcqxj94yM6gNkTgmLkYzd58rPXJjLgpSW8vGAfR4+XEuLnSbMQXwrLrMxbtkauFNoCq83O64mtKNc8ibYeZWLzQp7ymE3TskQ0YyY+Vwl5haLBGKHORg9rRWUMIW+4a/Puci6z22D9R/BOb5g9Afb91mi7zSkq58X5e/nw78OsOphNbrGl8goVpbDje8KOb2OAaS/3nh/vaMU2tV8cg9uGUVZh5/VFMpT7hsGt8Nn5jXytzQJ/PlK5nafdBouedj7O2gcHFsj75UWQrYeEn4gjDxCmh7Zn1yDkUzbAOr1P/bi3Tl4EmUzOfuwn23oOnA5s6XGno16f1nOO8ZghTJ/MyK4SXl+W54w+awzB7B0A3vrxc+fK19eRBxjxKIz575lZsd6VAbfLiZvuV/8z+3MNrXf9HjkK3Z27+fFwGqvWKxQKheIUY4TVR3aRt0ExcGxLNSH/7rJDvLpQFv7p0iyIawe25NLuMRzIKGT8u6s5lrgPPIGQFvx9IIsjhSbW+nRnBJvot+tZBnhsxK4JUge/QOzqx6STo2ln/gWHQnEmYTjy5adXyGuaxpbkPDrHBOHj6bZr7z+P3S5/uwAu+wCWvwwH/oRvp8C4GdLdTtvuXP/YVug0/qR3q2ka932/zVG8ziA62IewAOkyx1mT0GUvlwQdZsIwZ3i3ySR4+fJuXDhjJUXlVvy9zEzv7AErl+oreMKhRbB/vrN9147v5SSsdzB0uQw2fwGr3oD2Y52F7gJjIKDpib0pR8E7N0Je0+C3++Q+uk9x1lY5WaK6SrHdGMXPDPdas8tJL78m9Ws950pEO8jcDVn7ZTi4wfFEeevftPHapgVGycmBwrTq9QEcjnxY4+zrTKDDxfBU7el7jYpx7OwV8jj7BMvHR/VJPtf6AucgypFXKBSKc5CMgjLsaXrruSgXIQ8OIa9pGq8s2OcQ8feMiue3u4YwqU8sPp5mujUP4Zr+LYgV8p+yLTiO7zZKsZHf6iIATKmysN17tkv5vmKYzI+zltacE6hQKKqjaZB/VN4/zaH1X61L4vL31/CfOdvrXvmfIveIFG0ePnJicuJH0pkvSodvr5Yi3jtY1gIBt26zpmn8sjWVYa8s446vN1Nhqzv8fva6JFYezMbbw8RFXaNoGeYHQFp+GbtSC9iVWoAl64hj/UsCD+Fprnxp3TzUj+fGd8Yk4I6RbQnaNwfQoOVQ2dINYMGj0tmvKIWlL8hlw/4DIx6XYeBHN0LSmpPLjzdwOPJucuQLjkmBK8zS/W0sLnkTpv3SOBMDZk95rsFZ4Ky+recMjMrvVSvXH9YnWKK7ndwYXamtBV1JPUPrFTXj5Sfb3oEz3ULT4Mgyeb/VsNMzrn8I5cgrFArFOcShzEJeXbifhbszWOu3Sbb9MBx5R+GdNOx2jed+38MXaxIBeGxsB24dXj0s8cEx7dm1PRs0+OOoF0sPZgLQZeRVkPQS2CvIDe3OjLTLabE3mweDm8vc/OMJEBRdbXsKhcINxdlyAgykq3SaIlrKrTbeXSZF0R8707ghKZfeLU6PyFhzOJu3lxzk+sGtGGPdJBdGd5dCzuwJk7+VVexLj0P3yTKXO2OXzC+vEjJ9KLOQJ3/ZxbojUjgl55bg57WTV6/ohqjhOB/OKuLF+TLP9tGxHbh+sCzcVVhWwf70QorKrQA037cL9OLyvtk75URMlXD0ib1kSzk/TwFvfyUX9pwGHS+RDnxeMqyaAZ4+UJAqQ9H73Sof95wKmz6DVW863ccTzY8HZ4584TEZqu8d4HzOSFWI7NS44tKviewz3lj4h8nIlZIcWZivvq3nDIxe7FUr1++ZJ28bIZrDQYAh5NOqP9eQ0HpFzfiFQ34yFOfIz0DmXnm8PXwgbuDpHt0pRQl5hUKhOAc4llfKjMUH+HHzUewa+FNKtF1e3GwoiaYfyMJFQHF2MvfO3sTivVKUPz++M9MGtnS73WBfT7r550MRfHfQhM2u0btFKG3imsPAO+HQEjwv+wzxzgEOZxVT0jYOv7wkGepoFL1RKBS1k+9SdEuzy+JY3oEnv11bBcy9UQq/oQ/UufrPW1JJLyhzPH5x/j5+vG1gjWL3ZMgvraC43EpMSPUQ5j93pnHvd9uw2OxsT8lnXY91BAM06+1cqUlruGOddOr1llyaNR4BaLlH2HAondxSja0peXy+OoEKm4aPp4mJvZrz/cYUftx8lOahvtx3fvUq4FabnQfmbKesws7gtmFc5/L7GOjjSZ+WLsLrkEsYsWaD5HXQ7oJq2/T39oAjy6Vo9w6GTpfK8O0x/4UfpkuhblR0P+9JKeJBuvabv5Ah+EZrtZNx5H1DpfApyYacQ5W3ZQh51+N8JuIXJqM0SnKche7q03rOwNWRNybNchNkZIcwQ/uLG2+sDkc+o/Jyq0UWowXlyJ8s/mHyN9QoeGdEVrQY7PwenaMoIa9QKBqXffNlm7P2F57ukfxr+H3HMR6Ysx2LVYaKXtApkrvic2AhpGuhXP31QR6/yIPzfYNpCaSnHGGxJROTgFeu6M4VvZvXvHG7nYBSGYqfokUAcFVfvXDR6Gdh9LMEAgPb5LLiQBZHbE3pAqpyvULREIz8eIOyghMS8pkFZaxPyKV78xDiwvxk4bI98+DAXzD4Pll4rAasNjvv/y3d+FuGtWbW2kQ2Jx1n4e4MLuwS1eCx1MbhrCKu/mgd2UXlTOjRjAdGtyO2iQyP/WZ9Mk/+shO7BgHeHhSVW0nfu7q6kAcpkgKjKLFYmbftGLPXJPCD5o2/vZzHPv2NI1qMY9XzOzbl6XGdiW3iR5eYYB7/eSczFh+ku203I02V+7WvS7WzN6UPgT6+vHpFd0ymWiYyjN86T3+oKIbEFW6FPABbZsvbrlc4c7A7TYBWwyHhb9n5I7IrdJ3kfE2T1tD5Mtg1V0YfgIxMOBnC4yE5W6YgnK1CHqSQ1/SCd/V140EWuxMmOQlUlAmBkbD3V/lcyyHOSuiNgUskXCWMc4lw5nUrToyqveQNId921OkZzz+IEvIKhaLxKMuHOdPkP8hHk90Xi0laK/MBL3oNYhuh8M2/nKScYh75cQcWq51+LZvwyNgO9G4RChs/AeB4QDz2HHjhj718JdJY7g1RIpeLu0Rx9/nxdIiqoyJxUQbCVo4mTOSYI2ji7cUl3aqHzI/pHMmKA1lsyg+WQv5cq1yflyL7Ove7GXpMOd2jqR1LMZTmQXCz0z0ShQvbUvLYcTSPyCAfYoJ9iQ7xIczfS7rdVdtglRcA9Tt/FqudpfsymLPpKH8fyMJm1zCbBBN6NOOx8K2EA1hL0fKS2FcexpK9GQghuHVYazxc8rn/2JlGUk4JoX6e3DsqHm8PE+8sPcQrC/YxqmPTarnfJ0pidjFTPl5HVqFsV/nz1lR+33GMqf1bEOTjwdtLZe72lP5x3DmyLeNnLKVlxREQVBOYyTklfLEmkR82p1BYJkPdj3hF01UkMig4l9DgzoQHeHFF71hGd4p0vG5K/ziOHi9hx4pfGLbmfyC0StsdAkw038SA8Q+4jRiohPFb12UibJ0Niavcr1d63NE3np7XOJcLARe9Cu8PArsVLniu+oTL4PukkAcZqh14khMrYW0heW3lgnd2mywSCNCsz8lt/1Tj2kveyIuuT+s5A08f2Sf+eIJ05QMjT01YPdScI28UuvMNkZX0FSeO68RORRkkrZaP25x3+sb0D6GEvEKhaDxyj8gLEYDiLPftW3b+IAv27P5ZCfmTpMJm597vtlFssdGvVRO+vXkAZsM50ivWd+gxiKf9OvHCH3vJ0GT4nr8o593L24BvPdoK5SUBIIKa8/s1I/E0m/Dzqv6vY3SnSJ78ZRdr84KY7sW558jv/1NWzV7/wZkv5L+eBCnrYPL3EH/+6R6NAlh/JIdpn21wRM0YRAR688E1vemdX9WRr7tyvcVq57PVCXy04killmgtw/xIzClh7paj9PJcylRdIzz0/o/8WNjJsd6etAJmXNUDT7MJu13jPT03/vrBrfD39uCWYa35Zn0yR7KL+W5jCtMGtDjBd+8kJbeEKR+vI6OgnHaRATx1SSc+WnGElQezHfU6AO4+ry0PjG6HEIK3R3rgvcxKrhbAweOB9G8iw/JnLj3IF2sSqbBJEd4izI9pA1rQ/lhv2JvIC0O8YEjN6T0P9vagdMNMzHaNlbYu7NXk++tmOsIA014ua5JEvx4xNb4ekOLXmITpda0U8mnb5fmr6rLu+EF33LtATM/Kz0W0hylzZM60O/ER3U0W8ju85OTC6g3C3bSgyz4gUzo8/R2pCmcsDuGW6/yuNMSRB/kejyfIyvWhLfVoBAEdxzXmSGt25FV+fOPhrzvyJdlygspaJo+70aryHEYJeYVC0XjkOqv3UpztXsgX6/mERq/WfzkbEnJ5Y9F+Lu4Ww+S+sZUcsrp4Z+khtqXkEejjwZtX9XCKeIB02UNeRHXl+q6tGNG+KWYh4OMQ2Su3ME06AXVxXAp5QlvQOiKgxtWaBvrQKy6U5GTd9TrnHHn9OGTulXnHZs/TO56a0DR5QWq3wo83wM1Lqrc8OlPIPgjfT4PB99R/cmTT57D6LZg066QqS1ttdswmUe/c73KrjVKLjRA/rxrX0TTN7fb2pRdw06xNWKx2OkQF4u1p5lheKVmF5WQVlvPQD9tZFJ1MJU+ujsr1647k8NQvuziYWQRA00BvJvZqzhW9m9O2aQDbUvJ4a/EB4hOOOl4TUpKAt0cX+rcOY+3hbP7YkYamabzdcS/ly17Dln07Ad4tHfnggT6e3Ht+PP83bzdvLT7AZT2bEeBdv8tGm11j+f5MfDzNRAf7EBPiS26xhSmfrONYfhmtI/z5+qYBRAR6MzQ+gtWHsnnzz22Upx9g4kVjHYXlAAb5yO/ednsbnpiznVuGtebtpYcckxdD2oZz49BWDI+PkCHwf3eAvdTcJx2gLB/T91PwtxeS4NuZh8qfwM/fjyZ+XhSznQEZj9LXfKjuz0f+Udn2yuwlowWatJFt1pLWVk8v2zpL3vac5r6QYV1hwGNehAWPwMC7al+vPoS5aUFnhNXH9DzzHWJXB9aYSKlPD3lXwtvBgQVyAsOmT4S1GHzibf1qwtWRdy1iWaoq1jcaxuehOMcZVt/mvH9FC1wl5BUKRePhKuSNcLeqGMuVkMdqs/PI3B0kZBez7kguX61N4qlLOjEkPrzO125OymXmUnkR9t/LutLMNfzTbnfpIS97qLYK95ePg5pJIV+QCk071j1IQ8CG1O3GXdG7OS8k6T3qS3Pdu1JnK0Z/YZtFXvidyt60J1OxvPS4S/XzfNma66Yl9Zu0+adZ/wFk7YW179Yo5DVNuq1CCDi6CeY/KCcpNn4Cl77d4F1qmsarC/fz8cojWO0aPh5mfL3MBHh7cHmv5twxsk21EPINCbnc/e0WisqsfH/rQLo0q/6ZXrY/k3u/3UrvFqE8NKYDnWJktEtKbgnXfrqBwjIrfVuGMvvG/o7e7HklFka/uYIj2cXk2g8TATItSbPX+PuYVVjOS/P38tPWVADC/L14dGwHLuvZrNIkYI/YED6f3hfrS2mga5Tr25Xzn8kX4OtlZsneDG7/agvzd6bzn+R3aVOewHDTDjwHDCfYzzlJNblfHJ+vTiQhu5h3lhzk0bEd6jX5MePXdQRueocfbMM5qMkaHJ5mQYVNo0WYH9/oIt5gcNtwBsX+jMj5CvyCAaeQNwRmok8HjuWX8cxvewBoE+HPk5d0YmT7KsLL4TZXqUhuYLfB3JtkSHVQM1rd/DPrAp1h95R2gpcfw5SXIPOnaxN2RuRRSAspflsOkUI+cWVlIX9sm+wBb/aCbpPcbqpOmnaAa+ed2Gur4uglf1j+vzCZXPLjezXOPk4lrkLeuO44EUcepCOfprdabOywenAKeWupdOH9XaIJQDnyjYGrI5+ut939F4TVg+ojr1AoGhNXF7Y4y/06xvLT3Cv5VLApMZdL3lnJo3N3kFlYVuf6P21NJSG7mCAfD0L8PNmfUcg1n67npi83supgtqO9UVUKyyq497tt2DWY2LMZl3avEv55PEEWXTJ7O50XA6MlXIGbVjjucHHk6+KK3s0JDwsjS9ND9s8lV96Y0ADnhcKp4Pf74e2eMsf9RDDCN72DIKi5rEr94w1SvJxJ2G3OfOGM3c6LWhc0TePGLzfR8/lFfPTXVuw/3uBM3TmwUAqQBjJj8UHeW36YCpuGpkFphY3cYgvJuSW8ufgAE99bw8GMQsf+P/j7MJP1UPBii427v91a7XuZmlfKzG9/ZYF2G00PzeHid1Zy73db2ZaSx3WfbSCzUIaRf3JtX4eIBwjx8+LpcTLU3btYCnOHq1gltN5m15i9NpHzXl/OT1tTEQKuGRDH0v+M4Mo+NUTyFKbhYXH+zjazpuDrJfc/qmMkH07rjY8HRJXJkPoIcyE3DmlVaROeZhMPj5GC58MVR7j2sw0cySqq9Rgv259J3KYXucXjD57zm4O/vs8Km0ZcEz++uXkAUcFVKklbLQgjR3n5S7Kit+MAS4E5bMSFeHuYCPb15JlxnVhw37DqIh6k0wpSyGta9eeXPAsH/5Ktqa7+WuZHu+Ib4pzkTNlQ63t1/MY10Y+b0bM6YYVzHU2DRU/J+x3HnRkObGhLMHlARYlsQwdnT6E7cAr5vGTnb159e8gbGJXrU7dAynp5v7HD6kHWCjImGY5tcS5XjnzjYXweMvdBhv7/ufWI0zacfxLlyCsUisajkpDPdr+OsbzcebG8eG8mnWKCKrvKjUxxuZVjeaXER9a/EnRmQRleHqZaw2kNftpylEfn7sRis7MrtYDfth/jnmHNuNH2Ax5BkbJVmwsWq523FktH/a7z2nJVnzhmLDnA7LVJLN6byeK9sqp8x+ggercIJcjHk2P5paTllZGQXUx6QRmxTXx5drwbZ9gQmk07gLnKz3yQLvoLjtXvIDTAkfc0m3hgdDuSf4okQhRQnH4Q/8bI5zwTOO5SjCx9J3S/usGbKKuw8dGKI1zQOdJ9kUFNg+3fy0mY5LXQfiyfrUpg9rokXp/UnV5x9WitZJzXkBYw4V34dIzMq130f7LN1ZlCynooMtoxabJlV4eLKq3y6/ZjLN2XCWhErXwMkzmJIt8Y/K35iKJ0SN9ePde4Fj5ZeYS3lsjv3NPjOnFJtxjKKmyUVtjYeTSf5//Yw87UfC5+ZxUPjG7HpsTjLN4rx3hp9xg2JuaSkF3M/83bxRuTegCyTsVd32xhlHUFMR653OO/hO8LRjJv2zHmbZPnolmIL7Nu6F/J6Ta4uGs0f8TvJyilRB6JyM6InIOVhPz2lDye/GUXO1Plsq7NgnlhQhe6x4bU/oYzpHON2VvmZmftrxTtMbJDU2ZNiMD/d1l0rk+EvZJLbnBhlygeGtOet5YcZOXBbC6csZLbhrfmjpFtK01MgPzNnPH9AuaaZcG3gR4H2PX4+RSUa2QWltEy3N990bzkNc5WXPkpMte8741yQksP/27TYzirugXg7212W6fDQZM2gJDHsDirsqOeuVemZgCMf7fmz09sP8jcA0c3yF7vNWE48qG6kG85RN6m75TRMb6hsOVLKew9fGHkEzVv65/E7CnFfM4hmYLgF+aM4mp+hhe6A6cDm7Vf3vqG1r/1nIHRS9743MUOcE50NzZxA2XkQPJaiB8tlylHvvEwqtYbbTyjuzs/I+c4ypFXKBSNR6XQejdC3mZ1zkLroaN/7krn5lmbuHX2plM2rMKyCsa/u5rRb67ggTnbyC+tqPM16fllnP/G3wz631LWHKphUgKw2zVeWbBPtn+z2RnVoSndY0OIqkhmxIqr8Vj7Fix8vJrDOmdTCql5pUQEejNtQEuC/Tx5elxnFt4/jMt7NadZiC92DXYfK2DW2iRmLjvET1tSWXskh/SCMvy9zMy4qgeBPm5ytQ0XyV3l4UBdyBc2UMjXw5EHGNcthjxvWW1749Ytdax9llB6XIapG6TvOKHNfLoqgTcWHeDBH7a7X6EwXYp4QMvYwxuLDvDc73tIyC7mxT/2OsLMa8UQ8kEx8mLmsvfl47UzpYt9pmC4rwZGlWGdUouN//25D4AX4rZxqXktVs3EtLxbWWnvKlfav6Deu5uzMYUX/tgLwENj2nP94FZEBHoT28SPdpGBXN67OQvvG8aI9hFYrHb+9+c+Fu/NwMvDxIuXdeWtq3vw1tU9MQn4aUsqP2+VueevLtzP1uQ8enjI70kzyxH+vKkjw9rJVo0hfp58eUO/6g60jhCCp4fKycVcLYCDpbIOhVZWwOak4zzy4w4mvLeanan5BPp48Pz4zvxy5+C6RTxIIQrQZiRS2OZVi5Tq5+PMoe8W6j4CSAjBnSPbsuj+YQxvF4HFZuftpYcY/ebf/LkzzfG5tNs1HpiznWsr5uAh9GiJ8gJE5m6C/TyJjwysufK98dk0nLWVr4O13OlghrYE/zAiAr1rF/EgK5Ibv1dVw+sPLpK3bc+XLeBqIra/vG2oIx8YpUdBaZC0RubQL3xSPjfqqYZVVj/VOPLkD0HaDhntEhAp06/OdIzPCfpvYkPz40GmfQW4VP8/FWH1BnED5G3yOucyhyPfwAkIRXWqivZ/SVg9KCGvUCgaQuZe2YLLXREhSzEUubRXKXaTI1/qEj6rO/LfbpAzqLtSC9h9rO5Kze7IKSpn1tpE9qZVD9c3Li4P6UWhftqSyoUzVrDqYM3iHODtpQcpKLNSYrEx/YuNLN2XUW2dwrIK7vh6C+8tl6Gpd45sw8fX9uHnoWks8Hua9ibnRfJvixY77pdV2HhHz2+/a2RbR7grQJuIAF6f1J3Vj57HusdG8e6UXtw4pBXXDIjj4QvbM+OqHnx/ywBWPXIevVvUMJOfvFbexg2s/lxDHHmbFfL1kN96OPIAJpOgZXwXADKT9pFZUHeKwcnyycoj3Dp7E0ePl5yaHVRtDZa+033Ibi1omsYPm2Rl8l2pBY7PYyVcCk/t2raet3X32GwSbEo6zroj1cPPq+EQ8rqz1Pky6HeLvL9lVoPG7MqxvFI+WnGYBbvSScktqd+kghs0TSM5u4jS7T8DsNJ7uHwiaU2l9T5acYS0/DIGBWUz9fi7AOxodxcp/l34rUwWubPu+7Ne+5uzKYVHf5KTL7cOa80dI9xf9EcG+fD59L68NLEr/l5mWoT58dPtg5jSPw4hBP1aNeGeUVL8PPnzLj5bJSvGg0Zfb2fV+Y6Wncy6oR/z7xnKwvuG0bZpzUUiAaI0Ka5TtXCWJcjvy8/r9nL5+2v4flMKmp5Cs/Q/I5g2sGXlopa1kSknLojp5RS2hoNp4JIm4lVe++erRZg/X1zflw+u6UV0sA8puaXc/vUWrv5oHbtS8/lgxWGOHd7BBJPefi20pbxNXF3jNgH5Xdqvn8uxr8jJxoJU+Xk90XBv1/B6VxL+lrd1XegbQj51S+Uw/6pUdeQBWg3V97VSpspYCqF5X+h/W/3G/k8R3lbeZh+sfJzPhgJhVcPRG5ofb2C48nBqwuoNjP/FqZvlBBVAid5HXjnyJ49jYkfnXyTkVWi9QqGoP/MfkkV8fENh3FuVn6uaD+0uR951WVkBx/JKWeXidv+4+SidY+pfHC0xu5iPVx7hx81HKbfa8fYw8eqV3SvljM9cdohFe6Sz9sy4zny04jCJOSVc8+l6rhvYgscu6lgtPDQxu5g5G+WFec+4ELYm53HLrM28dXVPLu4WTUFZBV+sTuTTVQnkl1bgZ7YzY0wIFzQ9Ar+/C1tmYQJscUM4mlNAi+IdbFy/gj1eXXh4THu+Xp9MRkE5McE+XN0vtsb3FxXsw8XdornYTd/2GrEUOwv3GC6AKw0R8gVHQbPJ0NyAyLrX12ndrgvsgeZaOjOXHeK58V3q/dqGsmBXusNp3ZKcx+fT+7otRnZSGHUCorpKcVR6XAqN4Ob13sT6hFwSc5wTDfO2pfKfC6q0eMo55LhrypZu9NPjOnEkq5jZ65KYuewgA9tUuWCpihFp4eqq9ZwGGz6CQ4uhvIiUYhMPzNnGFb2bc1VfN50lqlBUbmXap+s5nFXsWBbs60nnmCBuGdaaEe7ylJHpLJuSjnMkq4iE7GKOZBWzL72QuOKd/OSdQaHmyxMFE1jh/Tf2tO2YygvBO5C0/FI++FtOjr0b8CkitwRaj6DX5GdZVGrl2ncKoOwjPDK2Y8s/hjm4eoswu13jrz3pvLXkkGOCb3K/2DqLtQkhmNwvjgk9muFpFtVyz+8+L541h3PYkJDLc79Lx/vuvgF473SZuExYCZ3GOwre1Ume/K0p8I4ms8QbPMFsKcDfy8wFnaOY0j+Ovi1P4GLfcOQjO8l84OOJssCbITShcr2HmtKhXBBCcGGXaIa1i+CDv4/w4d+HWZ+Qy7iZqzAJwWseP2MWGrS7UIrhJc/KaIuBd9S80eyDUhCbveTrSo/LooYrX3fmqp+IkD/4V+VJZ6vFOWHUanjtr2/SWoqDkhwZgeMu3FzTIDdRX99FyLccAps+g81fyAJnZi8Zxn+mVYJ3rVxvFKE9GwrdAXgHgzDL/09w4pEO4e1l2kOzPhBS8//ikyasrfPzlLZdpm44HPk6ftMVdeMTLGs+2K3g6eeciPsXoBx5hUJRP9J3ShFv3DcW55eRV2Kp3jfcXWi9q5CvKOanTYlomgw/BZi37Vi1PsvuOJhRyG2zNzPy9eV8vT6Zcqud8ABvyq127vl2K28sOoCmaSzdl8Gbi6Uj88KELkzpH8f8e4c6+iF/uTaJe7/bit1e2V18c/EBrHaNEe0jmHPrQMb3iMFq17j72y089MN2hvxvKW8sOkDrsj0s83uU3V7TuWDpJfDdZKfrOfQ/mK+bR1yvCwDoKJJ5f/lhHvpxB+8vl4Lt7lHxeHvUcXGnafDno7DspTqPCyAre2s2WejM3YVJQ4S8IWBD4mRV43oidHckzpTJtxuSSck9NU75sbxSHpm7g8nmJcz0fo+8wmImfbiWZfszq61rsdpP2EV2pBeExTv70jaw4J0xMRSjh1jP23as+nhyDjvuthHHeHViZ64f3Ipbh7fGwyRYfSiHzUnHa9+RcV4DXSZ/orpKYWItg4N/8eGKw2xMPM6jP+1k/s7aix5qmsajc3dwOKuYMH8vOkUH4WkW5JdWsOZwDjd8sdHx3lzZlpLHuNf+5L7PFvPsb3uYtTaJVYeyyS4q5xKPjQAkhg1jcN++JNsjMGk2Fi74FYBXFuyntMLG5TF5hOZuB5MnTPgATCZC/b3437Wj2K7JC/fF82ZX2q/NrvHHjjQuenslt321hb1pUhDfMyqeFyZ0rXe7OV8vs9sCcmaT4K2rezh+s7o3D+aeTqWVVzJ+J+uL/vlq374T/kHyon5gM082PzWaN6/qcWIi3m5zuu9NOzmdx6wqDrXr59jdb3YN+Hl58MDodix9cASXdo9B06CldpTxZj0aaMRjspUXSPFc23fvgO7GtxwK3gGyH3tQc1nEzGgl5S5NqDbcVa5P3SSLu/mFy2NSG0K4hNevd79OSY6eXy0qRyy11CdKjO4RIx49M/uyO6IWDp5dhe5A/j9yFcAn6sh3nyxfO/zhxhlXTQjhdOWNiDlj8kQVuzt5hHB+HloOAY/qtT7OVZSQVyj+pZRV2Hh32SFmr0siLb+07hes+8B5P2M3RaVlPDp3BwNeWkLvFxbz1fxlAFQE6uLRnbtTZdmfW6SgfXxsRyICvckttrgVYQYlFiv/+3MfY99ayYLd6WgajGwfwbc3D2D946O4ZZj8Z/72koPcMnsz9363DU2T1Z0n9ZHj8vPy4PkJXfh8el+8zCYW7s5wFMAC2JtWwK/bpRh68IL2eJpNvDGpB1f3jcWuwQ+bj1JQZiW+aQBvdNxPK3syQtNngaO6QeeJMO1nGPV/YPZAREk3+oLwbExCRh1kF1mIa+LHFb3r4eim74D178Pf/4Py2qtFA84cPHduPDgFXmkuVNRx3huYH+9Ad6diRA7CZuHe77Y2eti71Wbnvu+2UVBazpNe33KJWMXNzZIpsdi46ctNfLYqgR82pfDo3B2MfuNv2j35J6PfXMGHfx+uV0eBSrhW7o+S+dn2tB0s25/JrtS600EKyiqYv0sK5lev7I6fl5nk3BK2puRVWq8wda/jvo+o4Mo20m1qHurH5b3kZ8VoOVgTluMyFeJ/awrIL9FrQQjhyP+07vqFX7bKz7emwX3fb2NzUs0h1V+uSeT3HWl4mAQfTuvN/HuHsvvZC/njniFc3qs5dg0enruDD/4+LCcmjiexZc7/KP74EhZYrmOtzz3c3jqL24a34ZUruvHT7QO5PlRGjHQdfS0vXtaF/Kb9ADi4cSFP/LyTn/XWao822yYH0f7CSkWoOscE49XpYgBMBxeyYFc6pRabo6r7nd9sYV96IQHeHtx9XltWP3oeD4xuV/+Q9DqIDvbls+l9mTagBR9M641npi6G2+pFrLL2QVENXTvckS8nQsKbteWBcVKwNvUsrxYp1CCOJ0oh6eEjQ9yNCt3ZLqH1RZmV06HK8sFWd/0QV5qF+PL25J7MvX0QH8YtwYQd2l8MMT1kITkPX/lbUzWk3xUjP76d3q7NwxuGPuB8XpghuluDxuU2tP6IHlbfalj9JiZj5eeyRiFvRKEFxci8fIOAps7jHd0dBt1T/3H/kxiTHfkpzon4mLPEkYcqQv4EHfnmveGerdBuTOOMqTaq5smrYneNi1Hw7l8UVg8qtF6h+FeiaRpP/LyLuVtkDvdTv0CXZkGc3zGS8zo0pUtMMCbXi96iLNg5R94XJrCWceuM71mdL384bXYN0/EE8ID5ebGMN6egleRQ7bK5ipDPP55DgHc0l3SP5nBWER+ukGHyYzpHVVpP0zT+2pPBc7/tITVPis/zOzbl4Qs70M6lCv3jF3WkbUQAT/yyk0V7ZE577xah/N8l1Su7j+zQlBcu68LDP+7grSUHaR8VyEVdo3n9rwNoGlzcLdoRom02CV6a2JWmQT6sP5LDtIEtuKhLNKbf9GMy7GEY+bj73MJIKfzCig7x/tQe3P3dDixWO/edH19z4SdXjItPkG6ra06fOxz58TUIed9QeXFtLZWOV21OhsORb6CQ948AT39MFcW09cplS7InF85YydPjOnFF7+b1dkVr452lh9iQmEsP73T8NTlJ8EBvM+mRzfhpS6oj7NmVQ5lFvPTnPl5ZuJ+R7SO4aWhrBrSuR1ijS+V+u184JmD1qmVcX9QFLw8T398ygJ61VJT/bfsxyirstG0awKA2YVzQKZJfth1j3tbUSpXoi9P2EwjYMGHGLsP49ZDR20e04YfNKSzbn8Wu1Pxq6QMWq51PVh1hSnYyXgIWp3rgvTqB+0frn5dO42HVm3DwL6zlE2gRFkp800AW783gpi83Mff2QbSOqJzLvTnpuCNt4fEL29LHJxWKbHj5h9M5JpjXruxGeIAHa1cuwbJoDpnrdhFZeohe4GIT2Hgk/wWYtExGiKRulikbnv7QdhRCCLoMuhB+/YN+pn1MWi/rEVzZK5qIRL09XbfqHQI6DrsS9r7NYNMuhszZAJ6+5BbLXOZgX0+uG9SSGwa3rFfHiROhV1yo89wZqSxtRsrvVMYu6cp3mVi/jemh9YTEgZe/vF9DH/l6Y4TVR7SXId2OntkuwtZw45u0lt91zSZdwsDKv7/1obdvBmTognzEo/LWwwti+8rQ5aRVsotGVUpyncLGVUz1nCY/r/kpENlZtvBqCIaQz0sBSwl4+Tnz4+vblqq5IeQ3VKr278BdfrzBkPth48cypN7spiDpmYBfGPiEyCKIICOOfENO44AaSCUh7+YcnGk4HPl1snVmqR5dpRz5xqH/LbDzR+g66XSP5B9FOfIKxTlCYnYxKw5kcSizkOIa+o8bzF6XxNwtRzEJ6B4bghCyANeMxQe5dOZqer2wiDu/3sI365PZlZpP2tL3wGYhP6w7KX4yJDGs8ADNQ3357pYBrHx4JCOaSrd4myZn+YWlqLrjWyV0M4BSLukWjZ+XB5fr7vSyfZlkF5U71rHbNR6Zu4NbZ28mNa+UZiG+fHxtHz65rm8lEW8wqW8ss2/sT5i/F7FNfHl/ai+8PNz/1E3qE+vom/yfOdv5al0Si/dmYDYJHhhdWTALIZd9f+tALukWIyc6KnRn1ze05gJBTVo5hPOYqBJ+u2sI70/txWU99RzmwnRY/rLzn3pVElyFfKr7dQxsVjgqw5bdFrqTb8Sll3wd4fUn6sgL4biw+vzScHrFhVBUbuWhH3dw86zNZBWW17GB2ll3JMdRLPCZns4oBY/jh3n9yu7cd348QT4e9G0Zyq3DW/PxtX1Y+fBIXprYlV5xIdjssuXh1E/WO6IvqpKWX8onK4/w8Yoj5B2TkSOL03x4cKVM/YizHEYIKaBvnb2Z9PyaXX4j9PyqPrEIIRivn/vfd6RRYZPb25qYSZhFuvaWZvokTJbToW8Z7s/4HvJ177i48uVWG0v2ZjD2rRW8vWAHIULmsWdoTfh8dQKFZbrDGt0DQuLwsJUy3LSdq/vG8fbkHnRvHszxkgqmf76x0vcuu6icO7/egtWucXHXaK4v/hQ+GAKvtYWXW8DH5yHmXMtjey/nV++nuMfjFyJLD2HTBOvtHVjR8j7st6yUE1nFWTLtxFLsrFbfboxDnAm9ZVcv8xG8seDnZebxjllSFPuGQvwF1Q9qVFe0oBj8RDndrDvILbbQPNSXZ8Z1Yu1j0oE/YRGvabDxUzjwV/3WN7oYRHVzhlU3JLw+3xDysTLXE6r1kW8wRqG7pvokpuG+Fh6DMn2SwBDy0d2dYqIeefJuWf4ioEGHSyq7567h9e44tEROIDTtVPl3xsMLRj0t73e4uOHj8QvT25FpkHtYRjMZv42t68iPN4jpKfNuC9Oc58gVR8X6ltWf6zEZbl7qzPE/ExHC+bmAsyes3sD4zPqGnh1iOKqbM0IldZMzv1858o1D7+kw/Xfw/3fVHFCOvEJxilm2L5MHf9hO35ZNuHZQCwa2DqvsSGqadHDyq4i0wMh69Ui2WO28veQg7y0/hGuqd7CvJ/FNA7h/dDsGt3W25tiQkMtzv0m35tGxHbhlWBuyi8pZui+TxXsyWHM4h7ySCv7YmcYfO9PwooLV3p+CgCfThtLPtI9pHruYGJPLizcPI8Bb/xmxyRDN7n2HY9nyFV7CRkVhJp5NXC7OqhTAC6SEK/tIAd8uMpDuzYPZfjSfeduOOQT2a3/tZ86mo5hNgtuGt+aukfGVqry7Y0DrMNY+Ngq7ptUZnvrY2A4czCxixYEsnvxlFwBX9GpOmyrupFusunirLR/LZJbFplI3Q8Yu2neOp32UywTEkudh21fy2Fz8WpXtWypfANcl5DN2gaVIFgKq7QIyqJlsFVhQe370CTvyIMN5M3YRaUvjh9vG8eGKw7y56ACL92aw4n9ZDG8fwSXdojm/YyT+3vX/V5RdVM59323DrsEVvZvTQ/vd+WTOIYQQ3Hd+O+47v3rkwuR+cUzuF8ehzEJmLD7I7zvSuO+7rWia5hDJAEv3ZfDAnO3klVQAGtd4HwUBz68pIU+LBB9oYcpk3f19mfb1Xg5kFHHr7E18f+vAap+3fekFbD+aj4dJcFkvuY+hbcMJ8/cip9jCqkPZjGzflG8WrORVYcMifPDtcD6kroHMfZW2defINvyyLZWFuzN446/9bDuaz4aEHMoq5GRAT/8isIHmFUDTgHAOZ5cwa20Sd45sC0KQHTeW8LwPudi8gYG9H8fPy4NPruvLxPdXk5xbQp8XFlOV1hH+vHxJS8RMl4r3Zfny82zk1XoFcDRsEG+mtGW9uTfPTh7KqI56ccTJ38BHI6Vo/OUOSNsml7u2egptBYHReBSm8cMlHni3HUzomv/I57pcLkVdVYRAtLsQNn3GPc2PcPngGxjbJcptXnuD2T8f/nhAFim7ZxsE19KOqyTX2dUgqqt00te/D4mr6revilLn72JwrHNCr6yRHHnjd8A3FPybQnGmzIlu3tsp5KO6ys9acZb7IqV1cXSTPkEjZGSSKy0GyVsjT77qhOcBvYWgu9DmblfKMPgT6QcthHTlU9bL8PqCNFkIK6SFs5p+XXjp6VLHtkhXPqRKYcjaHPmzhbB45wTHWSfkdcF2ovnx/zQeXrJoYuJK2PeHXObpVzktQ6FoIMqRVyhOIZqm8erC/eQUW1iwO50pH6/ngjdX8NXqAxzf8Sfa7/+BN7tIp+vbqyr/fTRCXiDVwv70Qia8u5qZy6SIbxnmR6CPFEX5pRVsSjrO1E/Wc8+3W8ksKCM9v4w7dJftkm7R3DxU/gMMD/BmUp9YPrq2D1v/bzRzbx/I/ee3o2/LUCb7bSRC5JMlwkiOOp/ycOnwjAhOd4p4a7nDsbhg6ECOC+kqLd5UJby5itsTH2KvFFps5Iz/uFmG/H+9PsnR2u3ly7vx0JgOdYp4Ay8PU2VRlbAClv+vWg6oh9nEO5N70jpchrR6mU3cc3489cJoI+NRxz/iSL1qe/quyss1zVnMae+vMtzOlaMbZXEmg7ocdCOsPrZf7RWSjTz5uiYGTtSRB2eoY24CZpPgjhFtmXfnELo1D8Zis7NoTwb3freN3i8s4u5vt7I1uY4ibshJq9tmbya9oIzWEf48e2nnyvmrLsXiaqNt00DevronV/WRdQ/u/34bP289itVm55UF+7jhi03klVTQMTqIaV188BUW7AjiWrXjljG9sQfJz2lk6SE+ubYvIX6ebD+az6Nzd1QrYPe97saf3zGScI9yWPQ0HunbuETvRDBvayrrj+SQk6x/V8LaOl3UrMpCvm3TQC7qIl/39tJDrDiQRVmFLPR4/eCWzL5CjksERnOX3ibt01UJlFhkhM5PZfJC/QKPrUT4yHFGBHrzxXW9eDzgdy4zVXaRo4J8+OCa3gTs+1F+DiM6wBPpcPsauPJLGP08XDMXHj5C81t/4L4HnmLeQ+OcIh6k+LnqK1mwbs8vMnfbwxfiRzvXEcIh+LpZ99A+VMDemsPqHeg51b3K1jOuW3TjiHhNg+V6YUmbBVa9Ufv6hhgObSnDklsMAoQUj4XptbxQJ19vUekVIMW2t17p3lIoC9adKBmGkHcp6maE1xt58g4h380plo0CXPVF0+Cvp+T9HlNlGLwrzfvKc1+YVr0gqq0CDul93duNdb/9wMgTr/buKHh30CWsvp5uvEFtBe+q9pA/GzFa0MHZJ+T9I+TtiebHnw6MlLf98+WtcuMVJ4ly5BWKk8FqgdmXgb0Crv212szqluTj7EkrwNvDxOW9m/PL1lRKMhMY+df1hArnBZPF5ENJcDz+3h4yb/p4kgxDT1rttu2N3a7xyaojvLbwABabnVA/T/57WVcu6iov8gvLKjiWV8Y365OYvS6JX7cfY9m+TJoGeZNdVE6HqEBeuaKb21xlT7OJ3i2a0LtFE+4d1RY+fATSIeK8u5g3dCQcDYJP3oK0HU6H5XgSoIFXAH6h0ZQGRkBhLn9t3MXIkRc4BXUVIX9eS99KYxjXPYbnf9/L3rQC3l12iNf/khec95/frvbCcAVp8MVF0GMKDHuo+vOaJt3A/BTZRq3P9ZWeDvb15OPr+vCfOdsZ1z2GZiH1zMesjyMPTiGfUUXI5xxytgsrypAXiy1cQuJdw+qhbuFdV368gVG5vtDFka8olfn4MT3lxXNFqRwTnKAjr1/culy8d4oJ4te7hrA/vZDfth/jtx3HSMopkfe3H6NfqybcOqw1I9s3ddZoyD0Cs8aj9b2Zp9JGsCnpOIE+Hnx8bR/8rXkybNYgP0WOux75tCa97oHJBN9uSOGBOdv5aEWCo1XZtQNb8MTFHfFO2wyHwBTUjNm36GHT6d1knnf6TuL6D+K9qb2Y9ukGftl2jFbhAUwf3JJgX0/KrTZ+0Qu3XdU3FpY8J/NmU9Yz/vxv+XJtEn/tySApt4ReQp4Lr8h4Zy5x9gGZLmF2/qt+cEx7knKLiQjwZnDbcIbGR9AuMkB+j7brn6+gGMZ1i2HG4oMk5ZTwzfpkpvZvwTsHgrlYC6MZOXBkGbQfC3Y7bdY+ThvrN2jeJv7v2quxRUgXN8jHEy+zgB8/ldvtc4M8tpGdqws2ILaJn/uD3WIgXPw6/KYX/Yof7cwFd6wzCHbNlb95IXFy4qBJG/dtvwxaDZOTAgVH5XdLL0RYKxVl8NcT0hGb8F71wkj7fpcC1+wlhfyWWTD4vppbUxn58VF6OLlvqBxH+g7pyne9ovbxGG5+cKz8LfVxaVlXXnhiOcvWcmcrQ9fInPB20g3M2i/zxnP0FI2ork53s6Gh9fv/hOQ1cjKzqhsP8vPSrDekrJOuvKt7mrJeRnf4hdV+nk8UR4G/A87aAHW1natKbD8ZYeFOyJ8rjjzIz3vUqWsTekrodpX83ve/7XSPpP4Y/5uNIox+NddWUSjqg3LkFYqTYfPnsohPynrZp7kKs9dKR/PS7jG8eFlX1j8+io/bbaSZyCFbC+Jr6yimWx6ia8kH9Eh7jPjEhxh6/El+978MANuxHdW2WVBWwS2zN/Pi/H1YbHbO79iUhfcPc4h4gEAfT9pHBfLs+C7Mu3MI3ZsHU1hu5XBWMcG+nnw4rTd+XvWYx0taIy9IPXxl/hHIC0NhkhMNhtDLPSJvm7QCIQgJl2MRxdl8tyHZuT09bDNXk2Hr/WIqjyHEz4vRnaSb9+rC/dg1uLJ3c+4Z1ZZaObRIjmHNO1L4VCX7oDPHcdOnblshtYkI4Jc7BztC+oHqDnlV6uvIR9XgyB9ZXvmxkT9c9fnmfeVt1fQLVzTNpWJ9DfnxBo4WdPr2bFb49moZCfJ6O/h4FCx+Rj7nHaTnmjYQF0e+Ku2jAnlwTHuWPziCeXcO5vJezfE0CzYk5HLjl5u4YMYK5mxModxqg51zIS+Z8uWv8+OmREwC3pncU6Y+pGyQGwxvL4s2gfOzWA9MJsF/J3RlSv84NA1Hq7J3JvfkufFdZGtA14r1BoZg1HOjB7UJ55lx0vl8c/EBuj/7F31eWMT4mas5XlJBVJAPw8Ly5e8FQOpmekb7ENfEjxKLja3JebQ169+lsLYQHCdDLm2Wau+nVbg/v989lM+v78dNQ1vTPirQORlmnM+gGDzMJu4YIZ2qD1ccYe6WoxSW2VjtqYc675knPzMLH4dtXwMgNDuha14kPMCb8ABvWVsiaY2MDPD0g+61uON10fs6GHyvzDnue2P151vIPHlSNsDWr+T97lfXXHsCpEg0CpcZIdq1kXsEPh0NGz+Rk1hzb6qcXmK3O9s8Dr5X5rvbLLKfeU0Y+fHR3Z3LWg2Tt/XJk3fNjwc5KWj8npxonnz2QZl/6x3s/K6DiyN/QObQa3bpagZEujjyNQh5d9EBNiss1vPYB9xRcwqCEV6fuLrycuOcxV9wanqsGwXvktdDhh590GAhrzvy6bsqdw0pL3L+/zubHfkWgyEwBrpeefa17ApvC5O/lWkiZwvN+8nrJwPlyCtOEiXkFYraKM2D3b/IIk1VKcuHv192Pl75mrOdCDKXd/5OGVo5baAUAYGmCjplypDRwKs+ptMtn3L+pdOY2K8tHaODEAJSckv5MVUKp+Q961mwK90Rrnsos4gJ765m8d4MvDxM/G9iVz6+tg9NA2sWkl2bB/PTHYP572VdGNC6CR9O602LMP8a13egafI9gbygNorJePk5Z/GN0MwqzoQ5QIa8NRGFzFx2mFKLvAi06i2ZkjRZFTlIVG9/5uq8D40P58WJ9ej9bIjFsnxnvp8rRvi6MeY6UhYAee4/GAKfX1xzD2SHI19XaL3uXhYcrVzUrqpQdw2vLy905iD3mKK/vpbQ+uMJ8sLS5AnN6mghVLWX/F9PyrGY9ImV1E2wXm83GNKidjFVEw5HPrHGCREhBN1jQ3h9UndWPnwetw5rTaC3B4cyi3h47g6GvryMpO2yraFPRR79TXt5bGxHRrRvKjdguGRx/aUABiliGoDJJHhhfBfuGRXPyPYR/Hr3EMZ1dxE/eYnyNsSdkHf24L5mQAseGN2OpoHyYji7yMK+9EIAJvVpjnnpczJHF8BmQRzbxvgezv0MCNZ/O8LiZWssR5VxZ8G7OjEiLPTze1nP5jQL8SWrsJzn9Sr+5i4T5Dr75sPS56XbCLLvt8kDDi6UaSgGm3Q3vusVzkJsJ8ro52Rovruq4RHtpTNrLZWTowDd6lF9uL3esmzPr7Wvt/c3+HCEFN5+YfI4l+TAz7c4RereXyFzt5y8Gnin02He+pXTOa+K4ci7Cnm9eB8J9RDyRsX6YBfH3wivP9HK9Uahu8hOlb+7hrDN2u9SoK+r3oNZF/LuHPmyfHizM7w3qHLu/9ZZclLAtwkMua/m8TgK3rkI+YI02PWTvH+qWn8ZofUFevpCZBfQ/zfVm+Bmsqe9ZpO58gbHE+WtT8iJTXSeKfiHwX/2yugUxanHJ6hyNNPZUKRPcUajhLxC4Q5Ng+3fwcw+8MN18M1V1fvrrn5LXgiGxcuc1rL8Ss7N9xtTsNjsdI8NoVvzELlw909yvZA4vDuMpmdcKNcMaMFLE7vy571D2fH0Bcy+sR8DB48EIM5+lHu/Wsvkj9cxe20iE95dzZGsYqKDffjxtoFc3S+uXq28zCbB1P4t+O6WgfVrtwUywuDwUhlyN/DOys9VcSSdjrweNqnnrrX0LSG7qJy3lhzkoe824mGRF6ZpZj16wE1Bp6Hx4bwd8SuvR8znvam96teizTX30si5dMUQ8p76BIYhTmrjryfkRX3SKqdgr4rhyNdVrMYnWLqsABm75a3d5nTszn8GvAKlo2qI96Q1UviFtnQ67MYFqTsMNz6mZ92h5Q4hnyZDhw0xd8Xn8MA+uGQGxI+RF6ldL699WzURHCuFoa28cgh/Vew2sFUQFezDYxd1ZPVj5/H4RR2ICvIhq7CUkJytjlXvitzFTUNd3C/DkY91EfJGSHFdWMsdEzQmvUvB59f3q17ksDZHPnOv43dBCME9o+LZ8MT57HzmAn69azAzrurBc+M7c2d8rhSJwuRoR0jyWib0bIZJgK+nmThNn1Qx3oce3l614F2tGBMzeg0ELw8Ttw2X38lyqx0Pk2DoeRdBQBSUu/xejX1FtgzrraecLPo/OflSlOkUyH3cuOgnQk2tuISoHEkSN6h+Rck6jJOfs/QdNU/i/P0qfH+NfM+x/eHWldLJ8/STkxarZ8j3a0zMDrhdirMWg6SDa6+AFa9V366l2LlPVyHfYpA817mH69EZQp8gcA3dN8LrT7TgXdVCdwbG5NDxBDlZB87Pcm2OfNoO+R3O3A1fXAw/3yYnT43oheGP1D7JE9dfHo+8JFkTIOcwfHaB/L0LjIG255/Y+6yLkBby/5dBQ914A6OfvPEbC87/OWezG684Pbj+zilHXnGSKCGvUFQlc69+sXKrs4Jv4kpY8JhznfxUWPuuvD/6Wek0gRS/x5Ow2TW+XicFwLUDXATARl1A9r7ebShhoI8nQ+MjuPWigWh+EZiFRhePVNYdyeWpebspKrfSr1UTfrt7iHNy4FSQvlO6tCALWrm2qIHqjmRVIa/nWw6OlpMMH/x9mL+3yXx3G2bOG6A70G4cJ4/yPC4t/I7LC78i0FLPCsqu4dsHqwh5a7lTMI/5r7zd9VOl6IlqHFriDO+FWoS8HlFQlyMP1cPr07bLSR3vIIgd4OIs/iJvDbe+1XBZZR7k+q7hna7UNz8e5MUzyIvz3x+Q90c8Dp0ula3p+lwPU+fAo0myH/KJYPZwuoxVi1y58uP18GobR9GvIB9PbhnWhhUPj+TDCwMJFs5ifwPL1yA03d23WpwOWSUhX4+Cd8XZ8E4f+OzCutd16SHvIKSFPG82izPX0YVAH0+6NQ9hQs9mXDugBd7LnpVP9JgCPafK+8nraBMRwNc3DWDujd0wF+mF0cL075CRJ98QR94QjUHOEOcr+8Q6ogTO7xhJ0yA/eZ4NRj4J/W+V94c/IouuHdsqJx23zpYitllviOlR/3GcKIZzC9D9qvq9xj8MWsuJT4fD60pBmrN43cC7YPof0mUNj4eLXpXLl/4XFj0lBbB3sAwTNzBc+W1fO11Yg4zdgCYnRgKaOpf7BDuFfV3V6/PdOPK1taBL31U5wsgdDiHfqfLywGg5YajZnVWzjdx+R468m2J3RsqGdxAgYPu38E4vWQE/tJWsnVAb3oHO47H+A/j0AjmB0aQ13PCnfP5UYPaoXAitoYXuDIxUibXvOiMojP85Z3N+vOL04Po/WjnyipNECXmFwpVt38pw6qTV0q05/xmYNAsQskjVps/kestflOIubiD7g4ey3bu3FFw2Cyx9niV7MziWX0aonycX69WpObZVCg+TJ/ScVvs4hEBES7H8yRgvLu4WjYdJMH1QS76+qT/hAacwl81SDD9cL99Lu7HOi3xX6hLyurvTwqeYtk2lw9k/Uoavmv3D8AnQQxHLC6tv27Vqcn1C4KGyUEzfAYUZzscpG2ThLP+m0Os6eeFqK3fkBVejvBB+u7fysoo6HPn65BZWLXhnFLJrOURecBrtuPb8Kp3iIy5Vln2C5AU41Ozw1Tc/HqToEGZAk0Kt03j3RQJPllry5AHpZu6ZJwVLlfoAXh4mLgiUIroksi+aTwiiJNvZji99p/wO+oZKER/eAEf+71cgP1kW4LKU1L6uO0deCLfh9W7ZP19Osnj4yskS4yIuZR3Y7QxsE0Ynb33Cyi/cGaZ7Mo68S160j6eZ58Z3pkNUIPfolezpe5MsKDf8ERj2oPP1ARGysBvIwnybvpD3G8uNr4tWejFBszd0mlD/13XRo0Z2/Vg9DWbLLBkWHTtATuS5RgT0mApdrpDPr50plw28s3KBubgBcqLAbq3uyjvC6rtRDSO8vq48eUMYuk4U1RZa/90UWWDViNxxR02OvBAQoYfXGyk+9XHkjcr6HcfBTUukKDcm1M5/2n17wKoYkzRr3pH7iOoGNyysfyu4E8WYhDZ5OHP1G0qPqRDTC8ry4KdbZG0A5cgrTpRYVyH/7+p5rmh8lJBX/KvZm1bArlQX1+Pvl+UFW7sL4c710o3sNB5G6e115j8EGz6Gbd8AcKzf44x7dzXj31vDS9bJcp2dP7ByhXSFJ/WNdVZsN9z4TuPrl6enX2CFFuzn3Sm92Pv8hTxzaef6hZq7ozgH1r7n3nFx5c+HZTXjwGgY/677/Gjj4i/nsBRhRniocVGj51uaSnL45ub+zLqhHzMu0R0n/winA+MudNTVKXeX7+5ufcO5MqoUH3Lph224V21Gytxjo9DWps/c524vfka6ZCEtnE674bxXpb458uDMizOEvCHUjXDPtufL0P/8ZBlVkLm78vNGISl3leuLs53OsFGcqTZMZgiUdQqI6goT3pfHprEx3KqaCtBtne28XzWSAhyh837thiE6XCKXGYLfyI+P7S8/o/UNrc85XDm1orawf5vVKWKqVu6vj5C3WWGRXgxsoF4MLLKrPM9l+U633Riz8R7A6cjnHKqe1uN2XxXO4luuBc6AC7tEs+C+YXSK0QViRHu4b6d0m6t+vwfeIR3mvCT5WfQJgS4T695/YxDVFca9JdvVNaRae4eLpfjPPlC5M4TNCpu/kPf73lT9dULAJW86z61PCAxwUwHb4cp/U3ly0V1+vEFL3cU9vLzmopm2CmfXivqE1lvLnREiW2a532Z5ofP3uKojD87fSJCTS8Znrraq9cZ3ILi5LCx28zIY/x5c9Fr9J1xcRXTLoTIywjWK4VRh1AVo1ufEnX8PL7jiUzmZmrwGVryqHHnFiRPcTE6kggqtV5w0Ssgr/rXsPpbPpTNXMW7mKn7dfkxewBiz7Jd96PyhBRjygHR97FaY/yBodrRO43lkvTcWq7xI+/BgEL9q0lEae+w9hNC4pr9+gViaBzt/lPfdVWx2hxHyqAuFSgK+JFcWYVvzTv3f8Pr3YeFjbqvrO9j5ox5SLmDiRzJs1R0BTeXFPhocWCiPi9nbGbJt9HctyaZpoA/D2kVgLtUvEP3DnReqjeHIG+csINLparvmyTuEvN5mquuV0vHKPQIJyytvK3GVrGgNcOk7zhZZhvNelYY48q551ZZip4NuhHt6+kK7C+T9BY/K28iuTqesaqV5VwxRG96+5nNWlf63Svf+6m+qtwJrLByOvJtwd1uFjIAxSFpdvaikq1g3zq1RENDxnJ6/akSDlObWnjax5Fln0Tmovdd3Qap0a81ejrxzB8b5PLwMlr8sK6B/OBze6Oz8e7OTnBTzC5NV0EFGX8TqqSVGOoSRDuAq5INjZZi7vaJyukD2Ifh0DOz4ofJ4ijIATUb8GIXLTgQvfxjpkkbUY2q92vk1Gr2nO78H9cUnyPka43cWZFX0wmPyeLimE1R97aRZ8nxe+JL7XO/YftD5MvlZ+G6qM/Khaus5V1oOlmH6+cnu63aA3I5ml58v/yqh+SBz+l0pcok02jnXfRHWLL1HfECU+7Bdw5EHWQzPSPEyPjOlx6tXqHd0Q9AnE01mmSLS7+b6F8JsPVIK+J7TYOqPldvsnUq6T5Z1Q4b+5+S206S1nPQBWPGK83+TcuQVJ8Lge+Xn0kjbUChOECXkFf9Kyips3P/9NipsGpoGD3y/je3rdBc3vL3DDcosKOPr9UnkFFvg0pkQ3UOuY/JgefPbWHkwGy8PEx9O602vuBBeLr+Ccs2DQeY9zAn9kFiPPLn+9u+kqxvRsX6hz+Di+O2q7uhs/04WYVv0f7IQUX0wQoSNvP+q2PRJCpDhtnX9gzHGZzikTVo5XV1DfLq6O8Z+/cPlBS5Uv1AFKcQMjm2t2410dUbiR8v7h5fK91Oc7bzYNiple/k722gZURJWixRk8+6Sj3tfLwW24bRXuHHkNa1hjnxoK5muYS2TOabWUjn5ENHBuY4hVg3h65rTaVxEuwutNyYFWtTzswXyQuKGBZUnrBobw6k8sLB667yDf8kcW/8IWQjQZqlc5bsk19nnunlfeSy8g6WYSVlXWeSDPK/GMaopTz5lo/y8CpOsRA21O/KG+xkcWz1iwTExs1um2uz8AdK2yYKExp8hvM57srJANEIrjfNmFEwLc8nnFcJZnMwIldY02Ys9ZZ0stumKa6G7k42u6HGN/K3z9K//xOPpxhFe/5MzvN6IvOh5Te2TbTE94LZVzu4Q7rj0HelwF6VLMV9W4KwO786R9/KH3tfK++tqqAjuyI9vXvmcGaH1VXPkXVOGLIXV21WC8zPVtEP156CyI298hsFF9GvVJ8JcHfkTxcsPpv8O42fWXRy0MQlvC7csb/jkkDu6XSkntjS7PP6gHHnFidH3Jvm5DIquc1WFojaUkFf8K3n9r/0cyCgiPMCLi7tGY7VrrPlb72nbvC9Wm53PVydw3ut/88TPu7jig7WklgjpXrY5j7KRz/LIMplbe8eINozpHMWPtw3i3stH8ZZpGjZN0LdkBczsKwvkGLn1fW+sv4MR1laGPlYUVy8WZvTf1ewy3L+m9miuGKLCnSgFedFo5E0Oe7ju7RkXgUYYu+GIgjNM01LkzC83RH1DQuutpc4q7zXhmqvYrLfMMS7Ll1WZjywHNJmfboSSg7M40/4/Yc518GpbmD1BbiuombN4oSO03k2OvM3ivF8fIW8yOUNd1+lV4lsNr/x5aDtannODVm6EvHFR7YoRTmxMNJ0ptBwqJ66sZbDsxcrPbdHD6rtf7ZyAcXUujbSK8HZSZHh4Q/uxctnad6UAF2bpahgYQtiYAHBF02RBM5CCzchVr1XI6yHKrvnxBpFdpdvXvJ+8uB/1NFz1Ndy8VF6gGX93bnRWgzeIqyLkjdD6qkUljRznLD1PftdcZwuvjF2VhZ6b/PgTxuwB1/8pw+9dJxfOZOLHyAiG/GT52ck5rEfjiP9v777jJCurhI//TsfJMwzDDGHIOYogUQQkuBjWHFjDroq7a1pfV/f1FXd1zXnRdXHNOeuqrBnBHAABAVGiktMQBmaGCR2f9497b9ftmuo43V3p9/186lNVt25VP9XVVV3nnvOcJ2veuK16F2ed7ucvz3qdfPEZWbXEvGVjHww7+h+yg0Y3/RzWXLP17bWWnoNSs7uqz8fqv9XiPVToe7hygKeYilJthzEC+c7u7LnA1vPki4Nw2xLIt4rHv7dSOdPZu3WljiTNIQN5tZ2Lb3qAT/46C/7e84zD+OCZh3Pagas4NGVzjC8b2psnn/sb3vLda3i4b5DuzuDm+zfy7I9exC0Dy+AF3+a9D53CvRv62GP7Bbz0pOyLbkdH8OyjduVl/+993HPm+dkX/P6H4fw3wP3XZ9mtwybZiRmy8sVVeeB3TynrvmV95ct8Z2+WnbvqqxM/3sP3ZucDNcoxy9s7eyfXvKj4ElgEueXMxLylWYkvVL4UFhn5BVMorYeJ58mvvaXy8zs6KyX0N16QZdkhmx9ftvLArPlSGsq6xPetyw4wPPIF8LffqYyvKCmuFciXD4hMJpCHSuf6InCr7qLcuwj2zZdiqm7OtHScjPzIutEHb31bPUVkqx5A1lywOCiz4Z4sIw/Z77wI5G+8oHJQqrp0HuDgp2bn130vO9/x0NHTArbPA+Fa8+Srm84VB3bGK60vqliq58dDdmDmaR+Fl1yQrcH8mNfAgU/KO7w/snLaYb+tD96tflR2EGLd7VkwV6u0HkoN767N3ivFShIApKzCoDASyM9QYNGzYPLTNBpBzwLY/wnZ5T9+Ey7/THZ5n9NmrqHadntkZfgdXXBHvvRhsQ57Lct2yxrEQWWJx7IiI7+sKpAfq9ldcTB2lyOzAwS3/TabalG46NxKJ/kj/m6MMe2efcbD1lMCalVSbVlfqZwqrYbQtnoXwTM/nf2PK/quSFKd+AmktrJhywCv/fpVpARnHrUrpx64iu7ODs498zCO6MqC+3+7bD7X3L2epfO7ecfTDuFn/3Iye61YyJ0PbebZH7uI/73yTj7722zftz7lkEozu9zied3scuAxWUfeJ/9XpQv14X8z9XmBtRpq/eUn2Rzf7fepzGW94E21lyoqK74EjtWluwhMJzsftvpLYHmuYMTWXwqLAH3hitFfVKurCYrS+u4F2flE8+SruwfvUwSFP956fnzZX70j+5J/wmvgrAvhtTdkZZ8rSsFUUY5bq2v9yLz5GHtt7GpF5/pCrXWND31Wdr77o7MvjYWROfJVgfymtZVM3Q5jlNPW065H5VMGUqXx21VfyQ6irD46yxDueWI2T/ihWytBeHmN+MJej61076++DcZueFduOnfsy7KDIsXvczKl9bUy8tuid3HlvX3d9/JAKbYu0x1Zgu66rBHnhruzfYoy8mKOPVSaprVzsFUur78iX5VipqcG7PkYePx7KtdrldWXFUvZXfW10QFySpVpP0urMvpjLT9XHHTa+YjK2utX5stkblgDv/lQdnm8TvKdXXDGO+GYl2UN4MqKefLljHwxP37estGfR+1sp0fAa66FM78y8b6SNIsM5NU2Ukq85bvXcOdDm9l1+Xz+7UmVjr7zHvozC9ImNsc8bkireeaRq/nJa0/iecfszurtFvC1fzyOA3ZczL0b+vg/X72S4QRPPHQnTtxvnO7zHR1wxN/CKy+HZ30WHveOqQ+6ViB/w/nZ+X5nwLGvyIKXjffCz9899uMM9lcC5LFK64vGSZNtfLZ8z6zKYOT6XqNvX1AVyI+aI58HY8ODW4+nKK0vgtwJM/JV3YP3OTU7v+cPWXDTNa92X4KdHwnP/2b2pXfXo2pnVooy91pd68vz4yc7XaIcyC/fa+tMHMCBT4a/+VqW7S0r5nSvryqtL8qul+46dw2kpurUf8+ymH++ICszviIPPo7Il2HsWVipPrjxgqwvQrG8VjlY754H+5fWfi9n62HsteT/9K2s3H7+cjjh1dm2bc3Ib6vib7L4XSzbdeu5w0VG/oE/V6ZjPP69lX4P5UC+PEe+Xe19ShZwbrw3+7xbuivsOwNzo6sd9ZJsTfrOnkrGfSy7HpN91gz1VaoEIFvKrqgsKZaqK4zVtb74W128qrKE6ZVfyQ5U/eLdWVXVLkdO3En+qJfA49+99WderYz8yPz4Gp9V7axnodl4SXXnp5Ba3sN9g3zh4lv5qw/+kv+5/A4i4D+edTiLersqO+XBYu/uR3HRG07n/c96xKi12ndY3MtX/+FYHrE6y5Qs7OnkjaUDAeNauH3W8Xg6DX6qOtczPFQpSd7vjCzr8vj3Ztcv+djY88nLDe7GLK3PM/VFJnwiHZ2jS7mrA/miLHektL40R75nEZAHv9Xl9UUgXzQnWvuXsbuQD2yuZCKLjPyilaPniu9+/PS7bhevWa2u9VPpWF9YVfqbqZWNh+ygwP5nbD3Xubi+ZV02F7Ywsmb0JP8e62H7vStrkX/z77PAtHth9r4oFJUUf74gm/89sCnLTG5fNW+8aAgINTLyxRz5v4xuEFks1XXMSyvZziLgrTVVoTBbGXmozJMv+htUl9VD9pr3Lsl6YQwPZqXj+z2uchDgzssrf4fr767cp1119YzuTn/k31W6ss+0v3oHvOGuyus4lohKVv53n8wOql7yMfjZ27NtZ7w763BfNmZpfRHI75R9/i9YkW27+L/h8s9lt53+tskfWKxW9DYpT28aCeTbuNJDkhqUgbxa0tBw4vJb1/Lv//tHjn3nT3jjeX/khjUPM7+7kzc96SCO3rNqWZ48kO9YfRSrltQOuJct6OGLLzmGV52yD5964VHsuHQOOu+uPAiIrKT24fuyMvNND2TBSPEFcp9Ts6xQGoIf/r/aj1Netmis0vpie88kA3moVAx0dG2dsSmWoNtYFcgvWJFlMoqsfPWX1aJyYPnelSBurPL6ImPas7jyJRQqc64B9j51cs+llvG61k+lY31h3tJK5UCRVZ30fZdUvuCXg8+iiVbRGK1RnfS67HXamPdqOORpo9d1Ll6zW36TNykkK72vznrtc1qWddz/CVs331q2e9abYbB0gGftTXDLr4DIlswqlDPytZpFDmyplN0v22OKT3YSqgPAWoF8RGW6RGcv/NU7K/su2D77GyzKs6uXCGtXhzwzO+/ogkf+7ez+rMlOqTnoqdlycA/fA9/6e/hh3kz05LOzqR7Vxmx2lwfyi3bMDloUq29c8Mbs83//J2x9UGAqxs3I2+hOkhqNgbxaRv/gMD/64z38yzeu4uh3XMgzPnIRn7voVh7uG2SvFQt505MO4uI3nMqLHl1juZgiUFx91Lg/Y/G8bl7zuP05dq85agLVu6iSZVxzdaVb/T6njf4SWXzBv+VXsLGqWRxUGt3B2KX1U83IQyWQX7ZbNveyrDzfcmBLZbme4sviWFmnIvu+YHnl9RirvH5kfvweW3d/L9SaHz9Z43Wtn05GHrK1iE96/cQlubXUWku+aHTXyBl5yF73oqwdtg6yVuyXL0PXBxfly3VVZ9whq674+59mHcSrM4+dXZXKjGJJt6J0fZ9TRwcjRUZ+cHPt/hJFI7LuhbXX495Wi3ccPSe+uvKgUEw5OPFfKs8topKVv+2i7EBEcdCh3Zcz2vPEbCrH0z6WlaA3gq4eOPol2eVrzsvOj305nDTGgdeR0vox5sgXB6GK8nrImt+d9uZtG+d4c+Tb/QCRJDUgA3m1hP7BYV7wqUt46Rcv538uv4MHNvbzqHl38KPl53DeU3q48DUn8eIT9mTp/BoZlC3rKvOMVz9q69vrrTxPvgjk93v86H2W7VbJgFfPoYbRGfmZKq2HrLxz+d61118uSus33lf5YtjRXck21ZoHmlIlI79g+8rrMVYgXz0/vrD6UdnYDnzytmWqu8cL5PNtUy3b3/uxWZPC6ZT8jqwln3+5TqlUWt/gGXnIgpfdH529LtXz2yMqHfuLrH31PpNRbng3NAhXfjm7Xg56IHvdiuW2as2Tf7BUVj/dUuWJlHs3jLXM28mvh5f8FE78v1X3LS1ht+mBfDnEyLK17SwiW0Hg0GfWeySjHfniyoHBw5+f9UwZ6++qOMg5uDnrFwFZSX7xOVoE8isPqBzsPOJvRy8tNx3OkZekptI18S5S43v796/hkpvXsqi3i2c/aldOO2glx9z4GzovvgzuPQ86Th/7znf+HkhZWe6ilXM15Mnb8VD407fhuu9nQVt0Vhq6lS3ZJQua1925dSflckZ+zNL6otndFAL5JTvBq35f+7aRZncPjG50V3x5rVVa37c+mwsMWWOy4kvqnZdnc56ry6yrO9YXOjrhuV+b/PMYy0hp/TiB/FQz8tuiunP9hntgy0PZ38SK/eZuHNPVswBe9IOxb9/3cXDZp7PL0ZGV0E9VeZ78X36SZarnL6+sQV+2eKfs97fhrkqH+MJDt2Tns9HorrDbsXBVfqChVmk9ZAccVtf4PYxk5C+uBFsLd5jc0pGaewu3h2d+Bu6/IWuUN16jtCKQh+xA58LtKwe3Orqzv+fCk8/Nlts7/pXbPkbnyEtSUzGQV9P7xmW38/mLsuzZf555OKcemJdTXpFn2YrM2lgmWVZfN0XDu2Jd7d2OrV3qu3Q13H3l6LLrQjkjP7i5dlA8kpGfZNf6iRQVApvur5T7FxkfKJXWl5rdFWX13QuybPjKg7LLfeuzL8DVwdZYGfmZMlJaP0Nz5LdVURpefLkusvHb7z29ZoqNpliGbqg/6/A/neWuyhn5ojz+EWfWPuCyeEe479qJM/KzpehW3rtk6nOQdzwsW1Vh81q4+RfZtnZudNcMDngC8ISJ9+vsyhqC9j+cLU24cPvS/PhVoz+7Vx4Ap/zrzIyvOiM/PFz5f+IceUlqOJbWq6n94Y6H+Nfzsq7Prz5t30oQD9m6ugAP3jL+gxRl2w0byB86+vp+f1V7v6Lset0EpfVQOzAt5s5PJSM/nvKXwiIjv6AUyNcqrS+X1UP2hXbnI7LLtcrrx8rIz5SibH6mutZvq+qMfDOV1U9GeRm6WvPjJ6MI5O+6ojIVpbqsvjDeWvJrb8rOZ+sgEWQHYJ79BTjzy1OfatHVU5l68sdvZecG8q2jt2qefPX8+NkwMkf+gSyI33R/ZcpGOy9rKEkNykBeTWvtPbfxb5//Mf2Dw5x24EpedUpVs6hiqZ51d9QOxCCbY9zogfyiVZXsNmRzv2tZWjV/uqxcWg+1G94VpfVTmSM/nvI68sXczvLzGCmtr5GRn79dZdtY8+SHh0pZ09nKyOdB+kx1rd9W1XPkm6XR3VSc9HrY4zFwzD9O7/5F07hN92fTNHY5cvSyf2XjrSVfNMtbMUYTuply0JNhz8dM777FPPm7r8zODeRbR/WBzuJg02wG8sXB1zSUTTkpKloW7zT5Dv2SpDljIK/m1PcwHR8/iU/3vZYDtu/inOccTkdHVeOgIiNPgodur/04a2/KssCdvVtnvhtFRGVs2+059lzokYz8BKX1UAnay6bT7G48RbO7/g2VMdUsrS9l5Msd6wvlefJl6++E4YFszuhslX12FRn5RpkjXx3It1hGHmD34+CF35t+AL1oZbbMXWGsbDyMvZb80EAlI9/IvQeql7Aza9o6iqagxedj8Rm+aBY78Xf1Vt47mx6ofG47P16SGpKBvJrSpiv/h2XDa1kR6/nIX69kybyqbEH/xspyZzB2eX0xP36nRzR2k6iisdVBTx6703ERzNbsWl+dka/R8G4668iPZ96ybC1nqKwKUCuQLy+xVJTWl5s5FRn5e68Znb0fmR+/+/Q6wE/GuF3ri9L6KXat3xbFF+ot67JM3b3573XlwXM3hkYXUWl4170ADnnG2PsWgW91Rv7BW7ODRN0LGnvZrdVHZ00BC408Vk3NVqX1RUZ+lg/WjKw2cr9ryEtSgzOQV3P6/RdGLu7Z/dDWt2/1xfzm2o/T6GX1heP/Ket4fPIbxt5nJFt7dza/sdD3cGXJuaJkvVYgX+wzU83uIirl9UUgX2uO/KjS+rwpXjFHHrJS0qW7QRqGv/yssv3BWW50B+N3rS/K7ecyI9+7uPIF/7aLsl4Hnb2z1yOgWRXZ/IOeWvk7q2WsQP7+G7Lz7fcZv7t4vc1bAqtKB3EsrW8dW5XW5xn5xbOYkYfRa8m7hrwkNbQG/oYijeG+61mw5rLK9eqyWNi6lHzMjHwRyDfg+vFl3fPhkKeP35l88U5Zdm54oLJUEVR+F90LYWG+vF6tJeiKwHSq66KPp8jAF9mkUXPkJ1laD3BonlX95fuyvgZQycjPZhDbNZmM/Bx3iy+CtRsvyM532H/2KhKa1Qn/DIc/D075t/H3K+YbP3zP6INfRSDfyGX1hfJa9AbyraP683Gk2d1sZ+RLvU2KOfJm5CWpIRnIq/lc8cXR12sF8ltl5G/Zep+BLbAm63jf8IH8ZHR2waI8MCnPky/K6hetrATpc1FaD6Mz61BVWl+j2V2t0nqA41+VLcd0zx/guu9n2+YiI9/dYHPkoZId+3MeyLdSo7uZsupgeOp/Tzy3d9FKILKmeOW1s0ca3TVDIF+aJ+8c+dZRzJEvMvJF89bZnCMPozPy61x6TpIamYG8msvQAFz1FQCuGc7Xdx5v3fTe/MtQrUD+vmuzL/Dzl8PSXWd+rPUw0rm+NE++3CSpJy+bn4vSehidgYfRgXyt5edqldZDlqEvupj//F1Z9nROMvJF1/oGzMgXf9Ot1OhurnV258E8sKF0QHAkIz/LHetnwu4nZH+Dy3aH3kX1Ho1myrzSHPmhgcra7nM2R/4BS+slqcEZyKu53HA+bLyPdZ3b8eWhU7Jt42Xkd83nvq+9uVKSXVjzp+x8x0PGbiDXbGp1rh+Vkc+z7bVK62cjI18O3GH0HPmapfUP5vuVlp8rHPfKrKPymj/Ctd+pBLKzOkd+Mhn5OQ7kq7Njq2x0t02ql6BLqblK6xevgn/4BbzoB/UeiWbSyOfjuvwzPGXNQ6sPcs60BaXpUMV7olUOdEtSizGQV3O5Imty95OeU7gj5dne8ebIrz4aiCzbXGQ0CvfkZfWrDpmdsdbDSOf6ciBfysiPV1o/Mkd+BjPy5cC9s7dSTg9TK62HLCt/7Muyyxe8qXIAYLvdZ2681SbVtX6uS+ur5kGbkd82Iw3v8j4OG+/P1tCm1P2+0a08wPLnVjNvWXa+Zf3osvrZbr5YHHy952ogZZ/b1QdkJUkNwUBezWP93XDjjwH4Ut+J3J3yYK9WaX3xpXzZrpUsdXV5/ZoWDORHMvLbUlo/C83uICuzL1c+FHNA+x+G4aHs8lil9YXjXp5Nl3jo1uz64p1ndrzVRrrWb976tsFZaA44GeUy194llr1uq+qMfJGNX7bb3L+2UqFcWr9hjubHQ+Xg69q/ZOdLd2mdijVJajEG8moeV30F0jBDq4/h8k07VAL5zWu3DrQ2lILXYg51OZBPKc84kJXWt4qROfKlKoVaze7qUVq/sCo4L2fn+zZkP7/IfFd3rS/M366SlYfZX3ZtpGt939a31S0jXwrcVx7ol+xttTivcCjeM81UVq/WVZ56NFcd62Hrz2kPFEpSwzKQV3NIaaRb/f37Pivb1Lu0Mue7ury+KEVcvGOl9Lq8lvz6u7Ly2eiEFfvP4sDn2JKJSuvz31d1Rn54uJRhnqXS+urGd129WdkmZF9Wi7L6ju6sQ/1Yjn1ZJZs/m/PjodS1vlZGvl5z5MuBvB3rt9lWGfkm6liv1lVuBjoSyM9hRr7g/HhJalgG8moOd1+Zlfp1L+SG7U8DYJftFlTmC5cD+cE+2Jw3TVu8E2y3R3a5nJEvyupX7Df+2uzNpgjyNtwNQ4PZ5XJGfqzS+nKgOlsZ+eoviDD6y+pIWf3y8bPM85fBY/P1wfd+7IwMc0xFkD48WPl9FuqVke9dXMnWGchvu+o58s3UsV6tqzhY2be+8rc5Jxn56kDejLwkNSoDeTWHIhhdsS+3Ppz92a7ebn7tQL7IQHf2ZKXY29UorW/FsnqAhSuzjHYazqoShodhYxHIrxq7tL58vWu25sjXCOTLDe825Rn5yXRlPuYf4Ow74dBnbvsYx1POtlc3vKtXRh4q2eJdjpj7n91qxpojb0Ze9VQcrBvqr/QEmYs58j0LR/8PsImiJDWsrnoPQJqUgUpjsTsfyi7vsmw+DBdzwkul5OX58RGVQH5tqbS+WHqu1Zbu6uiAJTvBQ7dlS9B1zc+yyZCVtnePkZEvGt11zZ/ZrsjzlmVLJg0PjhHIl+aB9j+cXa7Vsb6WuVgzuzqQL//MemXkAZ7+cbj3Wlj9qLn/2a2mOBi48b6sMuSh27LrBvKqp55FQAAJ7ssPLs1FRh6yz+p1t2eXlxjIS1KjMiOv5lDKft75YB7Ij5mRr+rwW5TWb7gLBvLHGelYf+jsjbleRubJ31GpTpi/HLp6KmXz1YH8bDS6g+xASpFhr54jD5XS+lEZ+RpryNdLR0dW2QFbN1Qc+ZusQ2fz7feGA5809z+3Fc1fnlWxkOC2i7Lzectcckv11dFR+Xx8eA7nyMPoqigz8pLUsAzk1RxqZuTHmCO/odToDrI51z15CfdDt2WP9cCfs+utVloPlTmN6+4c3egOxi6tn4015AvFz16049a39ZaWWJpKaf1cKgL16s71xUGhemTkNXM6OiqfFTf/MjtfsZ+rAaj+epeOvl7rM3Q2lA9iOUdekhqWgbyaQykjf8eDWRCazZGvUVpfHbxGwPI9sssP3pKVJKfhrPnaXMw5nGvl30m50R1MXFo/0xl5gNPeDMe+AvY8cevbyqX1Rdf6yZbWz5WiGWJ15/p6zpHXzBoJ5H+RnVtWr0ZQZOQhW2FlrqpEisak85aOXiZUktRQnCOv5pBnjIc653Hvhiwzust286FrEhl5yMrr77k6W4KuKFNcdXBrZt2KUsh1d1SC+uKAxUSl9d2zUCa+z6nZqZZRze5KXesbSZFxH6hudlfHOfKaWcXc46IJph3r1QjmlTLyi1ZCR+fc/NzigIHz4yWpoRnIqznk2c9NqZuUYF53B9sv7IHIA9WN98JgfzYPvDojD6OXoBseyi7v2ILz46EqI1/8LoqMfB7Ib1Van2fkZ6O0fjyjlp9r9NL6Bupar5lV3UTMjLwaQW8pI794jsrqofIZbFm9JDU0S+vVHPKM/IbB7NjTzsvmE0UjtaIZWbHW7siau1UZecgC+ZGO9S04Px6q5siXlp6DSiA/V83uJtJUpfWlQH5oEFJ+QMiMfPOrDpIM5NUIyqX1czU/HmD/J2T/Hw9/3tz9TEnSlJmRV3PIg6iHBrLSwtXb5QFnRNbw7sFbsvL67XYfvfxcobwE3Ya8DL/Vlp4rFOWQG++tLCFU3exuqznyRbO7uQ7ka60j32CBfJFxL3etLwf1ZuSbXzkj39GdfY5I9VavjPzKA+Blv5m7nydJmhYz8moOeRC1tj8L5HdZVprLXS4lHxrM1oOG0V/Oi4z8fddlHdI7umCH/Wd50HWyYHkluLz7D9l5UVrfU2p2l1LlPiOl9XMcyDdFaX2RkS91rTeQby1LSp8Vy/eCzu76jUUqlOfIz2UgL0lqCgbyag554PRAX/Ynu3q7WoH8XXkQnyA6qpbQ2TXbRh68rti/dUuiIyq/kyJAry6th9EZ5nqX1m96APo3ZJfnN9A68lCpYhiskZHv7MmWL1NzKx/0s9GdGsW8OmXkJUlNwW+gag550Hn/lqzL/OiMfKlzfdGRfmFVh9+unko3d2jdsvpCdZOi6tJ6GF1eX1ye89L6/IvqQ7dl59EB85bN7RgmUqtr/UjHerPxLaEcJDk/Xo2it05z5CVJTcFAXs0hz4DesykL5Gtn5O+szI9fXGN9+KK8HmDHFm10VygvG9TRVclyd3SW5nzXCOR76tS1vqgcmLes8TLctbrWj3Ssb9GqjnbTu6RyEMtAXo3C0npJ0jga7BuzNIY8G7pmc56R326CjHyt7EU5kG/VjvWFckZ+4crRwXGtJej665WRXzz6eqPNj4faXetdeq61RFR6Zux8eF2HIo2wtF6SNA671qs55POTNw1309URrFxcCqDKgfxkM/KtHsgXvxOoNLordC/IlnorsuBQanY3nzlVLh2FxutYD2N0rS9K683It4xnfx4evBVWHljvkUiZ3jwjHx2wcIf6jkWS1HAM5NUc8oz8FnrYadk8OjuicltRWv/wPVl5PYyRkc+XoFu4Q+1Av5WUS+sXVT3XoqFdzWZ3c1xa37MICEaaEDbaGvIwftf6rjk+8KHZs2y37CQ1imW7QXRm1SLlni+SJGEgr2aRZ+S3pG5WL6sq/164QzYPfHgQ7r4q21YrUN/jMbB8bzjk6bM82AZQLq2vlZGH0aX19VpHvqMjK6/vW59db8jS+hpd6wecIy9pli1eBS/9VWN+LkqS6s5AXs2hlJHfY7uqLGhHByzeGdbdBmv+lG2rlZFftAO86vezPNAGsaQcyFcd1CiC9Vql9XOdkYesvH4kkG+wpedgjK71zpGXNAdafYUVSdK01b3ZXUS8IiJuiYgtEXFJRBw9wf6vjojrI2JzRNweER+IiHml28+OiEsjYkNE3BsR50XE/rP/TDSriow8PaOXnisUc8KHB7Lzdm8MNG9pXrbO1Err53qOPIxueNeQpfW1utY7R16SJEn1U9dAPiKeA5wDvAU4ArgKOD8iVo6x/3OBd+f7HwicBTwHeGdpt5OADwPHAqcD3cCPI6IOqUbNmFJGfpfqjDyMbu4GBvIRsDSfJ79VaX3+++svZ+Tr1LUeRndmbsQSUrvWS5IkqcHUu7T+NcAnUkqfAYiIlwJPBF5MFrBXOx74TUrpy/n1WyLiK8AxxQ4ppTPKd4iIFwL3AkcCv5zpJ6A5kNJIRr4v9YxeQ75QHcgvrHksqL0c+zL44zdhr5NHb+/Oj2mVM/L1WkceRneut2u9JEmSNKG6ZeQjoocsuL6w2JZSGs6vHzfG3X4LHFmU30fEXsATgB+M86Py9VtYO85YeiNiSXECFo+1r+qg1C18Cz1bN7uD0XPCF2wPXT1zMLAGd+QL4e++C/OXjd4+UlrfAOvIQxOU1o/Xtd6MvCRJkuZePTPyK4BOYE3V9jXAAbXukFL6ckSsAH4dEUE2/o+mlN5Za/+I6AA+SJbF/+M4Yzkb+PepDV9zptQtvC962HFpjeBp1LrpbV5WP5GRrvV5af3wEAzlQWo9MvLzGjwjX6trfRHIdxvIS5Ikae7VvdndVETEycAbgJeTzal/OvDEiHjjGHf5MHAIcOYED/0ussx9cVo9/u6aU/n8+KEULF+0kJ6uGn+25Yx8q68Rv626q5rdlefK16XZXYPPkbdrvSRJkhpMPTPy9wNDQHXUtQq4Z4z7vA34Qkrpk/n1q/Mmdh+PiHfkpfkARMS5wJOAE1NKd4w3kJRSHzBSN5sl+9UwSh3rVywZY06yGfnJqy6tHymxj/oEpuVAfn4jLj9n13pJkiQ1lrpl5FNK/cDlwKnFtrwU/lTgojHutgAYrto2VNw9f4zIg/inAaeklG6eyXGrDkod6xd0j3HsadEqiPzP2Yz8+KpL68uN7upxEKsore9dAp3dc//zJ2LXekmSJDWYenetPwf4XERcBvwOeDWwECi62H8euDOldHa+/3eB10TEFcAlwD5kWfrvppSKgP7DwHOBpwAbIqJIz65LKZUmuapplDLy83s6a+/T2ZVl4jfcZUZ+IluV1tex0R1Umt014vx4sGu9JEmSGk5dA/mU0tciYgfgrcCOwJXAGSmlogHebozOwL8dSPn5LsB9ZMH9v5b2eVl+/vOqH/ci4LMzN3rNmSIjn3pYMFYgD7BstyyQX2qLg3GNVVpfj/nxAAt3yM4b9QCMXeslSZLUYOqdkSeldC5w7hi3nVx1fRB4S34a6/Gc4N5qijXk6WF+9ziB/OPeDjf8CPY9fY4G1qSqS+uL83p0rAfY8yQ48XWwz2n1+fkTKXetTymbfjCSkTeQlyRJ0tyreyAvTWhkjnz32KX1ALselZ00vurS+uK8XqX1XT1wyr9OvF+9lMvnB/uyOfPF78xAXpIkSXXQVMvPqU0NTrK0XpMzEshXN7urUyDf6LpKUw6KknrnyEuSJKmODOTV+AbKze4sItlmPWOsI99dp9L6RtfZXVkRYSSQd468JEmS6sdAXo1vsLT8nBn5bTcyR75Bmt01uoitO9ebkZckSVIdGcir8RnIz6zuUtf6lCytn4zqzvVm5CVJklRHBvJqfCPLz3WP37VekzMSsKcsIB1ZR97S+jGVO9eDXeslSZJUVwbyanyl5ecWOEd+25W70/dvMiM/GUUJ/UAxR77o9G8gL0mSpLlnIK/GN2Bp/Yzq6ITOIjDdWGp2ZyA/pqJz/VZd6w3kJUmSNPcM5NX48uznltQz/jrymrxy5/p6ryPfDIrM+1Zd6212J0mSpLlnIK/GZ0Z+5hXz4fs3Wlo/GeWu9cPDMNQ/erskSZI0hwzk1fgGK+vIG8jPkKJ528Am15GfjHLX+qG+0nYz8pIkSZp7BvJqfKWM/Dy71s+MUaX1ZuQnVO5aX5TVgxl5SZIk1YWBvBpeGijmyHfbtX6mFPPh+zeWlp+bX7/xNLpy1/qic310QId/j5IkSZp7BvJqeEMDltbPuO4aGXlL68dW7lo/0uhuPkTUb0ySJElqWwbyanipP19HPnro7fJPdkaMlNbb7G5Syl3rR5aec368JEmS6sOoSA2vKK2ncx5hBnRmjJTWbyqV1puRH1O5a/1IRt758ZIkSaoPA3k1vjxwSs7hnjmjSuuLrvX+fsdU7lpvRl6SJEl1ZiCvhhf58nNhoDlzevLs+5Z1MDyYb7O0fkwjpfVm5CVJklR/BvJqeJEHTh0G8jOn+F1uur+0zdL6MZmRlyRJUgMxkFfD68gDp44eA/kZU5TWb7wvO+/ogq6e+o2n0Y2aI5/3bPDAkiRJkurEQF6NbXiIjjQAQKeB/MwpSus35hl5s/Hj6y4vP2dGXpIkSfVlIK/GVnSsx0B+RhWB6Ugg7+92XF3l5eecIy9JkqT6MpBXYyuCJqC712ZsM6YorS/myNvobnwjpfVm5CVJklR/BvJqbHlGvi91Ma+nu86DaSFFaf1Qf3Zuaf347FovSZKkBmIgr8aWB0199DC/p7POg2kh1aX0ZuTHN6prfRHIm5GXJElSfRjIq7HlGfkt9LDAQH7mVGfgnSM/vq789zOwJTuBGXlJkiTVjYG8Glue/dySug3kZ1J14G5p/fgsrZckSVIDMZBXYytl5Of3dNV5MC2kupTe0vrxjSqt7xu9TZIkSZpjBvJqbEVG3tL6mbVVab2B/LhGutZvdo68JEmS6s5AXo3NOfKzY6tmd5bWj6v4fQ0PwMCm7LIZeUmSJNWJgbwa28gc+R7mdxvIz5jqwN1md+MrZ9+3rNt6myRJkjSHDOTV2Ip15OlhgXPkZ05HJ3SWAlFL68fXVTrQsfmhfJsZeUmSJNWHgbwa28gc+W7XkZ9p5Sy8pfXj6+iAzp7s8paHsnOrGCRJklQnBvJqbMUc+eQc+RlXDt7NyE+syMCPZOQtrZckSVJ9GMirsdm1fvaUg3cD+YkVgXyRkbe0XpIkSXViIK+GlsrryNvsbmaNKq03kJ9Qdx64Dw9m52bkJUmSVCcG8mpoQ/2lQN6M/MyytH5qqjPwZuQlSZJUJwbyamiDfdma3dkcebvWzyib3U3NVoG8GXlJkiTVh4G8GtpwfxbID3b00tkRdR5Ni3GO/NRUd6k3Iy9JkqQ6MZBXQxvOS+uHzX7OvFGl9S6lNqHqv0EDeUmSJNWJgbwa2nDe7C51GjTNOEvrp6bLjLwkSZIag4G8GloayJafSwZNM6/bZndT0u0ceUmSJDUGA3k1tMgz8pZ+z4LyknNm5Cdm13pJkiQ1CAN5NbbBLCNvID8Lit9pZy90uLTfhOxaL0mSpAZhIK+GFnkg32EgP/OK0np/t5NT/j119kK4ioIkSZLqw0BeDa1jKA/keww2Z1xRWm9Z/eSUM/DV8+UlSZKkOWQgr4bWOdSXnffYjG3GFQ3ubHQ3OeWu9c6PlyRJUh0ZyKuhdQ5nGflOM/Izr2dRfm5GflLKWXjnx0uSJKmOuuo9AGlMKdE9nGXku3rNGs+4PR4N+z0eDn5avUfSHMpZeDPykiRJqiMDeTWuwb6Riwbys6B3MTz3q/UeRfPoMiMvSZKkxmBpvRrX4OaRiz3zDORVZ93OkZckSVJjMJBX4xrI5scPpWBerxlQ1Vk5C28gL0mSpDqaciAfEbdExJsiYrfZGJA0Is/Ib6GH+b3ddR6M2p5d6yVJktQgppOR/yDwdOCmiLggIs6MCNOlmnl5Rn4LPSzo6azzYNT27FovSZKkBjHlQD6l9MGU0uHA0cC1wH8Bd0fEuRFxxAyPT+2snJE3kFe92bVekiRJDWLac+RTSr9PKb0K2Bl4C/AS4NKIuDIiXhwRMVODVJsqMvKphwXdBvKqMwN5SZIkNYhpLz8XEd3A04AXAacDFwOfAlYD7wROA547A2NUu8oz8n30sKDHlRJVZ6O61ltaL0mSpPqZcnSUl8+/CPgbYBj4PPDPKaXrSvt8G7h0pgapNjUyR76bJZbWq97sWi9JkqQGMZ0056XABcDLgPNSSgM19rkZ+Oq2DExisFJav6OBvOqt3LW+20BekiRJ9TOdQH6vlNKt4+2QUtpIlrWXpm2ofxOd2LVeDaLbOfKSJElqDNNpdrcyIo6p3hgRx0TEo2ZgTBIA/Vs2AVkgP89md6q3LpefkyRJUmOYTiD/YWDXGtt3yW+TZsRgXxbI99FDb9e0F1iQZkZnD5AvxmFGXpIkSXU0nejoIOD3NbZfkd8mzYgikB/s6MXVDFV3EZXO9WbkJUmSVEfTCeT7gFU1tu8EDG7bcKSKIpAf6jRoUoMoAngz8pIkSaqj6QTyPwbeFRFLiw0RsYxs7fgLZmhcEsP92TryQ50GTWoQXWbkJUmSVH/T6Vr/L8AvgVsj4op82+HAGuAFMzQuaSSQHzaQV6MoOteXl6KTJEmS5tiUA/mU0p0RcRjwPOARwGbgM8BXxlhTXpqW4YEskE+W1qtRzFuWny8ddzdJkiRpNk0nI1+sE//xGR6LNFoRyHeb/VSDePx74bbfwq5brcApSZIkzZlpBfIAEXEQsBvQU96eUvrOtg5KAkiDfdkFG4upUex6VHaSJEmS6mjKgXxE7AV8GzgUSIwsrEzKzztnZmhqdzGYZeTDjLwkSZIkjZhO1/r/BG4GVgKbgIOBE4HLgJNnbGRqezG4BYCOHgN5SZIkSSpMp7T+OOCUlNL9ETEMDKeUfh0RZwMfAh45oyNU2+oYygP57gV1HokkSZIkNY7pZOQ7gQ355fuBnfPLtwL7z8SgJIDOoWyOfEePc+QlSZIkqTCdQP6PZMvOAVwCvC4iHg28Cbhpqg8WEa+IiFsiYktEXBIRR0+w/6sj4vqI2BwRt0fEByJiXtU+U3pMNabOPCPf1WtGXpIkSZIK0wnk316635uAPYFfAU8AXjWVB4qI5wDnAG8BjgCuAs6PiJVj7P9c4N35/gcCZwHPAd453cdU4+oazjLynT0G8pIkSZJUmHIgn1I6P6X0rfzyn1NKBwArgJUppZ9O8eFeA3wipfSZlNI1wEvJGui9eIz9jwd+k1L6ckrplpTSj4GvAOWM+1QfUw2qCOS75xnIS5IkSVJhSoF8RHRHxGBEHFLenlJam1JKY91vjMfqAY4ELiw9znB+/bgx7vZb4MiiVD5fCu8JwA+24TGJiN6IWFKcgMVTeS6aHT2pHzCQlyRJkqSyKXWtTykNRMRtzMxa8Svyx1lTtX0NcMAYP//LEbEC+HVEBNn4P5pSKkrrp/yYubOBf5/a8DWrhofoYhCA3nkL6zwYSZIkSWoc05kj/w7gnRGxfKYHM5GIOBl4A/BysvnvTweeGBFv3MaHfhewtHRavY2Pp201sHnkYu98A3lJkiRJKkxnHflXAvsAd0XErcDG8o0ppSMm+Tj3A0PAqqrtq4B7xrjP24AvpJQ+mV+/OiIWAh+PiHdM8zFJKfUBfcX1LNmvuhrcMnKxd76l9ZIkSZJUmE4gf95M/OCUUn9EXA6cWjxmRHTk188d424LgOGqbUP5eUzzMdWI8ox8X+pmQW93nQcjSZIkSY1jyoF8SuktM/jzzwE+FxGXAb8DXg0sBD4DEBGfB+5MKZ2d7/9d4DURcQXZGvb7kGXpv5tSGprMY6pJ5Bn5LXSzoHs6x5skSZIkqTXVNUJKKX0tInYA3grsCFwJnJFSKprV7cboDPzbgZSf7wLcRxbc/+sUHlNNIA1sIoAt9DC/ZyZ6K0qSJElSa4gprhpHRAyTBdM1pZSaPurKl6Bbt27dOpYsWVLv4bSlvpsuovfzZ3Dr8EpW/Ou1LOw1Ky9JkiSpda1fv56lS5cCLE0prR9v3+lER0+rut4NPBL4O1zCTTNky5aN9JJl5Od1N/2xIUmSJEmaMdOZI/+/NTb/T0T8CXgO8KltHpXaXv/mTdl59NDZ4SoCkiRJklSYzjryY7mYrDu8tM0G+rJVDQeit84jkSRJkqTGMiOBfETMB14F3DkTjycNbMmWnxvoMJCXJEmSpLIpl9ZHxIOMbnYXwGJgE/D8GRqX2txgX1ZaP2ggL0mSJEmjTKfZ3T8zOpAfJlsG7pKU0oMzMiq1vaH+LJAfMpCXJEmSpFGm0+zus7MwDjWzgc2w/i5YvhfEJBvTbVqbnS9YTkqJr156O7++8X5e+7j92GuHRQz1Z6X1Q53zZmnQkiRJktScplNa/yLg4ZTSN6q2PwtYkFL63EwNTk3iu6+GP3wVdnoEHP8qOOip0DnOn9aWdfCRR8OmBxj6q3fxxjuO4su/ux2AX95wHx9+6q4cdNdPARjqmj/745ckSZKkJjKdZndnA/fX2H4v8IZtG46aztAAw9d+J7t891XwzbPgQ4+Eiz8Cg/0ju116y1quuWs9w8MJLv4obLgLhvro/MFrOOqK17MwtrDPykXs3/9H9jvvCax48Eo2pV5+v+yv6vTEJEmSJKkxTWeO/G7AzTW235rfpjaxbvMA3/neebxgYBMPpkVctMOzefym7xDrboMfvR7uuZrBvz6Xt3z3Gr5w8a0A7L5ggB/ynywAft55PCcMXszTOn/D6dvdw/zDnga//gCdDPHn4Z152cCrecSSQ+r7JCVJkiSpwUwnI38vcFiN7Y8AHti24agZbBkY4qO/+Asnvvdn3H3lBQBcMnwgL7/jNP5m4SfYcMq7gIArv8QHPvJhvnDxrUTA/O5Ont7/vywY3sh1w7vyoo0v51W9b2NgwSoWrf8Lnb9+P50McevOj+eZQ+/kxrSaRb3TOdYkSZIkSa1rOlHSV4APRcQG4Jf5tpOA/wS+OlMDU2O648FNvOBTv+Pm+zcCcOqi62EQ9jvm8Sy5rIuLb9/MGRsO4Ev7vZA9bvgMz7vvHL7W/R+848zjeexuPXR86CUwAN/b7gWcvGwVb3nm4+iO58B5L4VbL4LHvY3dH/ViPnP7Q3zpktt43jEWeUiSJElSWaSUJt6rfIeIHuALwLOAwXxzB/B54KUppf6x7tssImIJsG7dunUsWbKk3sNpGDfd9zDP++Ql3L1uCzsumcf/PX1Pnv7jRxMDm+BlF3FTx26c9bnLuPn+jcyjjx/1vJ49Otaw9oDnsvzMj8BP3w6/fB+sOgT+8VfQUVUQMjQ4fpM8SZIkSWpR69evZ+nSpQBLU0rrx9t3yqX1KaX+lNJzgP2B5wFPB/ZOKb24FYL4djM4NMx9G/om3O+6e9bz7I9dzN3rtrD3Dgs57xWP5hmr7s2C+AXbww4HsNcOi/j2y4/n+L23Zwu9fHy71wCw/Lovw5++nTXAAzj59VsH8WAQL0mSJEmTMO3IKaV0I3DjDI5FcyilxM+uv5e3f/9abrpvIyfttwP/eOJeHLf39kTVWvB/uOMh/vbTv+OhTQMctNMSPn/W0axY1AtX/irbYY8TRgLzZQt6+PyLj+bqO9dx8M5L4fwb4dJPwjdeBCTY8VA44Elz/GwlSZIkqXVMZx35bwK/Sym9p2r764CjUkrPmqnBaXbcsGYDb/veNfzqxsoqgr+44T5+ccN9HLLzYv7hiIU8GMu55u4N/OnudVx/zwYGhhKP3G0Zn33h0Sxd0J3d6ZYikH/MqMfv6uzgkbttl1057c1ww/mwLlsnnpPPhqoDBZIkSZKkyZtORv5E4M01tv8QeO02jUazKqXEu390HZ/81c0MDSd6Ojt40Ql78JRH7MLXf3cTm37/NV50//c48MLbeM/AmXxt6Mkj933Mviv4yPOPrHSRH+yD2y/JLlcF8qP0LoYnfwi++EzY5UjY/wmz+AwlSZIkqfVNJ5BfBNSaCz8A2BmunlKCtTfB8r1qZr3P/emf+dgvbgLgjIN35OwnHMDuC4fg95/jzTd9BDruHNn3Fb3fZ95RL2f/XVdy0E5L2XX5/NEl93deDoNbYOEOsMP+449r71PgVVfAguVm4yVJkiRpG01nHfmrgefU2H4mcM22DUfb5A9fg/86An7+rq1u+t4f7uI/LrgBgLc95WA++pSd2f3374EPHAI//jdYfycsXAmnvBGW7c6i4Q38nx1+zxmH7MRu2y/Yat48N5fmx08mON9u9yw7L0mSJEnaJtPJyL8N+FZE7A38NN92KvBc4JkzNTBNw1/yl+OSj8EJ/wzd8wG44rYHee3XrwLgtUd28YI174ULvg7DA9n+2+8Lx/8THPYc6J6X3e/8N2Rd5o98Ye1AfYz58ZIkSZKk2TWd5ee+CzwV2Af4b+A/gF2AU4A/z+TgNEVr8oKILQ/BH78FwJ0PbebvP385fYPD/PW+83nlzS+DK7+UBfG7HQ9/81V4xe/gyL/LgniARz4fehbB/ddXDg6UDWyB23+XXd7zxNl/XpIkSZKkEdMprSel9P2U0qNTSguBvYCvA+8HrprJwWkKhgbgvusq1y/7FFsGhjjrs5dy/8N9HLDjYv5jt98Qmx6A5XvDWRfCi38I+z9+6zXd5y3NgnmorP1edselMNQHi1bB9vvM3nOSJEmSJG1lWoE8QEScGBGfA+4i61b/U+DYmRqYpuiBP2dZ9u4F0NENd17OJb/9Kdfds4EVi3r4zJn70HPpx7J9T/t32PWo8R/vmH8EAv58Adx3w+jbbvl1dr7HY2xeJ0mSJElzbEqBfETsGBGvj4gbgW8A64Fe4KkppdenlC6djUFqEtb8KTtfdQgc9BQAun//GQCeeeSu7PSnT0L/Blh1KBzw1xM/3vK9KkvFXfLRyvaU4KafZ5f3OGGGBi9JkiRJmqxJB/IR8V3geuAw4NXAzimlf5qlcWmqRgL5g+GoswB45LoLWcwmztirK2uAB3Dy67cupR/LsS/Lzq/6Cjx8L1z5FfjIo+H2i7Ptzo+XJEmSpDk3la71jwc+BHwkpXTjLI1H01UO5Hc7jk1L92PBuht4/vzfctitf4T+h2HHw+CAJ07+Mfc4Icvgr7kaPngYDG7OtvcsgpP+H2y/98w/D0mSJEnSuKZSWn8CsBi4PCIuiYhXRsSKWRqXpurevGP9yoMggl8sfRIAZ3WdT8eln8hue+wbpjanPaKSlR/cnDW3O/Xf4Z//BI9+1QwOXpIkSZI0WZPOyKeULgYujohXA88BXgycQ3Yw4PSIuD2ltGFWRqnxbVkH627PLq86iJQS595/JCelXlYM3Jlt3/mRsN8ZU3/sR5wJmx+E+dvBoc+Ert6ZG7ckSZIkacqms478xpTSp1NKJwCHkq0j/3rg3oj4zkwPUJNQrB+/ZBeYvx1/uW8jf1obfDc9urLPyWdPr8N8Rycc/0p45PMM4iVJkiSpAUx7+TmAlNL1KaXXAauBv5mZIWnK7i3Njwd+cu0aAK7c+UzompctE7fv4+o1OkmSJEnSDJpKs7sxpZSGgPPyk+Za0ehu5UEAXJgH8gc+4hg47BroWeh675IkSZLUImYkkFedFaX1qw7hwY39XH7rgwCccsBKWLigjgOTJEmSJM20bSqtVwNIqdKxftVB/Oz6exlOcMCOi1m9nUG8JEmSJLUaA/lmt+526FsPHV2w/b785Np7ATj9oFV1HpgkSZIkaTYYyDe7oqx+xf7008UvbrgPgFMPNJCXJEmSpFZkIN/s1vwxO191EJfc/AAP9w2yw+JeDttlaX3HJUmSJEmaFQbyzW5kfvzBXHHbQwA8Zp8VdHTYpV6SJEmSWpGBfLMrSutXHsyWgSEAli7oruOAJEmSJEmzyUC+mQ32wf03ZJdXHUT/4DAAPV2+rJIkSZLUqoz4mtn9N0AagnlLYckuDAzlgXynL6skSZIktSojvma25k/Z+cqDIYJ+A3lJkiRJanlGfM2sCORXHQxA/2ACLK2XJEmSpFZmxNfMRjrWHwQwkpHvNiMvSZIkSS3LiK+ZLd8LVuwPqw4FYMBmd5IkSZLU8rrqPQBtgye8b9RV58hLkiRJUusz4mshLj8nSZIkSa3PiK+FOEdekiRJklqfEV8LMSMvSZIkSa3PiK+FDIxk5KPOI5EkSZIkzRYD+RZiRl6SJEmSWp8RXwspMvK9BvKSJEmS1LKM+FpIkZG32Z0kSZIktS4jvhYyso68GXlJkiRJallGfC3EjLwkSZIktT4jvhYykpE3kJckSZKklmXE10IGhhJgab0kSZIktTIjvhYxNJwYGs4DeTPykiRJktSyjPhaRLH0HEC3GXlJkiRJallGfC2ib7ASyJuRlyRJkqTWZcTXIkZl5DujjiORJEmSJM0mA/kWUSw919PZQYSBvCRJkiS1KgP5FjESyDs/XpIkSZJamlFfiyhK6y2rlyRJkqTWZiDfIvrMyEuSJElSWzDqaxGVjLwvqSRJkiS1MqO+FuEceUmSJElqD0Z9LWJgKAGuIS9JkiRJrc6or0X0Dw0BZuQlSZIkqdUZ9bWI/kEz8pIkSZLUDoz6WkS/ze4kSZIkqS0Y9bUIm91JkiRJUnsw6msRLj8nSZIkSe3BqK9FFBn5XjPykiRJktTSjPpaRCUjH3UeiSRJkiRpNtU9kI+IV0TELRGxJSIuiYijx9n35xGRapy+X9pnUUScGxF3RMTmiLgmIl46N8+mfvqcIy9JkiRJbaGuUV9EPAc4B3gLcARwFXB+RKwc4y5PB3YqnQ4BhoBvlPY5BzgDeD5wIPBB4NyIePIsPIWGUWTkDeQlSZIkqbXVO+p7DfCJlNJnUkrXAC8FNgEvrrVzSmltSume4gScnu9fDuSPBz6XUvp5SumWlNLHyQ4QjJnpbwXFHHmb3UmSJElSa6tb1BcRPcCRwIXFtpTScH79uEk+zFnAV1NKG0vbfgs8OSJ2icxjgf2AH48zlt6IWFKcgMVTfDp15/JzkiRJktQe6hn1rQA6gTVV29cAO05053wu/SHAJ6tu+ifgGuAOoB/4EfCKlNIvx3m4s4F1pdMdkxh/QxkprTcjL0mSJEktrZmjvrOAq1NKv6va/k/AscCTyTL+rwU+HBGnjfNY7wKWlk6rZ364s6vfQF6SJEmS2kJXHX/2/WSN6lZVbV8F3DPeHSNiIXAm8Kaq7fOBdwJPSykVnez/EBGHA/9CqYy/LKXUB/SVHmfST6JR9A8mALotrZckSZKklla3qC+l1A9cDpxabIuIjvz6RRPc/VlAL/DFqu3d+Wm4avsQzV19MCEz8pIkSZLUHuqZkYdsqbjPRcRlwO+AVwMLgc8ARMTngTtTSmdX3e8s4LyU0gPljSml9RHxC+B9EbEZuBU4Cfhbsg75LWug6FpvRl6SJEmSWlpdA/mU0tciYgfgrWQN7q4EzkgpFQ3wdqMqux4R+wMnAI8b42HPJJvz/iVgOVkw/6/AR2d6/I2kyMj3mpGXJEmSpJZW74w8KaVzgXPHuO3kGtuuB8acxJ6vL/+imRpfsxjpWm9GXpIkSZJamlFfi+grSuvNyEuSJElSSzPqaxH9g2bkJUmSJKkdGPW1iKK0vruz+ZbOkyRJkiRNnoF8izAjL0mSJEntwaivRQy4jrwkSZIktQWjvhZhRl6SJEmS2oNRX4voH0qAgbwkSZIktTqjvhbRPzgEuPycJEmSJLU6o74W0e8ceUmSJElqC0Z9LWLA0npJkiRJagtGfS1gaDgxNJwH8mbkJUmSJKmlGfW1gGLpOYBuM/KSJEmS1NKM+lpA32AlkDcjL0mSJEmtzaivBYzKyHdGHUciSZIkSZptBvItoH+w0rE+wkBekiRJklqZgXwLKDLydqyXJEmSpNZn5NcCioy8ZfWSJEmS1PoM5FtA0ezOjLwkSZIktT4jvxZQlNZ327FekiRJklqekV8L6DcjL0mSJEltw8ivBQwMJcA15CVJkiSpHRj5tYD+oSHAjLwkSZIktQMjvxbQP5hl5J0jL0mSJEmtz8ivBfQX68gbyEuSJElSyzPyawEDNruTJEmSpLZh5NcC+l1+TpIkSZLahpFfCyiWn+s1Iy9JkiRJLc/IrwUMjGTko84jkSRJkiTNNgP5FtDnHHlJkiRJahtGfi1gwDnykiRJktQ2jPxaQL8ZeUmSJElqG0Z+LaDIyBvIS5IkSVLrM/JrASMZeUvrJUmSJKnlGfm1gGIdeQN5SZIkSWp9Rn4toH8wAdBtab0kSZIktTwjvxZgRl6SJEmS2oeRXwsYyOfIm5GXJEmSpNZn5NcCiox8rxl5SZIkSWp5Rn4toFh+rrsr6jwSSZIkSdJsM5BvAX0jy8911nkkkiRJkqTZZiDfAoqMfI9z5CVJkiSp5Rn5tYD+otldp6X1kiRJktTqDORbQBHIm5GXJEmSpNZn5NcCBlxHXpIkSZLahpFfCzAjL0mSJEntw8ivBfQPJQC6zchLkiRJUssz8msB/YNDgBl5SZIkSWoHRn4tYCDPyDtHXpIkSZJan5FfC+h3HXlJkiRJahtGfk1uaDgxNGxGXpIkSZLahZFfkyuWngPoNiMvSZIkSS3PyK/J9Q1WAnkz8pIkSZLU+oz8mtyojHxn1HEkkiRJkqS5YCDf5PrzjHxPZwcRBvKSJEmS1OoM5JtckZE3Gy9JkiRJ7cFAvsmNZORtdCdJkiRJbcHor8n1j2TkfSklSZIkqR0Y/TU5M/KSJEmS1F6M/pqcgbwkSZIktRejvyY3MJQA15CXJEmSpHZh9Nfk+oeGADPykiRJktQujP6aXP9glpG32Z0kSZIktQejvyZXdK23tF6SJEmS2oPRX5MbyJvddVtaL0mSJEltweivyZmRlyRJkqT2YvTX5AbyQL7XjLwkSZIktQWjvyZXrCPf3Rl1HokkSZIkaS4YyDe5vjyQd/k5SZIkSWoPRn9Nriitd/k5SZIkSWoPRn9Nrt+MvCRJkiS1FaO/Jjdg13pJkiRJaitGf03OjLwkSZIktRejvybXP5QA58hLkiRJUruoe/QXEa+IiFsiYktEXBIRR4+z788jItU4fb9qvwMj4jsRsS4iNkbEpRGx2+w/m7lnRl6SJEmS2ktdo7+IeA5wDvAW4AjgKuD8iFg5xl2eDuxUOh0CDAHfKD3m3sCvgeuAk4HDgLcBW2blSdSZc+QlSZIkqb101fnnvwb4RErpMwAR8VLgicCLgXdX75xSWlu+HhFnApsoBfLAO4AfpJReV9r2lxked8MoMvLdZuQlSZIkqS3ULfqLiB7gSODCYltKaTi/ftwkH+Ys4KsppY35Y3aQHQi4ISLOj4h783L9p04wlt6IWFKcgMVTf0b10Z9n5HvNyEuSJElSW6hn9LcC6ATWVG1fA+w40Z3zufSHAJ8sbV4JLAJeD/wIeBzwbeBbEXHSOA93NrCudLpjck+h/orS+u6uqPNIJEmSJElzoZnTuGcBV6eUflfaVjyf/00pfSCldGVK6d3A94CXjvNY7wKWlk6rZ2PAs6GvaHbX2VnnkUiSJEmS5kI9A/n7yRrVraravgq4Z7w7RsRC4EzgUzUecxC4pmr7tcCYXetTSn0ppfXFCdgw8fAbw0hGvtOMvCRJkiS1g7oF8imlfuBy4NRiWz7H/VTgognu/iygF/hijce8FNi/av/9gFu3ccgNyeXnJEmSJKm91Ltr/TnA5yLiMuB3wKuBhUDRxf7zwJ0ppbOr7ncWcF5K6YEaj/k+4GsR8UvgZ8AZwF+TLUXXclx+TpIkSZLaS10D+ZTS1yJiB+CtZA3urgTOSCkVDfB2A4bL94mI/YETyBrZ1XrMb+fL2J0NfAi4HnhGSunXs/Ik6syMvCRJkiS1l3pn5EkpnQucO8ZtJ9fYdj0w7oTwlNKngU/PxPganYG8JEmSJLUXo78m1z+UAOi2tF6SJEmS2oLRX5PrHxwCzMhLkiRJUrsw+mtyA3lG3mZ3kiRJktQejP6aXP+Qc+QlSZIkqZ0Y/TWxoeHE0LBz5CVJkiSpnRj9NbFiDXkwIy9JkiRJ7cLor4n1lwN5M/KSJEmS1BaM/ppYsYY8QHdn1HEkkiRJkqS5YiDfxIpAvqezgwgDeUmSJElqBwbyTayYI282XpIkSZLah4F8ExvJyNvoTpIkSZLahhFgE+sfycj7MkqSJElSuzACbGJm5CVJkiSp/RgBNrGBoQS49JwkSZIktRMjwCZmRl6SJEmS2o8RYBMrutYbyEuSJElS+zACbGJ9gza7kyRJkqR2YwTYxIqu9c6RlyRJkqT2YQTYxAaKjLyl9ZIkSZLUNowAm5gZeUmSJElqP0aATazS7C7qPBJJkiRJ0lwxkG9iI8vPmZGXJEmSpLZhBNjEitJ6u9ZLkiRJUvswAmxiIxl5m91JkiRJUtswAmxiBvKSJEmS1H6MAJvYgF3rJUmSJKntGAE2MTPykiRJktR+jACbWP9QAmx2J0mSJEntxAiwiZmRlyRJkqT2YwTYxAZcfk6SJEmS2o4RYBMzIy9JkiRJ7ccIsIkVGfleM/KSJEmS1DaMAJtYf1Fa3xV1HokkSZIkaa4YyDexvqK0vrOzziORJEmSJM2VrnoPQNN3zrMfwcN9g+y0dH69hyJJkiRJmiMG8k1s9XYL6j0ESZIkSdIcs7RekiRJkqQmYiAvSZIkSVITMZCXJEmSJKmJGMhLkiRJktREDOQlSZIkSWoiBvKSJEmSJDURA3lJkiRJkpqIgbwkSZIkSU3EQF6SJEmSpCZiIC9JkiRJUhMxkJckSZIkqYkYyEuSJEmS1EQM5CVJkiRJaiIG8pIkSZIkNREDeUmSJEmSmoiBvCRJkiRJTcRAXpIkSZKkJtJV7wE0svXr19d7CJIkSZKkNjCV+DNSSrM4lOYUEbsAd9R7HJIkSZKktrM6pXTneDsYyNcQEQHsDGyo91gmsJjsgMNqGn+s7c7Xqjn4OjUHX6fm4OvUHHydmoevVXPwdWoOjfw6LQbuShME6pbW15D/0sY9AtIIsuMNAGxIKTkPoIH5WjUHX6fm4OvUHHydmoOvU/PwtWoOvk7NocFfp0mNx2Z3kiRJkiQ1EQN5SZIkSZKaiIF8c+sD3pKfq7H5WjUHX6fm4OvUHHydmoOvU/PwtWoOvk7NoelfJ5vdSZIkSZLURMzIS5IkSZLURAzkJUmSJElqIgbykiRJkiQ1EQN5SZIkSZKaiIF8E4uIV0TELRGxJSIuiYij6z2mdhYRZ0fEpRGxISLujYjzImL/qn1+HhGp6vTReo25HUXEm2u8BteVbp8XER+OiAci4uGI+GZErKrnmNtR/tlW/TqliPhwfrvvpTqJiBMj4rsRcVf+e39q1e0REW+NiLsjYnNEXBgR+1btszwivhQR6yPioYj4VEQsmtMn0uLGe50iojsi3hMRV0fExnyfz0fEzlWPUet9+Po5fzItbBLvp8/WeA1+VLWP76dZNonXqdb/qxQR/7e0j++nWTbJ7+ITfs+LiN0i4vsRsSl/nPdFRNfcPpuJGcg3qYh4DnAO2bIJRwBXAedHxMq6Dqy9nQR8GDgWOB3oBn4cEQur9vsEsFPp9Lq5HKQA+BOjX4MTSrd9APhr4Flkr+nOwLfmeoDiKEa/Rqfn279R2sf3Un0sJPuf84oxbn8d8CrgpcAxwEay/0/zSvt8CTiY7HV9EnAi8PHZGnCbGu91WkD23eFt+fnTgf2B79TY902Mfp/912wMto1N9H4C+BGjX4O/qbrd99Psm+h12qnq9GIgAd+s2s/30+yazHfxcb/nRUQn8H2gBzge+DvghcBbZ3/4U+Pyc00qIi4BLk0pvTK/3gHcDvxXSunddR2cAIiIHYB7gZNSSr/Mt/0cuDKl9Oo6Dq2tRcSbgaemlA6vcdtS4D7guSml/8m3HQBcCxyXUrp4Doeqkoj4INkX1H1TSsn3UmOIiAQ8LaV0Xn49gLuA/0gpvT/fthRYA7wwpfTViDgQuAY4KqV0Wb7PGcAPgNUppbvm/pm0turXaYx9jgJ+B+yeUrot33YL8MGU0gfnYJhtr9brFBGfBZallJ46xn18P82xSb6fzgMWp5ROLW27Bd9Pc6r6u/hkvudFxOOB7wE7p5TW5Pu8FHgPsENKqb8ez6UWM/JNKCJ6gCOBC4ttKaXh/Ppx9RqXtrI0P19btf15EXF/RPwxIt4VEQvmemBi37w87qa8HHG3fPuRZEdvy++t64Db8L1VN/ln3vOBT6fRR599LzWePYEdGf0eWgdcQuU9dBzwUBF05C4Ehsky+KqPpWQZxIeqtr8+L0G9IiL+byOWl7aBk/Py3usj4iMRsX3pNt9PDSYv034i8KkaN/t+mlvV38Un8z3vOODqIojPnQ8sIat8aRj+8TSnFUAnWYajbA1wwNwPR9XyCokPAr9JKf2xdNOXgVvJMlaHkR3d25+srFFz4xKyEqnrycra/h34VUQcQhaA9KeUHqq6z5r8NtXHU4FlwGdL23wvNabifVLr/9OOpX3uLd+YUhqMiLX4PquLfNrDe4CvpJTWl276EPB7si/BxwPvIvvcfM2cD7J9/Yis7PdmYG/gncAPI+K4lNIQvp8a0d8BG9h6Wp7vpzk0xnfxyXzP25Ha/8Ogwd5TBvLS7PgwcAij516TUirPWbs6Iu4GfhIRe6eU/jKXA2xXKaUflq7+IZ+mcivwbGBzfUalCZwF/LBcIup7SZoZEdENfB0I4GXl21JK55Su/iEi+oGPRcTZKaW+ORxm20opfbV09eqI+APwF+Bk4Cd1GZQm8mLgSymlLeWNvp/mXM3v4q3E0vrmdD8wBFR30l4F3DP3w1FZRJxLNpf3sSmlOybY/ZL8fJ/ZHZXGkh+VvYHsNbgH6ImIZVW7+d6qk4jYHTgN+OQEu/peagzF+2S8/0/3AKMas+blpcvxfTanSkH87sDpVdn4Wi4hSwLtMctD0xhSSjeRfQ8sPut8PzWQiHgMWXXYRP+zwPfTrBnnu/hkvufdQ+3/YdBg7ykD+SaUN1m4HCg30OjIr19Ur3G1u8icCzwNOCWldPMk7nZ4fn73rA1M44psiZ69yV6Dy4EBRr+39gd2w/dWvbyIrGz0+xPsd3h+7nupvm4m+6JTfg8tIZurW7yHLgKWRcSRpfudQvad5BI0J0pB/L7AaSmlByZxt8PJ5l7fO8F+miURsRrYnspnne+nxnIWcHlK6apJ7Hs4vp9m1CS+i0/me95FwKFVK4GdDqwnayzZMCytb17nAJ+LiMvIusy+mmxpjM/Uc1Bt7sPAc4GnABsiophHsy6ltDki9s5v/wHwANm83g8Av0wp/aEeA25HEfF+4Ltk5fQ7ky3hOEQ2N3RdRHwKOCefX7iebGmYi+xYP/fyA5QvAj6XUhosbfe9VEf5wa9y5cOeEXE4sDaldFu+wsC/RcSNZIH928h6GZwHkFK6NrJ1sD+RdwLuBs4FvmqH7Zkz3utEFgT+D9nSc08COkv/s9amlPoj4jiyAzA/I5vvexzZ++yLKaUH5+ZZtL4JXqe1ZH1cvkl2gGxv4L3An8mab/l+miMTfe7l+ywhW9LstTXu7/tpboz7XXyS3/N+TBawfyEiXkc2L/7twIcbbgpESslTk56AV5IFI31kR12PqfeY2vlE1u231umF+e27Ar8gCzy2ADeS/UNeUu+xt9MJ+CpZUNEH3JFf37t0+zyyfwRryda//hawY73H3Y4n4HH5e2i/qu2+l+r7upw8xmfdZ/Pbg2y93Xvy1+fCGq/hcrKGhRuAdcCngUX1fm6tdBrvdSIr5R3rf9bJ+f2PAC4m62K/meyL7dlAb72fWyudJnid5pMF7PcC/cAtZOvDr6p6DN9PdXydSvv8A7AJWFrj/r6f5uZ1Gve7eL7PhN/zyKYb/SB/Pe8D3g901fv5VZ9cR16SJEmSpCbiHHlJkiRJkpqIgbwkSZIkSU3EQF6SJEmSpCZiIC9JkiRJUhMxkJckSZIkqYkYyEuSJEmS1EQM5CVJkiRJaiIG8pIkSZIkNREDeUmSJEmSmoiBvCRJkiRJTcRAXpIkSZKkJmIgL0mSthIRHRFxdkTcHBGbI+KqiHhmftvJEZEi4okR8YeI2BIRF0fEIVWP8YyI+FNE9EXELRHx2qrbeyPiPRFxe77PnyPirLl8npIkNaOueg9AkiQ1pLOB5wMvBW4ETgS+GBH3lfZ5H/B/gHuAdwLfjYj9UkoDEXEk8HXgzcDXgOOB/46IB1JKn83v/3ngOOBVwFXAnsCKWX5ekiQ1vUgp1XsMkiSpgUREL7AWOC2ldFFp+yeBBcDHgZ8BZ6aUvpbfthy4A3hhSunrEfElYIeU0uNK938v8MSU0sERsR9wPXB6SunCuXpukiS1AjPykiSp2j5kAfsFEVHe3gNcUbo+EuSnlNZGxPXAgfmmA4H/rXrc3wCvjohO4HBgCPjFjI5ckqQ2YCAvSZKqLcrPnwjcWXVbH7D3DPyMzTPwGJIktSWb3UmSpGrXkAXsu6WU/lx1ur2037HFhYjYDtgPuDbfdC3w6KrHfTRwQ0ppCLia7HvISbP1JCRJalVm5CVJ0igppQ0R8X7gAxHRAfwaWEoWiK8Hbs13fVNEPACsAd4B3A+cl9/2H8ClEfFGsmZ3xwGvBF6e/4xbIuJzwKcjomh2tzuwMqX09dl/lpIkNS+b3UmSpK1ENjn+VcDLgL2Ah4Dfk3Wn7yBrdvfXwLuBfYErgb9PKf2h9BjPAN6a33438F8ppfeXbp+XP96ZwPbAbcA7U0qfmd1nJ0lSczOQlyRJUxIRJ5MF8tullB6q62AkSWpDzpGXJEmSJKmJGMhLkiRJktRELK2XJEmSJKmJmJGXJEmSJKmJGMhLkiRJktREDOQlSZIkSWoiBvKSJEmSJDURA3lJkiRJkpqIgbwkSZIkSU3EQF6SJEmSpCZiIC9JkiRJUhP5/yLf5QPzDT1VAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure(figsize=(12, 6), dpi=100)\n", - "plt.ylabel(\"Accuracy\")\n", - "plt.xlabel(\"epoc\")\n", - "plt.plot(history.history[\"accuracy\"], label=\"training\")\n", - "plt.plot(history.history[\"val_accuracy\"], label=\"validation\")\n", - "plt.title(\"Curva de aprendizaje Accuracy\")\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "64c32ebc", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAIaCAYAAACDAnZjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdFUlEQVR4nOzdd3hb1f3H8feRJe/tONPZIZsQCGGEFfbeGwpllNHSUroL7a9llTIKHVBGS9llU/bemxBGCNmb7Ok43tY6vz+OZMu27DhT8fXn9Tx+ZF9dXV1ZjuPP/Z7zPcZai4iIiIiIiIh0Dr5Un4CIiIiIiIiIdJyCvIiIiIiIiEgnoiAvIiIiIiIi0okoyIuIiIiIiIh0IgryIiIiIiIiIp2IgryIiIiIiIhIJ6IgLyIiIiIiItKJKMiLiIiIiIiIdCIK8iIiIiIiIiKdiIK8iIjIDsYYc54xxhpjBqT6XHZkxpirjTG2xbZFxpgHttHz6X0REZEdgoK8iIh0GsaYwcaYe4wxC4wx9caYSmPMx8aYnxpjslJ9fiKbyxhzVOwiwXJjTNK/z2L339HGfafE7p+Y5L6Jxpj/GWNWGmOCxpjVxpgXjTEnbd1XISIi24s/1ScgIiLSEcaYo4GngAbgIWAakA7sC9wCjAIuTtkJyo5iGBDdRsd+GHgc9zO4tZ0NLAIGAAcBb22NgxpjrgH+AMwF7gG+A0qAo4BnjDFnW2sf3RrPJSIi24+CvIiI7PCMMQNxAeo74CBr7YqEu/9pjBkCHL2VnivHWluzNY7V1Rhjsq21tak8B2vttgjZ8WNHgMjWPq4xJgc4HrgSOB8X6rc4yBtjTsGF+KeBs6y1oYS7bzHGHA4EtvR5RERk+9PQehER6Qx+DeQCF7YI8QBYa+dZa/8OYIwZEBtifF7L/WLbr074+urYtpHGmEeNMeuBj4wxv4xt75/kGH+ODU8uin29nzHmKWPMYmNMgzFmiTHmrx0d6m+MGWWMeccYU2eMWWqM+T1t/P9sjDnSGPOhMabGGFNljHnZGDOqA89RbIz5izHmW2NMdWxKwqvGmF1a7Dcx9rpPN8bcEBuKXWOMecEY07fFvu8ZY6YZY8YZYz4wxtQCN8TuyzDGXGOMmZfwPbnZGJPR4hjWGHOHMeaE2LEajDHTjTFHJHkN+xpjJsemVMw3xlzSxmttNkc+9hxtfQyI7TPGGPNAwpSNlcaY+4wxJS2OnXSO/Oa+LwlOBLJwI04eB04yxmRuwuPbch1QDlzQIsQDYK193Vr70lZ4HhER2c5UkRcRkc7gWGCBtfaTbXT8p3BDj68CDPAScDNwGm7YfqLTgDestetjX58KZAN3AeuAPYCfAGWx+9pkjOkJvIv7//hGoAY3PaAuyb7nAA8CrwO/iT3nD3EXHna11i5q56kGASfEXudCoAdwCfC+MWaktXZ5i/1/B1jgJqA7cAXwljFmrLU28dxKgFdx4fMRYJVx87tfwE15+BcwE9gZ+BkwNHYeifYFTgLuBKqAy3FDvvtZa9fFXvvOwBvAGuDq2PfrGmBVO6857pwk266Pva7q2NeH4r5H9wMraZqmMcoYs5e11iY5BrFz25L3Je5s4F1r7UpjzOO4n4Vjce/XZjHG7AQMB+6z1lZt7nFERGTHpCAvIiI7NGNMPtAHeH4bPs031tqzWjzvZ8DpJAR5Y8x4XOC7OmHX37QIt/8yxswDboiF0cXtPO9vgFJgT2vt57HneBB3USHxXHKBfwD3WmsvTtj+IDAbdwGivf4A3wJDrbWNc8eNMQ8Ds4ALcZXbRMXAiHgANMZ8BTwJXBQ7j7iewKXW2nsSjvs94BDgAGvtRwnbpwF3G2MmtLggMwIYaa2dH9vvXeAb4Ewg3tjtWtwFlv3i309jzDOx19Uua+0jiV8bY34F9AfOtdaujW2+01p7a4v9PgMew11o+DDZsbfC+4Ixpjvu+/XD2PkuNsZ8igv3mx3kcd9X6MD3SEREOh8NrRcRkR1dfux2W1YV706y7QlgnDFmcMK203GNzhovKiSGeGNMjjGmG/AJLnjuupHnPQr4LB7iY8dbA/y3xX6HAoXAY8aYbvEP3HztScCB7T2JtbYhHuKNMWmxIePVuLC5W5KHPNSiivs0sCJ2vokacFXsRKfiqvCzWpzrO7H7W57rW/EQHzvXqUAl7oIJxpg04HDgucSLItbambgqeIcZYw4E/gzcbq19OOFYie9hZux8P4ttSvb9idui9yXmDFxzvmcStj0GHGli0zc20/b4dyMiIimiiryIiOzoKmO3edvwORYm2fYUcBsuvN9gjDG4kPqqtTZ+Thhj+uEqxscBLYNXwUaetz8u8LU0u8XXO8Vu32m5Y0xlG9vj5+gDfgr8CBgIpCXcvS7JQ5qNCLDW2tgogwEt9ltmrQ0mOdcRuGHwyXRv8XWyEQvrafpeluLmj89Nst9sWl9cSMoYU4a7OPMx8PMW9xUDf8SF6pbn1957uEXvS8z3gM+BkoQ5+V/jVmQ4FTc9YVPEpwFsj383IiKSIgryIiKyQ7PWVhpjlgOjO/qQZBtjld22tJqTbq1dboz5EDcn/gZgL6Afbjh84jHfxA1Fvwk3VL0GNxXgAbbeyLf4cc7BzeFuKbyRx1+FGz5/H/B/uAZoUeBvbNk5tvq+xY73LS3CcoIlLb5uqwu82dyTanUgY9JxowoagNOstS2/X08CE3DTKKbgRiv4gNdo//uzRe9LbB77+NiXyS5UnE3zIN+Au6iRTHbstj52Oyt2u3N75yAiIp2TgryIiHQGLwEXG2P2ttZ+upF9403oCltsb9WBvgOeAO40xgzDVeZrgRcT7t8Z18Dt+9bah+IbjTGHdvD439FU1U00rMXX8aHnq621m7Ms2Sm4ZmoXJm40xhQCa5Psv1OL/QwwBJjageeaD+wCvN1ek7hNsAZ3waAj36e2/AMYC+xvrW3WIC82fP1g4I/W2msTtid7vpa29H05GwjhLgS0vKCxL3B5iz4L39H2ax6WsA/W2jnGmNnA8caYn1prq9t4nIiIdEKaIy8iIp3BzbhK973GmB4t7zTGDDbG/BRcBR8XTvdvsduPNuN5n8EFrDNxw5xfarHGfDx8NVaPY6H3px08/ivAXsaYPRIeX4oLeIlexw2VvsoY02rd79hj2hOhRYXbGHMqbuRAMucaYxKHZJ8C9MJ1qN+YJ2PHvSjJeWYZt2Z6h8XWbn8dOCE2jSF+rBG4ufPtMsacj+vQf1liL4IErd7DmCs6cHpb+r6cDXxorX3CWvt04gdNTRbPTNg//vMyrsXzFMaONcVamzgy4I+4lQXuNca0Kt4YYw4zxhyzkXMUEZEdkCryIiKyw7PWzjfGnIWrkM80xjwETMPNI56AC9kPJDzkXuC3xph7gS9woX7oZjzv6lgX9Z/j5ho/0WKXWbiq7F+MMX1woe5kWs+Vb8vNuGrsa8aYv9O0/Nx3wJiE86g0xvwQeBj4KrZE2RrcUP+jcfO+f9zO87wE/MEYcz+uEd/OuOC3oI39y3HLp92PW6ruCmAe8O8OvKaHcdMR7o41l/sYNyd/eGz74bj3ZFP8ETgC+NAYcyfu75efANNJ+D61FGs8dycwA2iIddRP9Gzse/sB8OtYGF8GHIbrJdCuLXlfjDF74kY53JHsfmvtsthqAWfjpm2AW5buVOADY8w9uJ+/3sB5uAst57c4xhOxpft+B+xqjHkM97NVgvt+Hgw0W61BREQ6BwV5ERHpFKy1LxhjxgC/Ao7HLdfVgBvu/Quah8xrcU3STsGFx1eBI4HVm/HUT+CWB6vCVUQTzylkjDkWN3T7Stz85Gdx4eybDrymFbGwezvwW1zjubuB5cB/Wuz7aKxXwG9x34MMXOj8kNad41u6AcjBhbbTga9wQfPGdvYfE3tNecDbwI+stbUdeE1RY8wJuHXjzwVOxE1JWAD8HZizsWMkOeZUY8zhuOaD1wJLceG+F+0EeSAXyARG4sJ2SwNxF0/Owr0Hl+Eq82/gfl6Wd+DcNvd9iY+6eLGdfV4ErjbGjLHWTrXWropdALga93PdA3fx6BPgdGttq8aJ1trfG2PeAS7H/Zspxk0/+Qw43lr7wsZeo4iI7HjM1pm+JiIiIp2dMWYi8C5wamx4tyQwxlyIG+3R11q7NNXnIyIiXZfmyIuIiIh0TC/cqgjlqT4RERHp2jS0XkRERKQdsQaLpwCXAp92ZIqBiIjItqSKvIiIiEj7RuC6yM/DNZYTERFJKc2RFxEREREREelEVJEXERERERER6UQU5EVEREREREQ6ETW7S8IYY4DeuDWDRURERERERLaHPGC53cgceAX55HoDWh9WREREREREtrcyYFl7OyjIJ1cFsGTJEvLz81N9LiIiIiIiIuJxlZWV9O3bFzowMlxBvh35+fkK8iIiIiIiIrJDUbM7ERERERERkU5EQV5ERERERESkE1GQFxEREREREelEFORFREREREREOhEFeREREREREZFOREFeREREREREpBNRkBcRERERERHpRBTkRURERERERDoRBXkRERERERGRTkRBXkRERERERKQTUZAXERERERER6UQU5EVEREREREQ6EQV5ERERERERkU5EQV5ERERERESkE1GQFxEREREREelEFORFREREREREOhEFeREREREREdn+pv0Pnr0UVk5L9Zl0Ov5Un4CIiIiIiIh0MdOfhacvACxMfRL2uAgmXglZhak+s04h5RV5Y8xlxphFxph6Y8wkY8we7ewbMMb8wRgzP7b/N8aYI7bkmCIiIiIi4jHlC2D1rFSfxaYL1cOqGRCs3brHfOsaePBYeOAYuP9ouO9I+N/FULVq6z3Pppj/LjxzEWCh21CwEZh0N9yxO0x5FKLRth8bboBQ3XY71R2Vsdam7smNOR14CLgUmARcAZwKDLPWrk6y/03A94CLgFnA4cBtwARr7debc8w2zisf2LBhwwby8/O34BWKiIiIiMgmsxZsFKIRF/J8fkgLdOyxVSvhjvEQrocffgLddtq25xpXvgA+uwsGHwTDjuzYYyIh+PphWDIZVnwDa2a517vT4XD2k1t+TusXwZPnumMnUzYevv8SBDLbP05DFXz8d/e9HXyge41ZRZt3Tsu+chcVgtUw8ng45X5Y+D688mtYN9ft030k7P9LGHkC+NLctqpV8Nk/YfJ/ILsELv0IMjuQ1ayFT/4Bw4+BksGbd87bSWVlJQUFBQAF1trK9vZNdZCfBEy21v449rUPWALcbq29Mcn+y4E/WWv/mbDtGaDOWvu9zTlmG+elIC8iIiIisr199wm8diWsmNJ8eyAHvv8ClO2+8WM89yOY8l/3+Yjj4PSHO/bc4SCE68AXcBcNfH4wZuOPi4Thszvh3Rvc47OK4VfzmgJoe17+JUz+d+vtvgBcuTR5wF7wPkx7GsacDgP2bfvYc9+EZ34A9RXunA76fWzYunEXEF79tbtvzBlw4t1tv9b578ILP4ENS5q2GR/RPuNpGH4CWRMuBV+Sgd4N1fDab9zFmJLBULITZBbAMxdC7ToYuD+c/TT4M9z+4aD7Pn7wFwhWuW3dhsKEn7gLEV89DJGGpuNPvAom/qbZU1bUBpm9sorvymvJ8PvICaQxfOY/KJv2T8K5vfH/eFLHwn+KbEqQT9kceWNMOjAO+HN8m7U2aox5C9i7jYdlAPUtttUB+27BMTHGZMSOHZfX8VciIiIiIiIdMu8teOtq6LkLjDoRBh3gQnPVKnjzDzD18eSPC9XASz+Di99rPyAv+7IpxGNg5guu2t13fNuPqVgMn9wBXz3kgnii9DwoKIPCvu62oAwKEj6vLYcXf9r8wkNdOSz/euMXHdbOgy/uc59PuJyG3nswww5g2IvHkx1cByunQt8kM4Rf/bWr3H/1EPSbAAf8GgZNdEE8WOOG5s96ET7+B2Chzzg49UH3GhLl9YCHT3Lf8+4jsPv8FJMY5usr4c3/gy8fACCc35fvSg8kb9lHdK9fgG/pJLKWTuKhyd+RN/EnHDGqF1npCe/Nx3+Drx9J+tJX5Y7gb4ErmXnPF6Sn+fi/Y0ayc1kB7HsFjPs+TLrHhfq1c9xFhPgp9RxHuM+e5H55J+GP/8Fj9nDmVwWYv6aaOauqWFWZEPSx/Nz/FIf4nwPg35Gj+eEOHOI3Vcoq8saY3sAy3LD4TxO23wwcYK3dM8ljHgV2AU4A5gMHA88DadbajM05Zuz+q4E/ttyuiryIiIiI7HCshVXToHwh1K1v+miocvOHw3XuNqcUDrwKcrtvm/OoXgNTn3CV2oZqaKh0w6WLB7vnzS5uvv+cN+CJsyESbNqWVQSDDnQBv6ESMC7I7ftzyMgD43Pb79oXGjbAMX+F3S9Ifj7RKNx3GCydDLuc5R475RHovw+c93LrivOqGW64+LdPueHsWyKzgIaDrmP1Vy/Sd+WbfNr3Ij4q+wHhqKUoO53xA4rYuU8h6f6mynXdI2eRNe9lZuVN4Gf+q5izqopI1PKvwK0clvYly/f8Pb2P/FXz56lZC7e44eE2LR0T+142lIwk2FBHbvUiDE357n9pR/BA3iXkZGdTVpTF+IHF7DmwmH7F2RhjWP/ePyl67yqiGC4N/5IZWbtzRN58Jpqv2LXqPXKCawF4zB7OdQ2nU4sbIdCbtZzrf4NL/S9RbnM5oOFvkJHP4aN7UpyTTqBuLZdPP5WMaB1vZR9FsL6G3uGlDDIrWGJLOTf4W9ZR0HieWYE0bj9zVw4Z2aNxW331ej76758ZuOwFltlu3BU5jk+jIzFYXkm/ihG+xdwZPo6bw2c0+xb1KcxiULdsTtzwICdVPQrAbWkXMKXPmTx0wY7dOq1TDK3fzCBfCvwbOBawuDD/FnCBtTZrC4J8sor8UgV5ERERkS6gcrmr5C77ylVTJ17lqpXbm7UukFcsdqG8+wjI6dZ0f6gepj0Dn/+r9dDztvTZ3YXYjc2B3hTLp7iK6bSnm4fyRPllcPK90D82KHbO6/DE99z+Q4+Egj4w43moWdP0mN67wdF/cRXklj67C177rRsi/pMvW18kAPjmCXj2YkjPdftEw3D7ODdX/qwnYejhbr9oFN69Hj68temxgyYS3OunpA2YQJoNQzTkhszXV8CGJdSsXsiCebOxG5bQx6yjMLSatKplEAkSHHoMDxRexp1fVHNow5vcEvgXU6KDOCF4fbPTy/D7GNu3kN6FWdQt+Iy7G35DxBqODN7IHOuq5T3zM7mAZ7k4+DBvsheDLnuGwaW5jcdY/+X/KHrxfOZE+3Bu8Ldc4n+JM9PeIdOEGvdZbQuZEe3PU5EDeDm6V9K3p0d+BkXZ6cxaWcn1/vv4nv9tam0GYXzkm6ZRCd9Fu/Ob8MV8Fh1JepqP4b3y2LVvIWP7FTK2Tx5ljx1EYP08HvSfwh+rT2p83B/9D3K+//XY9+E6wF1EKc5JZ2C3nGYfj32+mA/nrsVn4A/HjOS8fQYyY3klP338a+aurnY/GgWZBCNRGkJR6sMRjgh8ze3cTIPJ5J6xz9CtZz+G9cxlaI888jL88N6f4f2b3Mkc/mfY+0dJvw87ms4S5NOBWuAUa+1zCdsfBAqttce389hMoARYDtwIHGOtHbUlx2xxfM2RFxERkc7NWhf6Cvu3Pax4/XcuTO15KfjTt+/5JYpGoXol5Pbo2LzirfKcEXj7WvjmcffciXruDOe9sm3n0jZUuzC+9AtY9gWsmQMblroh5InyekOvXSCvp3uv6srd9rQMtz272FW1s4pcBdufCYEswvjwvXcDvvoKV50+4c6Ozfduw+qqeqZPfo8hX91A3+qExml9xrm5zhl5kJHvhsl//HfX+M344IDfuu/nU993IX7EcYROvJfpq+qYvGA162e8T7dVHzLPlvFB5kEU5GRQkBWgOCednvmZ9CxwH5m+KLu+chwltfN5If1orqw/l90HFHPSbn04fFRPMqN1ruN51QpCB/6BbwdewNxVVfT76ib2XvEIC339OTdwK3v2z+WKqlspW/EmAHVDjubtkrN5bFkJkxaUk+H3sXNZAWP7FjG2bwEb6kK8NHUFn8xfRyTalJvSfIZdy/IZWuLn+ekV1ARdRX/34nqerr2AKIZbx7xIQ3oJS9bXMnnRespr4hc9LE+kX8eevlm8lXEon+9yHbv1K2Rs3yJ6FmRSO/d9sv97HMttMadm/YdnfjiBngWZfDxvLQv/+1O+Z1/ikcjBXBu9CAyUUsFBaVNIK+xDdt9dGDhgEKP7FJDh97GhLtT4MXtlFZ8vLOebpRWEIu61+Azs2T+fW+uvpnfFFwDUZ5Qwr3AfPg/sweru+zC0rDsje+czuDSXQFqLufAzX4Inzsb6s/jy+Hd4c6khv34Fl0w9Db8N8fyYOwn3P4BBpS60F2a3/j0TikT5w/PTeOxzNwf/wGGlfDxvHcFIlNK8DP5y6i4cMLS0+YOshXsPdhfg9vwhHBlrhRaqcz0WvrzffX34DbD3ZZv6454ynSLIQ2Njus+ttT+Jfe0DFgN3dKQxnTEmAMwEnrTWXrU1jhl7jIK8iIiIdG5fPuDm7mYVwS/mJA/qDx7nukUf+3cYd972PkMn3ABPfh/mvAr+LCgd6jpW9xgNu58P6TmtH2Ota5i16CPXDKt0OJQOg55jXBfuZI23EkWjbt7tlNj8XeNzz9l7V5jzGtSsobr3BP7T/xY+X1JNv+Ic9hpUzB4Di+lVkLX5rzUadXO2P7kdln/lurIn2y2nOyGTQUb1klb31WT25MPC43k0PJGGQBEDu+UwoFsOA0pyCEejfL24gq8Xr2fa8krGR7/hofSbSCPKvLFX0ueoX1EfirBkfS1LyutYur6W6oYwDeEoDaEIwUgUayEzkEZWehpZgTQq60J8MncVB6x9nJ/7nyJgIoRsGu8H9iE07iIOOPgoMv1pzF9TzeeLyvli0Xrqqiu4sPKfjN/wRrNz/yJ7f/7g/xkL1jdQH2pnebE27O2bzmPpfyJiDccEb2Cm7Q9AXoafv3V/kYPXPMwKX08Orr+J2qjrcJ9PNR9k/IxCU8NNoTM4Mm0SY3wLCdo0bkq/jP9UJa9YJzO6Tz6jexfw+aJyFqxpfsFlRK98LjtwMEeO7kXav/aDld/CiffALm7Yt7WW+WtqmLyonOyFb3D8zF9g/ZmYn3zlRickCtZg/9wXYyPsVX87ed37c+Tontz+7jyeC/yeXXwLWHPoHZTuc84mfw8B6kMRvl5cwdrqBvYeXEK33Aw3H37a09BjZ3dxZmP/huKshfsOhyWTYLfvw3H/aGo2OHB/+P6LHTyM5e73F3DTa01LBh4yogc3nbwzJbkZyR80/114+ARIS4fLv3ZL9j19vpt2AnDYn2DCjzv2OnYQnSnInw48CFwCfI5bKu40YLi1dpUx5iFgmbX2ytj+ewJ9gCmx26uBgcBu1tqKjhyzg+elIC8iIrIjqVzuhj1XrXDLHm3NJYSikS2rAoeDsOA915Qqq3Dzj2PtFlVMm1k7D3vPfphQbC3q7/0PhhzcfJ+adfCXIS5M7nkptQf/iScmL+HVaSsZ1iOPU8aVMaasALN6Zqy6aogPjyUSdEOO6yrcbTjoKsaFfaGgHxT2g9wWFbRkwg1uaaw5ryW9e2npfhRf9BzZ6S36M89/Bx4+MfkxS4bAHhfDLmdCZj6rK+v5avF6vlpcwZTFFQRDIX5a908OrH2NKD6e7/trZpYciknPId3vI2PNVM6f+2NyqOfFyF5cHvoxlqZQ0684m4nDSjl+bG9261fUrDlYRW2QGe8+TvH85wiXjiRvyAR6jZxAelYeDd88TeS9W8jeMLdx/6r07lR3G0ug/3iqCkbw0ZosXl7i5/MlNUQt5FLLCLOYUb5F9Der+Cw6kreiuxGh4z+v56W9xtWBh4hYwwWhX/N+dJcOPxbcXOjb0u9iL99MAKbkHcDPK89kQYP7Gzk/04/PZ6ioDbV67Im+D7kucD+5pp6XIntyRegywrFe2wVZAcYPcPO19xhYTF6mn4p49bg2xNrqBlZuqGdlZT2rKuupDUYYXJrL5eXXM2TNW9T03IMnev2G8m9fZ5eGLznAN4V0E+Hi4M94IzqebrnpjOjlqshHVz3F+Ll/bTyvDSafH9RfwWQ7HGNg9/5FHDayJweP6E4oYpmyZD1TllQwZckG/D7DEaN7cvTOvRjQremi0tL1tXw0dy2zVlax/9BuHDise9PPwtvXumH7o0+BU/7T/JsSCcPd+7hmdftcAYdek/wbf/d+sHIqV/p/yWPVuwGQQx3fZl6Ejyj8bLprtrcjWPyZC/PG55rqPfV993vlwrfabzKYxCvfruBfHyzgtN37cuYefZs332vJWnjgGPjuIyjbwwX4UK3rDXHiPa1/53UCnSbIAxhjfgz8CuiJC+iXW2snxe57D1hkrT0v9vUBwF3AIKAaeAX4rbV2eUeP2cFzUpAXEdlU3z4Nk+52y8SM7NBMJtkRVK+B2a9AUX/X9bgt0WjHKzQbE69KTn3CDaUesK9rRpXfy91fW+5C+/KvXdVy2Vethz733dNVukaduPlrGUdCbpmjj/4Kvce64ZfDj9m0UD//naa1j4sHu+WxWvxxXVUf4pkvl7Kisp7x/YvZY1Ax+ZkBN995ySRY8K67ELBqBhz+J9jjog49dTRqWVlZT10oQn0oQkM4SlV9mBlL1nLkpHMZEJxD2PrwmygrdzqTnmff3fwAXz8Cz7shp4uKJnDihp+xvkUYm9CtjkdqLsa3GY3A5geGMqvsVNJ2PplRA3oRikSZt7qaeWuqmbe6mpraOn689jp2rv6YkEnn4QE38sbyDAqq5jHcLOYn/mfxmyjnci3Dxh/KuXsPoG9xNvWhCOaBo8hY9hlL+h7HjMzdSFs3m/yqeYwMTScXd/Gihixe8h3IC/W78E10MNVkY4jyJ/9/OMv/LhFr+FnoMl6ITmh17vv6vuX+wM0ETISZ/c/mf6WXMWnReqYt20DC6Gr6Fmdx/C596JabzhszVjHiu0f4Xdoj+EzTTlFrqDR5FOL+Jq+02dwfOYLHwgeykpI2v3898zMJR6NU1ocJhl31uiArwM59Chjdp4BRvfMJR6MsXFvLorU1LFpXgwF26VvIrv0K2bVvEcW56Xw6by3Fb/+S8etfotJmc2LwGipzB9G3KIuyomyKsgNkBNJIT/OR4fdhcRXbhmCQkatf5qgVd5AVqcYGsjFH/QXGnkV1MMLTXyzh/k8W8d069/3ODPjYtW8R4wcWU1aYxfraIOW1Qez6xfSonsnaskPoU5xH3+Js+hZlMaAkB59vMy5cVSyJrRFf1+qumcUHs3DiHezSr4jeBZlNITBU7+bKVy51IzjOeoJ16X2YvrySEb3yKc1ro+K7ub77FO4/wv1u+tX85r9TvnrIjQbJKoLLp7R98e/lX8Dkeynf5WIO+vZQ6oIR/rXPBg6YdIm7UHbFt1v3nLfUY2fB7JddmLdRGHY0nPnotn/e+Pc6buABcNK/U9PjYivoVEF+R6QgLyKyiaY8Bs/9EOKdcvf5KRz0B0hL2SqnqWctVK101YFwvftD0kah15imNXO3h/KFMOM5t3ZvYT83Xzqr2HWI/vZJNzQxHtIOudpViBIrIA1Vbp3jWS+5CseIYzb/XKJRmPk8vH8zrJ7R+v7iwa45VcV3re8zaa7xV1YRfPdx05DktHQX6vvu4W7Lxjc1wYpGXFj3+Vv/LK6ZDf+7uFXDsIrMPjwdOJbF0e6MZCE7RRcwIDSPdBOhutcECkYfRvbwQ9z37PWr3JzlBA25ZUTPfYGs7oNZvK6WBz5ZxJNfLKG6Idy4T5rP8LPiz7ik9m4C0Ybmz99zbybv/yC1wTB1wQiBNB8FWQHyswKU1syhYe1i3oqM5YvFFXz53Xqq6sO09Cv/41zmf4EKm8OfwmdzS+BfrLEFPLbvG1x28DDSYuGp5oGTyVn0FuAaWh0Q/Bv9irP53l79mLG8klenrWRi9DPuSf8bVTaL2oIhlOZl4sO6edCZhdjMApbXZzBrTT0N5UvobtfSx6ylB+sbw2ylzeaZyH68Fx3LclvCSltMPen8M/B3Dkv7knob4MLQL/k4ujMA6Wk+xg8s4pcNd7Lrmuf5LDqCM4K/xxhDboafEQ3f8mTGdTRYPwc0/LVZGM6hjpPSPuT7aW8wxNdU54liWJ05kLScEkrXTcbi4+Mxf2J6yeHUBiOEItHYh8XvM+wzpBv71L1D+vOXuAMc8zfY/Xwq60N8vqCcl79dwevTV1IbmxdtiHKl/zEu9r8MwDcFB1MdDDOgbgZ9cM3cKmwOT/qPY/6gsxk9uB/hSJTZK6uYtbKK2Sur8BnYZ0g3DhhWygFDSykrym76uQpHqAtGKMgKtF+hbEu4AfvgcZgln2HzemHOe7ntUS3WwqyXXVV57Wy3rc84F45aPCYStXyxqJx0v4/RfQpaz5/eVj76q1vCzheAfnvB4ANh8MFuakVbFxxXz3QjP8adv2UjZzoiEoZbBkH9BrjwzaYl5GrL3UWI2rUbH/b9zePw7CXQd082nPkyEWsp/uwm+PAvbrTJiXe3/dhUWDMb7twr9rvZwA8/gR4jt89zP/MDmP4sTPytW+1ge/XZ2AYU5LeQgryI7DCiEfcfeSDbzWHdWsNuW7LWDZ1d+S2smu5CVvkCN2d2z0vaf+w3j8OzlwLWdRxe/pXbPmginHwf5LRdcdqoFd+4dXAz8mDgfjBgvy1fRilUB1MedesADz1s846xeia8dY37Y6z7CCgd4W79Ga7CuniSu403pUpUOhzOeLTtP6LDQdfFuXoVVK922wYfuHnhf/478NR57o/J9hQPhvL57vNdvwdH/9XNp145zQ2RXDfP3ZdVBD/6zA2hbkc4EuWbpRtYur6WDH8aWb4QfZa9TtmMe8hcP8ftlJEP4y90r3fRh+5nL2HJpNq8ASzNGs6ijGFUlYwh2mNnCvILKMpJJ7N+DSULnqd43jNkls9q9fw2LQMiIQwu7DfYAPPSBrE4awRrC0bT01fJxGV3E7BBatPyeLrkUoJrFnBy9HWKTHVHvrOE8eMnTMQaHowczuORA7kncBsDfatYbov5VfZ1fFpR1Fi9HdI9l936FfL5wnIyy2fxfPrvyTBhVtlCPoruzCpbxI/8L7Ao2oOJwb8mfc6PMi6nzKzl0fCB/CF8vjsHnyE7PY2MQBqZAR97mJncUvM7fFgWHHQXJbseT+CvQ8mOVnNKwx9IH7QP5+zVn+cmzeYfS04mw7gLARF8vHbc1xy+Sz/8sTBWWR9i0f+uZsycO3gmsi+/CP2IId1zufrYUYztV8j/vlrKA58sajZXuDQvg8NG9uCw/mkUzH6SvgufoCS4vNVrCZt0/DZI2JfOSyNvY2a2W297j4HF7DWohJwMP2xYiv3HrphIkBtLb+TuJf0AeCjwZ/ZP+5ZnfYfxcLcrGFyay+DuuQwuzaWsyM1fj0SiZC39kKK5T1G49mt8GxY3PbnxuYtSY07b+Bv9/i2uu3m3oXDZ581+B9cGw7w5YxWvTvmOc1fdxIS699wdh1zjLmYag7WW5UsXsWbRdEqH7kGfHsl/f0VjPyibVaHuqOo18OAxbkh3Xi/Xyb7l76FFH7uAvPRz93VWEez3C9cMMS2w7c5tU1nr/p8q7A8ZuRvfPxWeOs+Fy/1/BQf93m179ofwzaPu/4xLPmi/weS6+XD7bq6p4ZVL3b73H+UuZB77D7dE347mxZ+63hzb+0JDNOoumKdnb3zfHZyC/BZSkBeRLWYtrJ3r/sMt6As7HZJ8v3CDW++2717Jq9ezX4PHTnefn/4IjDh2659rxRJ4+ecw943W9xmf69wcXz6opcQQv/sFcNStrvr7/I9d5+WCfnDqA1CWZCmh9kTC8PHf4L0b3RJAiUqHu4sEQw5xQ7IDHWw8Za0bzv3G793STibN/WHebUjrfb/7xFV8Bk2EMWc0XYwIN8CHt7m5jy3PKxnjg0COW/bJn+XmEjdUQkaBmze506FN57bwfSLv3kTakk9aH6fvnu79b+ciRjAcZeHaGmavqgJrOazmBTLf+p2rHPccA/m93euuWNy4znNk1ClsGHIC5Vn9yPnmPnp+8keMjVLdawJryw6l75c3khZtYEOgO7W+HHo1LKSi70FknvMUmQlzlqvqQyyrqGPyovV8NHcNn8xfR1V9mBI2cHba25zjf5NS4y4mVNps3i08mQ27/ICxQwdQ3RBmwZoalq1YiX/FZBaUB/mwuoxKkjQ4S2KwWcbuvjmMM3PYPW0ug0zr0NiW9yNj+HXoYlbhKvjdM8L8rPuXHNHwGukmQkXBSNbkDmNZ5lCWb6gja8kHjK7/ijFmIT5j+Tw6jD+Ezoceoxjbt5Dg+mX8eOkvGcRS1tgCzg5eRc+dduPCfQey/07dXCU13EDo7gMIrJ3JzIL9uLvntVTUhfFXLeU/688nhJ9Tuz1HVnqArPQ0QhE3tDpUW8krNU1rJS8r3ouKY+5lWP8+jcGb1TPhkVPc8OFdz4Hj73Db/3cJTH2cB6NH8cfg9wA4xvcpd6Tfzip/H0qowB+ucf8eSoc1/yY98wP49immDv8p58/dj3WxrtuZAV9js7LcDD8n79aH48b2Yde+hc3DaDQKC94l+vUjmLWzMRuWuX8H4P5NnPGI+7fclld/C5Pugj7jWHbKS0SXfkHfZ47FmjTM5V+7KSEdUbXKdYZf/rWbS9vRi3j1lfCXnVxIuPg91wwvkbXw2Bmu0uvzw/F3wi6nd+zYqVC9Bh48FtbMdGH++y+534ELP3RLdS360O3nz3LLdU24fNtXr71qyqNupFqvsXDJ+02N2TBw4RtNVfq2WOvWi69dBz9423X+/3NfiDTAj7+AbjtthxexicINbjTH0CM8EapTQUF+CynIiwjg/kOytu21d4M1MPtVF4qsdcPJIiH3x+LCD5vP6T3qL63nvdath0dPd5XbA34LB17Z+jkePb2pCVTpcDdUrb0hY9EILPwA5r4JQw5q/w/kaBS++I+rvgSrsb4ApufObihcj9EuzM58wYXxH37khmYniHz1KL4XfoTBUj7ieyze+zqiGIZ0zyV/w1x44uym5Yf2vBQO/F3HKifr5ruLA/GK0PBjXNVl4QewqsWcQH8mwbIJVPTYi5Leg0gr6O3mWed0B6wbph0Jw4bF8OYfG/9ItRgMltqdjmX90f/G4AptBoMJ19Dtgf3c+sDghm4OP9qtP/zx3101C/iAcfwvvDcT8tcxNnMFZaHvyKQeU7Y7pu9eLnz32oXKsOHL79bz+cJylixewC/WX8/AuulYDKGJv2N94RjsezfSs+KrxpcVsmmspYA1toCBZiV5po7qjJ6sO+5B+o3ck1DEMmNFJV8vXs/XiyuYuaKShWtrCEctfsJc7X+Q7/nfBmDFgBMpOeMuFlaE+XxROZMXrGP2kpUsrjbUtegaPdH3NXcEbifX1Ddueycylp+Hfkip2cBL6VeRYcL8NnwpM3seS0M4yrKKulbDu3uxjl9kPs/xvE8Ad8FjrSnmUXsY99YfvNGQbgwM6pbDqN4F9CzIZH1NkHWxjw21QcJRSzRqiVhLOGKprA81LqVUQDU51FPWLZ/dBnZn/OAeDMmpo2HR56Qt/5Lctd8QCFbwRa+zmN77FNJjc4PHlBWwW/+ijQ4NXlVZz5ez5lO+YjE9h+zK7gOLmy+nVL2G8IPH4V8zg0hGAWmnPeCa88W9+Qf3c5TdzY1uiDeEi4Th+u7uwsvPZ7oLL82eeDrcNcEtLWbS3IWy0hHuAs/yr+GL+2Bx7CJQ8SC45MOmf2+zXobHzyKU24fj/XezpKKOx4vuYdT6t91UigXvuSkGZzzqftYTxRpucfp/2TDgcP765hwe+nQRUeveo+9PGMDJ48rIzdiEaTTBGte8MLd7q98rrVSvhr/v4qaonPEYfPWg+5049my3nNr2EK+s7nUZHHFD8/uWTIb/HOKmeJz1RPP3ekdVvQYeOs5VtHN7uqr8dx+7+3wB2O0c2P/XTT0rZPNUr3YXgQB++g08dDysXwTjL4Kj/9KxY8T/BjjiRndB4P4jXCO3X87ddiP0JKUU5LeQgrzINhSNuq6iPUZvvcZZHWGt++jIc4bqXQXow9vcH9M/+iz5f5jv3QTv3dB6e1xahrtinmwZlOrVruNy/L7MArhiWvM1izcshb/t7C4QpOdBsApOuBvGntn6tS37Er59Cqb9D2pWN923xyVw6LWtL0asnAav/BIWfwrAvMzR/LDyPJaklbn5uJkBemQE+XvFTygJraB88Alkn3Ef62uDvD9rNVmT/s7x5a4T73/DB/P78PnNujoPKMlmfM80Lq6+k51WvQpAMLcPlQfdRNHYYxrn6BIJQ9Vydz6rprnh1fPediElIx+OvNk1NIt//2vLYdGHhOa8RWjWG2TXt2iAthEhk86T6SfydNVInglcjc9Yjm24nm/toMZ9ful/gh/7n2elLSYtvwelVTObHSOa3Y3ro+dxX8WuNHbwTpCe5qMgO0BRdgCDYe7qqmbNsdIJcbX/Qc7yv9PscQ02wKORg3jcfyxLIiXUhtyDBpnl/DtwK4N9K6i1GVztv5znGsY1Nr9KlJuRxr8z/87eDZ8QtYYbw2fwr8gxpPl8zdY/TmSMW7opM5CGMTAkuohbw3+mlHKeyDufL/t8jx6F2WQF0ug1/R5OKf83VTaLIxpuZBlNXckLsgKML43w48ALjFn5DL5IbO53n91hrx/CyOOJGj8zVlTy6fx1fDx/LV8vrqAwO8CgbjkMKnVDo4f2yGVEr3w3tLqDrLXUBCOsrwmyvjZI9zy37nTK1Ja7P8CXfu5C9xF/dl3UF3/qhsZik4fmv+3sRkxc8Ab027P5fbNegcfPdOuGH3e7O37Viub7mDQYdqT7N584ZDpUBzcPglAt9qL3sKXD8d0y2P07+8E78NmdbtmpQ691Q8LjolG4obdrKvbjLxtHr8xbXc2aqgb2HFi8bYeCx711tRshk1/mRhsYH1w2Oflomm0h/r3P7eEusiReTH36Qve9254XFraGmrWuMh/vVZGWDrudC/v+bMfphO4F9xzgLpKVDncXgfP7uL8pMjuYLz64Bd65HkadBD1GwTvXwYjj4PSHt+lpS+psSpDvwl2IRGSbWDUjth7v8OT3f/J390fZ4Te4DtHJrJ7l0kXLIZ7tWf+dm7ebbB5xqN7N813wHow8wa1L3HfP1uE8GoVpz8Db18CG2Nq9ayrdH8HJhohVLnW33Ya55Y6MiZ33cLd2atke7nzeuc4NxX7jd25I3M6nuivz5Qtc5TiQ5Zp7fXl/8z+iv3rYhfgB+7klVN662l04GH1y07y6aBRe/pmbkxZ/GZlFrCscTenKD+Hze1g97W0e7/sHavMHs2/0C8Ysf4L8Fa5yV2+y+FPwdB6pP8QF8WiU+lADqyobmAtcZC7hyfRrKZ7/HD+7pg8vhPfiOv99HO9/F4D/RI7mH/5z6JYVIMPvIxxxXbQXratl0Tp4inOY6NuZ6wP3UVa9jG4vfI9lL/agJCNKRqSmaWmslgbsR8Mxd/BtdT5TPlrIupoglXUhKuvDVNT25ItFR1MXOpyhZikH+qYwJu07ulFOD9bTw6wnywSbHa7B+nkzOo4bw2extM6FzxfsvpxgPuTKwOOcF/k9Fks/u4KL0lyzqj+Evs8ba8Zz0z5wetp7MPNFooMP4vK1J/HSvAZ6FWRyzznjmLWyis8WrOOz+etYvqGeYCTKmqoG1lQ1NTEbUJLN+AHF7NqviDVVDbyz7CoWfbcTv4zcCxjezTmSdbv+mAPGjub8UldFtdbSEI6yvKKOz6bvQe1nP2Pn+i+5OXIL6fZ8Xs4+il37FbFr30JG9ylgWM88eq14G/PEJ9i0dBYfdCfBdSMp/mY55TVBsgJp7Na/kPEDihk/oJiyoiwKs9LJzfQ3XVhp/DdzNtRXclZeD85K3H7gTdj7viFv6ec83/cxZhx8P/1YSc+6eWSumuKqpcHYHPP++7p5oQnTMnzA6FjH7Yv2H8TWEm+Clpvhp2/xDjCcM7vYrZ380hXwzWPw6q/dRaqFHwAWxn6vdYgHN/olPv2hZZCPNwAs7O/C/A/edmF+1bcuHIw7zw2nT1ZFDWS5aRwznsfMehFTvdKF+Pw+bqh4SSwQx3shxG1Y4kJ8WjoUDWjcPKR7LkO6b8d5yRMuh8n/afqdO+qk7RfiwY1syipyfSsWvt9Uda9c4aYSgbtQ05nkdHM/o6/8yv3fOeEnrUeByJbb6VAX5GMjuTj61o6HeHB/RwAs/cJNywK3wocIqsgnpYq8yGaa+5abz+3Pgp9PTz5k8o49XBfcnmPg0g9b319bDn8d7dYoPvX+js0Jn/WKG8Zd2B/OehJKhzbdF26Ax8+GeW82f0z3ka7SC27uZNUKN790Taz6mt8HKmNDq3+9sKkLdqLY3NGNdp611nXpjlfvM/Ldf8iF/eCc51yV7vnLXLXnp1Nd9TwSdtW5quVw8n9g2FHwj7HuD8kjb4E9L3bHffkX8MV/sMbH3NLDeDq4Nw+uGkiD9TPRN4VbAndTaiqptwHWUkCZWQtAxBpeje7JDaGzWGm6cdwuvblo/0HkZwbYUBeisj7E+poQs1ZWMnD6HZy04SEqbRZT7SD29U0nio/le/+RXof+tFUIXF8TZNryDUxbVsmMFZWsqaqnrqaK06oe4ozIS6SZFv/v+PxQOpxgyQi+CwxickM/ni0fwDfLq5JWneP6l2Rzwtg+HD+2N/1Lcpi5ojIWqNcyb9kaGiLQEPURtIZIFAZ3z2kMsbsPKKJ7eBXcsbv7WTvnWRh0IPz3VPezMvhgbu91I7e+5dZ7/tkhQ/npITtx02uzuOu9+WT4fTx96QR2Lmv+M17TEKaiLsT6miAb6kI0hCOM7l1A9/zk1eG1y+aRmZlNbkkH/oCOhAm/dhX+yfdgfQG46G1Mr4T1oEP18M89XODb7xdw8B/c5kiUJeW19C3O3jodpdfNh7v2cQHP53fTFxL1Guuee/BBGvppLXxyuxtOH2/kV9gPLv04+R/zz17qgv/Bf3DvYaL4XPEJP4HDrnfbQvVuyH2vXTa+QsS3T8MzF7qmbWV7wJRH3Iido26GqU/B/37gAsL5rzQ9Zu6b8N9T3BD+yz7b7G/DVpE4AupHn7nmktvTi1e4i627nAUn3uW2vXuDm1feb2+44LXtez7SOSz5HP4T64Uy8gQ47cFNe3xDFdzYz13U92e6Xg2XfOD+zYsnqSIvIluftS5wznvLNf9KDMvg5gk+eY77oz5Y5eaOx4Ny3Np5TUvZrJwKG5ZBQZ/m+8x+1VWKAJ78fqyz8Kltn1dDlQuzNgrrF8K9h7gLAEMOdt2wnzrPBTN/lvuDdfEkV3VfPSP2x3UL6bluaOHel7n/PCNBNzeTJEE+FFvDdmPN1oyBib9xVfS3roaGSsIlw6g46QkigV74Bh5Pt/wbMJXL3B/xu5/vGs9VLYfsEncxw5/hOt++8kv44BY2DD+N8hf+j4HzHyKK4RcNl/Ds4v0an3JI91zSux3OHf4JnLPyzwypnEQZa6ny5fGcOZS7aiay2lfKieP68KMDhzCwW9Oc5b4Jp370mF5w8F+xD8wmf8kk9jXTwZ+F75T7KBt+VNKXW5STzn47lbLfTqUt7jmM+tULeOq9STz6zXrWRzMJpeWwx4iBzFxVx9yvEruFu8Zo3XLT2a1fEWVF2eRl+snPCpCX6Wdojzx2KStotgxTvNL7g/06WuntD7tf6MLRW1fDAXXuZ8UXgCNv5ifdhpDm93Hza7P561tz+HZZBW/NdNMWbj5lTKsQD5CT4Scnw0+fwo414OvWZxOqiml+/EfdBFXLMLNecqHvonebpk18ersL8Xm93fI7MYE0H4NKt2L1tGQwHHad+1mMhl0zvx6j3MeQQ1yluasH+DhjYJ/L3eiipy90v0tOuKvtilyh68pOxeLW9yVW5OMCmR1vJLnTYa6yvnZO0/HjF0rjw/BbVuTXxH5ft/x9nwp7/8itYtFrzPYP8QBjTndBfuaLrqrqS3N9CaDzVeNl++kzzl08a6hyU8U2VUaeKzysmuZCfEa+m5oogoK8SNdRvsA1WJpweftrx0YjzSs7kbBrePbJ7U3Lin1yBxz8f7DXj9wfM6tnwaOnuj9S49Xm6c+2DvKzX27+9ZxXYfwPmm+b+YK7jVfE/3eR+89rt3OSn/O7N7jAWzTAdeBd/KmrIB1+g2vWNvsVdxX7rMddB/LdzoXD/wRTn4T5b7tRA7k93NDCvJ4w8ADI6cbKDfUUmwzSCfLc5HmEiyA7PY2i7HSG98yjKCe940EeWFJey1N1R1PtL2dQ/XT+suw0Km6fAbj5iRcFDuZ3aQ+x6rWbuWvpbly64i56gpt3GZsuUD/me0Te+xs5NUtZceu+DPe54f+/CV3Ea2kTOWRYNyYOK2XisObrDxM9AKY+AVjyRp3IOYEsTg6GiUQteZkdWE4ozY856V/uIonxwZmPuT9ONkNm90Gccdogxh9YzR+en8bH89bxwrdrGu8fVJrD+P7FjBtQxPgBxQwoyd68NZM7av9fwtePuIDwTKwZ4YQfNw7b/dHEIQR8Pv70yszGEH/pAYM5fmyfto64bRnjliFcMsldjHrnOvfzvGGp6+kALmRv6+WY9rjIrdeemQ+FA7Zvv4vOaOjhcPnXbhnA9oaEF8Quo1UsaX3f+liQTxjivkky892ok7mvu9+p2SWukgxN/ydUr3Jd2uMXGuLDgbttwjSnbSUjD858NHXP33dPN/Vhw2L3f1ck5JaJzOu9bVYTEW/wpcGlH7mLnukdW4mjlbLxTf10+u7ZqddIl61LQV6ks1o9yzWk6egf7B/9Fb56yAXtw65rfX80Cvcd7pozZRW7bsI5pa4KFK/epGW4ytLKqW4Jr5kvwYFXueVV6ta7plZH3Qz/Psg1LKuraL5szaxYkC8e5C4szH6teZCvr3TrXgOc/TRMvtd1VX/hxy4079mi6rF8CkyKrVN69K1uLvlLP4Mp/4XXfhs753Q4/b8sKdyDWTNW0asgk77FORTseXHj8UKRKKurGlhaXstHH6/lnVkzmb68kkkZafQw8K+3pzPD1jR76t4Fmdxv1jAMeGLKWj6e+TXra9087qz0NEpyM+iWk05hdjpffreej+evxc1k2gvYC59x84WNMUSilkdCE/mR73/0CC8nffJddPd/CAZ+NGtnhvnmsrqqnhe+Wc7BweP4W/qdjSH+5f6/5vh9L+H6gUVk+Nv4z93na9UgLzt9E3/9Fw1wQSQto/11bztocGkuj1y4J69PX8WM5RsY3aeAcf2LKMndjLXSt0RONzdU+b0b3EiQvN6w3y+b7XLR/oNI8xn+9MpMDh7enV8dnuJQk9PNNTt77Az49J+uudkX97kLaf32dj0UtofeY7fP83hFbmlTh/q2FMaC/IYWQd7a5BX5TTXiWBfkwU3XiV+0zSxw/TpqVkP5/KYl1tbOcbeb0q/Eq3w+2PkU+Og2NxUhvirJ+At3rPXVZcfjzwC24P+2svFuNAi0vRSsdEkK8iKptmQyfPZPF2x9ARc80/yuMnPQ/yVvXPThrfD2te4PuvNf6ViH2UWxpWVq1yW/v668abmvunL3Ea/GZJe45VLG/8CFiK8ehNd/B0s+c0vYgKvYnP2Um0teOsLNNZ/9CoyNtcqqWuXmioFbiu2Rk2Dh+1RWrufhL9cxuk8BBzS874ayl+zkhk4efSvWn4H57E549Vesm/spxSfdhskuciMHXvoZ2CjTig7mvMehT9EXnLH7bzipaCcy3r0GfH4WH3IPf/mihJemvtusc3h+pp8e+Zmsr3VLWrVsF2IM2LRMiMJBg3Mp9ZVSGwyzsrKeJeV1LN9QT316Nfjg9TkbeCe68bWr9xlSwunj+3HYyB5kBppCdzgSZcWGeqreu5CiqX/nysDjGCwfR0bxyvIcXlk+p3HfLwsOYrX/LbrXzIEjb+Holhc3tqWMvK16OGMMR4zuyRGje27V426yvS9zF41qVsPh1ye9OHbBvgM5ebcy8rP823aEQEcNO9KNLvnqIXjyXPfv2vjc0M0d4fxk8zQOrV/iwnviag3xJoLxfTbHsKPcz4mNtq4ilwx2/wbWxYK8tQlD6xXkATe8/qPbYkuCWndhc9x5qT4r8brE9ebV6E4SKMiLbIlI2FU3ohEYekTySuXiz1wlOq9X0zzS7BI3B/rjvzet3ZrMgvfh7CfdY+LiIR5cheaBY+C8l1vPNU9UtdJVWcBVyZOJb0/PgwvfcEMsa9a4IVzDjmo+fHzceW6I5vOXuXW588vgnP+xIpTFo2/MZo+MfdmPmTD9uaYgP+dVwLoh2YMPchXe9Yu48Y67eLTSNW15qvgBxgOMPA6MYfbKKq5ZfBzjQqu5wv8MJfP+x5qb3+PNnX7P6Oxyxiz/ikqbxfkrTmItDaytbuCbJRVclz6CH+z0H9bVRvjv8xmAC9lDe+RSXhNkbXWQyvowlfVNc7IDaYbueZmM7VvIgcO7M3FYKd0eKobVK/nlQf1hUNN/pJX1IWYur6TfM0ANHD52IBN6jaAoO52CrAC1oQjrqhtYVx1kXU0DPfIzOXm3sja7afvTfO6+I66AmfdiYj0CRh57OTeyMx/OXUtWehon7tqHvQeV4GvY3b2nqZgn6kUZuXDeS1C+EIYd0eZuBdk7WNXt8Bvc74h4pXbceW7+sHRe+WWAcY0Ea9Y2VfArFrnb3J6tl5LcFDklrlHe2rkw+ODm95UMdlOT4vPka9ZAfYU7n5J2pgN0Jd2HQ8+d3QoE4FYgyemW2nMS7yseDP0muIt5vXdL9dnIDkRBXiRRJOTmnobqXWU4EnSVi5IhbkmxeFBvqIavH4ZP73Tz5cAF9T0udn9MZxW5pnAf3gaLP2n9PPE1wcFV4cec7qojNgrRkOu0/v7NsG4u/Odw1+V0yMHNQ/yEy2HG867B24PHujCfrHoPzS8W1Fck36duvbvNLoIeI6kvHsabM1axbF0dE9eFGNYjs3klsqg/nPsCLPqQJekDufPtcp7+ciqhiGWwGcrbGRCa+zavfjqdQ8cNJys+rH740YSjlqmZe7Ebi9i19lPezt+D2poqRtV8Dgb+vXZnljw/jUc++46ohS/8p1Dfa3/OXvFnBpgVnDX35zRYPxi4OXwGOw8fxtl79mPBmhoen7yY+Wtq+Md098euz8CRO/fihwcMZnQf15ysNhhmSXkda6oaKMoJ0CM/k+Ls9NbrIccvXsTnwsfkZwbYc1AJBCIAnL73UOi7FZbSyi52Pz+f/RNySina7STO8Kdzxh4tKnBZRe5Dtp7SYZ2v6piRByf9C+4/EjIL4cDfp/qMZEv5093/JVXL3f8t8SDfOD9+C4bVx7W17GfLJeji1fii/h3qA9Jl7HxaU5DfniOipOvy+eCCV1N9FrIDUpAXiQvWwgNHNzV0aykt3VVAS3ZyIT0eiLO7uSWYqla49cc/uMUNi493Z/cFYNQJLgyumu6Cd7DKhfndz3MN45Kt3TrkEHjiHPjuI7ck1ohjm9arPej/XJOuPS5y51w+Hx6MVebzkgxT/q7pYkK4ppyP56xhxvJK5qyqIi/Tz5Duuewe/I6RQLUvj2ue+oZXp62kusEtK3Xjq7MY0j2XY8f05pCR3akNRlhSXsuS8jpmrMjhzRnfNg5b32NgMQVZPZg9ry/DfEv44KUH+eNLezEp8A7pwLXzBjF5yifkrhjMY+lwRMZUjrhiX2q/fZHsVxtYEi3lT18HAPeH65Gje3LVUSPoW5xNfe1JfPfs7+g79yEyTJhl2SO48LxrGdjdNWY6eAT8YL+BfPndep79ehnpfh/n7j2gWUd2cPPDh/XMY1jPjQwV98eDfBtrnW9Cs7sO2+8X7mdp1AlbZS66eFy/veCSD92ogpySVJ+NbA2FfV2Qr1jc1FQy3qdkS+bHb0zLIB//P2xHaHS3I9nlTJj8b9cTRkuAiUgKKciLgJsL+PxlLsSn50HJoNhc9XQ3bH71TGjY4Dpbr/jGPaZ4kGuStcuZYNLckmaf/hNWfev+AArkuGXE9r6seVBvqHbBu2hA8nXW47KL3drWL/wEpj7eOsSDmyv5/ZdcmF83j+hDJ/DFES8weXElkxeVs2htDRFreaDuDeJ96levWcX37/u81dMd5/uKf6TDlDXw1PKlAJQVZTGkey6fzFvHvNXV/PWtOfz1rTmtHgswcVgplx04hPED3DJt1W+cBZ/cxMkZk6mtzyCdMPOjvbhvdgDYQFHmKEKBPPJCFbD2G/KWxhowjTyOkasK8PngqiNHMGFI07DFzOw8+p/9D1h0Okz/H30m/ASKmi/jZIxh9wHF7D4gyXJxm6qxIl+f/P5wbHsg+ZD5zZJT4pbPE+monlqKyFMK+rqRYYmd6yu2YkW+LY1BfkFsfrwa3SWVWwpXfJvqsxARUZAXDwvWuK7qw4/aeJOuj26D6f9zlfWzn4T+E5rfH+8YvOIbN9yw+wg3bzxxCZCxZ7rl1hZ96IZBDj/ahfGWMnJbXcX/bl0Nc1ZVs7a6gTVVbq53KBJlQEkOg4ddw7jMMgqn/puaPX7K3AEXsHzqCpZX1LGmuoG1VQ2QfT3XVF5G3pqZ3P6f//BhtGmebCFVDM5sWpO4gBoGleYwqncBw3vmUVkfYv7qagYtC0EQatPyOHPXvpy4axm79y/C5zNU1od4c/oqXpq6nEkLyynOSadfcTZ9i7LpW5zFxGHdG4etx+Xuegp8chN7MZVddypwBfbhR/N//UZRH4pwwq59CLx1mLsAMuN5mOOCfN99zuCVxMYuyQzYx31sa/G5qG1W5GPb/VswZ1VEJFGyteTjQ+u3ZUW+aCBg3EXrmrVNzU4V5EVEdkgK8tJ5rZru5rS3tQTSp/+Ed//k1gU/57m21zme/Sq8HVuO7ahbWod4cJ2DiwZsfP1eY2Dg/jCwadOGuhDfLKkgPytAr4JMuuVmkOYzLFhTzSvfruDlb1cyc0Vl+8dlN+BOeMPAG0nm3BNgrH9vzvW/yZkZn5A7+DDGDyhmZO98Spe9CW9DKLsHgdpV5JgG3vnphNbDtt9/F96FQ3YdxmHHN2+YlZ8Z4ORxZZw8rgPd8eNKh0L3UZjV08n87l0ABu93OoP7Jnxzhh3lgvzkf7t+BHm93HDFHUW80h5OUpGPhNy6sKD5oyKy9SRbgq5x6bkt6Fi/MYFM99wVi93w+vjScxpaLyKyQ1KQl85p3Xz414FuGZ1fzEze+Cve4G3h+/DZnTDhx633WT0LnrkIsLD7hbD7BRt96hUb6vAZQ/e8jDaXodpQG+KNGSt5ddpKPpy7hlCkaW2zNJ+hKDvA2upg4za/zzCiVz7d8zLolptBt7x00nw+Fq6tYf7qahasraY+FMVnoEd+Jr0Ls+hdmEWPvAy65WVQkpPOoIaL4M03OdL/BUedOqxpCa05UwEIjDgSvnzQvdb6CrdOfKJY13pfduFGvwcdNupEWD3dfZ7TvXVIH3KwGwURiX0vRhzb9gWXVGij2V2rbQryIrK1FCQsQQcQjTZV57fl0Hpww+srFrtpZlUr3LbSodv2OUVEZLMoyEvq1Za70F27DsaeDWkbWeLJWnjttxBpcF8v/RJ2OqT1Psu/bvr67Wtg0AFu2Zi4tXPh0VNd47n++8CRN7X7tBvqQvz5lZk8Ptn9cdUtN52RvQsY3Tuf3Ew/y9bXsbyijuUV9SxYW90svPcrziYUibKqsp5I1LK2OojfZ5gwpBvH7NyLQ0f2oCin7cZm0ahlXU2QwuwAgbQ2gq4tgy8GYtYvdOu3jznNbY9f0BiwH0x/Fuo3uNDeMsjHm/dtzW7oo06Ad693nw87snVIzyqCfnu76QgAI47bes+9NbTX7C4xyGtovYhsLYlD662F6pXuYqdJiy1Ptw2VDIH577iRauCWu2uvl4uIiKSMgrxsf8Eat1btgvdh4Qex5nGx0Dv3TTj1gfbD/OxX3RrscUsntw7y5QtcYE3LgMEHwpzX4JkfwMXvuerpgvfgyXPdPkUD4LSH2n3O16at5A/PT2N1lbt44DOwtjrIB3PW8MGcNUkfM7xnHkft3Iujdu7JkO5ujn44EmVtdZBVlfX0L8mmMLtjXcl9PkNpXkb7OxnjlrF7/0b45nEX5OsrYaWryNNvb7dEVf2G5EvQxZefyyzs0Dl1SLed3Jqny7+C0Scl32fYUS7IZ3dLPq0hldprdheOd6zPdt97EZGtoSAW1oNV7nd1fH58QR9I28Z/tsUb3sVXOlE1XkRkh6UgL9teOAjLvmgK7ksnu7XSE3Ub6v5YmfUSPHVe22E+VAev/cZ9XtjPVSyWTm6937LYEnK9xsDx/4S7JrjGPW/+EXqMhJd/AdEw0T7jqT/lYbJzurU+BjBvdTW3vjGbV6etBGBQtxxuPHkMO/cpYNbKSqYvr2T68g00hKL0KXLD3fsUZjGwWw59i1t3Mven+ehZkEnPgm1UwR1zmgvyC96FqlUuxNuou1hR0AeyCt1cy9gw+mbi27IKt+45nfFfN/ph0AHJ7x97lhs1MOK45s0DdwSBDlTkVY0Xka0pPRtySqFmjfs/rnF+/DYeVg9QElvfxEbcbenwbf+cIiKyWRTkZeuz1gXIBe+58L7409ZBqKAfDNrfNaIbuL9b+3zuW/D4We2H+Y//7v6wye8DJ9wNDxzlLhJEo82HbcfXgu+9G+R0g+PvhP+eDJ/f07jL1wWHct7ic6n9y9dMGLyEI0f35NCRPcjN9PPatJU8OmkxkxaWA24O+yUHDOInB+1EZsCFzV37FbFrv604DH1rKBkMZePdxY1pz0DNare9/77uNl5tT1aR3xZD68EtvZe4/F5LWYUu7O+I4kE+WbO7UEJFXkRkayroGwvyS5oq8tt6fjw0VeTjuqkiLyKyo1KQl62rthxevBxmvth8e05prJt7LLwXDWg9HHmnQ+CMR+HxM5vC/Al3QWZsnfD1i+Cjv7rPD7se+u7hqqH1G9y67N12ajpWvCLfZ7fGY9eM/QE5U+4F4LbQKfxj1YmAASzvz1nD+3PWcNWz35Kb4aey3nUj9xk4aHgPfn7oUEb2br5e+Q5rzOkuyE99vKlaHB+yHq+2J63Ib4Oh9Z1dRyryAVXkRWQrK+zrLkhvWJJQkR+w7Z+3oC+kpTc1INXScyIiOywFedl6FrwHz17qOt36ArDToU3BvfuIjs0jbgzzscr8jS+7x5aNd8Ozw/XumKNOdMfrvaur+C+d3BTkI2Hsim8wwAfVfXnzuWl8PH8ty9bsyw/SKplu+/Ox2Y3jdunF9/bqT3FOOq9PX8mr01YwbVkllfVheuZncsYefTl9fF96FXSyjuSjTnLNAFd847r6Q1OQb68iv62G1ndm/na61jfOke9kPx8isuNLbHi3PSvyvjS3nvza2e5rLT0nIrLDUpCXLRdugHeuh09uByyU7AQn/9uF7M2x06Fw5mPw8i9h/UJYPcN9gFuq7Mhbmi4KlO0Oiz+ldsFnPLRhTz6etxbf6uk8GK6jymbx/RfLsVS4h5p0Pup9HkeM6slfdi+jW25T87gh3Ydw2YFDWFJey+qqenYpK8TfVnf4HV1OCQw5FOa86ubH5/V2IyCgadh8vPoeF6pvCqaqyDdpr9ld4xx5BXkR2coKEoJ8fOm57TFHHtzw+rWzXbf6lqubiIjIDkNBXrZMOAiPnuaq8QDjzofD/wTpOVt23CGHwE+nuIZtSye7j5VT3Trj3V3znfpQhBmRwewGLJzyHjcGDwfgtLQZEIAZDGRk70J271/EhCHd2GtQCQVZ7S9t17c4O2mTuk5nl9NdkAcYsE/ThY+2htbHK/TGBxmdZArB9tChofUK8iKylRX2dbflC6Fyqft8e1TkoanhXelwrcghIrIDU5CXzWctvPATF+LTc+Gkf8Hwo7f4sDUNYZ6YvIRXp60g3e+jKLs3xTmnUtjjLNYtCfLdlEksWlfD8oo6uts0PsuE4WYxE/plccSugzhi4UswB/bY5xBePmy/LX+dndHQI1wgb6hsvqRbW0Pr48E+s6D1Wu9dmZrdiUgqxIfWr54BWNfvJLfH9nnuAfvBJ/9w09hERGSHpSAvm+/dP7mGaiYNTn2w9Vrum2htdQMPfbKIBz/9jg11oY0/ALD5vamilLzgGh49KgMGDICp0wEw8UZ3XVEgCw691jUdHHVi0/aNVeQ1rL65eEhXszsR2Z4KYhV5rLsp7Lf9quNDD4NfzNGwehGRHZyCvGyeLx+AD25xnx/7ty0K8eFIlH+8M4973p9PQzgKwICSbM7fZyAFWQHKa4Ksr3UfBVkB+pfkMLBbDv1LsinNzcA8uTfMfMENv+8zDla5IE/vLhzkAXY/330karMiH5szv7WXnuvs4l3/2212p4q8iGxlmfnu93X8d/X2mh8fl7edqv8iIrLZFORl0819E176uft8/1/Dbudu9qFWbqjn8se/5vPYeu27lBVw6QGDOWxUT9J8Haw+lI1vCvID9oVoGLJLmoYmSpO2KvLqWJ9cY0W+vWZ3qsiLyDZQ2BdWVsQ+1/9nIiLSnIK8bJr1i+Cp88FGYJcz4cCrNvtQ781ezc+f/IbymiA56WnccNLOHLdLb8ymDh8s293dLp3ctH58793UpCeZtiryGlqfXHzYvJrdicj2VtAPVn7rPt9eje5ERKTTUJCXjouE4X8XQ7AK+u4Fx/5jk8OytZYpSyp4+sul/HeSW1JnVO987jhrNwZ228xO973Gunn61atcZR6gK8+Pb0+84h6qdcsG+mNL8Kkin1y8Ih8NuZ//tIRfmQryIrItJVbht/fQehER2eEpyEvHfXgrLJnkuqGf9C/wp3f4oVOXVvD8lOW8+u0Klm9oGqZ87t79ueqoEWQG0jb/vNKzoedoWPENLPrQbevq8+PbklEAGMC68B6fB6k58sklhvRwHaTlNX2tIC8i21J8CTpQRV5ERFpRkJeOWfI5vH+T+/zo2zr8R0UkavnLG7O56735jdty0tM4eEQPTt29jP12Kt0651c23gX5OFXkk/P53BJz9RXuIx7kNbQ+ucT576E6yEgI8mp2JyLbUkFCkFdFXkREWlCQl42rr4RnfuDmxe98Gow5tUMPq6gNcvnjU/hgzhoAjh7Ti+N36c3+Q0u3rAKfTNl4mHyv+zy/TMvmtCer0AX3xIZ3GlqfnDHgz3KhvWXnejW7E5FtqXigu80s0GgpERFpRUFeNu7V30DFd67xztF/6dBDZq2s5OKHvmRxeS2ZAR83n7ILx+3Se9udY9n4ps/77LrtnscLkjW809D6tgUy2w/yqsiLyLbQY7RbGaZ0mJq3iohIKwry0r5vn4ZvHgXjc/PiMwva3HV9TZAP563lgzlreHnqCupCEcqKsvjXObszsnf+tj3P4kEuhNat1/z4jUm2BJ2G1rctkO1+rsJtBXlV5EVkGzAGDvpdqs9CRER2UAry0rZ18+HFK9zn+/0S+u+ddLf3Zq/mr2/OYeqyDVjbtH3fId24/cxdKcrpeFO8zWYMjDoRvn4Ehh257Z+vM0takY99rqH1rcWb2bWsyGuOvIiIiIikiIK8JBdugKcvcEvN9ZsAB/wm6W4zlldyycNf0hCOAjC8Zx77Dy1l/51KmTC4BJ9vOw4HPPIWOPQ6yMjdfs/ZGbWsyFurofXt8ceDfIu15DVHXkRERERSREFeknvrGlgxxQW7k+9tvn52zIa6ED/8rwvxBwwt5eZTxtAjP4WhJs0PaQrxG9WyIh+qdeukJ94nTRor8vXNt2uOvIiIiIikiIK8tDb7Nfjsn+7zE+6Cgj6tdolGLb94cgrfraulrCiLv58xlsLs7TCEXrZcvOoer8LHK/M+P6TnpOSUdmjxOfBtNrvTOvIiIiIisn35Un0CsoOpXA7P/dB9vteP2pxvftf783lr5mrS/T7uOnucQnxn0nJofTzQZxaqM3Iy8Yq7mt2JiIiIyA5CQV6a+/BWqCuHXrvAIVcn3eXjeWu59Y3ZAFx73Ch2Lmu7k73sgFoOrY/fan58csma3VmrZnciIiIikjIK8tIkWANTn3SfH3ot+DNa7dIQjnDFE1OIWjht9zLO2KPfdj5J2WKtKvIVzbdLc8ma3UWCYKOx+1WRFxEREZHtS0Femkx/DhoqoWgADNg/6S5vzljFmqoGeuZncu3xo7fr6clW0rIinzi0XlpL1uwusTqviryIiIiIbGcK8tLkqwfd7W7ngi/5j8YTk5cAcOruZWQG0rbXmcnW1LIir6H17QskqcjHg7zxQVpg+5+TiIiIiHRpCvLirJ4JSyaBSYOxZyfdZen6Wj6atxaA03bvuz3PTrameOU9XAfhBg2t35h4kA8nVuRjoT6QrQaBIiIiIrLdKciL89VD7nbYkZDXM+kuT32xFGthnyEl9C3WcOJOKyMfiIXPuoqmiryG1ieXrCIfD/Vaek5EREREUkBBXtzc328ec5/v9v2ku0Silqe+cMPqVY3v5Hy+hOH165vmyKsin5w/Sdf6+Od+BXkRERER2f4U5AVmveTCXH4ZDDk46S4fzVvL8g31FGQFOHxU8oq9dCKJDe8ah9ZrjnxS7TW7U0VeRERERFJAQV7gywfc7a7fA1/yBnZPTF4MwIm79lGTOy9IbHinofXta6/ZXUBLz4mIiIjI9qcg39Wtmw+LPgSMC/LJdqlu4M0ZqwANq/eMZhV5Da1vV7Jmd+F4kFevCBERERHZ/hTku7qvH3a3Qw6BwuQh/dmvlxGKWMaUFTCyd/52PDnZZhIr8hpa3754WE9WkferIi8iIiIi25+CfFc34wV3u2vyJeestY1rx6sa7yHxinzdeg2t35h4WG/W7C5h+TkRERERke1MQb4r27AUyueD8cGgA5Pu8uaMVcxdXU1mwMdxY3tv5xOUbSZekd+wFGy0+TZprrEin9jsTsvPiYiIiEjqpDzIG2MuM8YsMsbUG2MmGWP22Mj+VxhjZhtj6owxS4wxfzXGZCbcf7Uxxrb4mLXtX0kntPADd9t716QhbsWGOn7zzFQAzt17APmZge14crJNxavv6xe6W3+mQmlb4g3tmg2tr21+n4iIiIjIduRP5ZMbY04HbgMuBSYBVwCvG2OGWWtXJ9n/LOBG4ALgE2Ao8ABggZ8n7DodOCTh6/A2OP3Ob8H77nbgAa3uikQtP318CutrQ+zcp4BfHDZ0O5+cbFPx+fDlsSCvYfVtS9rsLl6R19B6EREREdn+UhrkceH739ba+wGMMZcCR+OC+o1J9p8AfGytfTT29SJjzGPAni32C1trV26jc/YGa2FhLMgPah3kb39nLp8vLCcnPY3bz9yVDL+WnPOU+AiMquXNv5bWEpvdWQvGqNmdiIiIiKRUyobWG2PSgXHAW/Ft1tpo7Ou923jYJ8C4+PB7Y8wg4CjglRb77WSMWW6MWWCM+a8xpt9GziXDGJMf/wDyNu9VdSLr5kHVCkjLgL7Nr4N8tmAd/3h7LgA3nLQzA7rlpOIMZVtqWYFXRb5t8bBuoxAJuc9DWn5ORERERFInlXPkuwFpwKoW21cBPZM9IFaJ/wPwkTEmBMwH3rPW3pCw2yTgPOAI4IfAQOBDY0x74fxKYEPCx9JNfTGdzoL33G3fPZrNjV5fE+SKx6cQtXDquDKOH9snNecn21bLCryWnmtbYliPz41vDPLqKyAiIiIi21/Km91tCmPMROAq4EfAbsBJwNHGmP+L72OtfdVa+5S1dqq19nVcxb4QOK2dQ/8ZKEj4KNsW579DaWNY/d0fzGdlZT2DSnO45vhRKTgx2S5aVuA1tL5taQG3sgM0BfjGZncK8iIiIiKy/aVyjvxaIAL0aLG9B9DW/PbrgIettffGvv7WGJMD/MsY86fY0PxmrLUVxpg5wJC2TsRa2wA0xL82xnT8VXRG0Qgs/NB9PnBi0+ao5YUpbs70rw8fRnZ6qlsoyDbTMrhraH3bjHFV+WA1hGNBPqzl50REREQkdVJWkbfWBoEvgYPj24wxvtjXn7bxsGygZViPxB+e7AHGmFxgMLBiS87XU1ZOhfoKSM9zS8/FTF5UzooN9eRl+pk4rHvqzk+2vfS8piozaGj9xsQDe8uKvF9BXkRERES2v1SXXG8DHjTGfAF8jlt+LgeId7F/CFhmrb0ytv+LwM+NMV/j5sIPwVXpX7TWRmKP+Utsv++A3sA1uLD/2HZ6TTu++PrxA/aBtKYfgee/cdX4I0f3JDOgLvWe5vNBZgHUrXdfa2h9++KBPVTf/FYVeRERERFJgZQGeWvtE8aYUuBaXIO7KcAR1tp4A7x+NK/AX49bM/56oA+wBhfaf5ewTxkutJfE7v8I2Mtau2bbvZJOJsn68cFwlFe+dYMWjttFDe66hKyipiCvofXta6zIt2x2p+XnRERERGT7S3VFHmvtHcAdbdw3scXXYVyF/Zp2jnfG1jw/zwkHYXFs5kJCo7sP566hojZEt9wM9h5ckqKTk+0qMbyrIt++lkPrw1p+TkRERERSp1N1rZetYOlkV1XMKYXuIxs3Px9rcnfsLr1I83m82Z84ieFdc+TbFw/y8QCv5edEREREJIUU5Lua+LJzA/d33biB2mCYN2e42QxaN74LSazIa2h9+9TsTkRERER2IAryXU280d3A/Rs3vTljFXWhCP1LstmlrCBFJybbXbOKfGFbewkkNLuLB3k1uxMRERGR1FGQ70pC9bD0C/d5QpCPrx1//C69MUbD6rsMVeQ7LrEib23CHHkFeRERERHZ/hTku5I1syAacvOhiwYCsL4myPtzXEP/48b2TuXZyfYWr8IHcsCfntJT2eEldq0P17feLiIiIiKyHSnIdyWrprnbHqMb58e/Mm0F4ahlVO98hnTPS+HJyXYXr8JrWP3GNTa7q28aXg+aIy8iIiIiKaEg35WsjAX5njs3bnpt2koAjttF1fguJ96pXsPqNy5xaH08yPsCkJbyFTxFREREpAvSX6FdSWJFHrDW8u2yDQDsM6Rbqs5KUmXAvtB7NxhzeqrPZMfnTxLktYa8iIiIiKSIgnxXYS2s/NZ93tMF+RUb6qmoDeH3GYZ0z03hyUlKZBfDxe+m+iw6h2YV+djSc4HM1J2PiIiIiHRpGlrfVVQug/oK8PmhdDgAM5ZXAjCkey6ZgbQUnpzIDi5efU9sdqdGdyIiIiKSIgryXUW8Gt9tKPgzAJgeC/Ije+Wn6qxEOod49T1c31SRV6M7EREREUkRBfmuYmXz+fEAM1a4+fEjeyvIi7QrsSIfUkVeRERERFJLQb6rWBWfH9/UsX7GClXkRTrEH6vIhxIq8gryIiIiIpIiCvJdRePSc64iv6EuxJJy131bFXmRjUhsdqc58iIiIiKSYgryXUGwBsoXuM97uIr8rFg1vk9hFoXZ6ak6M5HOodnQelXkRURERCS1FOS7glUzAAu5PSC3FGgaVj9Cw+pFNq5Zs7vYOvJqdiciIiIiKaIg3xXE58cnNrqLd6zXsHqRjVOzOxERERHZgSjIdwXxped6JnasV6M7kQ5TszsRERER2YEoyHcFjUvPufnxwXCUuauqARilirzIxsUr8uE6BXkRERERSTkFea+LRmHVdPd5bOm5eaurCUai5GX6KStSGBHZqMTQXlfhbjVHXkRERERSREHe69YvhFANpGVAyRCg+bB6Y0wqz06kc2gW5MtbbxMRERER2Y4U5L1uVWxYffcRkOYH1OhOZJP50iAttkxj7Tp3qyAvIiIiIimiIO918fnxzRrdbQDU6E5kk8SH0teqIi8iIiIiqaUg73Wrmje6s9aqIi+yOeLBXUPrRURERCTFFOS9rsXSc8sq6qisDxNIM+zUPS+FJybSycSDe70b0aJmdyIiIiKSKgryXla3HjYscZ/3GAU0zY8f0j2PdL/efpEOa1mBV0VeRERERFJESc7L1sxxt/llkFUENO9YLyKboFWQz07NeYiIiIhIl6cg72UNLrSTXdy4aXqsIj9K8+NFNk3LofSBzNSch4iIiIh0eQryXhaqdbfpOY2b1OhOZDOpIi8iIiIiOwgFeS8LxoJ8LHAEw1GWVdQBsFP33FSdlUjn1DLI+1WRFxEREZHUUJD3snhFPhZAKuqCABgDhdnpqTorkc5JFXkRERER2UEoyHtZi6H1FbUhAAqyAqT5TKrOSqRzahXkVZEXERERkdRQkPeykBtGHw8g62tcRb5I1XiRTdey2Z3WkRcRERGRFFGQ97JgjbsNuIr8+lhFvjA7kKozEum8Eivy/kzw6deniIiIiKSG/hL1shYV+YpaVeRFNlvinHg1uhMRERGRFFKQ97JQrCKf7gKIKvIiWyBxTrwa3YmIiIhICinIe1ljRd6FDlXkRbZA4tB6NboTERERkRRSkPeyFuvIr28M8qrIi2yyxOZ2qsiLiIiISAopyHtZfGh9oOXQelXkRTZZy2Z3IiIiIiIpoiDvZfGh9bE58htiQV5D60U2Q2IVvuWa8iIiIiIi25GCvJe1MbReze5ENoOa3YmIiIjIDkJB3stCLYO8utaLbLZmFXkNrRcRERGR1FGQ97J4kE/PxlqrrvUiW8KviryIiIiI7BgU5L0sYfm56oYw4agFFORFNktieFezOxERERFJIQV5r7IWgk1d6ytiw+oz/D6y0tNSeGIinVRAy8+JiIiIyI5BQd6rIiGwEfd5ICthDXlV40U2S7Mgr4q8iIiIiKSOgrxXxdeQB0jPUaM7kS3VLMhr+TkRERERSR0Fea+Kz4/3+SEtoEZ3IltKze5EREREZAehIO9VjWvI5wCwviYW5HNUkRfZLMaAP1aJV7M7EREREUkhBXmvig+tjw0Bbhpar4q8yGaLD6lXRV5EREREUkhB3qviQ+vTXeBoGlqvirzIZmsM8qrIi4iIiEjqKMh7VePSc7Gh9bGKvObIi2wBVeRFREREZAegIO9V8Yp849B6V5HX0HqRLVA8OHY7KLXnISIiIiJdmj/VJyDbSCjW7K5xaH28Iq+h9SKb7ZT7oGoldBuS6jMRERERkS5MQd6r4kE+NgRYFXmRrSAjFzIU4kVEREQktVI+tN4Yc5kxZpExpt4YM8kYs8dG9r/CGDPbGFNnjFlijPmrMSazxT6bdExPCjYP8htUkRcREREREfGElAZ5Y8zpwG3ANcBuwDfA68aY7m3sfxZwY2z/EcCFwOnADZt7TM9qrMhnEYpEqWoIA6rIi4iIiIiIdHaprsj/HPi3tfZ+a+0M4FKgFrigjf0nAB9bax+11i6y1r4BPAYkVtw39Zje1DhHPqdxfrwxUJCliryIiIiIiEhnlrIgb4xJB8YBb8W3WWujsa/3buNhnwDj4kPljTGDgKOAV7bgmBhjMowx+fEPIG8LXtqOIaFrfXwN+fzMAGk+k8KTEhERERERkS2VymZ33YA0YFWL7auA4ckeYK191BjTDfjIGGNw53+3tTY+tH6TjxlzJfDHTTv9HVzCOvLrNT9eRERERETEM1I9tH6TGGMmAlcBP8LNfz8JONoY839beOg/AwUJH2VbeLzUS5gjr471IiIiIiIi3pHKivxaIAL0aLG9B7CyjcdcBzxsrb039vW3xpgc4F/GmD9t5jGx1jYADfGvXbG/k4sPrU/Pbhxar4q8iIiIiIhI55eyiry1Ngh8CRwc32aM8cW+/rSNh2UD0RbbIvGHb+YxvSnp0HpV5EVERERERDq7VFbkwS0T96Ax5gvgc+AKIAe4H8AY8xCwzFp7ZWz/F4GfG2O+BiYBQ3BV+hettZGOHLPLSGh2p6H1IiIiIiIi3pHSIG+tfcIYUwpcC/QEpgBHWGvjzer60bwCfz1gY7d9gDW4cP+7TThm1xCKVeTTs6moUbM7ERERERERr0h1RR5r7R3AHW3cN7HF12HgmtjHZh2zy2isyGc3VeRzVJEXERERERHp7DpV13rZBMF41/psKrT8nIiIiIiIiGcoyHtVqCnIr2/sWq+KvIiIiIiISGenIO9V8SCfnt3Ytb5QFXkREREREZFOT0HeiyJhiLgqvPVnJawjr4q8iIiIiIhIZ6cg70XxajxQbdMJRy2gIC8iIiIiIuIFCvJeFO9Yj6Giwb3F6X4fmQG93SIiIiIiIp2dkp0XNa4hn0NFXRhwHeuNMSk8KREREREREdkaFOS9KKiO9SIiIiIiIl6lIO9F8aH1gazGIK+O9SIiIiIiIt6gIO9FiUPrY0vPqSIvIiIiIiLiDQryXpS0Iq8gLyIiIiIi4gUK8l4UjFXkA9kJFXkNrRcREREREfECBXkvaqzIq9mdiIiIiIiI1yjIe1Eo1rU+PZv1sYq8mt2JiIiIiIh4g4K8F4Walp+rUEVeRERERETEUxTkvSjZOvI5qsiLiIiIiIh4gYK8FzVW5LOoqIkPrVdFXkRERERExAsU5L0oFuQj/myqGsKAhtaLiIiIiIh4hYK8F8WG1teRAYAxUJClofUiIiIiIiJeoCDvRbGKfK11Vfj8zABpPpPKMxIREREREZGtREHei2JBvtq6iryWnhMREREREfEOBXkvCtUB0ICryGcF0lJ5NiIiIiIiIrIVKch7UbAGgHqTCUCGgryIiIiIiIhnKMh7UawiXx9rdpfh19ssIiIiIiLiFUp4XhSbI68gLyIiIiIi4j1KeF4U71rfGOQ1tF5ERERERMQrFOS9qMU68qrIi4iIiIiIeIcSntdEoxB2c+Tj68gryIuIiIiIiHiHEp7XxEI8QE00VpEP6G0WERERERHxCiU8r4kNqweoiQYAzZEXERERERHxEgV5r4k1usOfRUPEAhpaLyIiIiIi4iVKeF4TD/Lp2TSEo4CCvIiIiIiIiJco4XlNPMgHsgnGgny6gryIiIiIiIhnKOF5TbApyDdV5DVHXkRERERExCsU5L0mFOtaH8iiIRwB1LVeRERERETES5TwvCZU427Tc2gIaY68iIiIiIiI1yjheU2ziryG1ouIiIiIiHiNgrzXBGMVeTW7ExERERER8SQlPK9prMhnN82RV5AXERERERHxDCU8r0m6jryG1ouIiIiIiHiFgrzXhJIsP6eu9SIiIiIiIp6hhOc1ievIhzS0XkRERERExGuU8LxGQ+tFREREREQ8TUHeaxKG1qtrvYiIiIiIiPco4XlNMMkceQV5ERERERERz1DC85pYRT7qzyIYUZAXERERERHxGiU8r4kF+XBaVuOmjIDmyIuIiIiIiHiFgrzXhOoACPoyGzepIi8iIiIiIuIdSnheE6xxN74MAIwBv8+k8oxERERERERkK1KQ95p4Rd64inyG34cxCvIiIiIiIiJeoSDvNbE58vWNQV7z40VERERERLxEQd5LrG0M8g3GDa3X/HgRERERERFv6XDKM8b0Nsb8xRiTn+S+AmPMLcaYHlv39GSThBvAuiXn6ogF+YCCvIiIiIiIiJdsSsr7OZBvra1seYe1dgOQF9tHUiVWjQeos/GKvIbWi4iIiIiIeMmmBPkjgIfauf8h4JjNOQljzGXGmEXGmHpjzCRjzB7t7PueMcYm+Xg5YZ8Hktz/2uacW6cSD/Jp6QSte2vT01SRFxERERER8RL/Juw7EFjczv1LgQGbegLGmNOB24BLgUnAFcDrxphh1trVSR5yEpCe8HUJ8A3wVIv9XgPOT/i6YVPPrdMJxoJ8IJuGUATQ0HoRERERERGv2ZSUV0f7QX1AbJ9N9XPg39ba+621M3CBvha4INnO1tpya+3K+AdwaGz/lkG+IXE/a+36zTi3ziWUEOTDbq68mt2JiIiIiIh4y6akvEnAOe3cfy7w+aY8uTEmHRgHvBXfZq2Nxr7eu4OHuRB43Fpb02L7RGPMamPMbGPMXcaYknbOI8MYkx//wM3373ziQT49MchrjryIiIiIiIiXbEqQ/wtwfqxzfWN3emNMD2PMrcB5sX02RTcgDVjVYvsqoOfGHhybSz8auLfFXa/hLiwcDPwGOAB41RjTVqq9EtiQ8LG0g+e/Y2msyGfREI4NrVdFXkRERERExFM6PEfeWvuuMeYy4O/Az4wxlYAFCoAQ8BNr7Tvb5jTbdCHwrbW22UgAa+3jCV9+a4yZCswHJgJvJznOn3Hz9OPy6IxhvnGOfA7BWEU+XUFeRERERETEUzal2R3W2nuMMS8BpwFDAAPMAZ621m5O8F0LRICW68/3AFa290BjTA5wBvCHDpz3AmPM2tg5twry1toGEprhGWM2euI7pFCsRUEgS0PrRUREREREPGqTgjyAtXYZ8Net8eTW2qAx5kvcEPjnAIwxvtjXd2zk4acCGcAjG3seY0wZrrv9ii053x1eKNYmID2HhlAsyKtrvYiIiIiIiKd0OMgbYy5v464NwBxr7aebeQ63AQ8aY77ANcu7AsgB7o8970PAMmvtlS0edyHwnLV2XYvzzAX+CDyDq+oPBm4G5gGvb+Y5dg6NFflszZEXERERERHxqE2pyP+sje2FQIEx5hPgOGtt+aacgLX2CWNMKXAtrsHdFOAIa228AV4/IJr4GGPMMGBf4LAkh4wAY4Dvx85tOfAG8H+xIfTeFUxsdqeh9SIiIiIiIl60Kc3uBrZ1nzFmEG6I+/XAjzb1JKy1d9DGUHpr7cQk22bj5ucn278OOHxTz8ETGpefy6GhXhV5ERERERERL9oqKc9auwD4Lckr5LK9JCw/p671IiIiIiIi3rQ1U95iOrD2u2xDwVizu0B2wtB6BXkREREREREv2Zopb2fgu614PNlUic3uGrvWa468iIiIiIiIl2xK1/r8Nu4qAMYBtwIPbo2Tks3UOEdeXetFRERERES8alO61lcAto37LHAvcOOWnpBsgcY58hpaLyIiIiIi4lWbEuQPbGN7JTDXWlttjBkNTNvy05LNEmwK8kEFeREREREREU/alOXn3k+23RiTB5xljLkQ2B3QpOxUaZwjr3XkRUREREREvGqzy7XGmP2NMQ8CK4BfAu8Ce22tE5PNEIp1rU/P0Rx5ERERERERj9qUofUYY3oC5wEXAvnAk0AGcIK1dsZWPzvZNIld68Pu84yAgryIiIiIiIiXdDjlGWNeBGYDY4ArgN7W2p9so/OSzZEwR75x+TkNrRcREREREfGUTanIHwn8A7jLWjt3G52PbImE5eeCETW7ExERERER8aJNSXn7AnnAl8aYScaYHxtjum2j85JNFQlBNOQ+D2TREHJz5NMV5EVERERERDylwynPWvuZtfYioBdwD3AGsDx2jENj3eslVYI1TZ8HctS1XkRERERExKM2uVxrra2x1t5nrd0X2Bm4FfgtsNoY88LWPkHpoHijO5NGmDTCUQtoaL2IiIiIiIjXbFHKs9bOttb+GigDztw6pySbpXF+fA7BWIgHda0XERERERHxmk1afq4t1toI8FzsQ1IhHuQDWY0d6wHS0xTkRUREREREvEQpzysSlp6Ld6xP8xn8CvIiIiIiIiKeopTnFaFka8jr7RUREREREfEaJT2vSFhDviHslp5TkBcREREREfEeJT2viHetD2Rr6TkREREREREPU5D3ivg68oGEirw61ouIiIiIiHiOkp5XxCvy6YkVeb29IiIiIiIiXqOk5xWheEU+qzHIpyvIi4iIiIiIeI6Snlc0Lj+Xk9C1XnPkRUREREREvEZB3isam91lqWu9iIiIiIiIhynpeUV8aH16jubIi4iIiIiIeJiSnlc0q8hraL2IiIiIiIhXKch7RcLyc0E1uxMREREREfEsJT2vaFx+Lkdz5EVERERERDxMSc8rQvGu9VlNXesDentFRERERES8RknPK0IJy89pjryIiIiIiIhnKch7RTChIq+h9SIiIiIiIp6lpOcVjXPkm5rdqSIvIiIiIiLiPQryXhFq6lrfoK71IiIiIiIinqWk5xWN68hnJ8yR19srIiIiIiLiNUp6XhCNQLjefR7IpiEUmyOvrvUiIiIiIiKeo6TnBfGO9QDp2epaLyIiIiIi4mEK8l4QH1aPAX+mutaLiIiIiIh4mJKeFwSbGt1hTGPXejW7ExERERER8R4lPS9IWHoOULM7ERERERERD1PS84L4HPlAFoDmyIuIiIiIiHiYgrwXNAb5HICmOfLqWi8iIiIiIuI5SnpeEGxRkQ9paL2IiIiIiIhXKel5Qbwin+4q8sGIhtaLiIiIiIh4lYK8F7ScI6+KvIiIiIiIiGcp6XlBvGt9IBtrrdaRFxERERER8TAlPS9IWEc+HLVErftSQ+tFRERERES8R0HeCxrnyGc3Lj0H6lovIiIiIiLiRUp6XpAwR74hFGncnJ6mt1dERERERMRrlPS8INi0jny8Y30gzeDzmRSelIiIiIiIiGwLCvJeEG92l56d0LFe8+NFRERERES8SEHeC0JNze7ic+TVsV5ERERERMSblPa8IGH5OS09JyIiIiIi4m1Ke14QTGh2F6/IBzS0XkRERERExIsU5L2gcfm5HIIaWi8iIiIiIuJpO0TaM8ZcZoxZZIypN8ZMMsbs0c6+7xljbJKPlxP2McaYa40xK4wxdcaYt4wxO22fV5MCicvPxYbWpyvIi4iIiIiIeFLK054x5nTgNuAaYDfgG+B1Y0z3Nh5yEtAr4WM0EAGeStjn18DlwKXAnkBN7JiZ2+I1pFyoafm5pq71KX9rRUREREREZBvYEdLez4F/W2vvt9bOwIXvWuCCZDtba8uttSvjH8Chsf2fAleNB64ArrfWPm+tnQqcC/QGTtjWLyYlks2R1/JzIiIiIiIinpTSIG+MSQfGAW/Ft1lro7Gv9+7gYS4EHrfWxtZgYyDQs8UxNwCT2jqmMSbDGJMf/wDyNvW1pFTiOvLqWi8iIiIiIuJpqU573YA0YFWL7atwYbxdsbn0o4F7EzbHH7cpx7wS2JDwsXRjz73DsDZhaH12U7O7QKrfWhEREREREdkWOnvauxD41lr7+RYe589AQcJH2Zae2HYTqgOs+zyQ3Ti0Pj2ts7+1IiIiIiIikkyq095aXKO6Hi229wBWtvdAY0wOcAbwnxZ3xR/X4WNaaxustZXxD6CqA+e+Y4gPq4dmQV5z5EVERERERLwppUHeWhsEvgQOjm8zxvhiX3+6kYefCmQAj7TYvhAX2BOPmY/rXr+xY3Y+oVhrAH8m+Hw0hGJz5DW0XkRERERExJP8qT4B3NJzDxpjvgA+x3WczwHuBzDGPAQss9Ze2eJxFwLPWWvXJW601lpjzN+A3xtj5uKC/XXAcuC5bfcyUiRekQ9kAyRU5BXkRUREREREvCjlQd5a+4QxphS4FteMbgpwhLU23qyuHxBNfIwxZhiwL3BYG4e9GXcx4F9AIfBR7Jj1W/v8Uy4Yq8i3CvIaWi8iIiIiIuJFKQ/yANbaO4A72rhvYpJtswHTzvEs8IfYh7clLD0HqsiLiIiIiIh4ndJeZ9e49FwWQOM68ukK8iIiIiIiIp6ktNfZNQb5HEAVeREREREREa9T2uvsgi0q8qFYkA9ojryIiIiIiIgXKch3dvGKfOMc+djyc6rIi4iIiIiIeJLSXmfXOLTeBfmgutaLiIiIiIh4moJ8ZxdsHuTjc+TV7E5ERERERMSblPY6u8ah9Wp2JyIiIiIi0hUo7XV2bSw/pyAvIiIiIiLiTUp7nV2LOfLqWi8iIiIiIuJtCvKdXRtz5FWRFxERERER8Salvc4uVOdu0+Nd6zW0XkRERERExMuU9jq7UI27Vdd6ERERERGRLkFpr7OLV+QD2VhrE4bWa468iIiIiIiIFynId3bBpq71wUi0cXNGQG+tiIiIiIiIFyntdXYJ68jHq/GgOfIiIiIiIiJepbTX2SWsIx9MCPLpaXprRUREREREvEhpr7NLWH4usdGdMSaFJyUiIiIiIiLbioJ8Z2Zt86H1IS09JyIiIiIi4nVKfJ1ZJAjWhXcCWepYLyIiIiIi0gUoyHdm8Wo8NBtar4q8iIiIiIiIdynxdWbx+fG+AKQFmobWa+k5ERERERERz1Li68xCde42PRugcR15Da0XERERERHxLgX5zixU424DLsg3hJq61ouIiIiIiIg3KfF1ZvGKfDzIa468iIiIiIiI5ynxdWbBFhX5sJafExERERER8Tolvs6sxRx5LT8nIiIiIiLifQrynVl8+blAFgDBeJBX13oRERERERHPUuLrzBqDfA6QMLQ+TW+riIiIiIiIVynxdWbxdeTT1bVeRERERESkq1Di68wal59zQ+vrYxX5zIDmyIuIiIiIiHiVgnxn1rj8nBtaXxd0FfmsdAV5ERERERERr1KQ78yCzZvd1YVcRT5LFXkRERERERHPUpDvzELN58jXK8iLiIiIiIh4noJ8Z9bYtd4F+bpgbI68htaLiIiIiIh4loJ8Z9Y4Rz4W5FWRFxERERER8TwF+c4sGO9aryAvIiIiIiLSVSjId2a+NEjLaD1HPl1vq4iIiIiIiFf5U30CsgW+94y7tRZImCOviryIiIiIiIhnqXTrBcYAGlovIiIiIiLSFSjIe0jT0HoFeREREREREa9SkPeQ+NB6VeRFRERERES8S0HeI6y1GlovIiIiIiLSBSjIe0QwEiXqet6RqaH1IiIiIiIinqUg7xH1wWjj56rIi4iIiIiIeJeCvEfEh9X7fYZAmt5WERERERERr1Li8wjNjxcREREREekaFOQ9Ir70nObHi4iIiIiIeJuCvEeoIi8iIiIiItI1KMh7RL3WkBcREREREekSFOQ9ok5D60VERERERLoEBXmPaAzyfr2lIiIiIiIiXqbU5xF18aH1qsiLiIiIiIh4moK8R9Sr2Z2IiIiIiEiXoCDvEepaLyIiIiIi0jWkPMgbYy4zxiwyxtQbYyYZY/bYyP6Fxph/GmNWGGMajDFzjDFHJdx/tTHGtviYte1fSWrVBaOAmt2JiIiIiIh4nT+VT26MOR24DbgUmARcAbxujBlmrV2dZP904E1gNXAKsAzoD1S02HU6cEjC1+Gtfe47GlXkRUREREREuoaUBnng58C/rbX3AxhjLgWOBi4Abkyy/wVAMTDBWhuKbVuUZL+wtXbl1j/dHZfmyIuIiIiIiHQNKRtaH6uujwPeim+z1kZjX+/dxsOOAz4F/mmMWWWMmWaMucoY0zK97mSMWW6MWWCM+a8xpt9GziXDGJMf/wDyNvuFpYi61ouIiIiIiHQNqZwj3w1IA1a12L4K6NnGYwbhhtSnAUcB1wG/AH6fsM8k4DzgCOCHwEDgQ2NMe+H8SmBDwsfSTXgdO4TGdeRVkRcREREREfG0VA+t31Q+3Pz4i621EeBLY0wf4FfANQDW2lcT9p9qjJkEfAecBvynjeP+GTdXPy6PThbmNUdeRERERESka0hlkF8LRIAeLbb3ANqa374CCMVCfNxMoKcxJt1aG2z5AGtthTFmDjCkrROx1jYADfGvjTEdewU7kMY58ukpX4hAREREREREtqGUpb5Y6P4SODi+zRjji339aRsP+xgYEtsvbiiwIlmIjx0zFxiMuwjgWY1z5FWRFxERERER8bRUl29vAy4yxnzfGDMCuAvIAeJd7B8yxvw5Yf+7cF3r/26MGWqMORq4CvhnfAdjzF+MMQcYYwYYYyYAz+Iq/49tn5eUGpojLyIiIiIi0jWkdI68tfYJY0wpcC2uwd0U4AhrbbwBXj8gmrD/EmPM4cBfgam4deT/DtyUcNgyXGgvAdYAHwF7WWvXbNtXk1qaIy8iIiIiItI1pLzZnbX2DuCONu6bmGTbp8Be7RzvjK12cp1IvZafExERERER6RJSPbRethJV5EVERERERLoGBXmP0Bx5ERERERGRrkFB3gOstdSHXCsBDa0XERERERHxNgV5D2gIN/YD1NB6ERERERERj1OQ94D4GvKgofUiIiIiIiJepyDvAfH58el+H2k+k+KzERERERERkW1JQd4D1LFeRERERESk61CQ94D40PrMgN5OERERERERr1Py84B6VeRFRERERES6DAV5D9Aa8iIiIiIiIl2HgrwHxIfWaw15ERERERER71OQ9wA1uxMREREREek6FOQ9QHPkRUREREREug4FeQ9o7FqvofUiIiIiIiKepyDvAXWhKKCKvIiIiIiISFegIO8BmiMvIiIiIiLSdSjIe0DjHHkNrRcREREREfE8BXkPaJwjr4q8iIiIiIiI5ynIe4CG1ouIiIiIiHQdCvIe0BTk9XaKiIiIiIh4nZKfB9QHNUdeRERERESkq1CQ94B4RV5z5EVERERERLxPQd4DNEdeRERERESk61CQ94A6Da0XERERERHpMhTkPaAhHAVUkRcREREREekKFOQ9QOvIi4iIiIiIdB0K8h7QOEdeQ+tFREREREQ8T0HeA9TsTkREREREpOtQkO/kIlFLMDZHXkPrRUREREREvE9BvpOrj1XjQRV5ERERERGRrkBBvpOrSwjyGX69nSIiIiIiIl6n5NfJNXWs9+HzmRSfjYiIiIiIiGxrCvKdXL0a3YmIiIiIiHQpCvKdnDrWi4iIiIiIdC0K8p1c49B6rSEvIiIiIiLSJSjId3KqyIuIiIiIiHQtCvKdnObIi4iIiIiIdC0K8p1cY0VeQ+tFRERERES6BAX5Tq4uGAUgUxV5ERERERGRLkFBvpPTHHkREREREZGuxZ/qE5AtoznyIiIiIiLeFYlECIVCqT4N2QoCgQBpaVsntynId3Lx5ec0R15ERERExDustaxcuZKKiopUn4psRYWFhfTs2RNjzBYdR0G+k4sPrdcceRERERER74iH+O7du5Odnb3Fwe//27v36Kqqe9Hj3x8RCBhJAJHgq1BAoLWID2zBeyvacrS2DMRjrUJHzdFBtVZth4fj47RW1KseK1W5ou1tqyIWr7XV+rigVhzV01JEbevjVMXqAfERTdUKUt5h3j/2TroTQxIgyc5Kvp8x9gh7rbnmmiuTmb1+ez6WiiulxPr166mpqQFgyJAhu5SfgXzGOUdekiRJ6lpqa2vrg/iBAwcWuzhqI3369AGgpqaGvfbaa5eG2bvYXcZtrB9ab1VKkiRJXUHdnPi+ffsWuSRqa3V1uqvrHhj9ZZw98pIkSVLX5HD6rqet6tRAPuM2OkdekiRJkroVA/mMq++Rd9V6SZIkSV3I0KFDuf7661ud/rHHHiMiusVK/y52l3EbtmwDHFovSZIkqfgmTZrEuHHjdigA356nnnqK3XffvdXpJ06cSHV1NeXl5bt87s7OQD7j6he7M5CXJEmS1MmllKitrWW33VoORQcNGrRDeffq1YvKysqdLVqmOLQ+4+qG1vc2kJckSZK6rJQS6zdvLcorpdSqMlZVVfH4448zd+5cIoKIYP78+UQEDz74IIceeii9e/fmd7/7Ha+++ipTp05l8ODBlJWVMX78eJYsWdIgv8ZD6yOCn/70p0ybNo2+ffsycuRI7r///vr9jYfWz58/n4qKCh5++GHGjBlDWVkZxx57LNXV1fXHbN26lXPPPZeKigoGDhzIBRdcwKmnnsrxxx+/03XVEeyRzzhXrZckSZK6vg1bavnE9x4uyrlfuOwY+vZqOXScO3cuL7/8MgceeCCXXXYZAH/+858BuPDCC5kzZw4f//jH6d+/P6+//jrHHXccV1xxBb1792bBggVMmTKFFStWsP/++2/3HJdeeinf//73ueaaa7jhhhuYMWMGr732GgMGDGgy/fr165kzZw633347PXr04Ktf/SqzZs1i4cKFAFx99dUsXLiQW2+9lTFjxjB37lzuvfdejjrqqB39NXUoe+Qz7h/PkTeQlyRJklQ85eXl9OrVi759+1JZWUllZSUlJbk45bLLLmPy5MkMHz6cAQMGcNBBB3HGGWdw4IEHMnLkSC6//HKGDx/eoIe9KVVVVZxyyimMGDGCK6+8knXr1vHkk09uN/2WLVv40Y9+xGGHHcYhhxzC2WefzaOPPlq//4YbbuCiiy5i2rRpjB49mnnz5lFRUdEmv4/2ZI98xtkjL0mSJHV9fXqW8MJlxxTt3LvqsMMOa/B+3bp1zJ49m0WLFlFdXc3WrVvZsGEDq1evbjafsWPH1v979913p1+/ftTU1Gw3fd++fRk+fHj9+yFDhtSnX7NmDe+88w6HH354/f6SkhIOPfRQtm3btkPX19EM5DNsS+02tm7LzVcxkJckSZK6roho1fD2zqrx6vOzZs3ikUceYc6cOYwYMYI+ffpw4oknsnnz5mbz6dmzZ4P3EdFs0N1U+tbO+e/Mij60PiK+GRGrImJjRCyPiMNbSF8RETdGRHVEbIqIlyPiuF3JM6vqeuMBSnsVvSolSZIkdXO9evWitra2xXRLly6lqqqKadOm8alPfYrKykpWrVrV/gUsUF5ezuDBg3nqqafqt9XW1vLHP/6xQ8uxM4r6lU5EfAW4FjgTWA58G3g4IkallD4yPiIiegGPADXAicCbwMeAD3Y2zyyrmx/fI6BXiYG8JEmSpOIaOnQoy5cvZ9WqVZSVlW23t3zkyJHcc889TJkyhYjg4osvLspw9nPOOYerrrqKESNGMHr0aG644Qb+9re/EREdXpYdUezo7zzgJymlW1NKL5ALvtcDp20n/WnAAOD4lNLSlNKqlNLjKaVndyHPzCqcH9/Z/6NJkiRJ6vpmzZpFSUkJn/jEJxg0aNB257xfe+219O/fn4kTJzJlyhSOOeYYDjnkkA4uLVxwwQWccsopfO1rX2PChAmUlZVxzDHHUFpa2uFl2RFRrPkB+d719cCJKaV7C7bfBlSklKY2ccxi4P38cVOBvwJ3AFenlGp3Js/8/t5A74JNewBvrFmzhn79+u3Sdbanl95ey7HX/5Y9y3rx9HcnF7s4kiRJktrAxo0bWblyJcOGDev0AWVXs23bNsaMGcNJJ53E5Zdf3ub5N1e3a9eupby8HKA8pbS2uXyKObR+T6AEeKfR9neA0ds55uPA0cBC4DhgBHAT0BO4dCfzBLgIuGQHyt4pbMgPrS91oTtJkiRJ2mGvvfYav/71rznyyCPZtGkT8+bNY+XKlUyfPr3YRWtWsYfW76ge5ObHfz2l9IeU0s+BK8gNn98VVwHlBa99dzG/DuGj5yRJkiRp5/Xo0YP58+czfvx4jjjiCJ5//nmWLFnCmDFjil20ZhWzR/5doBYY3Gj7YODt7RxTDWxJKRUug/giUJkfVr8zeZJS2gRsqnuflfnmG+sC+V4G8pIkSZK0o/bbbz+WLl1a7GLssKL1yKeUNgN/AD5Xty0ieuTfL9vOYUuBEfl0dQ4AqlNKm3cyz8zasDm3qqND6yVJkiSp+yj20PprgZkRcWpEjAF+COwO3AoQEQsi4qqC9D8kt2r93Ig4ICK+CPw7cGNr8+xKHFovSZIkSd1PUZ8jn1L6eUQMAi4DKoFngGNTSnWL1e0PbCtI/3pEHANcBzxH7jnyc4GrdyDPLsNAXpIkSZK6n6IG8gAppXnAvO3sm9TEtmXAZ3Y2z65k42bnyEuSJElSd1PsofXaBXU98s6RlyRJkqTuw0A+wxxaL0mSJEndj4F8hv3j8XNWoyRJkqTsGzp0KNdff339+4jg3nvv3W76VatWERE888wzu3TetsqnoxR9jrx23kZ75CVJkiR1YdXV1fTv379N86yqquKDDz5o8AXBfvvtR3V1NXvuuWebnqu9GMhn2IbNzpGXJEmS1HVVVlZ2yHlKSko67FxtwTHZGeZid5IkSVI3kRJs/ntxXim1qog//vGP2Xvvvdm2bVuD7VOnTuW0007j1VdfZerUqQwePJiysjLGjx/PkiVLms2z8dD6J598koMPPpjS0lIOO+ww/vSnPzVIX1tby+mnn86wYcPo06cPo0aNYu7cufX7Z8+ezW233cZ9991HRBARPPbYY00OrX/88cc5/PDD6d27N0OGDOHCCy9k69at9fsnTZrEueeey/nnn8+AAQOorKxk9uzZrfpd7Sp75DNsw5ZcA3FovSRJktTFbVkPV+5dnHP/+1vQa/cWk335y1/mnHPO4Te/+Q2f+9znAHj//fd56KGHWLx4MevWreO4447jiiuuoHfv3ixYsIApU6awYsUK9t9//xbzX7duHV/60peYPHkyP/vZz1i5ciXf+ta3GqTZtm0b++67L7/4xS8YOHAgv//97/n617/OkCFDOOmkk5g1axYvvvgia9eu5dZbbwVgwIABvPXWWw3yefPNNznuuOOoqqpiwYIFvPTSS8ycOZPS0tIGwfptt93Geeedx/Lly1m2bBlVVVUcccQRTJ48ucXr2RUG8hnmc+QlSZIkdRb9+/fnC1/4AnfccUd9IP/LX/6SPffck6OOOooePXpw0EEH1ae//PLL+dWvfsX999/P2Wef3WL+d9xxB9u2bePmm2+mtLSUT37yk7zxxht84xvfqE/Ts2dPLr300vr3w4YNY9myZdx1112cdNJJlJWV0adPHzZt2tTsUPqbbrqJ/fbbj3nz5hERjB49mrfeeosLLriA733ve/TokRvcPnbsWC655BIARo4cybx583j00UcN5LV91508jrUbtrB3eZ9iF0WSJElSe+rZN9czXqxzt9KMGTOYOXMmN910E71792bhwoWcfPLJ9OjRg3Xr1jF79mwWLVpEdXU1W7duZcOGDaxevbpVeb/44ouMHTuW0tLS+m0TJkz4SLobb7yRW265hdWrV7NhwwY2b97MuHHjWn0NdeeaMGECEVG/7YgjjmDdunW88cYb9SMIxo4d2+C4IUOGUFNTs0Pn2hkG8hm2T0Uf9qkwiJckSZK6vIhWDW8vtilTppBSYtGiRYwfP57f/va3XHfddQDMmjWLRx55hDlz5jBixAj69OnDiSeeyObNm9vs/HfeeSezZs3iBz/4ARMmTGCPPfbgmmuuYfny5W12jkI9e/Zs8D4iPrJGQHswkJckSZIktYnS0lJOOOEEFi5cyCuvvMKoUaM45JBDAFi6dClVVVVMmzYNyM15X7VqVavzHjNmDLfffjsbN26s75V/4oknGqRZunQpEydO5Kyzzqrf9uqrrzZI06tXL2pra1s81913301Kqb5XfunSpeyxxx7su+++rS5ze3HVekmSJElSm5kxYwaLFi3illtuYcaMGfXbR44cyT333MMzzzzDs88+y/Tp03eo93r69OlEBDNnzuSFF15g8eLFzJkzp0GakSNH8vTTT/Pwww/z8ssvc/HFF/PUU081SDN06FCee+45VqxYwbvvvsuWLVs+cq6zzjqL119/nXPOOYeXXnqJ++67j0suuYTzzjuvfn58MRW/BJIkSZKkLuPoo49mwIABrFixgunTp9dvv/baa+nfvz8TJ05kypQpHHPMMfW99a1RVlbGAw88wPPPP8/BBx/Md77zHa6++uoGac444wxOOOEEvvKVr/DpT3+a9957r0HvPMDMmTMZNWoUhx12GIMGDWLp0qUfOdc+++zD4sWLefLJJznooIM488wzOf300/nud7+7g7+N9hGplc8E7E4ioh+wZs2aNfTr16/YxZEkSZLUjWzcuJGVK1cybNiwBgu7Kfuaq9u1a9dSXl4OUJ5SWttcPvbIS5IkSZKUIQbykiRJkiRliIG8JEmSJEkZYiAvSZIkSVKGGMhLkiRJUifkwuRdT1vVqYG8JEmSJHUiPXv2BGD9+vVFLonaWl2d1tXxztqtLQojSZIkSWobJSUlVFRUUFNTA0Dfvn2JiCKXSrsipcT69eupqamhoqKCkpKSXcrPQF6SJEmSOpnKykqA+mBeXUNFRUV93e4KA3lJkiRJ6mQigiFDhrDXXnuxZcuWYhdHbaBnz5673BNfx0BekiRJkjqpkpKSNgv+1HW42J0kSZIkSRliIC9JkiRJUoYYyEuSJEmSlCHOkW/G2rVri10ESZIkSVI3sCPxZ6SU2rEo2RQR+wBvFLsckiRJkqRuZ9+U0pvNJTCQb0JEBLA38GGxy9KCPch94bAvnb+s3Z11lQ3WUzZYT9lgPWWD9ZQd1lU2WE/Z0JnraQ/grdRCoO7Q+ibkf2nNfgPSGeS+bwDgw5SS8wA6MesqG6ynbLCessF6ygbrKTusq2ywnrKhk9dTq8rjYneSJEmSJGWIgbwkSZIkSRliIJ9tm4BL8z/VuVlX2WA9ZYP1lA3WUzZYT9lhXWWD9ZQNma8nF7uTJEmSJClD7JGXJEmSJClDDOQlSZIkScoQA3lJkiRJkjLEQF6SJEmSpAwxkM+wiPhmRKyKiI0RsTwiDi92mbqziLgoIp6KiA8joiYi7o2IUY3SPBYRqdHrR8Uqc3cUEbObqIOXCvaXRsSNEfFeRKyLiLsjYnAxy9wd5f+2Na6nFBE35vfblookIj4bEQ9ExFv53/vxjfZHRFwWEdURsSEilkTEyEZpBkTEwohYGxEfRMTNEVHWoRfSxTVXTxHRMyKujojnI+Lv+TQLImLvRnk01Q4v7PCL6cJa0Z7mN1EHDzVKY3tqZ62op6Y+r1JE/FtBGttTO2vlvXiL93kRsX9ELIqI9fl8romI3Tr2alpmIJ9REfEV4Fpyj004BHgWeDgi9ipqwbq3I4Ebgc8Ak4GewK8jYvdG6X4CDCl4nd+RhRQAf6ZhHfyPgn3XAVOAL5Or072Bezq6gGI8Detocn77LwrS2JaKY3dynznf3M7+84FzgTOBTwN/J/f5VFqQZiHwSXL1+iXgs8CP26vA3VRz9dSX3L3D5fmfJwCjgPubSPs9GrazG9qjsN1YS+0J4CEa1sEpjfbbntpfS/U0pNHrNCABdzdKZ3tqX625F2/2Pi8iSoBFQC9gInAqUAVc1v7F3zE+fi6jImI58FRK6ez8+x7A68ANKaX/KGrhBEBEDAJqgCNTSv+Z3/YY8ExK6dtFLFq3FhGzgeNTSuOa2FcO/BWYnlL6ZX7baOBFYEJK6YkOLKoKRMT15G5QR6aUkm2pc4iIBExLKd2bfx/AW8APUkpz8tvKgXeAqpTSnRExBngBGJ9Sejqf5lhgMbBvSumtjr+Srq1xPW0nzXjgSeBjKaXV+W2rgOtTStd3QDG7vabqKSLmAxUppeO3c4ztqYO1sj3dC+yRUvpcwbZV2J46VON78dbc50XEF4D/B+ydUnonn+ZM4GpgUEppczGupSn2yGdQRPQCDgWW1G1LKW3Lv59QrHLpI8rzP99vtH1GRLwbEf8VEVdFRN+OLpgYmR8e99/54Yj757cfSu7b28K29RKwGttW0eT/5n0VuCU1/PbZttT5DAMqadiG1gDL+UcbmgB8UBd05C0BtpHrwVdxlJPrQfyg0fYL80NQ/xQR/9YZh5d2A5Pyw3tXRMQPI2JgwT7bUyeTH6b9ReDmJnbbnjpW43vx1tznTQCerwvi8x4G+pEb+dJp+J8nm/YESsj1cBR6Bxjd8cVRY/kREtcDS1NK/1Ww6w7gNXI9VmPJfbs3itywRnWM5eSGSK0gN6ztEuC3EXEguQBkc0rpg0bHvJPfp+I4HqgA5hdssy11TnXtpKnPp8qCNDWFO1NKWyPifWxnRZGf9nA18H9TSmsLdv1v4I/kboInAleR+7t5XocXsvt6iNyw35XAcOBK4MGImJBSqsX21BmdCnzIR6fl2Z460HbuxVtzn1dJ059h0MnalIG81D5uBA6k4dxrUkqFc9aej4hq4NGIGJ5SerUjC9hdpZQeLHj7XH6aymvAScCG4pRKLTgdeLBwiKhtSWobEdETuAsI4BuF+1JK1xa8fS4iNgP/JyIuSilt6sBidlsppTsL3j4fEc8BrwKTgEeLUii15DRgYUppY+FG21OHa/JevCtxaH02vQvUAo1X0h4MvN3xxVGhiJhHbi7vUSmlN1pIvjz/c0T7lkrbk/9W9mVydfA20CsiKhols20VSUR8DPg88NMWktqWOoe6dtLc59PbQIOFWfPDSwdgO+tQBUH8x4DJjXrjm7KcXCfQ0HYumrYjpfTf5O4D6/7W2Z46kYj4n+RGh7X0mQW2p3bTzL14a+7z3qbpzzDoZG3KQD6D8oss/AEoXECjR/79smKVq7uLnHnANODolNLKVhw2Lv+zut0KpmZF7hE9w8nVwR+ALTRsW6OA/bFtFcu/kBs2uqiFdOPyP21LxbWS3I1OYRvqR26ubl0bWgZURMShBccdTe6eZDnqEAVB/Ejg8yml91px2Dhyc69rWkindhIR+wID+cffOttT53I68IeU0rOtSDsO21ObasW9eGvu85YBn2r0JLDJwFpyC0t2Gg6tz65rgdsi4mlyq8x+m9yjMW4tZqG6uRuB6cBU4MOIqJtHsyaltCEihuf3LwbeIzev9zrgP1NKzxWjwN1RRMwBHiA3nH5vco9wrCU3N3RNRNwMXJufX7iW3KNhlrlifcfLf0H5L8BtKaWtBdttS0WU//KrcOTDsIgYB7yfUlqdf8LAdyPiL+QC+8vJrWVwL0BK6cXIPQf7J/mVgHsC84A7XWG77TRXT+SCwF+Se/Tcl4CSgs+s91NKmyNiArkvYH5Dbr7vBHLt7Gcppb91zFV0fS3U0/vk1nG5m9wXZMOB7wOvkFt8y/bUQVr6u5dP04/cI83+tYnjbU8do9l78Vbe5/2aXMB+e0ScT25e/P8Cbux0UyBSSr4y+gLOJheMbCL3reuni12m7vwit9pvU6+q/P79gMfJBR4bgb+Q+0DuV+yyd6cXcCe5oGIT8Eb+/fCC/aXkPgjeJ/f863uAymKXuzu+gH/Kt6EDGm23LRW3XiZt52/d/Pz+IPe83bfz9bOkiTocQG7Bwg+BNcAtQFmxr60rvZqrJ3JDebf3mTUpf/whwBPkVrHfQO7G9iKgd7GvrSu9WqinPuQC9hpgM7CK3PPhBzfKw/ZUxHoqSPN1YD1Q3sTxtqeOqadm78XzaVq8zyM33Whxvj7/CswBdiv29TV++Rx5SZIkSZIyxDnykiRJkiRliIG8JEmSJEkZYiAvSZIkSVKGGMhLkiRJkpQhBvKSJEmSJGWIgbwkSZIkSRliIC9JkiRJUoYYyEuSJEmSlCEG8pIkSZIkZYiBvCRJkiRJGWIgL0mSJElShhjIS5Kkj4iIHhFxUUSsjIgNEfFsRJyY3zcpIlJEfDEinouIjRHxREQc2CiPf46IP0fEpohYFRH/2mh/74i4OiJez6d5JSJO78jrlCQpi3YrdgEkSVKndBHwVeBM4C/AZ4GfRcRfC9JcA3wLeBu4EnggIg5IKW2JiEOBu4DZwM+BicBNEfFeSml+/vgFwATgXOBZYBiwZztflyRJmRcppWKXQZIkdSIR0Rt4H/h8SmlZwfafAn2BHwO/AU5OKf08v28A8AZQlVK6KyIWAoNSSv9UcPz3gS+mlD4ZEQcAK4DJKaUlHXVtkiR1BfbIS5KkxkaQC9gfiYjC7b2APxW8rw/yU0rvR8QKYEx+0xjgvkb5LgW+HRElwDigFni8TUsuSVI3YCAvSZIaK8v//CLwZqN9m4DhbXCODW2QhyRJ3ZKL3UmSpMZeIBew759SeqXR6/WCdJ+p+0dE9AcOAF7Mb3oROKJRvkcAL6eUaoHnyd2HHNleFyFJUldlj7wkSWogpfRhRMwBrouIHsDvgHJygfha4LV80u9FxHvAO8AVwLvAvfl9PwCeioiLyS12NwE4Gzgrf45VEXEbcEtE1C129zFgr5TSXe1/lZIkZZeL3UmSpI+I3OT4c4FvAB8HPgD+SG51+h7kFrubAvwHMBJ4BpiZUnquII9/Bi7L768GbkgpzSnYX5rP72RgILAauDKldGv7Xp0kSdlmIC9JknZIREwiF8j3Tyl9UNTCSJLUDTlHXpIkSZKkDDGQlyRJkiQpQxxaL0mSJElShtgjL0mSJElShhjIS5IkSZKUIQbykiRJkiRliIG8JEmSJEkZYiAvSZIkSVKGGMhLkiRJkpQhBvKSJEmSJGWIgbwkSZIkSRny/wH0HgKMGLu9xAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure(figsize=(12, 6), dpi=100)\n", - "plt.ylabel(\"AUC\")\n", - "plt.xlabel(\"epoc\")\n", - "plt.plot(history.history[\"auc\"], label=\"training\")\n", - "plt.plot(history.history[\"val_auc\"], label=\"validation\")\n", - "plt.title(\"Curva de aprendizaje AUC\")\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "8a1c1f41", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AUC-ROC score sobre test: 0.9007239068529334\n", - "AUC-ROC score sobre train: 0.9026233876527804\n", - "Accuracy sobre test: 0.8435436818670352\n", - " precision recall f1-score support\n", - "\n", - " Bajo valor 0.92 0.88 0.90 5176\n", - " Alto valor 0.60 0.71 0.65 1337\n", - "\n", - " accuracy 0.84 6513\n", - " macro avg 0.76 0.79 0.77 6513\n", - "weighted avg 0.85 0.84 0.85 6513\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAG2CAYAAABmhB/TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABDrAAAQ6wFQlOh8AABg8ElEQVR4nO3dd5hbxfn28e/t3nCjdzDN1EAggOm9hxYINYSE35sAoQQIkNBLIAQCoYXQA4RgegcHEzrYdEy1Te82GFxxL8/7xxzZsqwt2pW9kvb++DqXVufMmTOStftoyplRRGBmZmbVr01LF8DMzMzKw0HdzMysRjiom5mZ1QgHdTMzsxrhoG5mZlYjHNTNzMxqhIO6mZlZjXBQNzMzqxHtWroAZmbVQNJmwHbAWOCy8MxdVoEc1M3MGiBpGeA+oAewkwO6VSo3v1vVkPS0pJB0VkuXBUDSTVl5bmrpslQ6SStJ+o+kryXNyN63p1uwPJFtWzUibTugP7AI8H8R8eR8Lp5Zkzmo15C8IJPbVm4g/aKSpuWlf7jM5dlK0lmSDi1nvlZdJPUCngcOBJYExgPfAKNbslwl+DOwGXBmRNzS0oUxq4+Dem37ZQPHDwLaz8frbwWcCRxapvw+B4YD35UpP1swDgCWIAXxVSOid0QsERF7t2CZhmfbpPoSSdoZOAm4KSLOWRAFM2sO96nXps+A5YFDJJ1RT//foQXpK1pEHNLSZbAmWSt7fCoiPmjRkmQiom8j0w3AlR+rIv6w1qZ3gCHAcsDWxRJIWhf4ESmgP7OgCmatUufs8YcWLYVZK+CgXrtuyh4PreN4bv8tQJ0jeSV1kXSgpFslvSnpO0lTJX0p6U5JWxQ5ZwVJQWp6B9iyoK9/rgFKkj7N9h0qqaekv0oaJmmSpLF56YoOlCuSd13bXOc1hqRtJD0maYykHyS9LuloSY363ZG0vqSbs9c4RdI4SS9K+r2kTqWWpyDv3SXdk/1fTJX0raRXJZ0nabU6ztlIUv+8c76X9KSkX9b1mgoHBGafh0GSxkuakP28T5Hzns4+B4dmu35Z7DPQmAGH9aWR1F7SkZKekzRa0nRJoyS9l5330yLn1DtQTlLv7H18K/t/nyjpXUkXSlqsjnO2yuWbPV9daXDgiOy9/lDSBZK61fU6zZotIrzVyEYK5AE8DCwKTCPVjroVpGsPfAvMAlbKP69InodmxwKYSeoXnZy3bxZwYsE5ywIjs2tHVo6RBdsmeek/zdKdCHyU/TyFNKBqbF66p7NjZxVcrzDvwi2KndeI9/PYvHMDGAPMyH6+K+99u6mO88/M3p/c+ePzzg/gNWCRJvw/dwMeLCjbWGBC3vN5ygT8qcjrmZ73/DGgaz2fq5uAq7OfZwDjCvI7quC8e7P3P/d5mVzsM9DQ+1hfGqAt8L8ir2ta3vN3iuSXO7ZVkWPrFnxuJjHnsxykMR0bFTlvq7w02wET8/5vZuYdGwy0b+m/F95qc3NNvUZFxChgANAV2Lfg8K6koP98RHzUQFZjgIuATUh/8HsDXYAVgMsAARdI+knetb+IiCWAv2W7BkUaGJW/DSpyrTNIXzh2BrpERHdgg0a81sK8Z2/AFVmy6aQ//o0iaRPg79nT+4HlI6IX6T7lk4C9gT3rOf8I4CzS+3cssHD2erpkr+8D4MfMaVEpxb+Bn5IC6xnAEhHRMyIWIn2h+l2Wf3559gbOz572B5bNXk934GjS+7MDcGU9192dNPjyCKB7RPQA+gDPZscvlNQ7lzgi9s7+D+7Idt3RiM9AqQ4EtiV9YTiU9LnpBXQClsrK+1RjM5PUg/SFaXHgE1Jw7hoR3YBNgaHAwsCDddXYM3eSvlyvGBE9Se9z7kvVxsBhjX6FZqVo6W8V3sq3UVDjBvbKnj9TkO7+bP+vi51X4jVvyM69scixs7JjTzeQx6fMqdGvVU+6pymhxp29/ln5r7WE15Wr/b0CtCty/EzqqBWT/oCPIwXKfnXkvxJzanI/LqFcO+Zd98BGniNgWHbOfwEVSXNkXr5r1PG5CuCgIucuBUzNjh9Sz+fypjrKV+/x+tIAV2X7ry7x/7doTR04hTm185XreK1jszR/LTi2VV6+A+t4nx/Kjj9ZSnm9eWvs5pp6bXsE+B7YXFIfSPemA7uQ/mjdVYZrPJQ9blaGvAZExDtlyCc3EPDfpIB2cUTcWMK5vYFtsqcXRsSMIskuIdUOi9mHFNhfiIjBxRJEaiF5MXu6Q2PLxpz+6cERcVsjz/kRkOtjPyciokiaa4Cvs5/3ryOfz4F5rhkRXwMvZ0/XKjw+n43LHpcsU34/zx5vjYgPCw9mr/Xq7OkB9eRzQR3v8/3Z44J+n6yVcFCvYRExjfRHWEDudrDcven3RsSExuQjacls0NDL2YCxmXkDgu7Lki1VhiIXDYClkrQEqQm1K6kJ9KQSs1iP9J5Bah2YR/bevVrH+ZtkjxtKGlnXlpduuRLK1i97fKSEc9bPHicy54vEXCJiJnOaqdcvlgZ4tY5ABfBV9tirhHKVw6PZ4+6SHpX0c0mLNyUjSR2YE2zr66rJHVs2+5JczCt17G+p98laCQf12ndz9niIJDGnpndTY06WtCmp6fYU4CdAT1Jw+JY0K9iYLGnXMpR1VHMzyEaU30/qW34bOCAiZpWYTe4P9fRIYxPq8lUd+3O1xs6kvtm6ttzo9y4llC0XsD4r4Zzc6xnRwHvxZfZYV19xfV8Cp2SP83Myo3lExHOkvurppLEKdwAjJX0k6SpJdX1BKaY3aeAd1P1/C3PeJ6jjvarnC3PuffIcITZfOKjXuIh4jXTf+oqkAVs/IjWjNjh/tdKc17eRmpJfB3YCFoqI7hGxeKRBUIWD8JpjZhnyuB7YiPSl46cR0RL3RucCww0RoUZsh7ZAGWtGRFxAGqPwB1LLzGjSAL4jgFclnV/P6WY1xUG9dcjV1i/MHm+ppxk1Xz9S0/BMYPeIeKxIkGxSU+f8IOkUUvfCVGCviCilNpsvVztvL2mRetItXcf+b7LHUprVG2tk9rh8CefkXs+SDdxfv0z2+G3JpWqe3JiF+u7b71FfBpHuuLg4In5KWnhlI+Z0Df1J0uaNKMdo5nyxrOv/Fua8T7Dg3yuzejmotw63kv5Y5ZpGb64nbb5ls8dREVFXc+R29Zyfa+pVPWnKQtJepIU3IK2k1Zzbpd5gzoQ8W9ZxvW7U3fecu/amkno2oxz15b1bCefk+v67koLdPLJgv3VB+gUl14WzTLGDWbdRo5vRI3mZ1IqU+2K3VSPOm0bqsoF0m1xdcp/5zxvonjFb4BzUW4GIGAkcD1wM/LHYqN465EYWL17snlxJa5PuE67L+OyxZyOv1yQFI93Pj4hbm5NfRIwGnsieniSpbZFkv6fuvvC7SP3PXYC/1nctSV2zAVqNdVP2uLGk+kZf53uLtHgJwGlZkCx0OHMGO95eQnnKIRdIfyKp2Cj2g5jzBXMu9b132eC/6dnTxs7ed2f2eLCkFYtcb0ngt9nT/o3M02yBcVBvJSLi8oj4Q0TUG2QKvEAaFCfgDmVLuWbTcu4NPE7983nnbk9bQ1LRGmJzZc3juZHu9wKnlSnr3H3oGwJ3Slo2u14XSScAZzPnS89csi8FuRH3v1GaTnedvDK3k7SepHOBj6l7YFqxvB8nvU6AmyWdlv+FS9Iykk6SdEbeOUEa6AjpdsZbJC2dpe8s6Sjg0uz4TRExtLHlKZOHSLdYdgD654Jp9l7/FriOObX5QvdLuk7SDpK653Zmd2xcBuSWHx7QyLJcBXxB+kL2uKStc1+CJPUjfdnrSWp2v7iE12i2QDioW50iYixwcvZ0K+ADSeNJgfwe0kjeY+vJ4mnSzGbtgBeV5hn/NNs2LlMx12JOLW4rYEQ9t5H9obGZZs33x2VP9wY+lzSaFMj/Rgqs99dz/tWkgVszSc3AbyrNZf896X17nfQFZDHqmXu/Dr8k3crVHjgX+Ca71XACKSD9lTRQLL889wKnZk8PBr7IXs940qx77Ulf0o4qsSzNFhFjSFMEQ+ru+FjSONJ7fTVpfYIH6zi9C/B/pClux0oam70PXwPHZGnOj4jnG1mWccAepHERK5EGlP4g6QdS18fqpL73Pdz0bpXIQd3qFRH/IP2Re45Ua29Hmj7zQtL93HXe+pNN2rItqcn4c2Ah0gCv5Wl8c2gpelP/LWQlLaQREZeR+k8fJwWYDqTWh2OA/Rpx/sXAGqSg+R4pwHcnBYXngPOAdesZr1BXvj+Q+tT3IY32/obUUjGRdH/0n7O8C887n3Rv/B3ACNL7MYH05etXwE4RMbGUspRLRFxF+vKUax1qQ5ob/5cR8dt6Tj0a+CMpqH9E+nx2IPWl3wFsHRGn1n160bK8AaxJmlb33Wx3G9KtnX8jzbhX9H5/s5amxg2CNjMzs0rnmrqZmVmNcFA3MzOrEQ7qZmZmNcJB3czMrEY4qJuZmdUIB3UzM7Ma4aBuZmZWB0ndJH0pKSRtkLf/6Wxf4da34Pwekm6QNFrSBEl3F5sOWdImkgZLmizpM0kn1zGlc728pq+ZmVndTqfuWPkCaebIfJ8WPL+DNJnR4aTZJM8DBkjaIJugi2wK7sdIE12dBqwDXECasOpvpRTWQT1P5/WO8kw8VlHGvHJlSxfBrKhO7eb/6ovQ/L/Lk9+4ssnlzGrdvwNOIE1ZXGhsfbMLZusF7AjsGBEDs33DgaGkGRRzCwidCHwP7J+tFviEpEWBUyVdERFTG1tmN7+bmZkVdwUpmA9vKGEddgbGkmrgAETEcGAIaXGl/HT3ZwE953bS4kH9Srmgg7qZmVUutWne1tTLSvsAawPn1JNsS0kTJU2R9IykLQqO9wWGx7zzsQ/NjiGpK2lRqmEFaYaRFnvqSwnc/G5mZpWr9LFiBaerO2khpXzjI2J8Ped0AS4BTomI8XWMV3uGtILgB8BSpL71/0naMiIGZ2l6kWrqhcaQFqCCVBunMF1ETJM0KS9doziom5lZ5WpGbTtzPHBmwb6zgbPqOec00uqH/6orQUTMlaekh0mr+p3O3E3rC5SDupmZ1bJLgOsL9tVXS1+eNDBuL6BHVkvPLdvcTVK3bPnjuUTEREmPkJZEzhlDalov1Iu0BDPMqaH3KChHB6BLXrpGcVA3M7PK1czm96yZvc4gXsSKQAfgkSLHngJeAjZuZF7DgO0kqaBfvS/wdla+iZK+YN6+89UAMW9fe708UM7MzCrXgh8oNwTYumA7Ljt2OHBk0WKmAW+7Aa/k7R5AqpVvm5duVWA94NGCdHtIap+3bz9SLX5QKYV3Td3MzCpXM2vqpYqIscDTcxdhdhlei4jXJW1Ourf8PtJkM0uRmuyXAPbNy2uwpMeAGyWdwJzJZ94C7s27xEXAQUB/SVeRRt2fCJxacJtbgxzUzczMSjOC1ER/PrAwMJFUoz48Il4uSLsfqV//WlLMHQgcnZtNDiAiPpS0Q5buUWAUaXDfxaUWzEHdzMwqV/NHvzdbRDwNc2bQi4gPgZ0aee444LBsqy/dIBrfV18nB3UzM6tcC7j5vdo5qJuZWeWqgJp6NXFQNzOzyuWaekn8FcjMzKxGuKZuZmaVy83vJXFQNzOzyuXm95I4qJuZWeVyTb0kfrfMzMxqhGvqZmZWuVxTL4mDupmZVa427lMvhYO6mZlVLtfUS+J3y8zMrEa4pm5mZpXLt7SVxEHdzMwql5vfS+KgbmZmlcs19ZI4qJuZWeVyTb0kfrfMzMxqhGvqZmZWudz8XhIHdTMzq1xufi+Jg7qZmVUu19RL4q9AZmZmNcI1dTMzq1xufi+Jg7qZmVUuN7+XxEHdzMwql2vqJfG7ZWZmViNcUzczs8rlmnpJHNTNzKxyuU+9JP4KZGZmlUttmrc19/JSN0lfSgpJGxQcO0zS+5KmSHpT0m5Fzu8h6QZJoyVNkHS3pCWLpNtE0mBJkyV9JulkqfRvNA7qZmZWuaTmbc13OkVatSXtD1wH3AHsDAwG7pO0cUHSO4AdgMOBg4DVgAGS2uXltTLwGDAC2A24FDgHOKHUwrr53czMrAhJfYHfkYLr1QWHzwZuj4jTs+dPSVoHOAPYJTu/H7AjsGNEDMz2DQeGAnsDd2bnngh8D+wfEdOAJyQtCpwq6YqImNrYMrumbmZmlatlm9+vIAXz4XMVSeoDrMqcoJxzO7CtpI7Z852BscDjuQQRMRwYQhb489LdnwX0/Lx6Av1KKbCDupmZVa4Wan6XtA+wNqkZvFDf7HFYwf6hQAdgxbx0wyMiiqTrm12nK7BskbyGAZF3rUZx87uZmVWsJowVKzy/O9C9YPf4iBhfzzldgEuAUyJifJEy9MoexxbsH5M99s5LV5gmly6XpmexvCJimqRJeekaxTV1MzOrZccDXxRsxzdwzmnAN8C/5m/Rys81dTMzq1jNramTatzXF+yrr5a+PGlg3F5Aj+z63bLD3SR1Y06NvAcwMu/0XA1+dPY4htS0XqhXXpqxeXnll6MD0CUvXaM4qJuZWeVqZkzPmtnrDOJFrEjqF3+kyLGngJeAA7PnfZl7EF1fYBrwcfZ8GLCdJBX0q/cF3s7KN1HSF8zbd74a6dUX9rXXy83vZmZWsSQ1a2uCIcDWBdtx2bHDgSMj4mPgfWDfgnP3A57IG8U+gFQr3zbv9awKrAc8mnfeAGAPSe0L8hoLDCql8K6pm5mZZSJiLPB0/r68LwevRcTr2c9nAf+R9BGpBr8fsBGwRV5egyU9Btwo6QRgCnAe8BZwb94lLiJNTNNf0lWkUfcnAqcW3ObWIAd1MzOrWGXoU58vIqJ/Nkr+j9k2HNgrIgYXJN2P1K9/LSnmDgSOjogZeXl9KGmHLN2jwCjgTODiUsvloG5mZhWrEoJ6RDxNkd79iLgBuKGBc8cBh2VbfekGAYVTzJbMQd3MzCpWJQT1auKgbmZmlcsxvSQe/W5mZlYjXFM3M7OK5eb30jiom5lZxXJQL42DupmZVSwH9dK4T93MzKxGuKZuZmYVyzX10jiom5lZ5XJML4mDupmZVSzX1EvjoG5mZhXLQb00HihnZmZWI1xTNzOziuWaemkc1M3MrHI5ppfEQd3MzCqWa+qlcZ+6mZlZjXBN3czMKpZr6qVxUDczs4rloF4aB3UzM6tYDuqlcZ+6mZlZjXBN3czMKpcr6iVxUG/F7r38cHbefC0A/v3gi/zmzFvnSfPYdceyxQar1JvPo8++w8+OvXqe/ZuvvwoDrz+2wXJsetCFvP7e5/PsX27J3myy3kr8ePVlWXf1ZfnRasvQvVtnAJbZ+mS+Hzuxwbyteg1543Wef/YZ3nnnHb768gtGj/6eKVOm0qtXT/quvga77PpTdt51tzqbZ0eN+pZ/3/wvnnv2Wb7++ivatmnDMssux3bb78DBhxxKly5dSirPeeecxZ139Adgg59syA03/bu5L9Eawc3vpXFQb6V+vtP6swN6Y/wwaSo/TJpa9NjY8ZMaPH/kd+PrPDZ9xsyi+087fBd+sfvGjSug1Zzb/vNvHhvw6OznXbp0oV37dowaNYpRo57huWef4d577uKyK6+ia9duc5372quvcNwxRzFu3FgAunbtysxZsxg+bCjDhw3loQfu5/p/3cLiSyzRqLK88fpr3HXn7WV7bdZ4DuqlcVBvhXp178KFf/gZYydMYsSocazeZ8kGz7n0lic475pHG0xXlxW3P6Xkc2bNCj76fBRvDP2cIcO+QBLnHrNHk8tg1eUnG27ERhv1Y+111mGZZZalS9euAHw3ahT33Xs3//zHFbzy8ktcfOFfOePsc2ef9+233/D7o3/H+PHjWGPNNTn9zHNYY821iAhef+1Vzjr9VD7//DOO/t3h9L/zHtq2bVtvOaZPm8Y5Z55O27ZtWW21vrz77jvz9XXb3BzUS+Og3gr99YS9WXzh7hxz/u3ss8P6rN6npUtU3JHn3sasWTH7+ebr198NYLVl35/vX3T/Iosuyv/77RFMmTKF66+9mkcefpA/nXYG7du3B+CWm/7F+PHj6NKlC1f84xoWWXRRIAWH9Tf4CX+/4h/8fO89GD5sKA8/+AB77LV3veW4/rpr+Pjjjzj01//H6O+/d1C3iubR763M1hutxi9235iX3/qE6+9+oaWLU6/8gG5WaO211wFgypQpjB83bvb+5597BoBddvvp7ICeb+WVV2GzzbcA4MEH7qv3Gh99+CE3XHcNSy21NIcfeVS5im6lUDO3VsZBvRXp1LE9V566P9Onz+So824nwkHTqtcbr78GpL723gsvPHv/iK+/BmDFFetuglqxz0oAvP7aq0yZMqVomojgnDNPY/r06fzptDPo3LlzuYpuJZDUrK21qZrmd0mdgDuBv0XEsy1dnmp0xhG70mfZRfn7zf/j7fe/Kunc/XfZgEP22JglFunOD5OmMvyTkTz89Ntcd/fzTJhY/I9ivqdvPoHV+yxB+3Zt+eb78Qwe8jHX3/08g4Z83NSXY63QpEmTGDliBA89eD8333QjAAcefEjRP94zZ82qM59Z2bFZs2bxyScfs/rqa8yT5o7+tzFkyBtsv8OObLHlVuV5AVayBR2YJe0CnAysAXQHvgLuB86OiHFZmpuAXxY5feeI+G9eXh2A84BfAAsBg4CjImJ4wTX7AlcAmwATgFuA0yJiWqnlr5qgHhFTJG0J/L2ly1KN1u27DEcftDWfjxjNn68ufcDbysstxtRp05k4eRo9F+pMv3VXot+6K/Hb/bZgn99f0+CXhI3WWZEx4yfRQWKFpRdhhaUX4YBdN+TK/zzFiX+7p6kvy1qB70aNYtutNptnf7t27TngoIM58qhj5tq/5FJL8cnHH/PRhx/UmeeHH7w/++dR3347T1D/ZuRILr/0Yrp168ZJfzq1ma/Aqkxv4CXgcuB7YC3grOxxh7x0HwMHFZw7tOD55cD+wPGkLwenAk9IWjPvC0Iv4EngA2BvYGngEqALUHKfT9UE9cxA0pv6VEsXpJq0aSP+cfqBtGvXluMuuJNJUxr/5e/ZVz/g5gcG88TgoXzz/QQgjZ7/+U4bcPZRP2W5JXvzwJVHssG+5zN63Nz3jY+bMIlLbnqcex5/g/c+GsGUqdPTYKU1luPUw3dhp83W5KiDtubb0RO46MaBZX3NVjvatG3LwgsvAsCECeOZNm0akjj4F4dwyKG/nmf0+qabbs4nH3/Mfx99hN8e8TuWXnqZuY6/+87bDB40ZzzJxB9+mOea5//5bCZOnMjJp5zGYostPh9elTXWgq6pR0ThhB1PS5oKXCtpqYj4Ots/OSJerCsfScsA/wccGRE3ZvteAT4HfgtcmCU9nNQisFdEjM7StQOuknR+3vUapdr61P8FHCzpSkm7SFpf0o/zt5YuYCU69uBt+PEay/HAE0N49NnSRu6ed82j3Pbwy7MDOsCY8ZO45s5n2fm3lzNt+gyWXLQHx/5im3nOfev9rzj1sgd4/b3PmTJ1OpD6KV999zP2Ovqf3Pe/NwA46bAd6dHN/ZVWXO/evXny2Rd48tkXeOm1N3nksf9xwEEH8+9bbuJne+7G66+9Olf6gw85lG7dujF16lSO+M1hPP/cM0yePJmJE3/g8cf+y7FHHUHbtnPqM2oz95/BgY8N4OmnnmTNNddi/wMKK2K2oFVIn/r32WOHEs7ZgRRj78rtyIL2QGCXvHQ7A//LBfTMndm5+S0DjVJtQf1hUtPEkdnPLwOvZNur2WOjSOouaZn8LWaW3H1R8VZYemFOPXwXxv8wmRMuvLuseb8x9AvueiwNVtpli7VLPv/Uyx4AoFuXjmy90WplLZvVpjZt2rDMMsty8p9O47gTTmLMmDGcfOLxTJ48eXaaJZdaiksuu5KFFlqIzz79lN8d/hs23mBdNtlwff5w/LH88MNEjj/xpNnpu3fvPvvn8ePH89fzz6Nt27acftY5tGlTbX8ia1ALjX6X1FZSp6yyeAbwYER8mpdkZUnjJE2T9JqkPQuy6At8GxFjCvYPzY7lpxuWnyAixgIjCtI1SrU1v29dxryOB87M3zHj2yG0X3LDMl6i5V14wt507dyRM654kLETJtG189xfNNu2SZ/6dm3bzD42acr0Ro+Mf+Xtzzhot41YcZmFG05c4JMvv2PUmAks2mshVly69POtdfv5/gdw+aUX8+033/DCc8+y3Q47zj620cb9uO+hR7n9tv/w0ouD+W7UKLp07cr662/AIYf+mhEj5rRoLr/CCrN/vvofV/Ddd6PY5+f7sfzyKzBp4txdSjNmzgBg5syZs4917NSpwQlsrOVI6k5q3s43PiLqnuYy+YxUiQT4L3Bg3rE3SJXId4GewBHAfZL2jYhc7akXMLZIvmNI/faUmK5RqiqoR8QzZczuEuD6/B3tFlv3izLmXxGWWyoFy3OO3p1zjt69znQH7LohB+yavtBstN9feKvE0fFmC1rHjh3p0bMno779li++mHftgEUXXYyjjz2Oo489bp5jTz7xeJZm0bn63L/+On3u777zDu6+8446r/3G66/Rb8PU2/f3y//BNttu16zXYnUrQxP6PBU44GzS4Lf67AJ0BdYETgMekrR9RMyMiMsKyvggaWT7OUB5m0RLVFVBPUfSmsBmpG8xo4HnI+LdUvLIvqXN9U2t83qeXKJUP1l7eQA+/er7BlLOa4WlF2bRXgul878u/Xxr3SZNnMiY0alls5TFWSKCRx95GIBdf+pphytdGYL6PBU4Cv72FxMRb2U/Ds4GuA0B9qJI0I6IWZLuAS6U1DkiJpNq2j2KZN2LFLdyGpuuUaoqqEvqCPwb+Bmpt2Qq0BEISXcDv2jKfX21bOP9L6j3eG4VtrpWaavPj1Zbhn13XB+g5AF4AH/O5nGfOHkqT700vIHU1prMmDGDdu3q//P071tuYsaMNADzxxv8pNF53/affzNs6Ht069aNAw/6xVzHLr3iqnrPPf2UP/LgA/d5lbYFqLkxvVgFrgneAqYDK5dwzjBgcUm9CvrVC/vQh1HQdy6pB7BkQbpGqbZRIOcDu5JuAegZEZ1J/RmHZ/vPb7mi1Z4//HoHrjnrYLbrtzrdu3Wavb/nQp35v302Y8C1x9ChfTtGjBrHpbc8Mc/5r99zKkcduBWrLL/YXN+2f7zGctx16W/52Q6p+fLCGwYydsLkec5v164NC/fsOnvrsdCcMvTq3nWuY1ZbPvzgA35x4H48eP99fDNy5Oz9EcFHH37I+X8+h3/+4woAtt9hR1ZZZdW5zr/s7xfz3LPPzDV97OeffcYF5/+Ziy44H0n88ZTTG71Km7WcChn9vhHQnnRverEytgH2Bd7NaumQRrnPIlVCc+l6kUa0508WMgDYTlLPvH37ZueWfK9vVdXUSTfx/ykirsvtyL6FXSepC3AS8IeWKlyt6di+HYfssTGH7JGWPx03YTIzZ82i50KdZ48K/viLUex3wnXz3KMOsHqfJbnoxH246ESYOm064ydOoVvnjnTulAbkzZo1i8tvfYoLb3is6PX7/WilOtdjf/uBM+Z67q6T2vPWm0N4680hQOo/79KlC5MmTWLq1DlLAG+19Tace/5f5zn3v48+wo3XXwukpvlZEUzJRsh36tSJk085jZ/used8fw1WfSTdS7qb6i1gMvAj4MTs+f2SlgduBvoDH5KayY8ANiAvgEfEl5KuBy6SNJM0+cwpwDjgmrxLXg0cneV9Pmlw3kXA1aXeow7VF9R7U3dzxDCaMFLQ6nbv46/Ttq3YeJ0+9Fl2EXr36ErnTh35dvQPvPvh1zz45Jvc+tBLdU5mc+Q5t9Fv3T6st/pyLLbwQvRaqAtTpk3nvY9GMOiNj7jx3hd4Y2jNjU20MlhhxRW54MKLefmlF3n3nbf57rvvGDduLB06dGDFPn1Ya6112PWnu9Nvk02Lnv+bI47k2Wee5v3hw/juu+9oI7HSyquw6Wabs/+BB80zIY1VrhaYvv1lYD/gj6TW7E+B60hTlE+TNIEUmE8DFgOmkb4E7BwRhTWUY4EfgAtI08S+AGyXm00OICLGSNqWNE3s/aRpYq8nzT5XMlXToh6S3gDeiYhfFDn2b2CtiFivqfl3Xu+o6nkzrFUY88qVLV0Es6I6tVswa6CtdvJjzfq7PPyvO7aqVV2qraZ+LnCXpBWAe4BvSN+U9gH6kfohzMysRrTChdaapaqCekTcK2kv0j2HF5NGwAfZrQYR8VALFs/MzKxFVVVQB4iIB4EHJXUljXwfGxHzjtIyM7Oq16aNq+qlqLqgnpMFcgdzM7Ma5ub30lR8UJd0eQnJIyKK3wNlZmZVZ0EvvVrtKj6oAz8tIW2QbiEwMzNrdSo+qEfEii1dBjMzaxmuqJem4oO6mZm1Xm5+L01VBnVJKwOrAp0Kj0XEvQu+RGZmNj84qJemqoJ6ttj9fcBWuV3ZY/6MQ20XZJnMzGz+cUwvTbWt0vZXYAlgc1JA34sU4G8APgE2brGSmZmZtbBqC+o7AecBL2XPv46IZyPiN8ADwAktVjIzMyu7Cll6tWpUVfM7aZ73LyJipqSJwMJ5xx4lzQdvZmY1ohXG5Waptpr6F8Ai2c8fALvnHesHTFngJTIzs/nGNfXSVFtN/XFgO9Jgub8DN0vaiLSe7YakRV7MzMxapWoL6icDXQAi4t+SfiAtu9oZOAq4pgXLZmZmZdYKK9vNUlVBPSImAZPynt9HqrWbmVkNao1N6M1RVX3qkl6QdKSkRVu6LGZmNv9Jzdtam6oK6sAI4G/AV5Iek3SIpIVaulBmZjZ/eKBcaaoqqEfEPqTb2v4PmAFcD3wj6R5JP5PUsUULaGZm1oKqKqgDRMQPEXFLROwKLAkcB/QGbge+adHCmZlZWbn5vTRVNVCuUER8L+kFYHlgNWDxFi6SmZmVUWtsQm+OqgzqklYC9s+2NUg19DuB/i1ZLjMzKy/H9NJUVVCXdDwpkK8PjCNNC3ss8HREzGrJspmZmbW0qgrqwDnAg8C5wH8jYnoLl8fMzOYjN7+XptqC+mLZBDRmZtYKOKaXpqqCugO6mVnr4pp6aaruljYzM7P5RdIukp6RNErSVEkfS7pEUo+CdD+V9KakKZLel/SrInl1kHSRpJGSJkp6XNJqRdL1zY5NzNJeKKlDU8rvoG5mZhWrBWaU6w28BBwO7AhcAhwC3JVXps1I644MBnYG7gBukLRPQV6XA/8POAXYG+gIPJH/BUFSL+BJoEOW5hTgN9l1S1ZVze9mZta6LOjW94i4tWDX05KmAtdKWioivgZOB16KiMOzNE9lt1qfA9wNIGkZ0uynR0bEjdm+V4DPgd8CF2bnHg50B/aKiNFZunbAVZLOz67XaK6pm5lZxaqQud+/zx47ZNORb01ezT1zO7C6pBWy5zuQYuzsdFnQHgjsknfezsD/cgE9c2d27g6lFrTqaupK/0u7AJuRmklGA88BAyIiWrJsZmZWXi01Tk5SW6A9aYKzM4AHI+JTSWtk+4cVnDI0e+wLfJo9fhsRY4qkOyzveV/gxvwEETFW0ojsWEmqKqhnfQ+PAhsBY0kzyS0OnAy8KGmXiBjbYgU0M7OKIqk7qXk73/iIGN/AqZ8BS2c//xc4MPu5V/Y4tiB9Lnj3zktXmCaXrnfe88ama5Rqa37/G7ASsGNE9I6I1SOiN2kww0rZcTMzqxFlaH4/HviiYDu+EZfeBdiENNBtdeChrPZe0aqqpg7sDpwUEY/n74yIxyX9CfgraWCCmZnVgDI0v19CWqY7X0O1dCLirezHwdkAtyHAXsB72f4eBafkavC5vvExRdLk0uX3nzc2XaNUW1DvSt3Lq47MjpuZWY1o08yonjWzNxjEG/AWMB1YGXgo+7kv8Fhemlz/97C8x8Ul9SroV+/L3P3xwyjoO89ueVuSefvtG1Rtze9vAEcVNoFIagMcDbzeIqUyM7NathFpcNzHETEVeAoovCd9P2BoRHyaPR8IzAJ+lkuQjQvbgTQ2LGcAsJ2knnn79s3OHVhqQautpv4n0ov8UNIDpFr7YsCewBI0Yfi/mZlVrgU9+l3SvcCrpNr5ZOBHwInZ8/uzZOeS7l+/inT72dakgXT75fKJiC8lXQ9cJGkm8BVpYplxwDV5l7yaVCm9X9L5pMF5FwFXl3qPOlRZUI+IZyVtCpxKegNzfQ7PA+dFhGvqZmY1pAXmfn+ZFJz/SGrN/hS4DvhbREwDiIjnJe0N/Jl0e9rnwP9FROG968cCPwAXAAsBLwDbRcS4XIKIGCNpW+AK0peGCaQxAKc2pfDyrd1zdF7vKL8ZVlHGvHJlSxfBrKhO7Vgg0Xbnf77UrL/LA47YqFWtCFNtfepmZmZWh4pvfpf0IHBCRHyQ/VyfIDXHvwzcmA1oMDOzKuWlV0tT8UGd1A+RG+3enRS467M0cBBptOKh869YZmY2vzmml6big3pEbJ3381aNOUfSgaRBB2ZmVsW0YLrua0bFB/UmeoK0BJ6ZmVWxNo7pJam6oJ5NNLMNsCrQqfB4RFwSEd8Aly3ospmZmbWkqgrqkpYAniYF9IDZ7TL5/eyXLOBimZnZfOKBcqWptlvaLiEtVr8sKaBvBKwAnA58QAr2ZmZWI6Tmba1NVdXUgS2AY4AR2XNFxOfA+Upf564Edm6pwpmZWXk1d0GX1qbaauo9gFERMYu06s5ieccGA5u1SKnMzMwqQLUF9U9Iy9EBvAv8Iu/YXjRh7VkzM6tcbn4vTbU1vz9CWontTtJE+g9I+pa0tu0SwMktWDYzMyszD5QrTVUF9Yj4U97PAyRtAuxNurXt8YgY0GKFMzOzsnNML01VBfVCEfEqad1bMzOzVq+qg7qkNYA1ge+AZyNiZgsXyczMysij30tTclCXdEa5Lh4RDU7lmt2qdiKpmb09cBfwV9Ii8oeS7lcP4F1J20TEd+Uqn5mZtSyH9NI0paZ+Fg2vlNZYjZmf/Q/AX4AHgAnAacA6pPvR/wAMBdYGTgXOIN3HbmZmNcAD5UrTlKD+LOUL6o3xK+DciDgLQNI9wH3AsRFxZZbmv5JmAL/DQd3MrGZ4QZfSlBzUG7v8aRmtCDyV9/xJUovMawXpXiVNH2tmZtYqVcNAuY7A5LznuZ+nFqSbRnW8HjMzayQ3v5emWoJgseb+BdkFYGZmLcAxvTTVEtSfkjSrYN9zBfuqbcpbMzNrgGvqpSlrUJfUCdiHtLDKUkBX6r4jISJi20Zke3aZimdmZlbTyhbUJW0J9AcWZ8694zAnqOc3l4tGNp9HhIO6mVkr5dHvpSlLUJe0IvAQ0A14D3gcOBb4AbiUFOi3AVYizf52DTCjHNc2M7Pa5eb30pSrpn4CKaD/F9gjIqZLOhb4ISJmz0An6TfAlcB6EbFbma5tZmY1yiG9NOUaXLYdqTn9tIiYXleiiLiWNPPbzpKOKNO1zczMjPIF9WWAmcAbefuCdI95oauzY4eU6dpmZlaj2kjN2kolaV9JD0j6UtJESUMk/Vp5/QCSnpYURba+BXn1kHSDpNGSJki6W9KSRa65iaTBkiZL+kzSyfnXK0W5mt9nAWMjIn/w20Sgu6S2+aunRcQESeOB1cp0bTMzq1Et0KV+PPApqVt5FLA9cB1pxtL8gdsvkNYfyfdpwfM7SCuJHg5MAc4DBkjaICJmAEhaGXiMNBYtt7bJBaSK8t9KLXy5gvpXwIqSlBfYvwD6ZgWcXYOX1APoybwzwpmZmc2lBQbK/bRgtc8nJS0MHC/p3IjIzY8yNiJerCsTSf2AHYEdI2Jgtm84aRGyvYE7s6QnAt8D+0fENOAJSYsCp0q6IiJKipXlan5/n7Qsan7t+4XssfCbzLnZ4wdluraZmdUoqXlbqepYvvsNoDtp7pXG2hkYS6qB5/IeDgwBdilId38W0HNuJ1V++5VwPaB8Qf0J0iDFnfP2/ZPUd76/pLcl/UfSm6SV1AL4V5mubWZmNj9tBnwVERPy9m2Z9blPkfSMpC0KzukLDC/oloZUU+8LIKkrqVl/WEGaYaQ42ZcSlav5/U5gPaBTbkdEvCHpeOBiUp/CmgXpLy3Ttc3MrEY1ZbBbPkndSbXsfOMjYnwjz98M2J/Ux57zDHALqcV5KVKL9P8kbRkRg7M0vUg19UJjgN7Zzz2zx7nSRcQ0SZPy0jVaWYJ6RIwkrXteuP9ySQNJU8cuC4wDHouIJ8pxXTMzq21l6FI/HjizYN/ZwFkNX1vLkAa7PQVcntsfEWcWpHsYeBc4nbmb1he4+b6gS0QMA/48v69jZma1pwwD5S4Bri/Y12AtXVJPYABpENvP8gbIzSMiJkp6hFSBzRlDqswW6gWMzn4emz32KLh2B6BLXrpGq5ZV2haIL5+/tKWLYDaXr8dMaekimBXVZ9FODSeqAFkze6Oa2nMkdQYeJgXbfhExrgmXHgZsV3BXGKR+8rezsk2UlLtTLN9qpHFqhX3tDSr7cqWS1pV0kqQrJd1QcKy9pKWK3XxvZmZWqE0zt1JJakca97U6sFNEfNWIc7oCuwGv5O0eQKqVb5uXblXS+LNHC9LtIal93r79SLX4QaWWv5yrtPUGbgJ2ze0ijd47LC9Ze+B1YBFJ60XE2+W6vpmZ1Z4WuE/9KlKAPoE0gdrGecfeADYk3Vt+H2mymaWytEsA++YSRsRgSY8BN0o6gTmTz7wF3JuX50XAQUB/SVcBa2f5n1pwm1ujlGuVto7AQNI3kMnAi8AmFEwTGxGTJF1Hmv99X7ImCDMzs2JaYOnVHbLHi4scWxEYAXQAzgcWJs2eOgg4PCJeLki/H6lP/1pSvB0IHJ2bTQ4gIj6UtEOW7lHSLHZn1nH9BpWrpn448GPSJDQ7R8QnkkYAixVJew8pqBfe02dmZjaXBR3UI2KFRiTbqZF5jSO1Vh/WQLpBwMb1pWmscvWp709qaj8mIj5pIO3bpDltS76p3szMzOpWrpr66qRA/WRDCSNipqRxpAEEZmZmdWqBPvWqVq6g3hGYlN9P0IDOpEEDZmZmdWqBPvWqVq7m95HAQtnN+vWStDYpqH9epmubmVmNWtALulS7cgX1Z7PHgxqR9jRS/7unijUzMyujcgX1y7LHsyRtWCyBpO6S/km6lW0mcGWZrm1mZjWqjdSsrbUp14Iur0s6h3Rv3XOSXiBbFUfStcBywKakuWwBTo6ID8txbTMzq11ln/a0xpVtRrmIOFvSt8BfgK3yDh1Gml0OYAJwUkRcU67rmplZ7WqFle1mKeuCLhHxT0m3klaq2QRYEmgLfEOaceeuiBgDqTm+sevZmpmZWcPKvkpbREwA/pVt88gWrD8OOIY0xZ6ZmVlRrbFfvDkW2NKrecH8WArWjjUzMyvGMb00zQrqkrYHDgXWJI1n+Bi4OSLuy0vTiRTMTyQFcwGTmHfRejMzs7l48pnSNDmoSzofODn3NHtcE/ippH9GxFHZRDN3AatkacaSbmW7LCK+b3KpzcysVXDze2maFNQlbQH8MXv6HfAyKWhvSOonP0LSc8AVwCLAt8DfgKsj4ofmFtrMzMzm1dSa+m+yx2eBPSNiLICk3sD9wGbALUB74HLglIiY1KySmplZq+OKemmaGtQ3Jk31elwuoANExGhJxwGvZHlfGRG/b24hzcysdXKfemmaGtSXAGYAQ4oceyM71pbU/G5mZtYkwlG9FE2dga8L8H1EROGBiJgF5AbBfdzUgpmZmVlp5ut96hExc37mb2Zmtc3N76VZYJPPmJmZlcpBvTTNCeq9JT1Z1zGAeo4DRERs24zrm5lZjZOHv5ekOUG9A3OvxlZMfcfn6Y83MzOzpmtqUL+5rKUwMzMrws3vpWlSUI+IX5W7IGZmZoXc+l4aD5QzM7OK5bnfS+OgbmZmFcvN76Vp6uQzZmZmVmEc1M3MrGJJzdtKv572lfSApC8lTZQ0RNKvVXBvnaTDJL0vaYqkNyXtViSvHpJukDRa0gRJd0taski6TSQNljRZ0meSTi68XmM5qJuZWcVqg5q1NcHxwCTgBOCnwADgOuCMXAJJ+2f77gB2BgYD90nauCCvO4AdgMOBg4DVgAGS2uXltTLwGDAC2A24FDgnu37JVGT69lbr+4kz/GZYRRk3aUZLF8GsqD6Ldlogvd1XDfq0WX+Xj9xkhZLKKWmRiPiuYN+1wH5Ar4iYJWk48FpEHJiXZhAwNiJ2yZ73AwYBO0bEwGzfasBQYP+IuDPbdw2wI7BqREzL9p0PHAEsERFTSym/a+pmZmaZwoCeeQPoDnSV1AdYFbizIM3twLaSOmbPdwbGAo/n5T2ctLrpLnnn7QzcnwvoeXn1BPqVWn4HdTMzq1ht1LytTDYDvoqICUDfbN+wgjRDSTOtrpg97wsML7Ka6dBcHpK6AssWyWsYadbVvpTIt7SZmVnFau596pK6k2rZ+cZHxPhGnr8ZsD9z+rh7ZY9jC5KOyR5756UrTJNLl0vTs1heETFN0qS8dI3mmrqZmVWsMox+Px74omA7vnHX1jKkwW5PAZfPlxdYZq6pm5lZLbsEuL5gX4O1dEk9SSPfvwd+FhGzskO5GnkPYGTeKbka/Oi8dMsWybpXXpqxeXnlX7sD0CUvXaM5qJuZWcVqbvN71szeqKb2HEmdgYdJwbZfRIzLO5zr/+4LDM/b3xeYBnycl247SSroV+8LvJ2VbaKkL5i373w1QMzb194gN7+bmVnFaoHJZ9qRRravDuwUEV/lH4+Ij4H3gX0LTt0PeCJvFPsAUq1827y8VwXWAx7NO28AsIek9gV5jSXdElcS19TNzKxitUDN8yrSJDAnAN0LJpR5I7tv/CzgP5I+IvW37wdsBGyRSxgRgyU9Btwo6QRgCnAe8BZwb16eF5Empukv6SpgbeBE4NSC29waxUHdzMwqVhNnS22OHbLHi4scWxH4NCL6S+oC/DHbhgN7RcTggvT7kfr0ryXF24HA0RExe1apiPhQ0g5ZukeBUcCZdVy/QZ5RLo9nlLNK4xnlrFItqBnlbn71i2b9Xf7lBsu2qnXeXFM3M7OK1aoichk4qJuZWcVq7uj31sZB3czMKpZDeml8S5uZmVmNcE3dzMwqllvfS+OgbmZmFasFbmmrag7qZmZWsdxHXBoHdTMzq1iuqZfGX4LMzMxqhGvqZmZWsVxPL42DupmZVSw3v5fGQd3MzCqW+4hL4/fLzMysRrimbmZmFcvN76VxUDczs4rlkF4aB3UzM6tYrqiXxn3qZmZmNcI1dTMzq1ht3ABfEgd1MzOrWG5+L42DupmZVSy5pl4SB3UzM6tYrqmXxgPlzMzMaoRr6mZmVrE8UK40DupmZlax3PxeGgd1MzOrWA7qpXGfupmZWY1wTd3MzCqWb2krjYO6zWX06O+5q/+tDHr+WUZ89RXTZ0xn4YUXYZVV+7LZllux6+57zU47Y8YMXn35RV584TneeftNvvjsMyZNnsRC3Raiz8qrsN0OO7PrHnvSvn2Hotd6/dWXOeo3v2qwTDfcegerr7FW2V6jVZcXnnmC/z50Lx8Me5eJE3+gR4+erLH2euy+zwGs9aMfNzqfb0Z8xeGH/IwpkycD8NfLr2edH/9knnQjv/6SZ58cyPvD3uXzTz9m3NgxTJwwgc5durDcCn3ot/nW7Lrnz+ncpUvZXqPVrU0LxHRJKwN/ADYG1gKGRcRaBWmeBrYscvrqETEsL10P4BJgL6A98BhwdESMKMhvE+BiYF3gW+Aq4MKIiFLK7qBusz33zJP8+YxTmTBhPAAdOnakXbt2fP3Vl3z91Zd8+MHwuYL6RX85h4fuu2f287Zt29K5cxfGjh3D66++zOuvvsx9d9/OJVdew8KLLFrvtXsvvHCdx9q188e0NZo5YwYXnXsqzzzxXwDatG1Lly5dGTP6e557aiDPP/04h/y/o9j/kP9rVH6XX3Tu7IBen9deHsS/rr5s9vN27dvTqXNnfpgwnvfeHsJ7bw/hwbv78+dL/slyK/Rp2ouzRmuhmvqawK7AS6Ru6rq6ql8gBf98nxY8vyPL73BgCnAeMEDSBhExA2Z/iXgMeBw4DVgHuACYCfytlIL7r6UB8MpLgzn1xOOYMWMGO+26Owcfehh9VloZgAkTxvPOW2/yzltD5jpn5owZ9F54YXb56Z5stc12rNp3Ddq1a8eECeN56L57uP7qf/DB+8M55cTfc/WNt9a7LvLDjz87P1+eVaGbrr2CZ574L23atuXQ3xzNbnvtR+cuXZgwfjx33noDd992EzdfewXLLr8Cm265Xb15PfHfh3j95cH0XXMdhr37Vr1pl1pmeX59xO9ZY+11WW6FPizUvQcAUyZPYtCzT3LdlRcz6tuR/PnU4/nnLffQtm3bsr1mqxgPRcQDAJJuAjaoI93YiHixrkwk9QN2BHaMiIHZvuHAUGBv4M4s6YnA98D+ETENeELSosCpkq6IiKmNLbgHyhmTJk3k/LNPY8aMGRz0y19zxrl/mR3QARZaqDv9Nt2c/3fE0XOdt9c++3PPQwM58pjjWWOtdWbXqBdaqDsHHvIr/nTmOQC8/eYQ3nzj9QX3gqzqjR0zmgfuvg2APfc9iH0P+tXs5u6FunfnsCOPY8ttdwLg+isvYdasWXXmNW7sGK698mK6dluI3xxdWKma13obbMS+B/2KNddZb3ZAB+jUuQvb7LgbJ55xPgBffPYJQ995s8mv0RpHat7WFBFR9weqNDsDY0k18Fzew4EhwC4F6e7PAnrO7UBPoF8pF3RQNx598H6+GTmSRRdbnN8ceXTDJ2TWXHsdOnbqVOfxbbffiS5duwIw7L13ml1Oaz3efP1lpk9Lf99+dsAvi6bZ58BDARg54iveGfJanXldc/mFjB87hkN/czS9F16k2WVbbY21Z//8/XffNjs/q5+a+W8+21LSRElTJD0jaYuC432B4UX6xYdmx5DUFVgWGFaQZhgQuXSN5aBuPPbowwBsve32dQ5qa4o2bdrMrr3XV5MyK/TtyDSGqGu3heoMxMssv8LsLp3XXxlcNM1rL73AUwMfZbU11maXPfctS9nefeuN2T8vsdQyZcnT6tZGzdskdZe0TMHWvQxFewY4FtgJ+CXQBfhf1uSe04tUUy80Buid/dwze5wrXVZrn5SXrlGqpk9dUjvS4IEvImJUS5enVkydOpXhw94DYLXV1+CzTz/hX9ddzasvD2bC+PH0XngR1v/Jhhz0y1+zYp+VG8htbh998D7jx40DoM/Kq9Sb9v/98kA++fhDZsyYwcILL8LaP1qPvfb5OT9ab/2mvTCrCfV9GYxZQa4C9NknH81zfMrkSVzxtz/Ttm07jjnxdNq0aXodZsaM6Yz+7jteefE5brnuHwCssfa6rLa678qY38pQ2z4eOLNg39nAWc3JNCLmylPSw8C7wOnM3bS+QFVNUAdmAS+S3qz/tXBZasbIEV8zY8YMAD7/7FMuOv9cpkyZTIeOHenQsSPfjBzBow89wP8eG8AZ517ANtvv2Oi8/3nFpQAstfQybPCTjepN++7bb7LQQt2ZEdMZ8fVXjPj6KwYOeJifH3Awx/7hj/UOsrPas9gSSwIwedJEvh05YvbzfJ9+/OHsn7//bt7v+bdc/w++GfE1e+9/CH1WWa1J5fh/B+7Bl59/Os/+DTbalD+cfl6T8rQF7hLg+oJ948t9kYiYKOkRYJ+83WNITeuFegGjs5/HZo898hNI6kCq/Y+mBFXT/J4NXPiY9GZYmUwYP+ez/e9/XU/Xbl352+X/5MkXXuXxZ1/i5tvvoe8aazJt2jTOPfMUvvz8s0ble8d/bmHQ888AcNyJf6Jd+/bzpOm20EIcdMivuOHWO3hq0Gs89sxgnhz0Gtff0p9+m24OwJ39b+WWG68rwyu1avKjH284+zNzx78L/x4nt98y53MxaeIPcx17f9i7PHB3fxZbfEl+cdgRTS5Hj5696NV7YTp36Tp734abbMH//e54evT0n6IFobkD5SJifER8WbCVPajXYRiwmuatlfTNjhERE4EvmLfvfDVAzNvXXq+qCeqZ84HTJS3V0gWpFfmDPGfNmsVpZ5/PJpttMbupcpVV+3Lh3/9B586dmTplCrf/55YG83zumSe58tJ0a+UBvziUTbfYqmi6VVdbnd/9/g+svsZaswfctWnThjXWWoe/Xf5Pttp2ewBuufHa2ffOW+vQs1dvdttrPwAefeBurrvyYr4Z8RUzZkzny88/5ZLzz+DlQc/OHrOR37Q+c8YMLrvgbGbNnMkRx/2RTp2bPknM3666idsefJJ7Bw7i9oef5rfHnMTQd97kyF/9nIfuub15L9IaRc3cFlg504C33YBX8nYPIFVEt81LtyqwHvBoQbo9JOXXfvYj1eIHlVKOamp+B9gXWBT4WNJbwDek0YE5ERF7NCajbKDEXIMlPvn6exbqXo7xE9WjS14NZMU+K7FRv03nSbPIoouy/U678uB9d/Pqy3XekgnAS4Nf4PSTT2DmzJnsvNvuHPX7hm8hKkYSRx5zPE8/8TiTJ0/m1ZdfZOttd2hSXladfn3E7/l25NcMevZJ7r39Fu69fe4vlBtusgVt27Zl8HNP0W2hOb+39/S/mY8/HE6/zbdm4822Klt5evTsxZ4/P4g11lmX4377C66+7K+svvaPWHnV1ct2DZtXmxboepPUhTn94ssD3SXlmtWfIdWqTwTuI002sxRwArAEKU4BEBGDJT0G3CjpBOZMPvMWcG/eJS8CDgL6S7oKWDvL/9SC29waVG1BvRtzN0V0a0Ze8wyeuOqKSzn51DOakWX1WWTRxWb/vPwKK9aZbvkV07FvvhlZZ5pXX3qRP55wDNOmTWPbHXbmlDP/3Ky+8GWWXY6ePXsxduwYvv7yyybnY9Wpffv2nHbeJQx+7imeHPgIn338IdOmTWPJpZdhmx12Zftd9uCkow8DYOlllwdg9Hej+M+/rqFjx0786vBjmTxp0lx5TpkyZfbPU6dOZfKkSbRp24aOHeu+NbPQqn3XZM211+PtIa8y8JH7HdRr02LAXQX7cs+3Br4EOpBajxcGJpJq1IdHxMsF5+1H6te/lhRzB5KmiZ2RSxARH0raIUv3KDCKFJ8uLrXgVRXUI2LrMmY3z+CJI4/+/RdlzL8q9OjZk4UXWYTvv/uuUenrGon62isvcdJxRzF1yhS23Ho7zvzzBZ5py5pNEptssQ2bbLHNPMdmzpjBJx++D8Dqa64DwJgx3zNtWpp86zcH7Vlv3mec+DsA+qy8Gv+46c560xZaOPsyPOIrf9mc31piiGxEfNqIS+/UyLzGAYdlW33pBpHmmm+WautTL5tigydaW9N7zk822gSAzz79pM40n32Sji251LzDGd547RVOPPZ3TJkymU0335JzL/hbWeZr/+rLLxg7dky67tJLNzs/qy0vD36OiT9MoEOHjmy+zYLtmhn5dQrmnZvRX2+NVC2d6hWiqmrqAJLWA04BNiPdlD8aeA74S0S8Ud+5Vtwuu+3Bfx95kE8+/ogXBz3PxptsNtfx70aN4vH/PgLAJpvNPWHSkNdf4w/HHMGUKZPZeJPNOO+iS4uOdC8mIuptnv/nFX8HoFOnzmywYbO/wFoNGT9uLNf/4xIAdt1r39nTua60Sl8GPF/31K3fjPiKQ/dNXaV1rdI2c8YM2tbzpfTtIa8x/L23AVh7Xc+jML956dXSVFVNXdLmwGDgJ0B/4Izs8SfAIEmb1XO61WGDjTaefQvZeWedyuAXnps96ccH7w/j5OOPYvLkyXTv0YP9DpozZefbbw7hD8ceweTJk9lw4034y8WX06FD42ekO2if3bnjP7fw2aefzL5eRDD0vXc46fe/48nHHwPgkF//P7p371FfVlaDhrz2EnffdhNffv4pM7O5FKZNncoLzzzB8b/9BV9/+Tkr9FmZQ/7fUWW97tGHHcDdt93E559+PNfkN99/9y339L+ZM086mohgsSWWYvtddi/rtc2aSyUu1dqiJL0ATAB2yx9kIKkt8AjQLSKaHNi/nzijet6MMhs/fhzHHH4Y7w8bCkDHTp1o164dE39I9/8u1L07F1x8BeutP2exoqN+8ytefzWNCeneo0e9Te7b7rAzx534p7n2bfLjNWf/3L59e7p27cakyZOYNjX1iUpi/4N/ydHHnVieF1mFxk2a0XCiGvX4ow9wyflp4GqbNm3o0rUbkyb+MDvQrrH2upzxl0tLul+8MTX1fXbajIk/TADSsr9dunZj+rRpTJ48Z9Ddsiv04cy/XDp7gF5r1GfRTgukCv3yx+Oa9Xd5wz49WlVVv9qa39cD9skP6AARMVPS5cDdLVOs6te9ew+uu/k27r7jNh7/76N8/tmnTJ8+neWWX4F+m27OgYf8ikUXW3yuc/K/EOamg61L7o9kvpNPO4u333yDYUPfY/T33zNhwng6dujA0n1WYp11f8wee+9L3zXWLJKbtQZrrrMee+13MO+8+QbfjvyaiT9MoEev3qyy2upstd0ubLX9zvNlpsE/nXMhb7zyIu++9QbfjfqGcWPHIMRiiy9Jn1VWY5MttmGr7XehfSO7max5WlVELoNqq6mPAk6MiJuKHPsVcGFELNrU/FtzTd0qU2uuqVtlW1A19Vc+aV5N/Scrtq6aelX1qQMPAX+VtF3+zuz5X4AHW6RUZmY2X1T40qsVp9qa308A1gQekzQe+JY0SUB30tR8TZu+zMzMrAZUVVCPiDHZWrW7kW5py6108zzwSORPZG5mZlXPCzSWpqqCOsxere1B3NRuZlbzHNNLU/FBXVLvUtJHRElrz5qZWQVzVC9JxQd14DvmXomtIZ5w3MzMWqVqCOq/prSgbmZmNaI1jmBvjooP6sXuSTczs9bBA+VKU/FB3czMWi/H9NJUXVCXtAXwG2BVoFPh8YhYZ4EXyszMrAJU1YxyknYEngQWATYAviANpFsN6Aq82nKlMzOzsvN66iWpqqAOnA1cCuyaPT89IrYh1dqnkwK+mZnVCE8TW5pqC+qrAwOAWaQR8V0BIuIz4CzgtBYrmZmZlZ3UvK21qbagPgVoE2lpuRHASnnHJgDLtkipzMxsvnDre2mqbaDcm6T+88eBJ4BTJX1Hanr/M/B2C5bNzMysRVVbUL8UWDH7+RTSUqy5OeC/BPZqgTKZmdn80hqr281QVUE9Ih7N+/krSesDKwOdgWERMa3FCmdmZmXXGge7NUdVBXVJ2wP/y/rUyR4/aNlSmZnZ/NIaB7s1R7UNlHsM+FrSZZI2bunCmJmZVZJqC+rrADeS7lMfJOljSedJWruFy2VmZvOBR7+XpqqCekS8ExGnRsTKwMbAA8AvgSGS3pb0p5YtoZmZlZWjekmqKqjni4iXI+I40r3pewK9SLe1mZlZjWiJGeUkrSzpaklDJM2Q9E4d6Q6T9L6kKZLelLRbkTQ9JN0gabSkCZLulrRkkXSbSBosabKkzySdLJU+oqBqg7qkjpL2Ae4C7gAWAwa2bKnMzKycWmhGuTVJ3bwfAu8VL5f2B64jxZ+dgcHAfUXGe90B7AAcDhxEmmtlgKR2eXmtTBozNgLYjXT79jnACaUWXNlA8qogqS2wI3AAsDvQDXgB6A/cFRHfNSf/7yfOqJ43w1qFcZNmtHQRzIrqs2inBdK4PXzkpGb9XV5tiS4ll1NSm4iYlf18E7BBRKxVkGY48FpEHJi3bxAwNiJ2yZ73AwYBO0bEwGzfasBQYP+IuDPbdw0ptq2auzVb0vnAEcASETG1sWWvtpr6t6QJZ9YAzgWWj4gtIuKfzQ3oZmZWeVqiSz0X0Ossk9SHtJDYnQWHbge2ldQxe74zMJY0C2ou7+HAEGCXvPN2Bu4vmGvldqAn0K+UslfVferA5UD/iHi/pQtiZmYLQGUOduubPQ4r2D8U6ECa+XRYlm54zNskPjSXh6SupLFhhXkNIy1c1hd4urEFq6qgHhFnt3QZzMxswWnujHKSugPdC3aPj4jxzci2V/Y4tmD/mOyxd166wjS5dLk0PYvlFRHTJE3KS9co1db8bmZmVorjgS8KtuNbtETzUVXV1M3MrHUpwzSxlwDXF+xrTi0d5tTIewAj8/bnavCj89IVWxK8V16asXl5zSapA9AlL12jOKibmVnFam5Mz5rZmxvEC+X6v/sCw/P29wWmAR/npdtOkgr61fuSLRUeERMlfcGcfvqc1Ugvv7CvvV5ufjczs8pVgTPKRcTHwPvAvgWH9gOeyBvFPoBUK9929suRVgXWAx7NO28AsIek9gV5jSXdEtdoVVtTl9SZNMBgbERMbuHimJlZjZDUhTm3nC0PdM8mOwN4JiJGAWcB/5H0EfAUKQhvBGyRyyciBkt6DLhR0gnAFOA84C3g3rxLXkSamKa/pKuAtYETgVNLXVK8qiafAcim4TuT9E1HpCH/bwBn5q+33hSefMYqjSefsUq1oCaf+XjUlGb9XW5KOSWtAHxSx+GtI+LpLN1hwB+B5UjN8KdExMMFefUg9evvTapIDwSOjoivC9JtkqVbFxgF/AP4a5Hb4eovezUFdUl7AvcAL5Km3vsGWILUBLIx8LOIeKCp+TuoW6VxULdKtaCC+iffNS+or7jIgilnpai2oP4G8G5EHFzk2K3AmhGxXlPzd1C3SuOgbpVqQQX1T5sZ1FdoZUG92gbK9QVuqePYv5l39KCZmVWzChwoV8mqLaiPJg3zL2Y1Sryfz8zMrJZU2+j3O4DzJU0G7o6IsdkghH1Ja6lf16KlMzOzsmruNLGtTbUF9T+Rbi+4FrhG0nSgPamR5V7glBYsm5mZlVkZZpRrVaoqqGdryv5M0trA5syZau/5iHi7RQtnZmZl55hemqoK6pK2AF7PAvjbBce6AutHxLMtUjgzM7MWVm0D5Z4C1qjjWN/suJmZ1QipeVtrU1U1depviekKeLpYM7Oa0gojczNUfFCXtDGwSd6uAyVtVpCsE7AHMHSBFczMzOa71ljbbo6KD+rAjqS53iHN835MkTTTSQH9yAVVKDMzs0pTbdPEzgI2joiX50f+nibWKo2nibVKtaCmif167LRm/V1eqmeHVlXXr4aa+mwRUW0D+8zMrBnc/F6aig/qkn5cSvqIeH1+lcXMzBYszyhXmooP6sCrpL70huTWVm87f4tjZmYLjGN6SaohqG/d0gUwMzOrBhUf1CPimcamlbTi/CyLmZktWK6ol6big3pDJC0C7AccCGyMm9/NzGqGB8qVpiqDuqQuwF6kQL4daaW2N4DjWrJcZmZWXh4oV5qqCeqS2gI7kQL57kAXYCTpNewfEXe2YPHMzMxaXMUHdUmbkgL5vsAiwPfArcBtwDvZ85EtVkAzM5t/XFEvScUHdeA50q1qTwGXAAMjYgaApB4tWTAzM5u/HNNLUw1B/W1gbWBLYCawiKT7ImJCyxbLzMzmNw+UK03FT7saET8C1gIuAlYBbgJGSrqTtDKb52s3MzOjyhZ0gbn62PcBFiUF9fuByyLi2ebk7QVdrNJ4QRerVAtqQZfRE2c26+9y765tW1Vdv+qCek42Gn5H4ABSjb0r8FlE9Glqng7qVmkc1K1SLaigPmZS84J6ry6tK6hXQ596URExE3gUeFRSZ2BPUoA3MzNrlSq+T70xImJyRPSPiN1buixmZlY+UvO20q+nQyVFke2CgnSHSXpf0hRJb0rarUhePSTdIGm0pAmS7pa0ZNPfjYZVbU3dzMxsPtoJGJf3/KvcD5L2B64DzgOeJE1Vfp+kzSPixbxz7gDWBA4HpmTpB0jaIHdrdrk5qJuZWcVqwWliX4uI7+o4djZwe0Scnj1/StI6wBnALgCS+pHGfe0YEQOzfcOBocDewHyZBbUmmt/NzKw2Lejm94bLoz7AqswblG8HtpXUMXu+MzAWeDyXICKGA0PIAv/84KBuZmYVS83cmuFdSTMlfSzpT9kdVwB9s8dhBemHAh2AFfPSDY95bzEbmpdH2bn53czMapak7kD3gt3jI2J8HaeMAM4EXiLNg7I78GdgaeAooFeWbmzBeWOyx97ZY68iaXLpehfZXxYO6mZmVrma34R+PClI5zsbOKtY4oh4DHgsb9dASZOB4ySd1+zSzGdufjczs4qlZv4jLQS2bMF2SYnFuBNoC6zLnBp54YJiuRr86OxxTJE0uXSji+wvC9fUzcysYjV3sFvWzF5XU3tT5PrS+wLD8/b3BaYBH+el206SCvrV+5IWKpsvXFM3MzOr3/6kVULfiIiPgfeBfQvS7Ac8ERHTsucDSLXybXMJJK0KrEeaDXW+cE3dzMwq1oK+S13SY6QJZXK16d2B35AWDRuZ7TsL+I+kj4CnSAF9I2CLXD4RMTjL60ZJJzBn8pm3gHvnV/kd1M3MrHIt+LlnhgGHAcuQWrPfB34PXJFLEBH9JXUB/phtw4G9ImJwQV77kfrvryXF24HA0fNrNjmo4lXa5gev0maVxqu0WaVaUKu0TZ5Os/4ud27fclPStQTX1M3MrGLNj1nhaplr6lZ22WQPxwOX1DPBg9kC5c+ltQYO6lZ2kpYBvgCWjYgvW7o8ZuDPpbUOvqXNzMysRjiom5mZ1QgHdTMzsxrhoG7zw3jSggkejGSVxJ9Lq3keKGdmZlYjXFM3MzOrEQ7qZmZmNcJB3czMrEY4qJuZmdUIB/UqJ+ksSZG3TZE0VNJJkkr+/5X0tKSH50dZm0rSp5KubOlyWPNIejP7jG5e5NhW2bEN8vadJWmTBVvKhkk6NCvrIi1dFrNCXtClNkwGtsl+7gxsDVxA+tJ2QYl5HQnMLF/RzEDSmsA62dMDgecacdqZwA/AoPlVLrNa46BeG2ZFxIt5z5+StDawNyUG9Yh4r6wlqyCSOkfE5JYuRyt1EDALeAbYV9IxETG9hcvUoiS1Bdq09vfBysvN77VrAtA+f4ekCyS9LekHSV9J6i9pyYI08zS/S9pC0iBJkyV9J+lGSb3rurCkrpImSvpDkWN3Sxqcl+5KScMlTcqa2a+W1KOhFydpb0lDsu6GryVdIqlT3vFcc+6u2TXHA3c1lK+VnyQBBwBPApcACwM7NXBObgKNi/K6lrbKjnXK/r+/zv7/h0jaq4H8zpI0WlLh78RaWd47Zs93lfS4pG8ljZf0kqR6y5qd1zv7vfgu+z0ZJGmLgjRPS3pY0i8lDQemAj9qKG+zUjio1whJ7bJtIUm7Az8D7i5IthhwPrArcCywAvCMpDpbbCStDzxO+pKwL3Ay8FNgQFbTmEdETAQeBPYvyGuh7Nq3Zbu6AG2BU4GdgdOALYH7G3itu2ev7T1gT+BC4HDg1iLJrwU+AvYC/lZfvjbfbEL6rN0GPAZ8T2qCr0+/7PGK7Od+wOvZvv8AvyX9v+9J+hzck30u6tIf6AXsWLD/AOBb4H/Z8xWBh4BfkH6HXgAezX2hKCb7PRhA+r04mfR78gPwePb7k28D4ETgDGAX0qpxZuUTEd6qeAPOAqLIdjvQtp7z2gJLZ2l3yNv/NPBw3vN7gc+A9nn7dsjO+2k9+e+epVklb98hwAxg8TrOaQdsmp23at7+T4Er856/DgwqOPc32XlrZ8+3yp7/s6X/j1r7BvyDNO6jR/b8amAi0C0vTe7/a4O8fQH8oSCvdbL9vy3YPwh4rYFyvA78p2DfR/mfrYJjbbLP5GPAbXn7D83KsEj2PPdZ3zEvTfvs9+aevH1PA9NIS7+2+P+Lt9rcXFOvDZOBn2TbZqRa+E7AdfmJJO2cNQuOIwXX3JrSq9aT9+bAA5HX7xcRA4Gx2bXq8t8sTX5tfX/gqYj4Jq9Mv5D0hqQfgOnA8/WVSVI3YF3mbYW4I3ssLNMj9ZTR5rOsFWhf4NGIGJftvo3USlNvk3kdciPnC7tS7gDWk9S1nnP7A7tL6pyVbUOgT7Y/V95lJN0s6SvS78h00pfYhn5HxkfEY7kd2e/Lvcz7eXwrIlw7t/nGQb02zIqIV7PthYi4HDgH+JWktQAk/YTUJP41qWmxH7Bxdn6nYplmegHfFNn/DVBnv3pETAPuIQvqkhYGtmdO0ztZP+gtwMvAz7Py5P7Q11WmnoAKy5QFjKlFylSs7Lbg7AAsCjwkqaeknsDbwAgaboIvphcwPSJGF+z/hvS56FnPubcDXUnN5JCa3j8jG12vdAvog6RAfAbpLpKfkJrWG/od+bbI/mK/I/482nzl0e+1a2j2uCbwDilYjgN+HhGzACQt34h8RpP64gstnh2rT3/gMEnrkL5EzCTVXnL2BYZExG9zOyRt2UCeY0lNnXOVKRtc17FImbxiUcvKBe5/ZVu+RSUtFhHFAmJdRgPtJfWKiDF5+xcn/V+PrevEiPhC0gvA/pLuJn2R/HdE5D4jKwPrAXtGxAO583I1+wbK1NjfEX8ebb5yTb12rZU9fpc9diY1Jeb/UTmoEfk8D+yZP5hO0vakGtHzdZ2UeRoYSaoRHQAMyGuCzZVpWsE59ZYpIn4AhgD7FBz6eV55rQJI6gLsQRr4uHXBdgCpUrFfPVlMZ94acu7/d9+C/fsCb0QapFmf/qQBarsBS5HX9E76PELeZzL74rtpA3k+D3SXtEPeee1IX6T9ebQFyjX12tBGUq4pvQOwPmkk+XvAs9n+x4HfA1dIuo9Uc/5FI/I+j9Q8+bCkK0i1jwtITeaP1ndiRMyUdCdpYNFiFIyGz8r0D0mnA4NJf2y3bUSZzgLul3QracT7aqRR/fdExNuNON8WjD2AbsDlEfF04UFJJ5Fq8lfUcf5QYA9Jz5EG1g2PiLck3QtcktWghwMHk0bY79GIMt0FXAb8E3gvIt7MOzaMNM7kgmxEezfS+utfNZDnI6Tfh1sl/ZHUxH40sCTpc2m2wLimXhs6k4LiYOAJ0h+UW4GtcwPcIuJR0u02e5D6Dbcg1VaKmV2bj4jXSP2i3Ul95BeR/ojtHBGNmXmuP7AEMAkonH72GuDirLz3AsvSiH7WiHiQVDNbG3gA+CPp1rWDG1EeW3AOBD4ntdgUczOwsaSV6jj+O9LfqAHAK6Qvq5D+n68j/b8/QPoc7BMRDzVUoIgYRfodKaylExFTSRM2TSUF/3NIX2qfaSDPmaQvpI+Qfj/uIf2+7JD9/pgtMJrTnWQGkl4D3omIX7Z0WczMrDSuqRsAkpaQdCDpPuBXWro8ZmZWOgd1y9mfNEnI7cANLVwWMzNrAje/m5mZ1QjX1M3MzGqEg7qZmVmNcFA3MzOrEQ7qZmZmNcJB3czMrEY4qJtVIEmfSgpJhxbsXyHbH5JWmJ/XMrPq46BuNUvSTXkBMH/7QdIwSddJ+lFLl9PMrFwc1K01mE5aZCO3dSItAvN/wKuSDm/BspVqOmkRk+HZz2ZmszmoW2swKCKWyG1AF9IiNR+SVir8R7XU2CPiq4jom20NrR5mZq2Mg7q1OhExLSIeJ61YN530e1BNtXUzs6Ic1K3Vioj3gFezpxsASDo063f/NHu+s6QBkr6VNEvS7/PzkLSKpH9Kel/SJEkTJA2RdKakHnVdW8lvJb0qaaKk7yX9T9JO9ZW5MQPlJHWSdJSkpySNkjRV0hfZ82MlLVxP/h0lnSZpqKTJkr6TdL+kdRsoV29J50l6KxuzMFHSu5IulLRYfeeaWfm0a+kCmLWwL7PHeQKwpBOAv5HWlx8HzCo4fhjwT6B9tmsS0BH4Ubb9UtL2EfFRwXltSWt575vtmklaw3sbYBtJxzb1xUhahbRu/arZrlnAWGBRYBlgq+y13FTk9IWA50lfcKZm5y5MatHYXtLWEfFykWuuC/wXWDzbNTk7d41s+7WkXSPipaa+LjNrHNfUrbVbPnscU7B/ceCvwFXAkhHRC+gG3A0gaRfgOmAGcCawVER0JfXXb0pqAVgRuFdS4e/ZicwJ6GcDvSOiN7A0KdhfTArCJZHUE3iMFNC/AX4BdI+IhbNyrQ2cV+S15pwNLALsBHTNXu8WpC8+XYDLi1yzB/Ag6f36BNgO6BoR3Ujvw1DSF4MHXWM3WwAiwpu3mtxItdEAnq7j+E9IteQALsv2HZo9D+C2Os5rC3yUpdm3jjS9ga+zNHvn7e9CqikH8Pci5wl4Iq8MhxYcXyHv2AoFx/6S7Z8ArFrC+/Rpdt4kYOUix3+Wd83lCo6d0sC5S5FaCgL4a0t/Jrx5q/XNNXVrdSQtJekXpBpmG2AaaS35QhfVkcWWQB/gs4i4q1iCiBgNDMie7pB3aAegO6l5+q9Fzgvg/Ea8jGJ+mT1eERHvN+H8uyPiwyL7HyQFZYC1Co79PHu8tdi5EfE1cHX29IAmlMnMSuA+dWsNtpQUdRybRKoNFwbBycCbdZyzSfa4pKSR9Vy3W/a4XN6+9bPHYRFR17nPk5r1G/37mQ2aWzJ7+khjzyvwSrGdETFd0rekJvZeedfswJwg/7968v0fcDKwrKRFI2JUE8tnZg1wULfWYDowOvs511T8JfAccG1EfF7knO8jYlaR/TAneHZgzuCw+nTJ+znXV17nPeYRMVXSd8ASjcg7J78cn5VwXr4J9Rybkj22z9vXm9QVAfW8HuYMRgRYDHBQN5tPHNStNRgUEVuVeM7Meo7lAtkTEbFd04pkZlZ+7lM3K9032eNy9aYqLldLXaquBFmz9iIl5pvflL98nanKazRzvvwsXU+6ZfJ+/nb+FcfMHNTNSjcoe1xF0qr1ppzXa9ljX0l1Nd1vRomtaBHxGWm0PcBuJZapSSJiGvB29nTbepLmWjM+d3+62fzloG5WuieZ0299aTaZTFGS2kvqlrdrIOmWtrbASUXSC/hTE8t1U/Z4VBO+bDTVndnjwZJWLDwoaUngt9nT/guoTGatloO6WYkiYjpwJOm2tJ2BgZL65SaZkdRG0hqS/gi8D6ybd+4k4ILs6XGSzpC0UHbeEsDNpFvmJjWhaBeRJoDpBjwj6SBJXfLKtI6kSyXt1YS863IV8AVpMODjkrbOvpggqR/pnvuepGb3i8t4XTMrwgPlzJogIh6VdDBwA2l610HAVEk/kO5Dzx8lXng73UWkW9v2Ic3idoak8aTgB3AscAIl9o1HxNhs7vhHgJWBW4GZksaSAn3HLOmQUvJt4JrjJO1Buid/JVIrxqTsFsKuWbLRwB5uejeb/1xTN2uiiOgPrEKqeQ8hzZfek3Rr2EvAJcBmEfFCwXkzSZO2HA68Tpr8BlJA3DUirmhGmd4H1gGOA14AxpPmdP8WeAo4hjSZTNlExBvAmqRJc97NdrcBhpHmzl8jIl4s5zXNrDilCazMzMys2rmmbmZmViMc1M3MzGqEg7qZmVmNcFA3MzOrEQ7qZmZmNcJB3czMrEY4qJuZmdUIB3UzM7Ma4aBuZmZWIxzUzczMaoSDupmZWY1wUDczM6sRDupmZmY1wkHdzMysRjiom5mZ1Yj/DzDn0NijuIaxAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAGoCAYAAAB13vBmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAABDrAAAQ6wFQlOh8AACQRElEQVR4nOzdd3hURRfA4d+kF0gl1BB67703BUFABAQRVEQRpIp0hA8piorSVBSwgg3pIL0XBVQUUHrvBClJSCA9me+Pu4lJSIAsSe4mOe/z7LO7c2fuPZtAcjIzd0ZprRFCCCGEEBnLzuwAhBBCCCFyIkmyhBBCCCEygSRZQgghhBCZQJIsIYQQQohMIEmWEEIIIUQmkCRLCCGEECITSJIlhBBCCJEJJMkSQgghhMgEkmQJIYQQQmQCSbKEEEIIITKBJFlCCCGEEJlAkiwhhFWUoY1S6gel1Gml1B2l1F2l1Cml1Cql1AtKKVez48wsSqnmSimdyiNaKXVVKbVeKdXtAed4Qim1UCl1TikVbnmcs5Q98YC2LkqpV5VSa5RSV5RSkUqpYKXUEaXUV0qp1hn7iYUQ6aVkg2ghRHoppfIBPwKtHlC1hdZ6R+ZHlPWUUs2B7Q9RdaLWelKKtu7At0DnB7RdBvTUWoenaF8TWAyUul9jrbV6iPiEEJlEerKEEOmilHIBNpA8wVoBdAceA54D5gFhmRiDnQ32kr0ONAV6AVeTlI9QSjmmqJsywfoaaGd5fJOk/BlL3URKqbLAFv5LsKKAj4EOwOPAq8BKIM7qTyKEyBhaa3nIQx7yeOgHMBrQSR7j0qjnBxS0vG6etE2Ker2SHDufpLx4iutUBT4CrmAkEKOSHIsEvFOct3OS4+f4r+d+FrADuATcAaKBQGAN0C4dX4fmKeJrnuTYiBTHCiY51jLFsRmpnPvjFHUeT3JsfZLymKTXTXGOKmb/W5GHPHL7Q3qyhBDp1SvJ6zPAe6lV0lrf0Fpfy8DrLsXoLSqM0Qt/EthpOeYMPJui/otJXn+ptU6YGzEEaAb4A+6AI1AQoxdpjVJqYAbGDBAB3Ejy/rkkr2OB91Np867lWLI2SqmCQNK5Vt/pNIZjtdaHrAlWCJFxHMwOQAiRfSil3IDySYo2a63js+jypYDpGENl+TASvC8wEiYwkqp5lji9gbaW8jiSD8G9AxwHgoBwjAStFkZiA/C2Umqe1jppkvMwqiil4jB64N5IUj5Ta5106K5aktcXtdbXU55Ia31NKXXZcq6kbWoCSedZbUxnjEKILCRJlhAiPbxTvL+VhdeepbUekbRAKXUK+AQjrkZKqZJa67MYvVpOlmprtdZJ50itAYYC9TF6sJxTXMcbI5E8nM74Pk7x/l/gHa317BTlXkle35NgpWhfPEUbM7/+Qoh0kuFCIUR6BKd475uF116WskBrHQl8l6QoYYjwhSRlXyS8UEq1BH4FugHFuDfBSuDzSJEa8gM1lFIpf86GpKiTlgKptDHz6y+ESCdJsoQQD00bSwkcS1LUUin1MMsEJFsrRimVtBfd7yEvH5hG+edJXr+glCoONLK8v4wxUTzBKP7rwT8FPI9xR2DzFOe05mdjC8AN6A/EYwzrvYJxo0BS/yR5HaCUuifRUkoVwJgzluBvy/N+kn8t77uWlhDCXJJkCSHSa36S16W5N4kAjLW0LBO14d4emKQJRPuHvG6qi/pprY8Ae5PE8wn/zVv6OsV8qIAkrz/WWv+otf6FDFruQGsdobWeS/Kv0bgUidTCJK8dMBK/lN4k+XSOnyznv4axfEaCF5VSTVKLRSlVOR2hCyEygSRZQoj0+hj4K8n795RSS5VSz1pWQe+qlJoNnOa/SfJnSX633PdKqf5KqRUYPUmP6oskrxOStniM9aeSOpvk9atKqfZKqZ4YC6tmpMkYyyuAcQfjmIQDWustwKokdYcrpb5QSj1peXyJcQdkgpVa661J3r/Bf0mrI7BJKTVTKdVOKfWYUqqXUmoJcDBjP5IQIr1kxXchRLoppfyAH0jHiu9KqTlAv1TqHAKqWF5f0FoXt9QvjrG+VYISWuvzacTjjrEAqEeS4g1a6ydT1GsFbErlFNswFlK9J+60pLLie7I2SqmvMIYLwVjGoZTWOtByLA/G16/D/a6BkYy9oLW+k+LasuK7ENmA9GQJIdJNa30DY72mthi9QGcxlkOIwFha4WegJ/B7kmYjgDkYa0ZFAQcw5kTNyIB47nJvb9QXqdTbDDyNMbcpAiMxm8WDkx1rJF3ryhVjCDAhjjta66cxvn6LgAsYC6pGWl4vAtpqrTumTLAs7fcDlYE+wDqM+WrRwG2MOXPfAG0y4TMJIdJBerKEEEIIITKB9GQJIYQQQmQCSbKEEEIIITKBJFlCCCGEEJlAkiwhhBBCiEwgSZYQQgghRCaQJEsIIYQQIhNIkiWEEEIIkQkcHlwld1BKOWOsOn2DDNrHTAghhBA2zx5jo/pDWuuojDyxJFn/qQLsMzsIIYQQQpiiDvBnRp5Qkqz/3AD4448/KFSokNmxCCGEECILBAYGUrduXbDkARlJkqz/xAEUKlQIf39/s2MRQgghRNbK8KlCMvFdCCGEECITSJIlhBBCCJEJJMkSQgghhMgEkmQJIYQQQmQCSbKEEEIIITKBJFlCCCGEEJlAkiwhhBBCiExgM0mWUqq0UmquUuqgUipWKXX4IdsppdQYpdRFpVSEUmqvUqp+ZscrhBBCCHE/NpNkAZWAdsBp4Gg62o0GJgEzgfZAILBJKVUywyMUQgghhHhItpRkrdZaF9VadwH2P0wDpZQL8CYwXWs9U2u9FXgOCAJGZF6oQgghhBD3ZzNJltY63opmDQEPYHGS80QDy4G2GRSaEEIIIUS62UySZaXylufjKcqPAQFKKdcsjkcIIYQQAsj+G0R7A1Fa68gU5cGAshyPSK2hUsoDoxcsQcFMiVAIIcwQGgr//vvo5wkPh0OHwCFzf11ordFo4rE8J3kfv3MHOm9e4jeuRxcoYKkD8UoTD4TbxxGtdOJ7rTDapXhOWX7TMRYHDfEK4hLKjx0l3tGBOEd7472COMsjzEkTZ4fl2sYj4bVWlniSliWpd83dOOYc99/54uyM53iliVNwy1UT7AJelt9o2nKOpK+1srxP5XVi3TTapn0e/d9ry7EwJyM2u4SGSdok+76lfJ9qHZ3ifSp1UrTLijo63o6YP+uAfXAqtTJGdk+yHsUwYILZQQghxANFRsKgQeDjY7yPjYV166BIkXvr/vknRERATEyap9NAsCtcyQsRjhBlD9fdIcoBlDZ++SckBwlJRrL3luTglhuEOxqvY+2MR5zl+YgfFLibPJlI+nzWG1xi4YLXQ3z+wpbnLmDcG5WJKgPEWh4ZQ+n/frF7xTvjjB322g57VOLDTivsUITYRREX74KXdjbaolAYvQZK//c+6TESjqdyLKEkoX2ax1JpF0ks+bVb8s+SxudLXufeWilLHq5OCvredlbVsVx/785K7P+tPMVLHec8J1Op9eiye5IVDDgrpVxS9GZ5Y/k5cp+2M4Avk7wvCOzL+BCFELlefDxcugTa8tsoOpro9Wv4d9UPRBz9hxgXR6Kd7Il0gGtu8UQ6wA1XzR1HzaF8cXiHxhjJyQ1LAgTEVYI4x9PEeXpw3TmWcPt43OPsiKukiYuBOJ/8xNkr4lyciSOes7E3cFaOxOo4butUO/it4qgccLBzwF7Z4aDscVDGa4XiYHQIFfKWwF7ZYa/sLc92OCgHKig7rkbe4EXvKgRHh1LRoyQOyh6Fwk7ZoQA7ZYcddih7e+zyF0ApO+OYMurYWa4Tp+PQWpPfPX9iecp6CXVTHo/X8eRzy5dYZq/s/3ttZ5+s3NXRFWd753vOn/S8KcuUSu1XvDBLSEgkERExFCqUl6tXw9i69SzNm/sQEPBTplwvuydZCXOxygF/JykvD1zUOu2fJFrrUCA04b38RxBCAHD9utFzdPAgHDgAUVFwn58Plwnl5vH9nHe4Q6iK5tjN47jbORPtaEeMnSbGDg57ROIVCUGuRg/OGUuHFM0sj4foNfGKc8I+T17s7ewTE4Gkr29F3KJI3iJ4OHtgb2ePo7JPPG5vZ09RZc+1O9eoWagmbo5uxMTFUNyrOEU8iuDp7ImLgwtKqcSEI2mykTLhSHh4u3jj7OCcAV90ITKX1ppFi44wdOhGatcuzOrV3SlcOC8vvliNy5cvZ9p1s3uStQcjUeqKJclSSjkCnYF1JsYlhLAl169DdPR/7wMD4dtvYdcuKFwYYmKI3b6VUGdjqCvEBf4qBJEOEG1vPMKc4Xg++KMIOMQbw2TnvC3nq5ryglGJr+y1MfgSpzSVHApTys6LOnZuuGsH8pWtQYmAarg7ueNo54ijvSMxcTGU8S2Dr6svPq4+uDq64mCX3X9UC2Ge06eDGDhwHZs2naFKlfy8+WbjLLu2zfzPVUq58d+yC8UAD6VUF8v7nVrrG0qprUAxrXVpAK11pFLqPWCiUuoGcAgYAPgC07L2EwghTBcfb0z2Xr0aXnsN8uUjNOwmN9yMOUdBrnDMD3YVA8c4CK0Glzz/4ba7A9eaPNwlHOwcKOBegIb+DWjk4MztyNt0q/QsPq6+FPMujpujG76uvjg7OONg54Cdyu43cQuRfS1efISePVdgb2/Hhx+2YsiQejg62mfZ9W0myQLyA0tSlCW8bwHsAOy5N+apGPPaRgB+wEGgtdb6bGYFKoTIBLdvG8N0331n9DA9pCuOERxxCeM311scCj3NaR9wi4HIvvB3wZvEpZLjOGJPDHFUy1+V/C6e1PYMIK9TXhztHSnhVQIHOwfcHN2oVbgWns6eONk74ezgjJeLl/QqCZENxMbG4+BgR506henQoRzTpj1BQIBnlsehtE7tBsfcRynlD1y6dOkS/v7+ZocjRM4UFGQ8Tp6EX381hu2uXoVbt+Cvv5JVDatajiuuxoTufT6RBLrGEGmnueEcx78usZzJE80dh3guuyWfz+Qaq3BzdKOGZ3lc8xcmj1MeqhaoSoBnAM72ztQqXItinsVkHqYQOdD163cZOXIzUVGx/PRTlwc3AC5fvkzRokUBimqtM3SClvxJJoTIODExRgJ1+TJMnw7u7rBqlbHUQCqTS6PtjYngJyvk52R7H27UKs82h0ucUEGExZ5I9RIOdg7ExsdSJG8R8jrnZWTZp6hZqCYBngHUK1IPe7usGwoQQtiG+HjNV1/tZ/ToLYSGRvHGG/WJj9fY2Zn7x5QkWUKIR7NxI7z7LoSFGXfjJRHiAidrFeKsRzQnO1bhWkwwV4t6Yq/sWR7zD/bKnjgdB1y3tNiDi3KhcN7CNPerRH3/+pT2KY2Xixd1CtfB08VT5jgJIZI5fvwmvXv/zJ49l6hXrwjz5rWnWjXbWF9ckiwhhPVWrYKOHQHjrryDxRxZ1qYYa/3DOaODCI+PBAItlS2JVOxlfF19KetRFl9XX16s+iL53fPj7+FPpfyVcHd0l6E8IcRD01pz+nQQc+a0o2/fWqb3XiUlSZYQIn3Cwzn+zYf8Nf9dNhaN5vJLcKGkD2d1EBADnIY4yOeWj+7lnqdukboU8yxGrcK18HH1kZ4oIcQjW736BH/8cYW3336MChX8uHDhDVxcbC+lsb2IhBC2ITSU2B7PcTg/XN23jZXVXdiVP4ITHpb1ptr/V/Wx4tVp51cJD2cPWhRvwWMlHpPeKCFEhrt06Tavv76BlSuPU7asL2PGNMbd3ckmEyyQJEsIkVR4OEG/bOLrfZ8zP3A9R+pYyotBwgKbNcI9qRjuTtf2o2nR+AU83H3SOpsQQmSI2Nh4Pv74d956azsxMfFMnNiM0aMb22xylcC2oxNCZLzYWPTPP3Pk0BaCTx7ioG80Zx3C2Bh9jFM+EJtwc15+qHPNnlbPjKJhQCMq+lWkhHcJU0MXQuROR4/eYOTIzbRoUZzPPmtH2bK+Zof0UCTJEiKn05r4RT9xZsFMFkbsY3dR2FTacqzsf9X8wxQ1/4Xa7mVoUasLT7V4DedCRe+7b58QQmSWkJBItmw5S5cuFalatQB//PEqNWsWylZTESTJEiIniYmB5cuJv3WTnYfW8GXINrYVieZaXqD+f9V8412o4FWaUc3GktenEA2LNsTJ3sm0sIUQIoHWmoULDzN06EaCgiKoX98ff38PatUqbHZo6SZJlhA5QUQE9O7NygMLmdYQdgcABY1Hwbt2dLjhTbkqzanTuBtPlXsKFwcXsyMWQoh7nDx5iwED1rJ16zmqVSvAzz8/h7+/h9lhWU2SLCGym4gIY1V1QH8wlR1//8zWAneZUxuCyhlVyroV5dnSHXml4QBKFChvYrBCCPFwrlwJpVq1udjbK6ZPf4LXX6+Hg0P2XvJFkiwhbFlICKxeDeHhMG0anD7NivLwaV0IzANHy5JsXlUj/4b88MyPFPMqZlbEQgiRLufPh1C8uBdFingwY8YTtGtX1pTNnDODJFlC2Jpjx6BixcS3GlhZHj6vB0fbw0Wv/6rWci5B2xrP0qFKF2oWqikLfQohso1//73DsGGbWLLkCH//3Y8KFfzo37/OgxtmI5JkCWFLYmMJrVGRY0XgQJV8/FDbiX32/xKl4gAo6V2S8VWeZ2j9oXi7epscrBBCpF98vObzz/9izJgt3LkTzbBhDShaNGf0XKUkSZYQNmLfwmks+H4kc0ZDvB3ATQDqFK5D98rdearcU5T2KX3fcwghhC27ezeali2/47ffLtOwYVHmzm1HlSoFzA4r00iSJYSJYuNi+PD7Abx3dgFhdjFQFxqEefFa16mULFiBSvkr4eMqK6oLIbK3+HiNnZ3C3d2JatUK8Mor1endu6ZNbeacGSTJEsIEUbFRvL9mDFP/nEWEI9gDrc7AxMqDaPDWx9lqsT0hhLiflSuPM2bMFtavf54SJbyZO7f9gxvlEJJkCZFFLoRc4Lu3nma+6wkuOEcSaw+lQ6HfnzBk1DIcXm8GvtljqwghhHiQCxdCeP31Dfz88wnKlfMlKCiCEiVy11xSSbKEyERx8XH8dPgn3tk+keMhp8GSQ/lG2fPhTjd6dXsf9fEAc4MUQogMFB+vmT59DxMn7iQuLp63327ByJENcXbOfSlH7vvEQmSFwEAWTn+Z4S47CHSMAqDRRfhoPVT75SQOpcqYHKAQQmQOpWDHjgs0bhzAp5+2pXTp3DuvVBbVESIjBQdzpZg3TccVpkfejQQ6RvH6b3Btjju/VplJrSvxkmAJIXKcoKAIBg9ex9WrYSilWLSoCxs2PJ+rEyyQniwhMsaKFZz7egYj3H5l+StGUek4T/YOO0q+8QXBTv6eEULkPFprvv/+H4YP38TNm+HUrFmIl1+uQZ48suE8SJIlxCO5/ck0vvrrC36NPMmK2kZZlTA3ZvRfSYsSj2FvZ29ugEIIkUmOH79J//5r2bHjPDVqFGTNmh7UrVvE7LBsiiRZQqRD/KaNnJw+lr8cb3Io6iJTGwMljGNNY/354LWl1POvZ2qMQgiRFYYM2cCff15l1qzWDBxYN9tv5pwZJMkS4gGi46KZ/ONrLDj0HYGuccQ1/O9Y8XAnXq/RjwFdPsDZwdm8IIUQIgts2nSGWrUK4evrxpw57XByssff38PssGyWJFlCpCEiJoL+P/dlweHvjQJ3KHcTepfuStNnhlPSuyS+br6yKbMQIscLDAxj6NCNLFp0hBEjGvDhh09QsmTuWvPKGpJkCZFCyKpFzN3wDu/7HOW2UzwekTD0NxjXez6OE14yOzwhhMgycXHxzJv3F2++uZXw8BjefLMx//tfU7PDyjYkyRLCYs0vXzFq/TCOOYdCQfCKgO+XwfOFW8O8j6FsWbNDFEKILNW//1q++GI/jRsHMHduOypVym92SNmKJFki99IaoqO5fGIf4zaN5tu7e7BzhPan7Kj35KsMe2Yabu/nNTtKIYTIUmFhUSilyJPHiX79alO/vj+9elXP8Zs5ZwZJskTus28f/PAD8R9/xITmMK0hRDpCrauwwuEFin71JTjLJHYhRO6itWb58mMMGbKBZ56pwEcfPUnNmoWoWbOQ2aFlW5Jkidzj/HkYOxa9cCFf14BhoyHUxTj0q8dQGj3eGRo3NjVEIYQww7lzwQwatJ51605RoUI+nnmmotkh5QiSZImcb/FimDYNvW8f39SA3hP/O9SnZh+mPzGdvM4yLCiEyJ3mzz/IgAFr0Rreffcxhg9viJOTLKScESTJEjnX0aNQqRIABwpCn77wV2GwV/b0qdmHmW1m4uLgYnKQQghhDq01SilKl/ahefPizJ7dVpZlyGBKa212DDZBKeUPXLp06RL+/v5mhyMeVXw82NsTr2Dq0/kYW/0mAD2r9WRe+3mSXAkhcq2bN8MZPXozhQvn5e23HzM7HNNdvnyZokWLAhTVWl/OyHNLT5bIeeLiuFjCh1dfhO3FIdb+Ji2Kt+CLp76glE8ps6MTQghTaK1ZsOBvRozYRHBwJEOH1jc7pBxPkiyRo0SuWsaLP3Rh+csQbwfuju6MqDuYSS0m4WQvu8ILIXKn48dv8tpra9i16wK1axdm48Z21KpV2OywcjxJskSOcP7SIUbO6cRS5zNQCcrcdmD5KxupXFm6woUQ4sKFEA4evMYnnzxJ//61sbeX7cCygiRZInvSGp55Bm7dYqt3MC1rHAJnaHAJRoRWpvPiQ2ZHKIQQptqw4TSXL4fy6qs1ad26NOfPD8Hb29XssHIVSbJE9rRiBaxYwboy0M7SWTXndhP6fbYFnGRYUAiRe129GsYbb2xgyZKjVK6cn169quPgYCcJlgkkyRLZT1gYccOHMuoJmNEQFIq/+/1NlQJVzI5MCCFMExcXz2ef7WPcuG1ERsYyblwTxo1rgoODDA2aRZIskX1ERMDkyexa+D49noErHlDcqzjbX9pOca/iZkcnhBCm2rLlLK+/voFmzYoxZ047KlTwMzukXE/SW5E97N5NnLsbQw+8T7OXjQRrQrMJnH39rCRYQohc6/btSHbuPA/AE0+UYsOG59m+/SVJsGyE9GQJ2/fBB8SPGU2752FjaWju34SvOy+ghHcJsyMTQghTaK1ZsuQob7yxgfDwGC5eHIqHhzOtW5c2OzSRhCRZwrZ98AHBE0bT8SXYVRw6lu/IsmeXYaekE1YIkTudPRvMwIHr2LDhNJUq+bF4cVc8PJzNDkukQpIsYbtGjeL4Nx/S8VU4kQ8G1hnIJ09+glLK7MiEEMIUhw9fp06dL1AKpk5tydCh9XF0lM2cbZUkWcI2vfkmf/7wIQ37Q4w9fPP0N/Sq3svsqIQQwhS3boXj6+tGpUp+DB/egFdfrUnx4l5mhyUeQJIsYVuio9H16vKp098M7Q15nNzZ0Gsr9fzrmR2ZEEJkuRs37jJy5GbWrj3FsWMDyZfPjXfekZ0ssguZ2CLMFxsLw4dD0aLg7EyHCn8zuC34ufqy/dVfJcESQuQ68fGar77aT/nyn/Ldd//w4otVcXaWYcHsRnqyhLm0hueeg2XL0ECZ1+GMD9QrUIs9r/0hE9yFELnOzZvhdOq0iF9/vUidOoWZN689NWoUMjssYQVJsoS5Vq+GZcuIcIA6M8pzJug4ADte/VUSLCFEruTt7YKbmyOffdaWvn1ryWbO2ZjNfOeUUuWVUpuVUneVUteUUh8opR64CZ1SylcpNVcpddHS9rBSql9WxCwe0aJF8PTT3HADt//BkaDjNCzakJjxMbg4uJgdnRBCZJm1a0/SqNHXhIZGYW9vx4YNz9O/fx1JsLI5m/juKaW8gW2AE9AZGAv0BWY8RPMlQAfgLeApYAMwRynVJ3OiFRnir7/guefYXBLyjzKKetfoze5XduNgJx2sQojc4fLlUJ55ZjHt2y/k33/vcOnSbQBZqiaHsJXfZv0AD6CT1joIQCnlAHymlHpXa301tUZKqYJAC+BlrfV8S/E2pVQd4Dngi0yPXKRfbCzUrs1ndWBgO7BX9oxvOp4JzSeYHZkQQmSJ2Nh4Zs/+g/HjtxMVFcv48U15883GuLo6mh2ayEC2kmQ9CWxJSLAsFgNzgSeA+Wm0S/jXeDtF+W0gT0YGKDLQ1KmJCRbAkQFHKJevnLkxCSFEFtJa89VXB6hTpzCffdaO8uXzmR2SyAS2kmSVB75OWqC1DlFKBVqOpUprfUkptQkYq5Q6AVzCSNieAJ7PxHiFlaKvB/LU8f+xqR0UcC/A4QGHyecmP1yEEDlfSEgk06btYezYJri5ObJ1a0/8/NxkaDAHs5UkyxsISaU8GPB5QNvOwCLgiOV9HDBYa73sfo2UUh4YQ5QJCj5UpMJqh9d8TY91vTlUGp656sXMD/ZJgiWEyPG01ixadIShQzdy7dodatcuTMeO5cmf393s0EQms5UkyyrKSP+/AcoAPYBAoBUwSykVrLX+6T7NhwEyCSiLbFk+jSf+GYmdH0w8WoC3Fl5F2dnEfRdCCJFpTp8OYuDAdWzadIYqVfKzfPmzNGhQ1OywRBaxlSQrGPBMpdwbCEqlPEE7oCtQVWt9yFK2QymVH5gO3C/JmgF8meR9QWDfQ0csHtrc74bQ/+zH+EbArtBnqLhoqdkhCSFEptNa07HjT5w7F8KHH7ZiyJB6splzLmMrSdZxUsy9Ukp5AoUsx9JSEWN48HCK8gPAq0opN611eGoNtdahQGiS61kRtrivW7eYsXoswy98DsC6cw2puFgSLCFEzvbrrxepW7cITk72zJ/fkfz53QkISK0fQeR0tjJesx5oqZTySlLWFYgHNt2n3QXAHqiaorwWcD2tBEtkgd27OV02H2+d+hyHOLh5tit1F+82OyohhMg016/fpWfPFTRp8g2ffvoHALVrF5YEKxezlZ6sucBgYKVS6l2gCPAhMDfpGllKqa1AMa11aUvROuAisFQpNQljTtYTQC9kvpV54uOhTRt6dIdwR/jz8UX4NnnW7KiEECJTJGzmPHr0FkJDoxg+vAF9+tQyOyxhA2wiydJaByulHgc+AVYCYRjzpcalqGpPkpi11mGWdlOAqYAXcA5jUvvsTA9c3EtryJOHifUi2FcERjUcRU1JsIQQOdhzzy1lyZKj1K/vz9y57ahWTW5WFwabSLIAtNbHgJYPqNM8lbLTQLdMCkuk16hRzKkUwaTm0LBAHd5q9pbZEQkhRIa7ezcaFxcH7O3tePHFqjz+eAn69KmFnZ3M7xX/sZU5WSIn+PNPvt80jQHtoV7humzuvQN3J1kHRgiRs/z88wkqVvyMTz81bkh/6qlyvPZabUmwxD0kyRIZ5u/2dXijDRSPzcua59fi5uhmdkhCCJFhLl68TceOP/H00z/h7GxPlSr5zQ5J2DibGS4U2dj16/xdtQBtXoBbbrD6lY2ykrsQIkf5/PO/GDZsI7Gx8Uya1JxRoxrh4iK/QsX9yb8Q8cg+fasNg/obr5c0/pgGRRuYG5AQQmQwFxcHGjQoymeftaVMGV+zwxHZhNJaW9dQKSegN/AY4K21bqmUagIoYL/W+k7GhZn5lFL+wKVLly7h7+9vdjjZQryOp+u4six3PgPArpd20qR4U5OjEkKIRxccHMHYsVupV8+fXr2qk/C7UhauznkuX75M0aJFAYpqrS9n5Lmt6slSSrkD2zEW/VRAQqY2AmgPvA58mhEBCtsUFRvFyz8+y3LnM5QKgnU9N1JWEiwhRDantebHHw8xbNgmbty4i7e3KyDJlbCOtRPfJwK1MRKspL6wlHW0PiRh607dOkWlzyqx8NzP9PgHjhV5j7K1njA7LCGEeCQnT96iVavveOGFFRQunJe9e3vz7ruPmx2WyMasTbKewei9ejFFecK+KeWsjkjYtA93f0j5T8tzPTSQH5fCD8vBcdQYs8MSQohHtmXLWX777TIzZjzBvn19qFdPpo6IR2PtxPciluclwHdJyiMtz3Jfaw4TFx/Hq6tfZf7B+dTzrcZXk/+m0g1g+HCzQxNCCKtt2XKWmJg4nnyyDK+9VouOHctTuHBes8MSOYS1PVm3Lc8p0/zWlucQK88rbJDWmpdWvsT8g/Npc9GJHUMtCVbZsjBtmtnhCSFEul27dofnn19Oq1bfMXnyLrTW2NvbSYIlMpS1SdavludFCQVKqc+AHzCGEX95xLiEjYiLj+OFFS/ww6EfaH23EOu+jsYlFvj8czh61OzwhBAiXeLjNXPm7KN8+dksXnyEUaMasmXLizKxXWQKa4cLpwBtgZr8d2fhaxiT3qOBdx89NGG2G3dv0OaHNuwP3E/du96snh5o3Olw4QIEBJgdnhBCpNu33/7NgAHraNiwKHPntqNKlQJmhyRyMKuSLK31X0qpp4DPgFJJDp0B+mutD2REcMI81+9ep+C0gmg0I0u8wHu9vsdeA1u2SIIlhMhWwsKiuHDhNpUr5+f556vg7GxPt26VZa9BkemsXvFda70ZKKOUKgP4ATe01qcyLDJhmtj4WJp+0xSNZnTDUbzf81ujv/Lrr+FxuZ1ZCJE9aK1ZufI4r7++AUdHO06cGISjoz3du1cxOzSRS1g1J0sptU0ptRVAa31Ka70nIcFSSk1WSk3KyCBF1lp8ZDEnbp3gtVqv8f6d+nDtmnHg5ZfNDUwIIR7ShQshdOjwE507L8bd3ZGvv34aR0d7s8MSuYy1PVnN+W8uVkr/sxybYOW5hYm+3P8lfVb3wd3RnSmPTYG6zYwDO3eaG5gQQjykX3+9SOvW3xMfr3nnnRaMGNEQZ2fZqldkvQz9V6eUqpSR5xNZa9KOSUzcORGADS9swNfVB44cMQ42bmxeYEII8RDCw2Nwc3OkVq1CdO9emTffbEypUj5mhyVysYceLlRKTVBKxSml4rD0YiW8T1L+j+VYYOaEKzLL+lPrExOsE4NO0DigMQwdahz85BOws3a1DyGEyFxBQRH06fMzdep8QXR0HK6ujnz5ZQdJsITp0vubUz3kY3EGxigykdaaD3Z/QJclXQA4N+QcZX3LwqpV8NFHULs29O9vcpRCCHEvrTXffvs35crN5quvDvDYY8WJiYkzOywhEqVnuPAgsMDy+iWMHqtvkxzXQDCwD0myso1hG4cx6/dZVC1Qle86fUdxr+Lw55/QsaNR4YsvwF4miwohbMuVK6G88MIKduw4T82ahVi//nlq1y5sdlhCJPPQSZbWehWwCkAp9ZKlTG43y8bOBp9l1u+zaFS0ETt77cTezpJMvfKK8fzBB1C9umnxCSFEWjw8nLl+/S4ffdSGAQPq4OAgUxqE7bF2MVL515wDfPu30RE5qfkkI8GKjYWSJeHSJaPCyJEmRieEEMlt2nSGL77Yz08/PUPevM78808/7O3l15GwXVbfXaiUcgSeBMoBrimPa60nP0JcIpMdvXGUSTsn0TigMY+VeMwofOstI8Gys4M9e8wNUAghLAIDwxg6dCOLFh2heHEvLl68TYkS3pJgCZtnVZKllPIHtgMl71NNkiwb9vlfnwMwtfEk1JAhsGsX/P23cfDiRShSxMTohBAC4uLimTv3T8aO3UZ4eAxvvtmY//2vKW5ujmaHJsRDsbYn622S71mYUloLlQobsD9wP5/u+5QnSz9Jg8ptIDrGOFCsGMyZIwmWEMImhIZGMWnSTqpVK8CcOe2oVCm/2SEJkS7W9rU+jpFIJWyfo4GngN3AaaDdo4cmMsOBwAM0/roxsfGxfPzuAVR0DPj5QVgYnD8PTz5pdohCiFwsNDSKWbN+Iz5e4+3tyt69vdmxo5ckWCJbsjbJKmB5nplQoLVeC3QHSgMdHjEukQnCY8JpsaAFEbERvO3RkdJHLXsSHjwIefKYGpsQInfTWrNs2VEqVPiUoUM38uuvFwEoVcoHOztlcnRCWMfaJCvS8hye8FopVQaIt5Q/+4hxiUzQ7sd23I66zeBaA/jfsJVG4Z49UFjWlhFCmOfcuWDat19Ily5L8PR0ZufOXjRtWszssIR4ZNbOyboO5AF8gHNAeWAHkLDUrszJsjGnbp1ix/kdFMxTkI//rWkU1q8PDRqYG5gQIleLjo6jUaOvCQ6O5N13H2P48IY4OckCyCJnsDbJOogx8b0msBwYBxTE2FIHYM0jRyYyVNclXQH49rFPoKbxmjlzTIxICJGb/f33NapWLYCTkz1fftmB8uXzUbKkt9lhCZGhrB0uHAW0AA5hLNXwCXANCMLYeueNjAhOZIy1J9fy979/80r1V2g1dLZR2L27rOYuhMhyN2+G07v3KqpXn8eyZccAaNu2jCRYIkdSWsvIHiSu/XXp0qVL+Pv7mx1OhomKjaLBVw0IvBPIub5HcfGw7EofGgp585obnBAi19Bas2DB34wYsYng4EgGDarD228/hoeHs9mhiVzu8uXLFC1aFKCo1vpyRp7b6hXf06KUagm8rbWWyT4mi4qNosuSLhy4doCv23+JS4kyxoGBAyXBEkJkGa017dr9yPr1p6lduzAbN7ajVi254UbkfOlKspRSxYAXgKIYk9+Xa60PWo7VBT4EGmdwjMJKzy9/njUn1/D+4+/z8kc74dYt48DUqeYGJoTIFaKj43ByskcpRfv2ZWnbtgz9+9eW7XBErvHQSZZSqgbGHYRJF1R6UynVC3ADPsOY46WQuwtN99rq11h2bBlNApowOqwqfDfGOHD3Lri5mRucECLH27DhNAMGrOWTT56kXbuyDBhQx+yQhMhy6flzYgKQFyOJSnjYA7OAaZbXCtgHtMnQKEW6bDi9gc/3f06hPIVYc7Q6tG1rHOjbVxIsIUSmuno1jGefXcKTT/6AUgp3dyezQxLCNOkZLmyA0UO1BvgCI6F6FWM7HYDLwOta65UZGaBIn6thV+m2tBsAv7RaiEcTy+L7K1fC00+bF5gQIsebO/dPRo3aTGRkLP/7XxPGjm2Cq6ts5ixyr/QkWb6W55e01iEASqndwE0sexdqrf/O2PBEetyNvkvNeTUJjQpls99wSlVrbhyYM0cSLCFEpgsMDKNmzULMmdOOChX8zA5HCNOlZ7jQDiAhwbK8DkryWhIsEwWGBdJsfjP+vfsvH5UfSsuB040DNWrAa6+ZG5wQIke6fTuS119fz44d5wEYP74Z27e/JAmWEBbpXsJBKXX2Icq11rqU1VGJdImMjaT9wvbsD9xPr+q9eP2Ah3Hg55/hqafu31gIIdJJa82SJUd5440NBAbewc/PjebNi+PgIHcNCpGUNetkpdy1U6col7sLs9i8P+exP3A/s1rPYkidQdDRAWrVkgRLCJHhzpwJYtCg9WzYcJpKlfxYvLgrjRsHmB2WEDYpvUmWenAVkZWi46KZuHMivq6+DKo7CCpXMQ5UqmRuYEKIHGnevL/YufM8U6e2ZOjQ+jg6ymbOQqTloZMsrbX0A9ugN7e8SUhkCO81nYy9f1EIDDQOvPeeuYEJIXKMnTvP4+HhTI0ahXjrrWYMGFCH4sW9zA5LCJsniVM2dvH2RWb8NgN/90IMb/nWfwnW5ctQWLasEEI8mhs37tKr10qaN1/AW2/tACBPHidJsIR4SBm+d6HIGrHxsbT8tiUAC5cpHOMBOzsIC5MFR4UQjyQ+XvPNNwcYNWoLISGRDB1an0mTmpsdlhDZjvRkZVMLDi7gVNApBlwoQOPfrkLDhhAXJwmWEOKRTZu2h1dfXU3p0j78+WcfZsxoTd68zmaHJUS2Iz1Z2VB4TDhv7XiLGs7F+GT+BaNw0yZzgxJCZGt370YTHByJv78HffrUxMvLhd69a8hmzkI8Avnfkw29suoVroZd5YMvLmCngbVrwd3d7LCEENnU2rUnqVTpM557bilaa7y9Xenbt5YkWEI8IvkflM1cu3ONRUcW4R7vwONngfr1/9sAWggh0uHy5VCeeWYx7dsvxNHRngkTmqGUrNQjREZ5pOFCpdSTwGOAt9b6VaVUwop0V7XWsY8cnUhGa524+fP2Hx1RxMKePSZHJYTIjjZsOE3XrkuIjo7jrbea8uabTXBxkRkkQmQkq3qylFIOSqmfgTXAMOBly6HvgHPAixkTnkhq9h+z2XVhFwNrvkad0xFQpw7IX51CiHSIjY0HoHr1grRsWZJ//unHpEktJMESIhNYO1w4GmiPsQJ80t/yn1red07vCZVS5ZVSm5VSd5VS15RSHyilnB6ybRGl1AKl1A2lVIRS6phS6vn0xmDLDgQe4PUNr+Pu6M6MhcFGYZs25gYlhMg2QkIiGTBgLR06LERrTcGCeVixohvlyuUzOzQhcixrk6wXMfYnHJuifLvluXJ6TqaU8ga2AU4YCdpYoC8w4yHaFgL2AoUtbdoDc4Acdb/xyM0jcbZ3ZrvLazgtXGwUduliblBCCJuntWbhwkOULz+bOXP+pGhRD6Kj48wOS4hcwdr+4eKW51nAu0nKb1ueC6bzfP0AD6CT1joIjCFJ4DOl1Lta66v3afsBcAloo7VO+MmxNZ3Xt2kXb19k67mtDKs/jDofHzcKT52C0qXNDUwIYdPOnw+hb9/VbN58lipV8rNiRTcaNChqdlhC5BrW9mSFW559UpQ3tDzfTef5ngS2JCRYFosx4nsirUZKKQ/gWeCzJAlWjvPV/q8A6L8pCNatMwolwRJCPICdneLvv/9l2rRW/PVXX0mwhMhi1iZZ+yzPnycUKKVGAT9hDCP+kc7zlQeOJy3QWocAgZZjaamJMcQYo5TaqZSKscznmqqUcrzfBZVSHkop/4QH6e99yxLhMeFM3jWZ+kXqU3rGfKPw559NjUkIYbu2bTvHiBHG4sQBAZ6cPz+E4cMb4uhob3JkQuQ+1iZZH1ien8RIqgDeA/Jb3n+YzvN5AyGplAdzb29ZUgmJ0ZfAnxi9XjOBN4DJD7jmMIxhxoTHvvtXN8eUXVMA6F3QMsn9xRfhqadMjEgIYYuuX7/Liy+u4PHHv2Xx4iPcuGEMKLi63vfvTSFEJrIqydJabwV6A6H8d4ehwpiT9arWevt9mmekhPi3aK2Ha623a62nYiR5Q5VSrvdpOwMomuRRJ3NDTb8TN08wdfdU6vvXp/cLlnsAOnQwNyghhE2Jj9d8/vlflCs3m4ULDzFiRAOOHh2In5/sAiGE2axeGEVrPV8ptQRjHpYfcAPYo7VO73wsMHqsPFMp9waCUilP2g6MOxOT2gqMA0oDh1JrqLUOxUgSAWxyleN+a/sRp+P4tP7bqNutjEK5o1AIkcT58yEMHryemjULMXduO6pVs8mZD0LkSlYlWUqp94AFWuvjwOYMiOM4KeZeKaU8gUKkmKuVwtEHnNflEeMyzZHrR9hxfgdNijSkZmVLgvX55/dvJITIFe7ciWbNmpM891xlSpb0Zs+eV6hRoxB2drb3x6IQudmjLEZ6RCn1p1LqdaWU3yPGsR5oqZTySlLWFYgHNqXVSGt9AaOnqmWKQ62ACB6chNmkwLBAKs8xlhqbP8qybY6vL7z88n1aCSFyg1WrjlOx4qd0776MY8duAFCrVmFJsISwQY+yQbTCuLtvJnBFKbVGKdVNKWXNIqBzgTBgpVLqCaXUyxjzquYmXSNLKbVVKXU6RdtxQAel1CylVCul1FhgBDDDyqFL0w1aPwiA3l6PUTJhQPTff8FBtr0QIre6ePE2HTv+RMeOi3B1dWTr1p5UqPCof98KITLToyxG+ixGb1Mdy3naYtxtGKaUWqK17vOwJ9NaByulHgc+AVZiJFxfYiRQSdmnjFlrvVop1R0YD/THWPZhAvB+uj+VDVh8ZDHLjy2nRdGmfNnbMtXsyBGwl9uvhcitQkIiqVp1DpGRsUya1JzRoxvh7Cx/dAlh65TW+sG17ncCpYphJFvPArUtxVprna2yAstaWZcuXbqEv7+/aXGU/aQsp4JOsetEI5os3A3NmsGOHabFI4Qwz4ULIRQr5gXAV1/tp2nTYpQp42tuUELkMJcvX6Zo0aIARbXWlzPy3I8yXJggFOMOwGAgNgPOl2v9ceUPTgWdYniNgUaCBbLwqBC5UHBwBP36raFUqY/5448rAPTuXVMSLCGyGWvvLvQGOmH0YD2W5DwKiAIkM7DC+78aI5xDjnsZBdOmgYeHeQEJIbKU1poffzzEsGGbuHHjLv3716ZsWUmshMiurB3Uv0byxEoDu4FvgSVa69tpNRSpO/TvIVYcX8HoRqMpOu+EUdijh7lBCSGyTGxsPG3b/sDmzWepXr0gP//8HPXqmTd1QQjx6KxNshL2aTgFfAd8r7U+nyER5VIdF3XE2d6ZYaf9YOlUqFoVChUyOywhRCaLj9fY2SkcHOyoWrUAbduWYdCgujg4ZMRsDiGEmaxNsj4DvtNa/56RweRWv13+jbPBZ/Fz8CR//xFGYY0a5gYlhMh0mzefYciQDSxe3JXKlfMzbdoTZockhMhAViVZWutBGR1IbjZ5p7GX9W/TLaOs69bBk0+aGJEQIjNdu3aHYcM2snDhYYoV8yQ4OMLskIQQmeChkyyl1DaMpRket7y+H621fvzRQssd9l7ay/rT6xng3ISSwb+Ak5MkWELkUFpr5s37izFjtnD3bgyjRzdi/PimuLs7mR2aECITpKcnqznGBPeUr1NS9zkmkojX8YzfPh6AcR8fMAq3bjUxIiFEZlJK8euvF6lcOT9z5rSjSpUCZockhMhE6UmyLmLsJZjwWhKpR7T4yGK2ntvKuCoDKRz4KdSpA40bmx2WECIDhYVFMWnSTvr1q03p0j7Mm9ceV1dH2WtQiFzgoZMsrXXx1F4L603bMw0fVx/GXyppFPTqZWo8QoiMo7Vm5crjvP76Bi5fDsXf34M33qgvQ4NC5CLWLkb6Fsa8q7dTOfYYxsEHzdvK1Q79e4i/Av9iRJ03cG433Cjs3NncoIQQGeLChRAGDVrPmjUnKV8+H9u3v0Tz5sXNDksIkcWsXcJhIsZw4T1JFrAFY1hRdi+9jzFbxwDQfbfljsJy5aBgQRMjEkJklNGjt7Bly1neeacFI0c2wskpW23lKoTIIFZtEK2UiieVTaCVUh5ASGrHbF1WbhC9/Nhynln8DPnd8/Pv/25DVBTcuQPu7pl6XSFE5tm9+yLFinnh7+/B5cuhREXFUqqUj9lhCSEewCY2iFZKvaSU2pZ0+YaE90nK91sOhWRkkDnNh3s+BODHKhONBKtVK0mwhMimgoIi6NPnZxo3/oaJE3cA4O/vIQmWECJdQ3rFSb50gwKapaiTcLvMrkeKKgdbfWI1v13+jReqvsDjH68xCl991dyghBDpprXmu+/+YfjwTdy6Fc6gQXV4553HzA5LCGFD0pNkhQAXLK+LYSRbF5Mc10AwsA+YkBHB5UQf/f4RAJ+2/RRG1zYKn33WxIiEENZ4882tTJ26m5o1C7F+/fPUrl3Y7JCEEDYmPUs4fAR8BIlzstBal8ikuHKkm+E32XZuG6MbjcbDKS+cOgUFZDFCIbKLiIgYoqLi8PJy4ZVXalCoUB4GDpTNnIUQqbP2DsAWGRpFLrHx9EY0mvZl28OvvxqFjRqZG5QQ4qFs3HiaAQPW0bhxAAsWdKRsWV/KlvU1OywhhA1Lz96FTQG01ruwzMtKKEuNpZ5IYt3pdXi5eFHfvz4Me84ofOMNU2MSQtxfYGAYQ4duZNGiIxQv7kW3bpXMDkkIkU2kpydrB/+tf7WD+2+ro9N57hwvLj6ODac30LpUaxziNCxbZhyoX9/cwIQQaVq+/Bgvv7yK8PAY3nyzMf/7X1Pc3BzNDksIkU2kNxFSabwWD7Dv6j6CIoJoW6YtbNliFD71FDjKD2whbI3WGqUUpUv7ULt2YT7+uA2VKuU3OywhRDaTniTr5TRei4ew7tQ6AFqXag2/LDEKp0wxMSIhREqhoVG89dZ24uM1H3/8JFWrFmDr1p5mhyWEyKbSc3fhgtRei4ez7tQ6aheuTYE8BeDcOaNQttERwiZorVm27BhDhmzg6tUwXn21RmJvlhBCWMuq+46VUs5KKR+llLvlvYdS6k2l1Ayl1BMZG2L2d+3ONf4K/Iu2pdsaBXv3Gs9+fuYFJYQA4Pz5ENq3X0jXrkvw8nJh165efPFFB0mwhBCPzNrFXWYDN4ARlvebgXeAIcB6pVSXDIgtx9h4eiOAMR/r7l0jyZK5WELYhGvX7rBz53nee+9xDhx4jSZNipkdkhAih7D2DsB6luc1SqkKQB0gDogE3IE3gKWPHF0Ose70OnxdfalduDb8/odROGuWqTEJkZv98ssFDh68xuDB9ahf359Ll4bi7e1qdlhCiBzG2p6sopbnU0BNy+vJQF3L63KPElROEhsfy8bTG2lTug32dvawfbtxoGNHU+MSIje6eTOcV15ZRdOm85k+fS8RETEAkmAJITKFtUmWs+U5BqiEsS7WX8BpS3meR4wrx9h7aS+3o24bQ4UAO3ZA2bJQWPY5EyKraK355psDlC8/mwUL/mbIkHr8809/XF1l2F4IkXmsHS68CpQAvgEaW8qOAgm3y918xLhyjPWn16NQxtIN0dGweze88ILZYQmRq+zbd5VXXvmZ2rULs3FjO2rVkj9yhBCZz9qerFUYi5F2BQoDh7TW54FaluOHHz20nGHdqXXU86+Hr5sv7NsH4eHQQrZ+FCKzhYfHsG2bsVxK3bpF2LjxBX77rbckWEKILGNtkjUemAccAdYC3SzlZYCdwMJHDy37uxJ6hb///fu/pRsS5mM1a2ZeUELkAuvWnaJSpc9o2/YHrl27A8ATT5TC3t7aH3lCCJF+Vg0Xaq3Dgf6plH8IfPioQeUU60+vB0g+H6t8eShUyLyghMjBrlwJ5Y03NrJ06VFKlvRm1arnKFhQpogKIcxh9SbOSikH4CWgDeCHMQ9rPbBAax2bMeFlb+tPr6eAewFqFKoBUVHGfKxevcwOS4gc6eLF21Su/BmRkbH8739NGDu2iUxsF0KYyqokSynlAmwCGqU41Al4WSnVUmsd+ajBZWfRcdFsPrOZzhU6Y6fs4I8/IDJS5mMJkcGCgiLw8XElIMCTESMa8uyzlShfPp/ZYQkhhNVzssZi3FWoUnk0sBzP1XZf3E1YdNh/Q4UyH0uIDHX7diSDB6+jRImPuHTpNgBvvdVMEiwhhM2wNsl6FmNtrCUYk91dLM+LMRKtZzMkumxs3al12Ct7WpVsZRTs2AEVK0KBAqbGJUR2p7Vm0aLDlC//KbNn7+PZZyvi7u5kdlhCCHEPa+dkFbc8v6a1DrG8PqOU6oeRYBVPpU2usv70ehoWbYi3q7cxTLhnD/TubXZYQmRrYWFRdO26hI0bz1C5cn6WLu1Ko0YBZoclhBCpsrYnK8LyXCpFeakUx3OlCyEXOHLjCE+WftIo+P13Y+K7zMcS4pHkyeOEi4sDU6e2ZP/+vpJgCSFsmrU9WX8CjwNrlVILgEuAP8bdhglb7ORa9yzdIPOxhLDajh3nGTduGytWdCN/fndWrOiGUsrssIQQ4oGsTbKmAY9hLN0wIkm5wkiypj1iXNnaulPrKJy3MFULVDUKduyAypXBz8/UuITITm7cuMuIEZv59tu/8ff34Ny5YPLnd5cESwiRbVg1XKi13gi8BoSR/M7CMKCf1npDhkWYzUTFRrH13Fbalm5r/DKIiIC9e6F5c7NDEyJbiI/XfPXVfsqX/5QffviHYcPqc/ToAOrV8zc7NCGESBerFyPVWn+plPoJaAjkw1iMdI/W+k5GBZcd7bqwi/CYcJ4sY5mP9dtvxsbQMh9LiIf21VcHKF3ah3nz2lO9esEHNxBCCBuU7iRLKVWc/zaC3q+13pShEWVz0/ZOw8HOgZYlWxoFCfOxmjY1LyghbNzdu9F8+OEe3nijPl5eLqxa9Rw+Pq6y16AQIlt76CRLGRMh5gCvYgwNJpR/A/TRWuuMDy97+fXir2w6s4kuFbvg4exhFO7YAVWrQj5ZIFGI1KxZc5JBg9Zx4cJtihXz5OWXa+Dn5252WEII8cjS82fiYKAv967w/jLwRoZHlg2N3z4egEnNJxkF4eHGcKHMxxLiHpcvh9K58yKeemohjo72bN78Ii+/XMPssIQQIsOkJ8l6xfIcDfwMrAaiMBKtXhkbVvajtWbH+R24OrhS0a+iUbh3L8TEyHwsIVLRvfsy1q49xYQJzTh0qD8tW5Y0OyQhhMhQ6ZmTVRZjeYYntdY7AJRSLYCtGFvq5GoHrx0E4Pkqz/9XuH07KCXzsYSw+OOPK1Sq5Ie7uxOfftoWZ2d7ypWToXQhRM6Unp4sF4CEBMsi4bVzBsWTbU3cORGA3jWTbJ2zYwdUqwY+PqbEJIStCAmJZMCAtdSv/yVTp+4GoGrVApJgCSFyNGvuLixKkonvaZVrrS8+WmjZx63wW/x84mceK/EY9f3rG4V378Iff8DAgeYGJ4SJtNYsXHiYYcM28u+/d3nttVoMHVrf7LCEECJLWLNO1vkU73Uq5drKc2dLX+z/AoDulbv/VzhihDEfq2FDk6ISwnwDBqxl7ty/qFq1ACtWdKNBg6JmhySEEFnGmkVoUt5dmNYjfSdVqrxSarNS6q5S6ppS6gOllFM6z/GGUkorpdak9/qP4qfDPwHQuUJnoyA+HrZsMV4/8URWhiKE6aKiYomKigXg2WcrMW1aK/76q68kWEKIXCc9vU27+K/XKkMppbyBbcApoDNQBJgBuAGDHvIcBYEJwPXMiDEtWmsOXT+Ev4c/Pq6WuVcTJ8Lp0zB6NHh6ZmU4Qphq27Zz9O+/luefr8JbbzWjRYsStGhRwuywhBDCFA+dZGmtm2diHP0AD6CT1joIQCnlAHymlHpXa331Ic7xAcbSEsUyL8x77b60m3gdT8dyHf8rfPtt4/m117IyFCFMc/36XYYP38T33/9D0aIe1KxZyOyQhBDCdLayZ8WTwJaEBMtiMUZ8DxxvU0o1BjoCYzIluvtYe3ItAH1q9TEKQkON54IFoYT8BS9yvkWLDlOu3GwWLjzEyJENOXp0IO3blzU7LCGEMJ2tTE4vD3ydtEBrHaKUCrQcS5NSyh6YDUzRWgcau/9knQV/L6BekXpULVDVKJg40XgeOjRL4xDCLG5ujlSokI+5c9tTtWoBs8MRQgibYStJljcQkkp5MPCgRaYGAO7AzPRcUCnlgTFEmaBgetoDHL5+mMA7gfSr3c8o+PxzmGkJY8CA9J5OiGzhzp1oJk7cQUCAJ6+/Xo+nnipH+/Zlyeo/cIQQwtbZynChVZRS+YHJwDCtdXQ6mw8DLiV57Evv9VcdXwVAA/8GRsEYy2jlpEmQJ096TyeEzVu16jgVK37K9Ol7OXbsRmK5JFhCCHEvW+nJCgZSuw3PGwhKpTzBZOAf4BellJelzAFwsLy/o7WOTaPtDODLJO8Lks5E6/crvwPQokQL2LYNgoOhUiV46630nEYIm3fx4m0GD17Pzz+foGxZX7Zu7cljj8mcQyGEuB9bSbKOk2LulVLKEyhkOZaW8kBTjCQtpWCMCfUbUmuotQ4FQpNcL10BR8VGsfrkauoUroODnQNMmWIcmDQpXecRIjvYvfsiGzeeZvLk5owa1QhnZ1v50SGEELbL6p+USilfYBTwGOCttS6tlOphOecGrXV61qtaD4xVSnlprUMsZV2BeGDTfdq9AXilKJsFRABvYvRyZYplx5YB0KNKD6Pg0CHj+ZlnMuuSQmSpvXsvERh4h86dK/Dcc5Vp3DiAokVl3TchhHhYViVZlrlQv2GsSaX4b5HSNsDzGAnOB+k45VxgMLBSKfUuxmKkHwJzk66RpZTaChTTWpcG0FofTCW2EIxhwh3p+lDp9PHvHwPwSo1X4MQJuHED+vTJzEsKkSWCgyMYM2YLn3++nwoV8tGxY3ns7JQkWEIIkU7WTnx/GygOxKUon4+RdD2VnpNprYOBx4FYYCXwPsZ8qWEpqtpjA0Oc8Tqe36/8TgmvEng4e8CQIcaB6tVNjUuIR6G15vvv/6Fcudl88cV+BgyozZ49vbGzk0ntQghhDWsTlnYYvVetga1Jyv+wPJdK7wm11seAlg+o0/whzvPAOo8qMCwQsGwIHRUFGzcaB2TZBpGNrV59khdfXEH16gVZs6YHdesWMTskIYTI1qxNsvwsz7vTOO5r5XmzhU1njGlirUq1gq5djcI2bUyMSAjrREbGcuLETapVK0j79mX5/vtOdOtWGQeHbL26ixBC2ARrf5LetDynXI29u+U5Szdpzmqbz24GoHbecrB6tVE4f755AQlhhc2bz1ClyhyeeOJ77t6Nxs5O8fzzVSXBEkKIDGLtT9OEIcKVCQVKqXXAHIxhxK2ptMkRtNasP72erhW7kmfKh0bhgAFQQLYTEdnDtWt36NFjGU888T0xMXF8/XUH3N2dzA5LCCFyHGuHCycDHTAmvyfcWdgaY9L7bYyJ8TlSaFQoIZEhVPKrBJ9bkqxp08wNSoiH9M8//9K06TfcvRvD6NGNGD++qSRYQgiRSazqydJanwaaANsw1rJSludtQFOt9ZkMi9DGbDm7BYBK+MHdu1ClCri6mhyVEPcXEREDQMWKfjz7bCX27+/L+++3lARLCCEykdXLIWitDwEtlVKuWLa/0VpHZlhkNmrF8RUAPLbPMi1N1sYSNiwsLIoJE3awcuVx/vmnP3nyOPH55+laYUUIIYSVHnnNKa11BMYK67nCkqNLqF6wOj53LRtAd+tmbkBCpEJrzYoVx3n99fVcuRJGr17ViYlJuaydEEKIzGTtiu8P+mmttdamLxqa0S6HXiY6LpqWJVrCl78ZhTJUKGzMzZvh9Oq1krVrT1G+fD527OhMs2bFzQ5LCCFyHWsToVy5BPTmM8bSDe3Ltof9vY1Cd3cTIxLiXnnzOnHlShjvvNOCkSMb4eRkb3ZIQgiRK1mbZC1I8d4eKAE0BMKBJY8SlK06eeskAHWL1IXz56FIEbCTNYWE+Xbvvsi0aXtZuPAZXFwc+PPPPtjby79NIYQwk1VJltb65dTKlVKtgfXA/kcJylb9eulXinkWw/XiVYiLgyefNDskkcvduhXOmDFb+PLLAxQqlIdTp25RpUoBSbCEEMIGZOhPYq31RuAO8HpGntcWxOt4jlw/QpNiTWDOHKOwaVNzgxK5ltaaBQsOUr78p3z11QEGDarDsWMDqVJFFsUVQghbYe3E99SyCxfgSSAPUOhRgrJF50POExwZTM2CNeHPVeDpCS++aHZYIpeKiIhlwoQdBAR4sn7989SuXdjskIQQQqRg7ZysHfy30ntKGjho5Xlt1v5AYwTU180XfvsNHB1NjkjkNhERMXz++V8MHFgXNzdHtm17iYAAT9lrUAghbNSjLLOQ1h2GF4EBj3Bem7Tt3DYAOgS0gqgoaN7c3IBErrJx42kGDFjH2bPBFC/uxdNPl6dkSW+zwxJCCHEf1iZZqU18jwIuAb9rrWOtD8k2ff7X51QtUBWvPZY5/S1amBuQyBWuXg1j6NCNLF58hBIlvFi7tgdt25YxOywhhBAPId1JllLKGQi2vN2rtb6RsSHZnjvRd4jTcbg6uMK1a0ZhkybmBiVyvPh4zWOPLeDs2WDGjm3MuHFNcXOTYWohhMgu0p1kaa2jlFJLMe5MzBWzbf+6+hcAwxsMhwX7jMISJUyMSORkR45cp0IFP+zsFLNnt6Vw4bxUrOhndlhCCCHSydoZs6cx5mTlis3Q/go0kqz6/vXh1i2j0MfHxIhEThQaGsWQIeupWnUuX31lDEu3bFlSEiwhhMimrE2yJlqepyilnDIoFpu16cwmCuctjL+HP/zwAxQuDM7OZoclcgitNUuXHqVChU/5+OM/6NWrGp07VzA7LCGEEI/I2onv/YHbQB+gq1LqJBCR5LjWWj/+qMHZgui4aDaf3Uz3yt1RMTHGnYU1a5odlshBevZcyfff/0PFin789NMzNGlSzOyQhBBCZABrk6xmGOthKcAbqJvkmCLtNbSynSuhV4jX8dQoWAO2Gcs40LixuUGJbC8mJg4HBzuUUrRqVZJKlfwYNqyBbOYshBA5yEMnWUqpnhg9VN9hrIWVYxKp+7l4+yIAJbxLwOINRuHjOaKTTphk164L9Ou3hnHjmvD881Xp2bOa2SEJIYTIBOnpyZoPxAPfaa2LZ0o0NijwTiAABfMUhPnzjcJq8ktRpN/Nm+GMGrWZb745SOHCefH0dDE7JCGEEJkovcOFaa3ynmNN3T0VgHwOHnD7Nvj7y5Y6It1++OEfXn99AyEhkQwZUo/Jk1vg4SE3TwghRE72KNvq5AqRsZEAlP1skVHw5JMmRiOyq+vX71KypDfz5rWnZs0ct3+6EEKIVFiz4vu2h6iWI+4uvHbnGsdvHmdCswnQ+zujcOZMc4MS2UJ4eAxvv72TBg2K0qFDOV5/vR6vv14Pe3vZzFkIIXILa3qymj3geI65u3DL2S0AtC7VGkI+gQoVwN3d5KiErVu37hQDB67j/PkQhg6tT4cO5SS5EkKIXMian/zqAY8cY+OZjXg6e1LHqyIEBUGDBmaHJGzYlSuhdOmymHbtfsTeXrFhw/PMmNHa7LCEEEKYxJqerFyzad8fV/6gcUBjHH5eYxSUKmVuQMKmLVjwNz//fILx45vy5puNcXWVGySEECI3s2aD6AuZEYgtCo4IJr97fvjrhFHQrZu5AQmbs2/fFWJi4mnYsCjDhzfgmWcqUK5cPrPDEkIIYQNkokgaQqNCuRF+w1gfa80aUApKljQ7LGEjbt+OZNCgddSr9yWjRm0GwNnZQRIsIYQQidLTk3URYzHSXOFM0BkA8rvmgwMHwMvLSLRErqa1ZvHiI7zxxkauXbtDnz41ef/9lmaHJYQQwgY9dJKVm1Z5BzgXcg6A2s6WKWj16pkYjbAVX311gD59VlO5cn6WLXuWhg2Lmh2SEEIIGyWLkabh2I1jAOTHsmRD164mRiPMFBUVy7VrdyhWzIvu3SsTGRnLa6/VwtFRNnMWQgiRNpmTlYbouGgAihy/YhQ4yxYoudH27eeoVm0uHTr8RGxsPO7uTgwaVFcSLCGEEA8kSVYaDt84TIBnAO5/HDQKypY1NR6Rta5fv8tLL63ksce+5e7dGCZNao69vczJE0II8fBkuDANp26doqxvWbhq6cGqVcvcgESW2b37Ik89tZDQ0CiGDavPpEktyJPHyeywhBBCZDOSZKXhfMh5GhVtBL/8Am5uYC/DQzldXFw89vZ2VK6cnyZNijFpUnOqVy9odlhCCCGyKRkuTIXWmrDoMDycPYy9CmNjzQ5JZKK7d6MZPXozLVosID5e4+npwqpVz0mCJYQQ4pFIkpWK4MhgAOJ0HJw5A/XrmxyRyCxr1pykUqXP+OCDPQQEeBIeHmN2SEIIIXIIGS5MxYHAAwCU9CwO589DPlnFO6e5du0OAwasZcWK45Qp48OWLS/y+OOyor8QQoiMI0lWKhIWIi2Xp5hRUKeOidGIzGBvr/jtt8tMnNiM0aMb4+Ii/xWEEEJkLPnNkorQqFAAysV4GgXe3iZGIzLK779f5vvv/+Hjj5/Ez8+dM2dex9XV0eywhBBC5FAyJysVp4NO42DnQOFYV6OgShVzAxKPJCQkkgED1tKgwVcsXnyUixdvA0iCJYQQIlNJT1Yqtp7bStUCVbGbNt0oyJvX3ICEVbTWLFx4mGHDNvLvv3d57bVavPfe43h7u5odmhBCiFxAkqxUXA69TK2CNWHRIqOgTRtzAxJWuXEjnNdeW0PJkt6sWNGNBg1kM2chhBBZR5KsFOJ1POEx4VQItnxp2rSRhUizkaioWJYtO0aPHlXIn9+dnTt7UbVqARwcZGRcCCFE1pIkK4VrYdcAKHAtzCiYPdvEaER6bN16lgED1nHy5C1KlPCiQYOi1KxZyOywhBBC5FLy530KOy7sAKDuXS8oUABKlTI1HvFg//57hxdeWE7Llt8RGRnLqlXPydCgEEII09lMkqWUKq+U2qyUuquUuqaU+kApdd9deZVShSz1DiqlwpRSl5VSPyqlilkbx/ng8wBU3nsGXFysPY3IIpGRsdSoMY+ffjrMyJENOXp0AB06lDM7LCGEEMI2hguVUt7ANuAU0BkoAswA3IBB92lay1L/a+A3IB8wHvhDKVVZa30jvbFcuXMFgGJ4wt0r6W0ussjFi7cJCPDExcWBDz5oRdWqBahatYDZYQkhhBCJbCLJAvoBHkAnrXUQgFLKAfhMKfWu1vpqGu1+BcprrRN3cFZK7QEuAj2B6ekNJCYuBi9nL9TBv+GZZ9LbXGSyO3eimThxB7Nm/caGDS/QsmVJXnihqtlhCSGEEPewleHCJ4EtCQmWxWKM+J5Iq5HWOiRpgmUpuwzcAApbE8jeS3upEGdZ4T1PHmtOITLJqlXHqVjxU6ZP30uPHlWk50oIIYRNs5WerPIYQ36JtNYhSqlAy7GHppQqC+QHjlkTSFh0GE6BIcabsWOtOYXIYFprunZdwrJlxyhb1petW3vy2GMlzA5LCCGEuC9bSbK8gZBUyoMBn4c9iVJKAR8DV4GFD6jrgTFEmaAgQFx8HE+csZSUKfOwlxaZID5eY2enUEpRuXJ+qlUrwKhRjXB2tpV/tkIIIUTabGW4MKNMBB4Hemqt7z6g7jDgUpLHvoQDeaMw1sdSKpPCFA+yZ88latacx549lwCYOLE548c3kwRLCCFEtmErSVYw4JlKuTcQlEr5PZRSfYC3gNe01lsfoskMoGiSR52EA2WCgKoymdoMQUERvPbaaho1+ppr1+5w+3ak2SEJIYQQVrGVboHjpJh7pZTyBApZjt2XUqoTMAd4S2v99YPqA2itQ4HQJOdIPFYkFKhX72FOIzLQjz8e4o03NnDzZjgDBtRmypTH8fKStcqEEEJkT7aSZK0HxiqlvLTWIZayrkA8sOl+DZVSzTHmX32htX47I4Lx1S7gdN91UEUm2LPnEkWKeLBmTQ/q1i1idjhCCCHEI7GVJGsuMBhYqZR6F2Mx0g+BuUnXyFJKbQWKaa1LW95XAFZiLGL6nVKqfpJz3tBan8EKBYdPsOpDiPSJjIzlvfd+oVOnClSvXpAPPmiFk5O9bOYshBAiR7CJJEtrHayUehz4BCNpCgO+BMalqGpP8pjrYczl8gR2p6i7AOiV3lgK3gG75hXT20yk0+bNZxgwYB2nTwehNVSvXhA3N0ezw8r1tNbcvHmTyMhI4uLizA5HCCGsZm9vj4uLC/ny5Us2JSgr2USSBaC1Pga0fECd5inezwfmZ2Qc1a8hQ4WZ6Nq1OwwbtpGFCw9TrJgna9Z0p127smaHJTASrCtXrhAWFoaTkxP29vZmhySEEFaLjo7mzp07REVFUaRIEVMSLZtJsmxFsRCgnGwwnFkmTdrBkiVHGT26EePHN8XdXRJaW3Hz5k3CwsLInz8/vr6+ZocjhBCP7NatW1y/fp2bN2/i5+eX5deXJCuFx88h2+lksAMHAsmb15nSpX2YPLkFAwfWpXLl/GaHJVKIjIzEyclJEiwhRI7h6+tLSEgIkZHmLAckM4xT8IgCvL3NDiNHCAuLYujQDdSu/QWjR28BwM/PXRIsGxUXFydDhEKIHMfe3t60OabSk5WCvXtecJAvy6PQWrN8+TGGDNnAlSth9OpVnQ8+uO90OyGEECLHkWwiBfXYY2aHkO198MFuxozZSoUK+fjhh840a1bc7JCEEEKILCfDhSkoZL9Ca8TExBEUFAHACy9U5b33HufgwX6SYAlTTJw4EaVU4sPX15fGjRuzbt26VOsHBwczcuRISpUqhbOzMwUKFKB79+4cO3Ys1fp37txh0qRJVK5cGTc3N9zd3albty4zZswwbe5HVpk5cyYBAQHY29vTsWPHDD9/0u9bWo/58+c/0jUOHjzIxIkTCQ8Pf+g2Xbt2ZeTIkY903exo9erVVKtWDRcXF8qWLcs333zzUO2OHTtG27ZtcXd3x9vbmxdffJGbN2/eU+/48eO0atUKd3d3ChYsyKhRo4iOjk48HhYWho+PD7t3p1ylKXuQnqwUVKlSZoeQ7fz660X69VtDyZLerFr1HEWKeDBmTGOzwxK5nKurK9u2bQPg6tWrvPvuuzz11FP88ssvNGzYMLHetWvXaNq0KcHBwYwbN44aNWpw+fJlpk2bRp06dVi3bh1NmzZNrH/z5k1atGjBpUuXeOONN2jc2Pi3vnfvXt5//33s7e0ZMmRI1n7YLHLq1CmGDx/O6NGjeeqpp8iXL1+GX2Pv3r3J3jdo0IDBgwfTo0ePxLJSj/hz+uDBg0yaNIlBgwbh5ub2wPr79+9n9erVnD179pGum938+uuvdOrUiVdffZVZs2axbds2evfuTd68eenSpUua7UJDQ3nsscfw9/fnxx9/JDw8nDfffJN27dqxd+9e7OyM/p3g4GAee+wxypQpw/Lly7ly5QrDhg0jPDyc2bNnA5A3b14GDx7M2LFj2blzZ5Z87gyltZaH1gD+gN7+4ZtaPJybN+/q3r1XaZioCxWaphcvPqzj4+PNDktY6dy5c/rcuXNmh5EhJkyYoN3d3ZOVXb58WSuldN++fZOVd+rUSTs7O+tjx44lK79z546uUKGCLlKkiI6IiEgs79q1q3Zzc9OHDh2657q3bt3Su3fvzsBP8vDCw8Mz/RqrV6/WgD5z5swjnysyMlLHxcU9sB6gP/zww0e+XlLffPONBvSNGzceqn7Pnj11hw4dMuTaWfF9yihPPPGEbtiwYbKy7t276woVKty33XvvvaddXV31tWvXEsv27dunAb18+fLEsnfffVe7u7vrW7duJZbNmzdP29vb6ytXriSWnT9/XgP64MGDVn2OB/1su3TpkgY04K8zOLeQ4cIU7Ozk7qqHsXnzGcqX/5RvvjnI4MF1OX58EF27VjJtVV0hHqRIkSL4+flx8eLFxLILFy6wcuVKevbsSfnyyfaox93dnXHjxnHlyhWWLFmSWH/p0qX069ePypUr33MNHx+fZL1kqTl27BidO3fGx8cHNzc3qlWrxsKFCwE4f/48SimWLl2arM0bb7xB8eLFE9/Pnz8fpRR79+5NHGoZOXIkzZs3p3379vdcc/bs2bi6unL79m3A+ON62rRplC1bFmdnZ0qWLMnMmTPvG3evXr146qmnAKMnKemw3YULF+jSpQuenp64u7vTunVrDh06lKx98eLFGTRoEB988AHFihXD1dWVoKCg+14zLfPnz6dq1aq4uLhQpEgRxo0bl+zusZCQEPr06UORIkVwcXGhaNGiPPfcc4ltX375ZQD8/PxQSiX72qZ09+5dli1bdk/Pzd69e+nQoQOFCxfG3d2d6tWr89133yWrs2PHDpRSrF27li5duuDh4UHXrl0TYxwwYACFChXC2dmZWrVqsWlT8q16165dS6tWrcifPz8eHh7Uq1ePDRs2WPU1S6+oqCi2b9+eGG+C5557jmPHjnH+/Pk02x44cIBq1apRoECBxLLatWvj6+vL6tWrE8vWr19Py5Yt8fHxSSx79tlniY+PT/a1KFasGHXr1n3kYWIzyHBhCqpgQbNDsGlaa5RSlCrlQ/ny+Zg5szW1axc2OywhHujOnTsEBQVRokSJxLJdu3ahtU5MHlJKKN+1axcvvvgiv/zyC1pr2rRpY1UMp06dokGDBhQtWpSPP/6YggULcvjw4WSJX3r06NGDvn37MnbsWNzc3Dh48CCDBw8mKCgo2S+uhQsX0rZtWzw9PQEYMmQIX375JePGjaNevXrs2bOH0aNH4+rqSr9+/VK91vjx46lYsSKjR49m+fLlFCpUiFKlShEWFkbz5s2xs7Nj7ty5uLi4MGXKFJo2bco///xD0aJFE8+xbNkyypQpw0cffYS9vT3u7u7p/swzZsxg1KhRDB06lOnTp3Ps2LHEJOv9998HYNiwYaxfv57333+f4sWLExgYyPr16wFo164d//vf/3jnnXfYsGEDnp6eODs7p3m9vXv3cvfuXRo1apSs/MKFCzRq1Ih+/frh4uLC7t276d27N/Hx8bz00kvJ6vbt25cXXniBFStWYG9vT3R0NK1ateLff/9lypQpFClShO+//5527dqxf/9+qlSpAsC5c+d46qmnGDFiBHZ2dqxfv562bduybds2mjdvnmbMWuuHWrLA3t4+zT+Mz5w5Q0xMzD1/fFSoUAEw5lKllZxGRkam+jV1dnZONs/x+PHjvPLKK8nqeHl5UahQIY4fP56svGHDhmzevPmBn8nWSJKVkpLOvdRERMQwZcovXL4cyvz5HSlZ0ptffnnZ7LBEVujfH1L0SmSpKlVgzhyrmsbGxgLGnKxRo0aRN2/eZPOlrly5AkBAQECq7T08PPDy8uLy5csPVf9BJk6ciJOTE7t378bDwwOAli2tX96kX79+jB49OvF96dKlGTx4MMuWLaNPnz6AkQzs3buXxYsXA8Yvz9mzZzN37lz69u2bGEN4eDiTJk2ib9++iXNmkipVqhRlyxpbYNWoUSPxF+zHH3/MhQsXOHLkSOIv4GbNmhEQEMCsWbOYPn164jliYmJYv369VckVGJOgJ0yYwKhRo3j33XcBaNWqFU5OTgwbNoyRI0fi6+vLH3/8QY8ePZIlOwk9WX5+folzumrVqvXAeWX79u0jT548lCxZMll5wvnASGqaNm3K5cuXmTdv3j1JVocOHZg6dWri+2+++YaDBw/y999/U7GisVdu69atOXXqFG+//Xbi92rQoEGJbeLj42nRogVHjhzh888/v2+StXPnTlq0aHHfzwWwffv2NM8THBwMGElPUt6WdSTv1wtZpkwZvvnmGyIiInB1dQXg4sWLBAYGkifJYt/BwcH3nD/hGinPX61aNT766CPCwsLImzfvgz6azZAkKwUZ7LrXhg2nGThwHWfPBtO1a0ViYuJwdJRhVWHb7t69i6Pjf5uO29vbs2rVKsplwLZZ1g6Lb926NXHYKCO0a9cu2XtfX19atWrFTz/9lJhkLVq0iDx58iQOI27ZYiwM/MwzzyQmoWAkWlOnTuXSpUsUK1bsoWP45ZdfqFy5cmKCBcawaatWrfj111+T1W3evLnVCRbAnj17uHPnDl27dr0n9oiICA4fPkyzZs2oWbMm8+fPp1ChQrRp0ybVod2HFRgYmGoiFhwczIQJE1i1ahVXrlxJ7DlKbceElN+nTZs2UaVKFcqWLZvsc7Rq1Yrvv/8+8f3ly5cZN24cW7ZsITAwMGH+MLVq1bpvzLVq1WLfvn0P/GwZ8X8hNX369OGjjz7itdde4/333yc8PDwxebf2/06+fPnQWvPvv/9KkpWdKenJShQYGMYbb2xk8eIjlCjhxbp1PXjyyTJmhyWympW9SGZzdXVl165dxMfHc+rUKcaMGUPPnj05fPgwhQoVAox5WmD8lV2tWrV7zhEWFkZISAj+/v731E/o1UmPW7duUbhwxg2vJ53zkqB79+689NJLXLt2jYIFC7Jw4UI6deqEi4sLYNwdqbVOswcnvUlWcHBwqnEUKFCAw4cPPzDe9EhYAqBmzZqpHr906RIAn3zyCT4+PkyfPp2RI0dStGhR3nzzTfr375/ua6Y19NWrVy/27NnDW2+9RaVKlfDw8GDOnDksWrTonropP/fNmzc5cOBAsj8CEiTsuhAfH0+HDh24ffs2kydPpnTp0ri7u/PWW289cHg5T548VK9e/YGf7X47PCT0WCXM40uQ0MOVdDg6pXLlyvHVV18xZMiQxHlqnTt3pm3btoSFhSW7RsrzJ1wj5fkTvgcRERH3+0g2R5KsFCTJ+k9QUARr1pxk7NjGjBvXFDe3e38gCGGr7OzsqF27NgB169alXLly1KtXj8mTJzPHkjg2bdo0cWJyavOy1qxZk1gvaf2NGzdaNczn6+vL1atX0zyekAglXScI/vvFllJqvQJPP/00zs7OLF68mNatW3Pw4EHee++9xOM+Pj4opfj1119xcrp3g/b09m74+Phw4sSJe8r//fffe35RPuqNMQnnW758ebK5XgkS5tt5enoya9YsZs2axaFDh/joo48YMGAAlStXpkmTJum+ZkhISLKyyMhI1qxZw4wZMxg8eHBieXx8fKrnSPm5fXx8qFq1Kl999VWa1z19+jQHDhxg5cqVPP3004nlD5NkZMRwYalSpXB0dOT48eO0bt06sTxhrlTKuVop9ezZk+eee46TJ0/i7e1NkSJFqFSpEh06dEisU758+XvmXt2+fZvAwMB7zp/wPchue6tKkpVCbr857q+/rrJt2zlGjmxEpUr5uXRpKD4+rmaHJcQjq127Nt27d+ebb75hwoQJFCxYkGLFitGxY0cWLFjAsGHDkvVOhYeHM2XKFPz9/RPvsAoICKBLly7MmTOHl19+OXE+TYKQkBCOHTtGgwYNUo2hZcuWLF26lKlTp6Y65JE/f34cHR2TTQ6Ojo5O1/pAefPmpX379ixcuJCgoCD8/PySJYSPP/44YPSqpTXhPz0aN27M0qVLOXHiRGKCFhwczJYtWxLnfGWUBg0a4ObmxuXLl+nUqdNDtalSpQozZ87kq6++4tixYzRp0iQxuXyYhWPLlSvHjRs3uHv3buJQZ1RUFPHx8cmS1LCwMH7++eeHiqlly5asW7eOwoULp9mzmZBMJb3GhQsX2L179wN7UTNiuNDZ2ZkWLVqwdOnSZPMYFy1aRIUKFe57R2YCJyenxKHabdu2cfLkSXr16pV4/Mknn+Tdd98lJCQkcW7WkiVLsLOz44knnkh2rvPnz+Pp6UnB7HZzWkavCZFdH1jWydq7+Is019LIyW7fjtSDB6/TdnaTtJ/fBzooKPus5SIyRk5fJ0trrY8fP67t7e316NGjE8sCAwN1mTJldP78+fWsWbP0zp079Y8//qhr1qyp3d3d9c6dO5Od48aNG7pSpUray8tLT5o0SW/ZskVv2bJFT5kyRRcsWFDPmjUrzbhOnjypPT09ddWqVfX333+vt27dqj/55BM9derUxDrdunXTXl5eev78+XrNmjW6TZs2OiAgQBcrViyxzoPWeVq+fLkGdKFChfSAAQPuOT5o0CDt6emp33nnHb1582a9bt06PWvWLP3000+nGbvWWq9YsUIDyf6dhIaG6uLFi+tSpUrphQsX6hUrVujatWtrLy8vffHixcR6xYoV0wMHDrzv+VNDinWypk2bpl1cXPSoUaP0unXr9MaNG/WcOXN0mzZt9N27d7XWWjds2FB/+OGHev369XrTpk36hRde0E5OTvro0aNaa63379+vAT1mzBj922+/6X/++SfN6584cUID+pdffklWXqdOHR0QEKCXLFmiV6xYoevVq6dLlCiR7N/d9u3bNaD37duXrG1kZKSuVauWLlOmjJ43b57evn27XrFihX7rrbf0mDFjEuv4+/vrqlWr6tWrV+uFCxfqsmXL6uLFi+tKlSql++tojV9++UXb29vr/v376+3bt+u33npLK6X04sWLk9Wzt7fXr7zySuL7O3fu6BEjRuiff/5Zb9q0SU+ePFm7urrqd955J1m7oKAgXahQId2sWTO9ceNG/fXXX2svL69U/508++yz+sknn7Tqc5i5TpbpyY2tPBKSrN8Wf5XmNyInio+P14sXH9aFCk3TMFH37r1K37x51+ywhAlyQ5KltdbPP/+89vDw0CEhIYllQUFBesSIEbpEiRLa0dFR+/n56W7duiX+Uk4pNDRUT5w4UVesWFG7uLhoNzc3XadOHT1z5sxkC5em5siRI7pDhw7aw8NDu7m56erVq+uffvop8fj169d1x44dtYeHhy5SpIieNWuWHjJkSLqSrMjISO3p6ZlqcqC18f/+k08+0ZUrV9ZOTk7ax8dHN2jQQM+YMeO+saeWZGltLBbZuXNnnTdvXu3m5qZbtWp1T+KSUUmW1lovXLhQ16lTR7u6umoPDw9do0YNPX78eB0TE6O11nrkyJG6SpUqOk+ePNrDw0M3atRIb9y4Mdk5Jk6cqP39/bWdnV2yr21qqlSposeOHZus7NSpU/qxxx7Tbm5uumjRovrDDz+8599dWkmW1lrfvn1bDx06VAcEBGhHR0ddqFAh3bZtW71mzZrEOn/88YeuU6eOdnFx0WXKlNELFizQL730UpYlWVprvWrVKl2lShXt5OSkS5curb/66t7fkYB+6aWXEt+Hh4fr1q1ba19fX+3s7KyrVaumv/nmm1TPf/ToUf34449rV1dXnT9/fj1ixAgdFRWVrE50dLT28fFJ9doPw8wkS2kjwcj1lFL+wKU/Fn9Nna65Z2mCEyduUqHCp1Ss6Mfcue1p3Ni6W9NF9pewuODDDAMIkZt88sknfPTRR5w6dUoWXDbB2rVr6dGjB1euXEm2BMTDetDPtsuXLyfM8Suqtb5sdaCpkFneKaWyPkxOEx0dx5Ytxh5c5crlY+PGF9i//zVJsIQQIhWvvvoqERERyVYrF1ln+vTpDB8+3KoEy2w5P6NIp5x+d+GuXReoXn0urVt/z6lTtwBo1aoUTk6y7pUQQqTG1dWV+fPn33PXp8h8d+7coVmzZgwdOtTsUKwidxemkFM7gm/eDGfkyM3Mn3+QIkXysmRJV0qXTnudEyGEEP9p1aqV2SHkSnny5GHChAlmh2E1SbJSyInj7bduhVO+/GyCgyN54416TJ7cgrx5096rSwghhBCPTpKsFFQOmpMVFBSBj48rvr5ujBjRkCeeKEXNmoXMDksIIYTIFXJORpFBVA4YMAwPj+HNN7cQEDCTEyeMbSjGjGksCZYQQgiRhaQnK4XsPvF93bpTDBy4jvPnQ3juucp4erqYHZIQQgiRK0mSlYKjXfb8kkRHx9GjxzKWLTtGqVLebNz4Ak88UcrssIQQQohcK3tmFJnIUWXPL4mTkz3Ozg6MH9+UN99sjKurbOYshBBCmCl7j41lguw08X3fvis0bfoN58+HAPD9952YPLmFJFhCCCGEDcg+GUUWyQ5zsm7fjmTQoHXUq/clx4/f5OzZYCBnLj8hhDUmTpyIUirx4evrS+PGjVm3bl2q9YODgxk5ciSlSpXC2dmZAgUK0L17d44dO5Zq/Tt37jBp0iQqV66Mm5sb7u7u1K1blxkzZhAZGZmZH810M2fOJCAgAHt7ezp27Jjh50/6fUvrMX/+fKvP37x5c9q3b59h8R46dIi8efNy48aNDDtndnD79m169+6Nj48PefPmpUuXLgQGBj6wndaaDz74gBIlSuDs7EzlypVZtGhRqvXef/99AgICcHV1pUGDBvz222/J6kyZMsX21y/L6M0Qs+sDywbRZzesTXMTSbPFx8frn346pAsWNDZz7tPnZ33rVrjZYYkcIqdtEO3q6qr37t2r9+7dq5ctW6Zr1aql7ezs9O7du5PVDQwM1GXKlNH58uXTM2fO1Dt27NDff/+9rl69unZ3d9c7d+5MVv/GjRu6cuXK2tPTU0+YMEFv3rxZb968WU+ePFn7+fnpWbNmZeVHzVInT57USik9ZswYvXv3bn3ixIkMv0bC9yzhAejBgwcnK7t+/brV5z9y5Ig+fvx4hsXboUMHPWjQoAw7X3bRunVr7e/vrxctWqRXrVqlK1eurKtVq5a4SXdapk6dqh0cHPTEiRP1xo0b9cCBA7VSSv/888/J6r333nvayclJz5gxQ2/ZskV36tRJ582bV585cyaxTnBwsPbw8NDbtm277zXN3CDa9OTGVh4JSdb5TRvS/EaYLT4+Xrdp872uXPkzvXv3RbPDETlMTkuy3N3dk5VdvnxZK6V03759k5V36tRJOzs762PHjiUrv3Pnjq5QoYIuUqSIjoiISCzv2rWrdnNz04cOHbrnurdu3bonicsq4eGZ/wfX6tWrNZDsF521IiMjdVxc3APrAfrDDz+8b52s+OypOXPmjFZK6f379z/yuWJjY3V0dHQGRJX59uzZowG9cePGxLLjx49rpZRetGhRmu2ioqJ03rx59bBhw5KVt2/fXletWjXxfUREhPbw8NBvvvlmsrbFihXT/fv3T9b25Zdf1k8//fR94zUzybL9sbEsZmdjX5KoqFjee+8XAgPDUErx3Xed2L+/Lw0bFjU7NCGylSJFiuDn58fFixcTyy5cuMDKlSvp2bMn5cuXT1bf3d2dcePGceXKFZYsWZJYf+nSpfTr14/KlSvfcw0fHx8aNmx43ziOHTtG586d8fHxwc3NjWrVqrFw4UIAzp8/j1KKpUuXJmvzxhtvULx48cT38+fPRynF3r17adWqFe7u7owcOTLNobDZs2fj6urK7du3AeOP62nTplG2bFmcnZ0pWbIkM2fOvG/cvXr14qmnngKgVKlSyYbtLly4QJcuXfD09MTd3Z3WrVtz6NChZO2LFy/OoEGD+OCDDyhWrBiurq4EBQXd95qpmThxInny5OGPP/6gQYMGuLi48OmnnwIwZswYqlSpQp48eShSpAjdu3e/Zwgr5dco4XyHDh2icePGuLm5UblyZTZu3PjAWL799ltKlixJjRo1kpWnJ44FCxZQrlw5nJ2d+fvvvwFYu3Yt9erVw9XVFT8/P/r378/du3cT2969e5dBgwZRrlw53NzcKF68OP369Uv8/ma29evX4+XllWyorly5clSvXj3NIXmAM2fOEBYWxhNPPJGsvHXr1vzzzz+J/zf37NlDaGgozz77bGIdJycnOnfufM/5u3btytq1a7l582ZGfLQMlz1vpctEtjSvafv2c/Tvv5YTJ27h5GTP8OENyZfPzeywhMiW7ty5Q1BQECVKlEgs27VrF1rrxOQhpYTyXbt28eKLL/LLL7+gtaZNmzZWxXDq1CkaNGhA0aJF+fjjjylYsCCHDx9OlvilR48ePejbty9jx47Fzc2NgwcPMnjwYIKCgvDx+W9v0oULF9K2bVs8PT0BGDJkCF9++SXjxo2jXr167Nmzh9GjR+Pq6kq/fv1Svdb48eOpWLEio0ePZvny5RQqVIhSpUoRFhZG8+bNsbOzY+7cubi4uDBlyhSaNm3KP//8Q9Gi//1BuGzZMsqUKcNHH32Evb097u7uVn3u6OhoevTowdChQ3n33Xfx9fUF4Pr164wdO5bChQtz48YNpk+fTrNmzTh69CgODmn/uouJieH555/n9ddfZ/z48UydOpVnnnmGCxcuJJ47NVu2bEk1qX7YOP7880/Onz/P5MmT8fb2pmjRoixdupRu3brx8ssvM2nSJAIDAxkzZgzBwcH89NNPAISHhxMXF8eUKVPw8/Pj0qVLTJkyhY4dO7J9+/b7fu3i4uISRm/SpJTC3t4+zePHjx+nXLly9/y+rFChAsePH0+zXcJ8RWfn5Nu6Jbw/duwYAQEBiedI+YdPhQoVuHjxIhEREbi6ugLQoEED4uLi2LFjB126dLnv5zKDJFkp2UCSdf36XUaM2MR33/2Dv78HK1Z0o2PH8g9uKEQm6L+mP4euH3pwxUxSJX8V5rSfY1Xb2NhYAK5evcqoUaPImzcvQ4YMSTx+5coVAAICAlJt7+HhgZeXF5cvX36o+g8yceJEnJyc2L17Nx4eHgC0bNnSqnMB9OvXj9GjRye+L126NIMHD2bZsmX06dMHMHqZ9u7dy+LFiwGjN2H27NnMnTuXvn37JsYQHh7OpEmT6Nu3L3ap3GVdqlQpypYtC0CNGjUSe9Y+/vhjLly4wJEjR6hQoQIAzZo1IyAggFmzZjF9+vTEc8TExLB+/Xqrk6uk55kyZQrdunVLVv71118nvo6Li6NBgwb4+/uzbdu2e3pPkoqOjub999+nbdu2gNErU6JECdavX88LL7yQahutNX/++Weqk/8fNo6goCD27duXmIhqrRkxYgTdunXjyy+/TKxXqFAh2rZty/jx46lUqRJ+fn7MmfPf/4nY2FhKlChB48aNOXnyZOL3KTWPP/44O3fuTPM4GN+/HTt2pHk8ODgYLy+ve8q9vb3v2zuZ0AP6xx9/0Lx588TyhAntCW2Dg4NxdnbGxSX5Ytre3t5orQkODk5Msry8vAgICOD333+XJCtbsIEkq0+f1axde5Jhw+ozaVIL8uRxMjskIbKdu3fv4uj433Im9vb2rFq1inLlyj3yua3t8d66dStdunRJTLAeVbt27ZK99/X1pVWrVvz000+JSdaiRYvIkydP4hDZli1bAHjmmWcSk1AwEq2pU6dy6dIlihUr9tAx/PLLL1SuXDkxwQJj2LRVq1b8+uuvyeo2b978kROsBCk/OxjDWG+//TZHjhwhNDQ0sfzkyZP3TbLs7OySJbvFixfH1dU1MblOTXBwMFFRUfj5+VkdR9WqVZP19J08eZILFy4wa9asZN+bZs2aYWdnx59//kmlSpUA+O6775gxYwanTp1KNpT4oCRr3rx5hIWFpXkcIG/evPc9bi0PDw9eeOEFpk6dSpUqVahfvz6rV69OHC639v9Vvnz5HurORjNIkmUjDh36lyJFPPDxceWDD1oyaVJzqlcvaHZYQljdi2Q2V1dXdu3aRXx8PKdOnWLMmDH07NmTw4cPU6iQsY9nkSJFALh48SLVqlW75xxhYWGEhITg7+9/T/37/SJLy61btyhcuLC1H+keBQoUuKese/fuvPTSS1y7do2CBQuycOFCOnXqlNgrcPPmTbTW5MuXL9VzpjfJCg4OTjWOAgUKcPjw4QfGaw03Nzfy5MmTrGzfvn106NCBp59+mjFjxpA/f36UUtSvX/+By2q4urri5JT8j1knJ6f7tktr6Cs9caT8eiTMK+rUqVOq17x06RIAK1asoGfPnvTt25cpU6bg6+tLYGAgnTp1euBnLV269EMNF96Pt7d3YixJBQcHJxumTs3MmTO5du1aYq9hvnz5ePvttxkxYkTi/0tvb2+ioqKIjIxM1psVHByMUgpvb+9k53R2diYiIuK+1zWLJFkpZXFP1t270UyevJMZM36jX79afPJJW8qVS/2HnxDi4dnZ2VG7dm0A6tatS7ly5ahXrx6TJ09OHGpp2rQpSinWrl2b6rysNWvWJNZLWn/jxo1WDfP5+vpy9erVNI8n/EKJjo5OVh4cHJxq/dR+GT799NM4OzuzePFiWrduzcGDB3nvvfcSj/v4+KCU4tdff70nsQDS3dPn4+PDiRMn7in/999/7/mFm1FzXlM7z4oVK/D09GTx4sWJw50XLlzIkOulJuGzhYSEWB1Hys+RcM7Zs2dTr169e+onJOhLliyhevXqzJs3L/HYg4YAE2TEcGH58uXZsmULWutkn+H48eNUqVLlvuf29fVl06ZNXL16laCgIMqUKcPPP/+Mk5MTNWvWTDw/wIkTJ5L98XP8+PHEdbOSCgkJSezhszWSZKWUhUnW6tUnGDRoPRcv3ub556vwv/81zbJrC5Hb1K5dm+7du/PNN98wYcIEChYsSLFixejYsSMLFixg2LBhyXqnwsPDmTJlCv7+/nTt2hUw5mJ16dKFOXPm8PLLL1OxYsVk1wgJCeHYsWM0aNAg1RhatmzJ0qVLmTp1aqpDMvnz58fR0THZIqjR0dEP/QsUjKGe9u3bs3DhQoKCgvDz80uWED7++OOA0auW1oT/9GjcuDFLly7lxIkTiQlacHAwW7ZsSZzzlRUiIiJwdHRM9kv/hx9+yLTrubi4EBAQwLlz5zIsjvLly+Pv78/Zs2cZOHBgmvUiIiLuSZAf9hoZMVz45JNP8vbbb7N169bEf1snT57kwIEDyeYI3k/hwoUpXLgwcXFxzJkzh27duiVet2HDhnh4eLBkyZLEJCsmJobly5cn9oAliI+P5+LFi7zyyisPdd2sJkmWScaN28q77/5KmTI+bNnyIo8/XtLskITI8caPH89PP/3ErFmzeP/99wH47LPPaNq0KU2aNGHs2LHUqFGDK1euMG3aNM6fP8+6deuSDVl89tlnNG/enEaNGjF06FAaNWoEwO+//84nn3zCmDFj0kyyJkyYwJo1a2jcuDGjRo2iUKFCHD16lPDwcEaNGoWdnR2dO3dm9uzZlC5dmnz58jF79ux7egwepHv37nTu3JkLFy7QtWvXZHe0lS1bloEDB/Liiy8ycuRI6tWrR0xMDCdPnmT79u2sXLkyXV/Tl19+mZkzZ9KuXTveeeedxLsLHRwceOONN9J1rkfRqlUrZs2axeDBg+nUqRN79+7lu+++y9RrNmrUiL/++ivD4lBKMWPGDHr06MHdu3dp164d7u7uXLhwgbVr1/Luu+9StmxZWrVqxcCBA3n77bdp0KAB69atY+vWrQ91jYyYk9igQQNat27NK6+8wvTp03FxcWHcuHFUrVqVzp07J9abPHkykydP5syZM4lD0D/88AMRERGULl2aq1evMm/ePM6dO5csSXRxceHNN99k4sSJ+Pn5UaVKFT777DNu3brFiBEjksVy4sQJ7ty5Q5MmTR75c2WKjF54K7s+sCxGemnHjjQXLHtUMTFxOjzcWGzuzz+v6IkTt+uIiPuvjitEVsnpi5EmeP7557WHh4cOCQlJLAsKCtIjRozQJUqU0I6OjtrPz09369ZNHz16NNVzhIaG6okTJ+qKFStqFxcX7ebmpuvUqaNnzpyZbOHS1Bw5ckR36NBBe3h4aDc3N129enX9008/JR6/fv267tixo/bw8NBFihTRs2bN0kOGDNHFihVLrPPNN99oQN+4cSPVa0RGRmpPT08N6F9++eWe4/Hx8fqTTz7RlStX1k5OTtrHx0c3aNBAz5gx476xr1ixQgP3/Ds5f/687ty5s86bN692c3PTrVq10v/880+yOsWKFdMDBw687/lTQ4rFSO/3vZ06dar29/dPjOHkyZP3tG/WrJlu167dA8+XsKL//Sxbtky7uLjo0NDQR44jqU2bNulmzZppd3d37e7uritVqqSHDx+e+G82NjZWDx8+XPv5+em8efPqLl266N9++00DesmSJfeNOaOEhIToV155RXt5eek8efLozp076ytXriSrM2HChHv+vXz33Xe6fPny2tnZWfv6+uoXX3xRX7p06Z7zx8fH63fffVf7+/trZ2dnXa9ePb1nz5576k2fPl0XK1ZMx8fHpxmrmYuRKv2ACXC5hVLKH7h0aedO/Jtm/LDd779f5rXX1tCiRXFmzrRujR0hMtP58+cBki16KYRIW0xMDAEBAUydOpWePXuaHU6uVKdOHZ566ineeuutNOs86Gfb5cuXE+7yLKq1TvuWUivY1vLmOVBwcAT9+6+hQYOvCAy8Q506RcwOSQghRAZwdHRkzJgxfPTRR2aHkivt2rWLM2fO8Prrr5sdSppkTlZKGTjxfe3ak7zyys/cuHGX116rxbvvPo63t+uDGwohhMgW+vXrR2hoKDdv3kxzWQyROUJDQ/n2229TXRjVVkiSlYny5nWmcOG8rFr1HPXr+5sdjhBCiAzm7OzM+PHjzQ4jV0ptn05bI0lWBoqMjGXq1F+xt7fjf/9rStOmxfjrr77Y2Zm/irwQQgghspYkWSlZOVy4ZctZBgxYy6lTQTz7bKXEW64lwRJCCCFyJ5n4nlI6k6x//73DCy8sp1Wr74iKimPVqudYtKhLhq1sLERWsbe3Jy4uzuwwhBAiQ8XFxWFvb2/KtSXJekQHDlzjp58OM3JkQ44eHUCHDo++0JsQZnBxcSE6Oppbt26ZHYoQQmSIW7duER0dnWxB4awkw4Up2T047/z772scOXKDHj2q0KZNac6ceZ1ixbwyPzYhMlG+fPmIiori+vXrhISEmPaXnxBCZIS4uDiio6PJmzevaXd+Sk9WSvfJdu/ciWbEiE3UqvU5o0ZtJioqFkASLJEjKKUoUqQI+fLlS3XjYCGEyE6cnJzIly8fRYoUMW0Kj830ZCmlygOfAA2BMOBb4H9a6+gHtFPAaGAA4AccBIZqrX+zKhA3t1SLV648zuDB67l8OZSePavx4YetcHa2mS+fEBlCKYWfn5/ZYQghRI5gE1mCUsob2AacAjoDRYAZgBsw6AHNRwOTgDHAP8BAYJNSqrrW+my6g0mlJ+uXXy7QqdMiypXzZdu2nrRoUSLdpxVCCCFE7mITSRbQD/AAOmmtgwCUUg7AZ0qpd7XWV1NrpJRyAd4EpmutZ1rKfgFOAiMwerfSxzIPJSYmjsOHr1OjRiEaNw7gu+860bVrRem9EkIIIcRDsZU5WU8CWxISLIvFGPE9cZ92DTGSs8UJBZbhxeVAW2uD2bPnErVqfU7z5gu4eTMcpRQvvFBVEiwhhBBCPDRbSbLKA8eTFmitQ4BAy7H7tSNlW+AYEKCUSvdGgaNGbaZRo6+5cSOczz9vj6+v7DUohBBCiPSzla4ZbyAklfJgwOcB7aK01pGptFOW4xGpNVRKeWD0giUoArBw4R5eeqkJI0c2xNPThStXrjzcJxBCCCFEthMYGJjwMsPXrbGVJMsMw4AJ9xZ/yYIFX7JgQZbHI4QQQgjzFAcuZOQJbSXJCgY8Uyn3BoJSKU/azlkp5ZKiN8sb0JbjaZkBfJnkfQCwG6gPSPeV7SgI7APqANdMjkUkJ98b2yTfF9sk3xfbVQT4DbiU0Se2lSTrOCnmXimlPIFC3DvfKmU7gHLA30nKywMXtdapDhUCaK1DgdAk10t4eUVrffmhIxeZKsn35Zp8X2yLfG9sk3xfbJN8X2xXku/NfdfltIatTHxfD7RUSnklKesKxAOb7tNuD0ai1DWhQCnliLHW1rqMD1MIIYQQ4uH8v717j5arLO84/v2RQAJISAKEOwEMEC6lCLQFsZpwiSLLFrXBJWgJKBSVliC0QEC5iUgpwrKKrAUFYipIi4iVSrmEJNICIquBys1Ca0KIBKLNBXIl4ekf7zuczWROzpyZ2Zlw9u+z1l5n5p19efZ+15z9zPu+e++NJcm6gXSX97slTZB0CnA1cEPxHlmSpkt6sfY+dxFeCZwr6SxJRwK3A9sAf7dB98DMzMysYKPoLoyIRZKOIj1W525SwnUTcGHdrINYN+arSFcSnkvPY3U+3MLd3peS7hy/tK8ZbYNyvWy8XDcbJ9fLxsn1svEqrW4UEZ1ep5mZmVnlbSzdhWZmZmYDipMsMzMzsxI4yTIzMzMrgZMsMzMzsxJUIsmSNFbSA5KWSVog6W8lbdbEcpJ0vqSXJK2Q9KikwzZEzFXQSr1I2jHP96Sk1yW9LOk2SaM3VNxV0Op3pm4dkyWFpHvKirNq2qkXSTtLmippYf5/9pykk8qOuQraOMdsI+mGfI5ZJulpSWdsiJirQNKYfHyflLRG0tNNLtexc/9GcQuHMkkaATwEvEC6SenOpEfqbAGc2cfi55Eu6zwf+C/gS8D9kg5q4RYRVtBGvRyS57+Z9BiEbYGvAI9LOiAiFpYZdxW0+Z2prWMH0rNBXyspzMppp14k7Qg8CvwKOJ10qfr+wJASQ66ENr8v/0x6QskU4CXgo8B3Ja2NiBtLC7o69geOA35OalRqtmGpc+f+iBjQE3AB8AYwslB2OrAG2Gk9yw0FlgBfL5RtBswBru/2fr3bpzbqZTgwuK5sF9LTAc7p9n4NhKnVuqlbx/eAqcBM4J5u79NAmNqpF2Aa6dmsg7q9HwNtauN/2Q6kZ+xOqiufBUzv9n4NhAnYpPD6VuDpJpbp6Lm/Ct2FxwIPRkTxQdP/RMpoJ6xnufcDw/K8AETEauAu0q8Na09L9RIRiyNiTV3Zy8BCYKcyAq2gVr8zAEj6AHA86VegdU5L9SJpGHAC6QSxttwQK6nV78um+e+SuvIlpBtsW5si4q0WFuvoub8KSdZY6h4yHRGLgVeoeyh1g+WoXxZ4DthN0uadCrCiWq2XdUjaGxhFqhtrX8t1I2kQ8G3gioh4pawAK6rVejmY9Ev8TUmzJL2Zxw1dlZ/1au1pqV4iYh7p2bxTJO0naStJJ5ASs++UF671oaPn/iokWSOAxQ3KFwEj+1huVaTnI9Yvp/y5ta7VenkHpcenfwv4Dem5lda+durmi8CWwLUdjslar5cd8t+bgCdIJ/FrgcnAZZ0Lr7La+b58AngVeIY0Tu424OyI+GEnA7R+6ei5f8APfLcB7xLgKOAjEbGsy7FUmqRRpJP2n+fmdds41H5MPxgR5+TXMyRtBZwr6bKIWNGl2Cor/0C8BdgLOJHU8nUMcJ2kRRHxg27GZ51RhSRrEbB1g/IRwP81KC8uN0TS0LqMdgRpsOKizoVYSa3Wy9sknQZ8FfhcREzvYGxV12rdXEa6EudhScNz2WBgcH7/Rv14OuuXdv6XQboCrmg6cCEwBvhl29FVV6v1chwwETgwImrHf2b+sXIN4CSrOzp67q9Cd+Hz1PWLS9oa2JF1+1zrlwPYp658LPCSf/m1rdV6qc37ceC7wFcj4uZSIqyuVutmLPBB0j+h2nQE8OH8+ugygq2QVuvl2T7WO7TNuKqu1XrZD1gL1N+7aTawk6QtOhmkNa2j5/4qJFn3AkcXfllD+vXwFmnQYW8eIfWRT6wV5EGinwB+2vkwK6fVekHSONL4qxsj4vKS4quyVutmMjC+bnqKdD+z8cDjJcRaJS3VS0TMJbVU1Se5xwAr6DsJs/Vr9fsyFxgEHFhXfgjwWkQs72SQ1rTOnvu7fR+LDXCfjBGkQdEzSQM+TyH9qv523XzTgRfrys4HVgJnAUcCd+aDv2e39+vdPrVaL8C+pEGmvyRdantYYXpvt/drIEztfGcarGsmvk9W1+sF+BjppH8dKbmaAqwGvtbt/Xq3T238L9uKlGi9AHyGNLb0KlLr1kXd3q+BMJFuCPtneZpBuuFr7f12jeoll3Xs3N/1g7CBDvS+wIPActKVHFcDm9XNMxOYU1cm0o3m5uUD/hhweLf3Z6BMrdQLMInUL95ourXb+zRQpla/Mw3W4yRrI6kX4FOkrqlVpBsrXgCo2/s0EKY2zjFjgDuA+cCyXD9n4ZvGdqpedl/P+WLceuqlY+d+5RWamZmZWQdVYUyWmZmZ2QbnJMvMzMysBE6yzMzMzErgJMvMzMysBE6yzMzMzErgJMvMzMysBE6yzMzMzErgJMvMzMysBE6yzAYASbdKivVMu/dzfXPycjPLibjX7TaKfYmkGZI+WuJ23z5+hbLhki7J07i6+XcvxHdJWXH1Euu4Bsdoda6zGySNamPdk/P+TupgyGaVNbjbAZiZ9WEYMA4YJ+mkiLhtA213OHBx4f3MDbTdVmwKjAb+Ajhc0sERsbaF9UzO65kF3Nqx6Mwqyi1ZZgPP+IhQ3TSn20H109yIEDAUOLdQfmUZG4uISbVj1eT8cwrH9pIyYmrS1Bzz3sCvc9mBpIenm1mXOckyq4jc/fV9Sc9JWizpTUkLJN0paf8mlj9E0j15mVX57wxJn6+b7yhJ90lalOf7laSLJG3a35gjYhXwTWBJLtpN0nZ5O5tIOlPSbEnLJS2T9Hh9V5ekMZJ+IGl+jmehpEckXVCY5x3dhbkL8NeF1Vxc6Job16i7UNIz+f1/1m3/5MK8x+YySTpD0hM57uWSHpN0Qn+PUT5OLwA/KhTtWtj+R3J9vCxphaSVkp6XdLmkzfM84/K+j86LfahRd6ikiZIelrQ0r+cpSV+Q1FRyalY17i40q47hwIl1ZdsDnwTGS9o3Il5rtKCkLYH7gG3qlt0eWAbclOebBNxMeop9zd7A5cBhkj4WrT2VvtFJfCrwmbqyPwBukbRfRPxNLvsJMLYwz7Z5GkZnW8am5fW9T9KYiHgxl9cSpwXA/fn1zcCkuuX/CLhD0uiIuLqF7RePUbEeDwMm1M27D3ARsAfrHsPGK5cuBi6pKz4QuB44APhSP2I1qwS3ZJkNPDPqBkU/mcsXkRKqXUndcO8BTsufjWTdBKxoLD0J1ieBzYBdgD8lJTFIeg9wHelkf2/ezhbAlLzccUC/Bq9LGgKcQ0qIAOZFxEJJH6QnOXg0x7IX8HwuO1fSPpK2oSfB+jIwBNiBlHR8r7ft5i7APQpFlxa6B2f2stj3gbfy64k5/uHA0bns9ohYK+kD9CRYVwBbk5K+WkvUZTnupknaC/h4fvsq8O+Fj/+V1H24HWns1o7AT/NnJ0oaGREzc7fj3Fw+q9gdqnThxFfyZ7cAo0h18p1c9kVJB/QnZrMqcEuWWUVExJJ8sryI1Lq0Zd0s+6xn8fnAWmAQqcViDPAM8B8R8bs8z/tJCQPAscC8Bus5knTS78toFa70K6id6I8tlF0REfMBJF0D3EhK9CaQWlmWkhKCE0n7/AzwWEQ80EQcTYuIeUpXYx5Jar26EjielJBCaumCdyaaF+apaCjpWP6kic2eLOnkwvvngc9GxMpC2Xzga6RkbwdSolUjUnL68z62M4FU9wCn5KneeODpJmI2qwy3ZJkNPPUD3w8CkHQ2cA3wPtZNsAA2722FEbEA+CvS2KgjgauAe4AFuRsJUktJX0Y2vRc9Xgd+BhwfEVNz2baFz+f18nq7fIXdKaTWnUNJ3ZZ3AfMl3dhCLH2pJVIHSRpDbtECno6I2bW4mlhPK8cJUsvh2z+eJW1CqqdTSC2LjcbF9VrvBWXGbDZgOckyq47aCX8lafzPYOD3ml04Iq4nnWz/EDiJ1CI1mDQofBdgYWH2Cxpc4Sjg1CY3N7ew3LCI+FBE/Ljw+W8Lr3cpvN61fp6IuAvYCTiI1MI0jdSC83lJR6xvl5uMteiHwPL8+nTgmPx6WmGe4nE6vMEx2qSQTPZlKilxmgisAXYDfiSp1r06hpRUAzwIbJ+3cU0v6+ttn4sxf7qXmC9tMmazynCSZVYdQ/LfILUODWfdgcwNSdpe0jeAg4H/JSUTj9Q+JrUsPULPVYBfljRe0hBJoySdIOln9Fy91q5/K7yeImlnSXuSxl1B2sf7c+x/D/wx8ArwY3oGn8P6W2gWFV6PbebqyIh4Hbg7vz2blAC9RRqvVXNv4fU3Je0raTNJe0r6S1Iy1LSIWBMRd5K6RiF1Cf51fj2kMOsqYIWkQ4HP9rK62j7vJmnrQvn9pO5igEslHZpj3kXSqcBszGwdTrLMqqM2xmdz4FlSS89BTS67OXAe8FhebiVp0DakLrpnI+INUmIRpOTloTzfq8AdpESnIyJiFnB7fnsE8DLwP8C+uezaiKgNgj+TdCPRV0mJRq1VaUnen962sRT47/z2U8DqfCFBX2NZa+uvzfdQbcxYXu/D9Nzo83BSXazK8X8LeG8f6+/N10lXegKclQfPPw/UrnI8jjQ+7RekJLuRX+S/ewCL8/4ene+zdnn+bO883ypS3f8D8Pstxmw2oDnJMquOK0lX/70GvAHcCXy6yWV/R0oAZpNaO94kDai+DTg6IlYDRMQtpC6y+/J8q4GXSFeznQb8pjO7AqSrCycDT5GSuRXAE8DnIuKcwnxXkQZ2/zbHvQD4lxz3gj62cTIpoVjRj7geyNuomdZgnlOBM/K6l+fphTzvF/qxrbdFxKukOgLYCjgvIt4E/gSYQUrA5pGu1vzHXlZzMenYLG6w/ktJ3a0Pk5K0lfS0ap7USsxmA51au2WNmZmZma2PW7LMzMzMSuAky8zMzKwETrLMzMzMSuAky8zMzKwETrLMzMzMSuAky8zMzKwETrLMzMzMSuAky8zMzKwETrLMzMzMSuAky8zMzKwETrLMzMzMSuAky8zMzKwETrLMzMzMSvD/eqIHI0fc5h4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "y_pred = model.predict(X_test).round()\n", - "print(\"AUC-ROC score sobre test: \", \"%0.16f\" % roc_auc_score(y_test, model.predict(X_test)))\n", - "print(\"AUC-ROC score sobre train: \", \"%0.16f\" % roc_auc_score(y_train, model.predict(X_train)))\n", - "print(\"Accuracy sobre test: \", \"%0.16f\" % accuracy_score(y_pred, y_test))\n", - "print(classification_report(y_test, y_pred, target_names=[\"Bajo valor\", \"Alto valor\"]))\n", - "graficar_matriz_confusion(y_test, y_pred)\n", - "plot_roc_curves_red(model, X_test, y_test, X_train, y_train)" - ] - }, - { - "cell_type": "markdown", - "id": "3bc9384b", - "metadata": {}, - "source": [ - "Observamos que practicamente no hubo cambios" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.10" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/parte_2/mejor_modelo/saved_model.pb b/parte_2/mejor_modelo/saved_model.pb deleted file mode 100644 index 74a8e21c2d138c276937ef5599c9511ba32493f2..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 229520 zcmeIbTaX;rbs&iBXZCG0&`1CTkRS-KNrGULKv!i|*Q0I8A|Q$n5h4YElq`uX7rF~T ziQUz$u4<5!EI(w=SeE72%=)F-*|A}J{h0Bty?30L zW4t@zwY`s+i4Ez&lx7*E|>#bL|yo1EuZgn?zwpUvxk9mj4a?QOR^xBV$^;v+A7?8?d^ za*#j4f3LjoF;XLwS2jD{o_|<26ZZ9R*d1@G*XndPw2YkkT9wOdatJ`aLn!WaBC;W19df_xVyw+N8^;(V1^|i)Yd%G(ecPI^~ z$izoBU)ds8$;7M8)wh7^Q;h1Ae2dOUOpF{P&PTj)=*R`9;4CQoEF2~i&3D>e_RSwV zd4OCYv#+in>`nmMQ09IhKoF>dNEoFw6s zN7mcj-UZ53Pf@&5s;rZ#>&?3Zw&wNQ+BZRKFh^EE9N` zo59YC{Nx34`1+mZ_F8N0L+$kzMFo{5H=AAd40xJh^xa-NISvzybaplxfTZoU?#Xdr zAoo^S=;Smhkm>8~+Z&thHQMMqv{Cr`E+x@%MIu7nV2W}I@X7But#?|hJ1~73l*sx=O6w1hW3>P6)oZQW zt#>}Ov%U_ZX7vum8IwyeePGIQF?y0L0CBgPyvA>=xflrMph02)rQaxm{G z1FN#r3nu@bAT!<8R&%=vJri~LFdFis4w(g}djX~}T^A^c)VctojLwl>v)ySK#THJH zSxVK`8e;~%#)$Y`0LBGK$?gk}k;6c)&9|ZGTI(+58Sfxt3cdh5<&TjAfU1SbZfpB) zYjHBTRK8RU9=c2a7A}_S7jM^=S8F$eX02GgRdc-m?Z2KS?~p?v;Xw>nmfiwnwO}@A zV_JNO9BOc!(y6!wEl!ZJl>>{jVwD>!IEzO`Kgo*gjky=#|MQDy&0)@ak#=CQSTI{& zqEd|gM-ycc(dI{LS$rhcL0BKOZs;8)TjZc8*PPLipW2{z0#<}eR=Mhm1( z&gm^?8lq9dq8}TeOGM+w;3OrhxlwXHk&>bvMM?1{(=bCyiZTh5N!|^dC+oXTN#25@B>$ah zh#@6;iR_g8EZrc`b+TBlG%`R%(PC~Cr8JO1qo{b5X{dstqEG@wc~1=f zR1_`d#GsCyqPz)>qWndsVG4@!A_)|A%qhE04qm%@9kv!*OKs5n`&RE}Xmwn@qdIPU z8PRJ8%fmVScczgU{mY_U&yWt86V0r(R-5nkJt~GIHL5rd8r75A;TW3Lgs{rH$&bgPoeE+8ZcgGwt@G^yl8l1a|6t4I~&7} z`B8Jso)>F@Y>>yJt!5f&tfp*({4|*r&28V=9CmyUo8z1F^vcO9IjgmmX;gaoYy*0e zO!hW=%|Z6ZhE#dT9LluEt0f;Jr&#@&y3fmG?)d8FPNz344dNYV)zXf$hin~ZpxHXU zLk{(}cUldw5`(qsF4!LWH%-h7fj+%5>5aR;=OB9^vk?%u3+9_l1B-NZ@pNq4K0{<5 zjAdC2v(vf_=B-^GrfftGQ@-hAn6gYC!+e_@zSUd@1v+1H#sPa`mLzRX480t;1*i)(4C=M`0LoS{)<>HJdDkh&Kr^7ZfjYgEq zCS+g$OeF2b0K$st0K&&?0|Qs1*hwT8?V z^)VAtBC|!69%i-(8*hHI#a&FBEqa^CY|%ewLQG_~=;c#pOT@YxpDm$9IhWbuE~d#A z)fzHe)W=LniOd#NI$^d%&=Hp{!j7EJY~d#7wArG!iOd%Lb0)+@W{X}vVYVRV@%U^B zt=4-qTU2YvY*8OGAtf?fRO#%qTZhg`IFCKF=pl_$)a2uhGyBaGqs%o=Vt zPn|V-qu8v`zh^>Dbk^ts~C7S@<%|zQB)@?idPI1h6pyRs^td6f6L+ zaRC+p*aQkz0a{o8pKWcEQ?BbB z-)`OBSqER)&vFOL_04X#)dk2IZ{}|3Lfa)LT;d%C4^VK!1ee-|`Y`9tdNbgM)a*8z zTWxa4J?IhYean3k$sO=$oAai)qY`o5L*S$ddpT(Nu)XDZvt@9h#as6DmT5~zwU&;_ zmX6z7ddO_)gsr8M(UwkWE%~yg)Ap7gHd{JlYw3|_OJ}u~&dHV@wYRijw)B{-rN^T! zJ)yO9Ubgh4y`>9gOHbKaT8y^zwARuyvZagmmM)nsE!kQs=q>#d2PRz6o1iC)WX27= zNp>7Zj<_Xn&N#p#2i>ygilZGe?Jj%ca0cSfz}y`N8GQ0Bcs#@(*WvLff82n_WBjoL zkEi$}E#~vbEqFZ3A3p<+=lJ6`JU+o6yYP6PKlb49Y5uqakI(SOyW{|QolHVMoC5qg zWox=d9;c;LkbF0eJ`QI3PQr4W~|~p#HI90scM% ze~Y_T?=OL#=vKTF9dOsi7&k%c%(_)?dZPtCpQ|wuMBJJ;#bj|8NLU9FGKnpqtrF_2 zyW*YZu(+r@KtADpoE&=n*=sL8d->((8m~Y5@@vmUoge)Qufkj)LN|n^OV8f8aqY#+ zuibd=`jS}>dEL7atK0Aw^vh_?OlwT2_W%KBQ)6C4e=|CKLlPaVGI-YgMx73ZKql_{ zG&;OLP6vy;KI?u{G941AAnZdZ6{O;ofUN{7a5D=^g-~-zsFza#_>poa@MDotMgPsH z@PQ;MSl6dn_gS3^#$rX>%NiA~#HnCe%g(wV9GD8i?t)Sw7>*aX`2wXvzr^n59OAyLQQ>Nw3KkvctoxBU1zvK;nK>qrdm~HJuKIf=t}kH9CAOP6vzreAfMVG95nby%?LahJ&2{l-yi0hrT4CebxJLtTNLp z&0kctG1Wb(x;MN}#;U`8zWhK{Yit9Os=w}iG**4g(aOK5Y8JbRq)K1(o{v?k`#Jd+ zRDG}?Nvi4qIS$KnK@x1sOTwut9`ix+Xnfp^XDo%C`bN8OuV)XM{2u8Nlm za?V{dTWskqeh~V3OZD@%=;tB#jz=1|I*qs9rr~wa@3vXXr}bK1@vg?G$KAaAvb2aS zh5M7G!V-5DOHd}!3K<6R3fZTmNkMl6pW?KCgVO$RloCy^5gS5;5dQn(V<|30{H+oO zWp6@KE1?MqlQhg#uNfOfbej0@$A%GgGfEgoLL;)1NsUOLq>(%f1p5|FuqJ2Lo19r! zDYH`Y8Pocs-Yc-womKe44`w0% z8rliIb04$|nNT72!}J6NMTO9cb{7@OLjgsF*go$nD#WJLiVC$c9kd@=W`#O_M^Pd6 zu!D9X)2t9XLn|uO?r_k4WI=^GTSieKHj;yO;cq)0oNPwTbAB+yrU4XtgF;8F24v;xH}9TDq<_%3FbFTQg! zFP`LiD0teDW7@yPxiA^UBpDAJ2g0^aG*&m)X`&ABrf+OCJI&j07TaFydXOI>E1jIh zOT=$%Lq>weW@r6fc;Xp9>Erv&xEWel!#b=QezeU^sqla zd%&EZDcHd4O!z!So#eH4bYEP*3_2$Wn?QUrsa6dmCA=}GVR{KjZ9%myJ?9eFPr4NMxnf?RE9PU@9wle> z6_YvztU^X4x;nyQSzNBy$X`y|*R~-0+7>D_!crg<8op&0ij-g(@%6n|m3-5PKBv4k zA$;7oSh3^QXTx+HS|Ygx){h$X_-`oz{g}Bde4!wuT}eb=`AOy(yUiq0N)UtXkRqj& ztctd!%OyWjO39#TDP7(~ODWmnCvGJZ_IJ^8x_t1X<&-Q~EOLflBo~77)0&!Wf84M9 z{xs$H^Vc3H3mCtHLQXRcQkJh4>)zk}1w#J*L*xg?$Q2!$Z`kS$ZdzM~^l2>P;C2g= z9Cl!v5GL`107mYqNUJNA$~1dnm>tgX7RV!zW^-d_ooxq%v*PBK+!H_+(8tJGYN%_j zt=WNSg19zxh^Es#N%I%pa~`@3g&;8~li(`r**)ht&!ZW8UkC>zP9h;09(T8FZ7*H_ z%nqcLixly{-ywKqUNp5@$|w`OkmJz~!3j&NeplrP<|m8V^~O|V}jSQ84nYjw6*C&B%n+QD<1rL-q)2dPwGm+e*~W$ zLtq4A(8D_YkB2!wS>{iFK775xll={ZZpe{JvxxfODcScljgcYO$r$wCA^%q$k&H+R z`Z%+BQ=IAiTEBc5C!#%*A!D!Lu?+q3f5Z_92hm<%p?QEqxA%mJJf<6|#z6t(DUQ8k zmpyPgr!fa(3+@5<=fMAih4d!<-*m_$NhpF8DC5_6HvA`&fS7z+c^5e2sRS@KMr0ma z^wi*7TF-olXO;Jour|LQBqEd5C2=GySt$1b0#-h&i`K#L2rc@*58mi9HMe~7Jt}}#w4}|zD<|H> zml6M=H_-*xFTR;HAuuIF&5X=zGsIVj{x6(SdXaZTyp<>gL+l*4x{4IEXUOTeVcn&< zu<8GUf^FUPEIL4N$)c=yxaJhB^}n8YeJ_bCueb-msVOT)$vJYYu>%JdjqX-!wSB8C z5)8Xus9=#lxl6u}kQa3QxZC>74%J9$29Lg!42{p<;=*Vj;ceXUGLk5CBfcvZ}h+Pu0crs*zpK zS<$g2Tr%BrLR|qOf>9B5&ne0(kOdjt2;Fl;v&GbAi?(LNepReBoC%r0RzWBQgh>fD zYbpCTiHmAlo7I#yrEMg8o3*qyYbk9?%S!e(>uGJ)Q`$tAUUW+MKMO~^i3E#nOEL<% zguU_w(4NhtEWz27Uic7}E^U#VAw03O6`SW!ajxLViSITtE-Ui^9CVr}@_$C^O*TG= zp)IStPuP=0a3-~OTOa(Nazx5r3F67!?@4n^+NN7j*fI@=z$6@9i&jIq=gTza6_5mQ z0SDhe%g%*hN)_tY1~MPOWiX;qwmDZ*-XbqzvySX$vt_hHQ|kODC{F1dnnxu=PP>0|^pi12LvJ8^|*GVN$YztXr``4PgTb zHaHu&YBk_3Xl!87s$#SY*&uCelfVYZVS!`=OD{Aw5D-x|-~+k^!r3U}Co z&J?PHLvIx(0tg6_<7ImVjV&w|kr)*PTGFgY32YHhX{E7+r62xJE4C0Ik}Xafqq6XY zD3upqI2vDwx^=#=8KGhr6?~CuYD?e?GaXi-_`=o;oi8LzoG-+{5WbM5@QzmapH{w#ZJ6Yuz^p!(c0)S zygKnlLD&Iut|#91X0#J;8<270Z39|*M{>V7@kT)hJn=^BGEclw5O#b#Br44lZ+kP^ ziMI_Xa^h_R(~%jE08vL8{hxT-TGV81_Ja(Ytj*V!DP?W;j%l(sp-@!TCV&nhYngRc z$=ZZQG+B#6?XIk~H>t^56eucdaiEy2MZpG^wP#v)+RKf$yyX@cV(@;Nln(GKv7wX z1I1)53O2B;MQbxEeblItVQcGWi1MlzpS-4qsdwu zP(;?+z;tBBb1n=cYi%w1f9R0@9YljR52(ebr+M+ z(XZH5M>jaV!FCJIqAITl(zVn{LY1;NY-O^|Ez*QLk0Xm0U*qP`-RJ9<;h`0EUIS35vUD7`W{CC9trzp z@z|D8Sg1i9@3z2&^q91@Df~U7-$mpXY8XmxQ@W=`>lEV@&UMl6qD^#zl-#ED1&Y=w z+7zBl(eI*7R8c_NRDvX<<2>X_R`Wb9!tM2FgxhoEN<6~tf{1X-`Zu_o>Hy=VdB_AG z5aF@FgD8i2kH`fM{T|#JK(q1s*VDAo+Spc()&`)B*236ww3hFx1{>##8f@Q#_osw| zc*!vKtnD{7NE|#RM5!IiUIDqPuTuOdlC_`pH9+VulzQ zb>O<*r96!~;4mUhIhs)?mvl4(7;yUDtxxo`Ti<{AX!dA_-JkC4X3(9j85^s8sm?(K z-1GN$#>VVB&OOnbk&yiNUUQz`bIm!DRAS$0&hxveInPVYS!Ha@K22lCqJt~W$Yhkh zC)qos`JN;cl4qe|#>NEDh}AeA(Pxie8TnMVsfxi(>3YUS6y5zEg34%rv^LZC1O)-r zXXrG8X2wQ)Gn(&-4ao34u>tAs5+k2#6ieFCXP6+=2Bsr3bXPz@GwaC7Q<9#0?nTB% zbPV~NXU*rYAosJww%30fBNx!2L1TY4-rUX^{{SRrg_TgrJ_Zes=OR5 zd+#HmTTivY54a%%x%8fDbeSVcUrEWs9Cg{p?f)AY2b;Z6On(@B6bX)2Bh`Z4ScZ~i zSIluT8MM7g&8-y$f(6_Njm3eKgH@8OAE_2sRWfK4kxUm-en2DD0>#q4RxN%Ux4tDQ zHZUIQ(Ivf%&_SnY4mOv%J{(_8L>*t?EQjTAmKm0_cdY;Q+J0e3tsnDKp&ZGDyq`{P z!^J$iBfy@SpCT#T-h1=Y=)#cbWu@+Jnx9<6{FHr~#?;5*%ukWYD9umVJEWPP5(-7l zPYIwynx95tril3oMfbouB3heienLU=H$T~%(acXaAjAA*1JW%fp^k`x!tkXssgB`n zs)96|pmhPBv`jQ82zxnC6XUI>Ek&C+d$#!7~Sft>l>RP?v9T8~+EBw}$ zla4n_rgu7TbvEDbz*Tv3WG4L4D40Ks=Fh@N&*OM94VF~pHC@Z&4osK=su4Af&uJ(ktuvU;qj$Etd)smHpnjroDQ zVEv=?`pB2By_C;|H-%cI6r3W~N$>;s9{il;igme0`X}GCfT-0oqm0}aAt!+qMb>+F zS6+vUj;>|B=;#6f;ujqq_DrTC|Nanxyr8J{yv(fUm9qDKvLd~;^D&IHq*_DDd=PyvQenA$J~+A5X!boDF|iTvim+% z`78LE{+L)Wu#5}Bus)R6s%^WRhh=?_d__sZ(RGO}zRN{*bY0K)=sJ5in09oXy->{d z7#>{@Fp89g*JhT?-dD{mnNTQdmP`O0!Ynz;$Yk+~L(x63SrVR)YHy2oWbe+9p!q%6)1o^oc@)P}-=8DC7-H4HRux)bxVZ47kgfH&W z92w)bTiwl_?bQ~y;C4N@@5(>ujEzrBPEETrWcJ|VMRIU;vvaF`yRo&s+1vEac&EuU z8Nc%CYx53$cpe@O1Y<89s5xJ74lIt0ac$T&^xD05u^Y~JEC0(N#<;$29nX>@Lsd4Ef)YNaqbHgJTezwK|ZFCkaY?Q#pB%f+@%ldmcH&JxMCmb-GfcZpe{$b?Oo=-&Gl0oq9e;-%)>O`L4#{jQZHS zYQd{+p8rPb6*QPm7Rwv?6DQY+0KEFdeb zr&gN%RMP*!aglM}idCx{urz8%xWYGn*NcmX$oP$R$D1aT!MJnm*y0?SxB+Q3y-6}2 zIL_i3a-y-ixxU_7?X~Z=8XL_{^LA^y(O&C%W8}bMMrZ2z#m9-y(q`axW(ZXF$DFZ# z&%s`%PU+8IgZ%z_P=yc!>&kJ$Z!|k=(0XrYy90yitTE$%bG<>cf3&)k$x5|l zl{nOjZU0v!MXXcOPLc4Q6>IIvi#?=~kWhkV;qS@=OS8W66jIBuqM4N*8qKU6pGq@p z?J=5()k4rrtQ31gGk5R#tnc7{MKdcsG@4ljYAVgFwZ~{CR&GHvv1&iCG^_Ws!7P;P z8lPF|;s5$L5o$ugwhE>a&04)8T2zhl%@@TzTGA$Vht;mqCGCZ4A3_ZSg}&&v94rSi zfe_p`V^Q7wuPVY>^*cM^!r)wc{c*|(wN_Fte6dFhoAVw}t}l~LVR<>wC}$-KJr(I& zsg4~q8VX^pp5Q}$0q$9h94yMz4%xMO?JOsuQ1mP(0d$D795y0#t8GFf+O4)I6g%he zCfT1wpF~sByJTvGTB^qMc#v_>t|#v{*LPapvCE!2?lFi3m&SxR@P9Q2>`iLvzfd4J zF)`AA;XtwUUntnXXE|tX=2;F3lK)wby&3H+#|C7a<=BAq?T#4 zOce%}6q#y^^~>G?O;1fI6xCA`K!?y%=_)ZwK{iT328s4HnTpOekne^}wE-bA6$Kqo zPeto8^;8rje?8USjHajBfFgRT4NOPo9;F~tGBx{&l1-)x189OwWzoj^=G6f&^U(N^ zy#ty|O(+zVsR^J%$kb8%w8f7TMfbpaf3!Ap?~j7yucz9Z(PXL($dIWvAYBZM;-^t8 z#r0Ghn2yXnil6@VTrx+Q=MjY@iz<~tqf1Vi1pp2Zc*Zag>GHyjrCl+rrli|pZI04G zjnYAB^N?z;X}8Aarn;ugPu9+TpAPB|CeTYx#c`tb&`a9N{72tRb9VCw$Qz}qwRXWj z7q)D5<&if*pk`*&FHKfz^)-=|q6VPkO0CWivQl(wlU%9wuwGV*uI*^0%JP}frEFj1 z=lq~Bwc3xry;P@&V2_fB1**5!sV#eJg$OREJ0+(1f(A0HOLqPcSzWT1P(8J>lo$5Y z3ZQzLo#{kRvzJgkweqRxsTDx=G&?7Yo@OthdTM2U(Nimc>S=cIAbOg;M1S7vSyFHO z*%bLaxe)g>H9X*0=I$bRZ5z(%2}w5)CvIz6)>XPB-QyBZXDX@StWKg zVgIgYi^y^}qcvMZ-@b|l>J5X| zHaca<4VC7}EsE{j%wNfKl3TxiBY92&P~_y+-erj+e~(TX_Tuhxbh!B#UUoqjb>E9@ z5!q3++nY~!k3*;7@*P7-mZ8opbh=unS4BnN8DY)LueDmI_drRw@LfDix>hjiWByw; zBuu(iFzRDI3AF+eC0#4h3ROUKfd+8auqf$Tkyfc7S)56&2z4U6?o>P7D0Er`d0UN8 z_ngorB)diFJ_(%$t`OmYA(xc*#(FXeorVmpgN06mgc39p(&>Sv*@F@~4XcHqnOG_I zhGwJCX~kz&`L1;3FlsPdr6r$NW!;8Ag2W<3yjZ$hU*jgkSlLWSBJvW-Hg zdERm1>tGGdR_rEx%0dmcDk&#a+P$IND0I5H_Bz<(nm5;5uWX5hN^F}F+@~*$LZ>_3 zRs%h}-(AC|y~$DN^emZN>%F_x^2Q3z;&Bm+e(*AJ9q+*6#EGx|aV;eVoq1_%?$ao? z0myKlwgKrLzoXD;6iac#rVUI-=KUHv4I8)wnK}xc9)(ViLZ?F|5_L9X(pf2yqtIy- zOL3WM14Cpg3JQ3qm+JL#eu-8C9n;cLWH+hC4&=kldT3AyQe^5Vbh?4!dUy3ydy|@; ziULIs;BlbX0Xzye@Butpn|T0_f-n&!@+Mi1`HisCR6W(+jHajBfDAp=2BeFDP^O}w zFnlR|`;Y}_U4SPovj++S;$rEYAyLV$BbNv8_GU(*(-8w`f=nGbH8DLEJ#XJ#nQCuR zlc^|BRHouUF`0^j4J=d9+Dw^>g5)n#?agR1)dpn9R2vW?Q&G?XWhz>iDN|99{AH@W z8BM0zfcCFb(=LQg!vRH#R2_v*k3y$;h?8YAv<~s_V zZf$q6OuMh=(COcvAwM}rF6yz<-PUJzTAf}SuHi9~Acn1e7n=2w`gfUsk^xLvt<6Hp6%M#W%DP!x=Z^?{mHeTHS;HRRzF0D z>_!1~G`EI#e_>*P@NN@F{&d*5FOgADk45zusK=6eEUU+5^;l7lRrOd?k9A)g^WsT< zqtp>{IGBSQrPROOxm(Ivyp(vi)I2%lA9TjXCnl$+-5D}_u-{vzK1#3Tc=_5(`CVMM z&!f%vMQW8nqS9Y?4|vx|MlI+903K`Xbm5M$u6al6Vb5f$ysm1c_j(wCH~S|#eNRHo zM_0A7J3vNPwYsCLTDb@5{=KU8kKQ1^oYz&Yl|mg;=49v~^Per%jayg4cT~ZWa4d+Y zTrzH54c}3nPQo!ihjPWJFMMaz$AT4>ky~7s3$#8JH^|)MmrJz5*h^ZYddb|emn&xR z@Fi%Lqp(96A&7dsp!;Jnd*kpwiau0PQC5;Ft9s}ZAOw}5nGjMBEX^L2=tEdE1kJ>Pu{SguMIS0Yvx@l` zpNR!r&@B92dSGex;6xvSHYH=&LiK8omb6jy;c(H1pxsK!3C(tI7;Y4OXpKGu1u?-_ zW)ywM{AAEjsonKJv^S}FAfiCvgJGmq!+~NRh$z^=9*Agd)I&yHGKhjOXOkgakw?*o zEbU)zt})W98>JZcj8SRTY(NnYL>rjy&UwE^AA+SRL8gwP4@c35qv*p?^dWaqK&_ck znQ8-y$W$8`B2!UNSbX(#60i`Vhqu2;PWHwSno#4E0nLw11h3Rs$W=BD%95EZHKug#k1{rjDWyN707^ z>8beaG-N6YlD|x~H>1f^8;~JWZ9uvh2xTe?+FxMIxx~ErfG5q2f;Pt#$RW)rW<oqQHj37ZBh~5s=;BuWifh#8O$G{D zogqfihhJm=9LTJCLEImb^{*DsXN`cBSD{)VMi;kciF*^br=Ukg=;T+Ca@OF&QS>3x zy-*`V3QnyKuL7r5fIYgnb+@8;{`?U6DTh3)2O+L+cDoITIHVeXv0Mzi_mR4YIpjGM z8r$j?_(qo~8LCueMP4?(ja8?33UBHxB8$P|Q9w_$U%KJtH>~ z#&jqxM{Xq4Xy54GX>PT;-UJz2IS@$u2a2(g8;R72RR#x32E-Ipnx-Ta+xeT4?9FJV zBpXn~JZ}Tj?Q(nMM)KnhabJWrpx5rb>&Yi^H=wPf^uSeW2nnWkaT!RJ53oe`@6I3Bq%XapT^{=#%TqDM6rSyog3cCkRMt!k}u?o8ePQGJ- z7Zr93T=ZT1qPj{Dzo@Pf7#H8M^Oi~wzo@PfAQ#nDO2|cZl@hHn5;0aOAs5wEN~4SF zn(ON_4hwa5K-o$LcUgDOveN7tw5-&sAInNnD?8fLU5gk4<`7X4f-&~SNqZDArXpGT zj2Ht!C1@53uKEK@vj-(&3>FPRGZrxh3&!5iY!or3_{=KirE(-_Bo^?*wP_kd;( zPQ(~!Q|1XRXi|H_YNLp;;UdOByOoq<5o4g)?hWNe5o6YfF;Eakratui!v7J6gqMM% z8|IOzZ)ED*USe);O1}ub#?T2fpw}2$*T~e@cXR`aN7EBGyJ;bI(xRvQfDK%NOdUmx zvEvgI*SjlI?M-S?xF`^?t`UWc1I40nQLurdaM9Y#;}aBwiKrpnN6jc)do!9Rt_{fW z#I*tG7XMJDqM!rHRJ1NrrlKJEAD`Hp(T-1SK#}7U8<>vF@c0A;1qAHdh%qp*q{!4! z#MmfeY!opDw`-$k8Eg@V>8U8_fHD=W%ao}oNd7X_-i#(wZ9oy3Y6C-LDhk@aOhv0P z_0;SKOEx`K7(f$b>L_B2>8U8LcUMofH>v5VC{R>S#ergaDhf8Ro{H9H>ZvFQ6H&S9 zsrF_xJ=F$e=&3d!T?~vO#!xJQ=!(cx8<>vFP)|ic`5ftrXe&p)iq^)vUW!I)s60}OTX1@6fwq=#=IW&f_;u$Svlg(x;$JA{yT~oW5@Y2 zzReo3sp7D#j%*@k$O^DG&c~{!qlmF3)X`KpbfZQFw1mQ`)!|i8-wL3pk1FD5yP~Jr zORVfx#MqzQCErK#x%R6F;bq3%Pm3hfCM%7NW)GAOdsvzGG!e(kjhpRe7qo%|U|Dgs zkBY1PR9x$$;#xly*ZZiro}priw_+i^=4Z$Sq2BjZb+MnSi|JJ(cf_0(9b38#>|NcVx1gE;{oi>i{oNs?Kdsr~lBL;J4nk_i?wJ7*Mf35F9S>hx?% zFX;X)^ve(v%bVge)SqG@QeFRv#EG|Zx4FL4(sK}Iyj5^MfcqxRs{NmFL?S2~AH>j> zRo*Z9u=PUc3kehF3o$TlrH~Uqa8rH=ReT}4Vmi#}+Bez*7nbYj%2^@o%l!E?~uF*{XkBY4|&lU%? zyS=jxso_4`+78cQyeV!n^lPc0sg!>tX6!jg$O_dD*@yz^O@M|xh5Z;sH};*hS&CB} zuSQOM6aB!ups7IyOWFVcf(-jwKgyvnW3yjK>-1M z>a}P!re2%fam6NU^F5W3vNn6iG+CQaC@O0cK!=dE?3_u-+Jr_lS&KsLuB^2;smWRt zC@O1lpqQ*h!3LJKXlmU zhSz8$!44^KCxXYb^vM4)X=}zivnwK3+LII797RvkyDki0%f;hllKGE%2QL%X@eV9b zurx|3=wt%k|6Tnk7@45}#YJyokSVK6nHIw+$LW*PIA+0=IW0tscZ_2Y<%K`pb1%Wzl_<;gIrXTA6E@Ka^p#r{aRvdvw zO;I?iM4Qq*En25&Q#jW} zzl%1}4N`KO(ibRNr)X1nGDW|OHc{0CZL@FBYbWUAs*~Lc^1MvaLTyCI8?1;pg9RTD z&i(*`a+vpswF_!N&Qb2HW@G{VCxfUUJNe z3Q|PR($MKGf)ultP~)^o8!=AXcQsCnI1=Nud{*PkF0RBlvzJigv`IKIPTO}iPKyW> zxn3A~MH22|4A?!4rJA~jvDVozy(<2Htu;~%4%``otAZ#}|f)7 z>>U&9b@meE&!))d$p!tEW4_%mZrp-9kKxASplar%m?hIYowquhZ+GB|!Z|V%{%91? ztBp@w?=^d^TRZEoHn-unOb94#@q1$adW_hH`))+#Y>kWEEb*l^1DwKmlaLS5V{|E4kOV3%Tq>O_n-?V@zuE?nU&G)m1 zzZ6Z>bcURcCu*9fH<+?pOatrCt&^%h-E}^L?)vv1B0o4ruEe>k(pYc43tI0g+*sL2 zBV{oNDn>Gx1@g#7S`wJY$l04|$zPD%ArIkZihIs+)c7Fpu*|-*^}pXCcx5qlIAxRx zIxll@H>~Wz2}`RG`x7R6kP$5+>BAXx%yCUM^L&S73%pAI%MP)iI);TbIwl0BM3Oq3 zw6*Dfr$a>U1{H=f&-qPFQ+|FiFFF*pw7J1Be&6(U>KC_$PV9 zk>olVe0YhsuH()48{u?lRGuj5s24rl&Y(V;+A>4qWpfG$yB-r$D=^l>OMNc2U zH~IFq{Cz*rp0H*#-wzv5WCLac(~%i&z);Z42am~kr00&mkL!~j5)*pjO?(;gA9@pA zaODmS9Ye|vE%Vyk$CfRdE_y-gq6OQ!>sfSw;F3jI@o>#a*>bMXCwVMyD*4tQ%3r6*BixG!>Nuu zcnd??^_V|&evS0wtDuO6QIRNym_jerUVo$?qgaX`P}smm`tdYzZqP)ZizEG5q~3@e zNbd*z*mgKm*UiWLaHdo)89MOS_2G=W_&D)d((}eBN5jS`?Uk?m}{+Khic##~0 z!;@R>+YLxi+uQWcc&EuU8Nc%CYx7_bCF9S-!+~Jzr2{qR3(kSXmx*)Bd;S_+5fQiO z8zf1y=oiZM{eC#(=6^Wj$_??ZAI`WL4rjhRLw;-4pZQ@9wGc->ayF}uX^ZMHP>&_`SXPhA>an68tLm|)9_zj~=Eaj_{6@P2 zn)n@xCJ@-JI&ib{`Oke8zTp@u9D8; zr9`;{c`f~e&e-_G5D}ffN1bX5cgofzTHk_?%jg8H<);gWDCAbH9e;@wt z3kU8&Z}-T zJfE}TUDz5czr{T~E6$E0VGGM%qQA4^EWVWg>;>}EB*VT3+pAYesoVO@POH;vgO6;n z!CjowQUb#cx<<-q!JBEWl^)(?T4qdZlUZ)u!<$S?5NB;N_5Khji8q;+C&}7m>Rk=i zlBpL3K*>5;Mu-U|)2WHigJN15c6+0#>BdnX`e*e1FUh!I+@0p0^E3{QI@#QF(8_I* zyq3x>QM)*_EkgI6vxs!u63CBNZ3~LUtF}bI;#J$?Q1PlQL8o}tw$M+!YD=7_|KB>K z5B$aUE`vzQ{ya^d>8F2G(K($k9i-EC#P}E_l!=`54B@^EK?n)$(4@*3585Vvj1~he zKH2@jFZR_t|6e-fVRW>i{866cPoQ8icXDH@h2qSHn<0qwNOHGnvZPaJhqaqP@DYUr zmnZWB_^6*wXxqlh7I_t$J_de6r6)}TNnmAan}|dd;H+%vpZ_N~D+_SR%1>IU5xHFi zV{%d3ZZo-P$HwHgB`8KEjLB2gy5 zyylM^;48Uk$HwF~WiUo1jLB0sSP4uXArZck+j?hXatWWz))|MZUa3+@x*_hn8 z%@SjBSwsFz9^P~L&++Y^HM85HYpv$m>tW!=D_cG`e^L!wDQq4|gNrW|wjTQb3g7Zc z_(VoWFUm9|nKEIaHmQO4d=mjaiDbWhNL7s5yKH&-V!S?>DKUZBBZRutU;q3+b;ucH z+XN$y?at5RaIx*VF&!1DaBJfbw1Vr2@g9XO`CoB}k3(oXbjzrQ-l9(g4=1(m+nC;B z3XM%91IwZQo@!W5V0z?!PYcsqdg%Z67N!^QlIbtli4xhUqg*fQ%WLUyY+NrIvU0u6 z${iyX%Jr$X`~D1Ei^>I= z!dTrzY8l(myzd0oUW!Xl{~n%i`B98DWY1Yh)WtV37%8tKnD(EsfTJs?k5?{{o2_y& zJ2FAr47dK%SjR1=Iru204JO(Vv}$34iUOkulsmsDG+MRT`9^`!s-?aeg+{9u`gR1k zZ;SH2@T>h)f69y3mns%~0zI~nx?Kc=9(Dp_0}d=bw=oXha~rg+=N3N0du{=?)NSKR zv~C-4@bP|5?7TisA1%GMF+AF98?dF<7V&`g+5&6owM~|wy|w{cdTo(BXs<1>mR{S$ z6xwSWu%*`)p@#O_0=u$X{`R)mIwLh(nE0?{=9fqa{XtTyS#ubU5+7!atusiH76C!C zf$a0xmt9DFsFKYL64R1@((WnpZR9CEMoBm;>A@^v7^%n2Ec`A>7XP;~IjWXNnB-6N`J_+sITB6`rCXKzgRHAxN0Ou6`y$7KFa%Egy5 zDD%A7dDt&-W#;(A3o`o+%S^ebk;Y}FU3-~ZU}g$BSv#Y9M7@bD7qik7)9T_Oup%Ru zN3t+b{~xE!Pc2zl;>=^UNskr(v836YIYcvMdeRt82wiYrgvQ{ij(4?tM03gKJHVZx zeV>Eu>LzgagEVgqa9y?6zfRX*m}Zu&O8?DO@*f{2XLU0}qqp5$g^S&~O~|YR_sA?m ziju=*_Evkn1$nnxx7zQVoc1n~r|9>)feg-+H@P+GO()H@yE4NqWM6ukJQ)GM2_cz0 z2EOm1q;EZ+G`|CG%J+#z)366Ahe1o4^BEp{`7ozY9 z7?0In?6Y?6Q(@`5BL4P97c#ePHQGH$)7dl0^i zcU(cOZtiq?7AVCDz3m;~zRfON9CQ~h48kjofOlHAn@Qk`>bIKf-Sq0C@M-m*CkqB9 zik5CGIF1V&91RFI$;MaLikz$)Hq6k#XS^uq3Tr`In@T2Gi`v>0^2u7z)~1qG)}ppH zh1{|hw6&>Zn6;>_O(D;$1y@J~C5k57tYvA0H%8DfJiGynZJBM>R+Y@NmbJDjxoO_OUwY7b_^?GpSPHXk8t<83)*Y$tUA;;(y zUhP%b$+h13(9Zfg_z_yE?TbLSUgUqx0*eW$sLb) z?wj4x%F@!M#o!^lVSklO>Kn+O_x-xmUxxUl#<}S~=)82v0lb5#OqPbu? ztlM8F)2xw3G2E{X)XZtojCXmSHA5P`*2dNnYYP%og-y`i-PH9KO(zIfqO!mK84T%4 zvp>X&s^9ZrRq{==zhMerI`l&gNM*RS(`$6^G`Ct^zL%j!tFY-FA=i7`u!y|`Q^3=n z4eI)bIe1cwAMwUcj#*oT{O772{}Y6CUOT@G z#yhUQA63JYFHPE8#}h!J%Si41UmPVzuY+WJJy`0sI^E4}cEPfsN3>$Q4d=X0qUpu| zPtxeGy~}^;0WVO;my?FVx8_!)|di~jJ zFFt$u<>wl&Kl}1)&s{E~<>+F%lu!z5ttd9-3FWZXic5pE77W;0Fi>ly0b45#)LMDK z*2)95wme{K%c-qBwYk-6Z?r$#+Fqg?g`^3!s6g2^Aqh56u*N1Ksmw)HMr;w1z%M9p z*dQc9mSOh>8{ppnSWngJ zF=(w=PsQ3YXq{M3)ygwytyoXRx-@8=4>zv7@Z6OTzxv9HAGyI4rB^P$^xTyjjpwgD z`|1n9aa61G|2qfrwsUQ-OZNioa^dbeY}tm^_!>effBo_esqP)PoZJ7H(*DmQse@b{N;0uAFnnJV=ERgMwp*kPMH5tv;z9PO@|EL~1>gsr9(f zpQ*%pTo~7MVm*9{oO9jOdS+7VnSlO~#Cj&6KeLJT@F{uDJ(yUJv+}Sz=YdObj1tU+ z4Za>q{CYU?>wMzZBZ*(V#IHvazCP+6^B_4_Y(#LPCiw7C_jo$UL+KzV(m)<|PbT#A zVfR$R*T-Eyk-}VvopVnoQg|L_%EO8E2u?baTF)b?^-xYan^+I!q;rY&2u^x5wVs94 zdMGD7mRJwvq{kEM5uEfyVm*|T&fBR;e(Uc!-Y2M>ks_XLkQ^QZQnwROgDe0&K^~3OB)sIrw!l(XDQuE&11xowLm;8{Tk2Yt zUAx71aYU}0V0u@f6(Ed-L@8&DZ|ImO`W3NEbeN%B|>3Tg>mXN6vFK?mes zl7L}-SgS>~OQ044TV*9}F9BX>00ur)@y?Ycm~oN>;1|f_aqwjcE)J0Z5}iyH2?^&% z0Ca|&idR={u;UBc=NjCM2rgyt86#7%4*s3GFPQ}{C~!ErV+S~lP(iT~F$35DgAh=! z@hmwV8(&c3;{&glV;%}n<|AYP0l5^fK_NWuAqJHe$TRUW3iYB4olcYHN1i;xIOttgffWwcgGWGRN@lFnY? zR-GS?h0PSn#dsmbY`ht5e-D&F+lkU2ghYBf(Fp*B)OdXGfNn$k)W5z_s)hbq^Utz1 zL*;}77p~~5M)96=H2$)HzQth!6t;xEEu(Lj(YF=!Z54f6L*Lf10i)dw&;bYNfCIb+ zbie^R-~b(PfDSl72OOXS4$uLk9V?*&E};W1p#v`A^`ZkVp#v_#fa4PqDu};?^6{5w zaX?ob60jA2S@-|XqvWA$T=g0`G^MytiGy;x(-r1ErH;bw<;sWyfjI28m%>_8$JzFB zSZm_I+FlB4O&v+w%VDjFLuY#_tTlD4Y%hnkCJv76rA7`-RyRUemSb*EsctqSho%V5 zMh;DvZy+*m}e)iO(8JTfbf*4Nx^6boi zOaVj@B!QyGh5wlov$uo6^T!>LjAy_79q=4`Rzt9V8$D?~DzUf1V;DWK!pBV(neZXZu@z=K@v)QRX!kN;1kT~({V{M7B;zEAHrgjn0vbUS??Zs# zB;EY4VI{D#`+!&p46Kxru~HfmDbRW5V| z4J*gus%&u(U3SiB!2gF1!Oolz#AG>o_m63v9|k!P1rt}}3MO`R=SB=WgJ`z~c8dNl zpx7xQ*on*CsK0@Zn_}*`DVn&^m0S!rHZ6B1VHafJCh&hA#SNzC##t)jWTB&G2t9X( z22aJOO<d4W{fO(?&n~2G0^5H$&;WC~it7ZghH05*qd^p414qmLKSFVYslb_hh;;M}r3j!G9`@e|J6HFbB?-F8ufjV-A(uh&ym@09Qq7nzgs>DG7M-DU`H}b}j6LW^tkP{U0 z*7~5c`hFou(TIa#HR7O%?-!uqICA3qg}4W(j-A|fV(6`bofMrou<67}Cj&ZP1%U-S zm`;pfC+7C5V`m7p*g@4|=&gaB6ty@QRxJ)n^y1I>>J(sVagwjEj+NXMV(6uTl@x_I z7*-(;$`-6(3NeBe>ENtmC3h7VdTC%KMFkFqRe^(L|JTvEf~mlLdUflF%3T?TjvI(d zQHFzImEoY`|CcDDFlD$eS9TpuxogJIZ39gynsG3!W*k&4^9j?8k@=M5zpo=IcXb&$ zZXhZ}T@Hp-mxG#RK4I!IGN0^03p$!|*Px->2AWbd=wMh4I;dOb6Q)5U^C>A(Lq}BZ z+B9@rM^q_An=TEjO_vJze1eAK3S)deC4{GFXe#BdS3|cAG^Oa(rD65zQW2j|B}}i5 z&!@zg934@)tJu(S15qg|c4=4@yA)XF6Q*J#^T{5Fq@yW!T^qV>peaSyE)A<|mrDLu zF}0wC>Dv89U+I|2UH^uj8<+^a-6934X(c?MDe-nMxDEh~cmj(1K z4jZ7bCG>3>eY=dlt)OqK=-V3lwvG)L?JgMi5Hx^M3ww*#fDRZo^H>e&fMKJC!J-2O zB^-lA2aI+Mv@WCqP%*H#=zwAMz+lkI^xSBI!)0@HsZ_m)+<|$uP?q#&x&SnU~SR`Y9KX^PIY!KhY(-dd%1>Hm51&hdOK(XM( zj|hqd9JYwT7ID}BgAH)l5(ZnsVaph78HZiQV3%>&3IfKxcYC>-Dv4loJ_ zIE4d@!U0a<0Hbh#Q@Dgs7{?eG_u^D5;S>f77Xph@xP(!-gi{zS9Z0>F{$dm^;S?@m z6fWTuE@2cdRZ#vZBiJpYkjn_y3?OyVKa*@*oK&-{LO5pB!(nt4;+-yVLGbkS8ERm*o=)x5qU7Em-6ZL(0y( z^vcP#)~)8wde4Is@#o1L-{@C(id3&c&PKq(yk#N4N@3pdk9f20*Tg@EWl{Y`;tGoa z?(JzgWUwV_AglwY6kl^_OnT0RY?90Uh zfQ_MGMF1NUU_}5MN5KLB8y8>!fK8xaB>>u^);XW@dq%}!%|v)gTT0dmHh5t#tH=Cw?7)?JFE`(9ZPSiuRbhRK7H%|pJ6k~81}zI20ykI_ zyyxY@8=r@_*l@dWkzki%Q;cA{dHZ&2O?x4*ZAgQK&qIaLE_@KKduv6y9w|+~B4pad z0q%e_q^KxXpy}o+TqnyI1>P)dx7K%Phah7yi}i(f;k1E?*#TioB`HixdXX1=iw^hs z_08?g-fNxqt8P$Ql0&)maC;|t-2hvE*6$m=gj)U8PD)V6UL!m!=6E#T}IO$v=SC% zOMlLnj4BWmC8)UFLc?b?X7?@!jQkBDt5IuEiOhpNz^XJs12Kjjm`ENojLcRnx<<*s0x+4g7pT~HrsR~!S3Kd)K<33xDMMQic?Kr z6m$vu%(6Nug$}lR8|v3a^PNWI4VWduHvuK$J1weoe{SI-)k4dK&vQj{r@g)w*;_@m z>Kp9NXt--{i)|(FolLvixV_!ny3^>idT(!TzXfe5%^kLsV14PrZWvxK1eeN}nBchy z7X`ICbZ4`mYzhUF7!d$8hywGsdY#}O z!CsaMMWY7(a=BPtu2t)$dZk_~*8|>xvRQA5ftHtppi(RqD$AvyQYrD5X#ba&gKDKz zE7lA3<#M&k>#P*a4zM~!UB$|BEvOfl*~@C7r1vU(sSmxd%wN_DMo;1F3s6#9E(g_O zX}MCZmFmShhpZQj?pGNk>s_f3+2r6wG^(@GoG7wh_O5E;m%lS+P=z;LD;PNEL#Zv-gL#Inj$1{<2gw zaYy^fXsnNvy$nYu8IHfK1bPi@W*E#51m*pd;((EuQQY9XVuejr#)Tp00FgL~^qF7h zZRorRNalm#@NTtp?9+|e`JAp%v0RGbC8a7i*q06V96hfiANdXf7AaY#6!*L{UhahzJ2T41Ef~OlDmXS{|3Wyl6yvvFaisfW0$W ziFZYH`H%&H%tTf2WH~t`0?bh7TiDtTdu2uHvc}t4=7YoUb`X zg{s91@L_PpQy`3WMb~aXF=fLrN0JPm6e)4M<9ErvtOmg`=YCxg*xvG zSAFH`z{+Y`Da8bPrxbsRf8G~e?Se~~DIBI~8w(#yI|j#gF+!^-@v>qc!12h0Mnssh zzR(ST#?NdV#)Jfop0&ZWdO0*UH^MEESV4GS=ypcTs%nk*#oQY(dYH>H7dVI}WUjzP z-W5dtM??@GhS@*f6}3lT^O6lsZX5Vi4weAnOv-*Y-fp#T-(gOe)Leo& z0bXr2J6D-~;$v{EyA^YQmDY$=ur4%LnLPtDN!(&bzM%o6DS$u!`8Q}6c{ivhy|jdc z<{N4`iS!cSrK7cS^Nrf~u3f#p1@;w-?L_-(+_DV_LY*<8&9xS!R)+7eTZdne36?#> zZjb(}R*K88I|+bu;Lv&lY&$#jOrFEGwz}i?O_D64G#4>`#y;n0<@{IPX@wy=ZMBK8>bfp&cGqg`1VHkIm__ptmjnV&pFSj z!k;HRrv`t{drlqNd)gZ-(*8UHe~bIJ-QORBoJke$LM$#W|$Q&U2+r&+h^O^1h? z(acZ8t$9;CA{Ay=9cCBJFC>mY?TMkzx+~sk4l4tfjSN%S(>?W-Me00coLY!xoC1q# zB-_-&!;nGhcB|6@m-Yq(hHp1EZ+;pwJ%y9!B01)MpW{XInk^hBb21ARq*8;F;xyqD zIk)l%WD0Xxy0S5M{-hHe3J=+q!gEr8g=QI>00{c^p!mv8PA|aRVsk!qZe4;&smzzeGVB1zQlc>HizCHpF@`O;Ir;GrOhGj)EA~n_VeQN06Y9N zQFNaVDI3zgnn?HRlB7G8afM8D1nEU(8Az{m8ARtvKk$t1A4sCR^}KA>eO9Ntad<}D z%NpIU#OZE1TRZE1Fpcio2^!En``O!hfX$okuHyGvobL2%$nP~pcevXPo#TY(Vglr+2{@$38gz|B-!ZR5Bx7vIsZ};-L2;8S@**_-3{9{abMQxel<>a zi)s6;`;lb2oAztcm+kvWYA7F`^pCEb4VQRI`Uzm_!+a4h76k22ubc|kc=|caehQzZ zu&0V^HsXTa1J8*6N)qv{Hpf}_Rh{^T0g|{M)rfyBPJD}f@~nG3jrh6| z5{Tc20rN=;oG0dlN5M(qCd2943gj;xG)|Z3>`6-*mnEG z%5h+G`hHHl=bP`dD`&zF$HfP8E6z6owB)=1kQ?*kD@Vh^v*H_U(@FZwp}W^_<}>FL zFmvG7Ct;tPI^kXdKq`*l&loQ@&bP-Ce0w~}x5rbkJx;AF(n*?IIkFj#Kp@-o_XGmz zY4*+7e(G_yZNz@+@fS0#h5M<;*;Kdv)Z=XW#(wE>dOv>40bA#%yvg2XuelD7Z+Mfd zn>(Ez*sR{vPc-J-hIVkV@ZAoXSKi><&czKk{->iJmNbxndVULMaF!DReq#rHnx9@O zIM{6e^9AC$-{KvjiRKzxn_Wl^eHT)sdu}s)*J<4b3mJWP)V=8)W-jF#;8Ax~yi|~L z?wUFBmOk>|e$+bhpL#Sp^e~5m7)nCo24vs~(4#aDJTTbIlQ2s2aLG&$uv}*GiIGeI zqcjg9KLHEuibT2>_{&IuTKLk8_hK(cX&!ijl~J09FeH?PX`1oMJjqBTS~pBZF-r45 zGYTNl2? zV3g)zl;+{mD9r;+^FaPRwfEdo_MY3q-gC&kl&`SvQiU4B0?3w=^2BINl@1O5`AcQsx%#^zE#a(Pwc=Hy2kf!1RzVXMrzH zjf86%cRX7H7f+8i#Omb7#|-S>jR$`*PF`rh?I*V&DNARyrQLhkC_?5O>Xw=A_}HkIXjaag zYATkC`P5W^{9k$1RH%Eu>yWQH|HU{+{@D*f%AjYrZ_^8Fyds&P>xK8!SH{nisZURI zTkE%o`{^l`2%}5Lr(Ka3nSR}9cHi>m$TZw`%1Vuq1Kuo|gr9G{?a?16=*_h3!rQJl z`;~E*jBOnt^urNC-gA-mgy?nLn(RcIC zBGf^?Fdlquj9kn@a99X|s*sYi5AZ^*-WNFB_}EA7#bW(|Aj1FZ1pkXe9@U8uo@|TD zlIx`cTz&2RwnM%TCfxT#CfsZ|;n);7qNWneE;coc>2ye&PL^48EH;ZMATo&-pSd^w z6nXMXV~)mt6PXH!_G2W1f)#CjzC@T?b z{SmQVyFbQjC89B2PQ+57dVdVcO2m3!L@brc_s4jxL^Q@560uymKL+*hoZv4U^1=8T zQ7rUF#cJXH81SDs!5=x~sk8xyWUSWjk5Spl*x#n9RKM@ZXbdyQ9TVMJZV3dr=qzyesBB$N$7Qv^*UI-zj__8 zUYBb3SFcN~*UQEGtJh`L>q>ba_WF;V%YW#Q$8~O0aj{_>HuSy#*`&QN7NWxM?LFx% z{6`M?eqht@?SoB^2(t?qYq-td%avK_F8U`kZS+6q9h^IK^w=r??71h-KmCkfxi?-S z{cX0Xk!PXwi{k}yiSGD2-BzPm^cKD}c2@ft+onTUiT5*k=_8-=#-2FuFWnn|hCFd^ ze1V+%(%2ain!&tS(-7!JSf?56=`W3)Bu*g?22oFh89KhTA0^_I!MbwtOJm2;F4&M{ zEPl<-T4TG_+u82W+}x4aaLRUcwFe{tfwLlsjh<3A8A(9KBqSNVR7*4FnnMKCFI2A?I4ge@RdoDAIGD_@Z6d9ciQ3RWJK+zyQv7_i4Qq=m>o-^mq-5V!_ z>C|i`n*P$*gm(b&Ybh+XYbboQ-@;PKg~F%$Ei83SD15fx!cygf!cSNW|5r|qM`b$^ zh35VD#=n7-?~NC;pB{{DIrP{oi;f_dzx>8fD|xw$fgRoTHHP2Ji4OEY*6T#*P`x)^ zCKvCGFQzDG7htg*gaEm99=6^?cD{ei|Af=WVPpZ$F1? diff --git a/parte_2/mejor_modelo/variables/variables.data-00000-of-00001 b/parte_2/mejor_modelo/variables/variables.data-00000-of-00001 deleted file mode 100644 index a0c856f06d1aeceac9523c61dc871ef193c79c36..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 19773 zcmcJV2UrwI(}0)gvbcaNs3ZZA95=`5Sp*am11gH50!mZ?1&kO_6c8Oy5X_1a1k3_T z*qz0kJv|eiIVgI-PPUP?Y&?_CXc6){YqTWtg%tD zRrI;41h+KQ;rC70S9dn5^xi02-8rNFv)2M_$qXJUjsHk4)Hfi-_s=M^72TPm^U9F- z6@7Go?}xOFtH`)B9aYCWA1BcsJyhcQRJPjC0L>PS$103tP~r2Z$_ZULq~IK?*Q;1W zhFDn>Gfhq^%QsIU-8M2vhmL2lq6ghnTVnblRdqg^KBt7VbzDjI88jE|>DPm7|M&%V zD_>0BS-~KOliB2lVlm<0wF)b`%R?R(71)B?x#XTg2js}8CRguoubh$oN~wCkoZLBQ zztXg01-T(WN40Tn2D)N19z7s!$L797}0=D$plWe(kps!~(y^Rh0I zH_W-rqHCum#r8q9eYq8NdqOOUQOnGkV(UCXcI^YP{=+l1++ZU~eZRSNXGXD!hW#gm z`^?-7!mVUX{_PNv>ku9@EN&Tk<-bOcITnW}~tz)5OL{Ma!C2^pg|}*kAW*UKSS6PE6d)DMEd$=Aywn^f9jw z16Ajyts;kC$VM|nr^$?vAT)3@4WIt-Il1#u80shficW5Nq}*wnr__3sf*Ti@68YDv zk#Ry7G(E$V+)e5z(wPJ5=P%$(?jAZ%PE+aD%0Kv^XkImW;$S{@Zpd=!LS+Yu_ryQy z^lp|(>qQ)*AsX7+8%p*a8ck;1N=5!dZ^=5oDBT_VRfD7tic^jsaz?o&X(`&YPfV5^ z@kiM=%CR#3$F9BlDx7)LXuwxk&g-&D0wrT zu*TOFXuZ@lY0<8Z7K~ z@LApIS_c%h%7s|nrw{Ivr>6{0(^TbT(v`O8tm5F1gR)+#xvKZSYobeZ|)vQkvvo{nmc+7JWcE?^gqM=Ra$7bu%L>7z78kivKD9+}dt19Cjm zo-`e!uavIcpiC*MQuLl*Bume;$D-rsD*A}JV#c+OOdaMz)T8J#IWVb$oKYYn-}M-( zbS`wjPQ~?59q+DhM;2pmmT1c&2wXYzJzmD_#n>JgXdvmc_OP-rDL|1EoQoaZ zZB3qfq9vQYI6$JCYVY=CUGHtrj02=s?YlA`%-bS$4%AfL)AA;lrp>F9&aA25+hd-r zUB7Vh&dL%bb*;rlJT_G>2vI6ECpjStvpEv+{aba2rHj^n5D`*=1wKCAQsuSYNHv9X zTv0VPx88Z(7+J}b*{Ycvo}&icPiV~;7uAl$PZ<4fwM=sNqjdL};`-rlU66l`9kX_R zJ^J0*v3+v^kuN>Mh8)==iCZhNEL+-V!P(N!Y*~jo&*)o&Cim-K38STw_QnBp?DZ_fB zVVR|*)$n;TbYYup{9zB-5D%nSk*-hq@6sJDrEiBp659`o~UAobZ^m(ACoJ`hW+;az%X}n2Ff5ki$bJB)5RJl$0_EZ+>GMr87DmF=v z2}VlOH?6Dd;57=}$?S>k-8)`kx&8$9TAZM~|GZS1BuS9%71!5~&RZ)BSSBVglN`60 zbj4=-?UOezsgg1mWLYt*+V^*!_FPQl1TCG!?nlOCK9C=PXto=Pb?d9ais}pM*7ywq$BbP9nV|UDZPS3Nkqyk?!w?kh?xz z#{8#kBhQqtz^ay~pjkaj$QuXfC`+G(+%k2QgXeoHeHN@h>sOc(K7+LJ>In)m%l;8L zsZ+Z0CH6!iXsVE{$ahzjrkzKPW_!_*l{A$^w;bc^#G_p+JIHGC<}2a~{m_UGHiT37 z4m5VFHkm;mO2*ar)>X$W5*y9DEg7e)uZp=6ElFHch03dKRfQ{kWp0aiN%L0~h#wgG z)CLcEFI#-nj9~Pxz-igT$)TFos#$}a$$f%!(iH{S$tYu!`!qw>o@CVR!w=T(eXL5 zh?OFIFKfMOQH~duymup(8*xN9Jnmxcc1L^kdc1_NUEUwRH*6vnSG|`+PSGltNps20 zQJP2;J43Zn)E(!t=i~BexhfXM#EVyH;g_2#mD%3O%BL1K_{@Ay;;iddT(8MNr87mQ znqo&MhZ~tIA5Dsq@r@3u97pxQcX*}Y!H?Fd{13{I?Wm5ZsK;i7qx-`8EV2-(&)?5` zd3Z=NUG;dOu4-A*Z)A|*oND3u`N()NTQ%UCJ}w&Jj=vmFS3TOh3N3mNjQR%7Qw@3O zuDmjNI!e3estkKN4CMz4h+5yJC|s)&DI>hmdV_rm^4)pmwQ<)_-Ps$8Cixs?(yjGq zQUqPut^HgwH}VjwW_u~e)fS`bS+mFmTO~w%a1EJui9-%|t3%n*zG!4|wNhi_5R^EE zR9238kM4h6hsNIaMyVgSqIA7HC4KS;#Yo9hthaTUvS2BjVDVzm46i671HPE!eH>A*AIi7s973Nt$0W zm%ML%9MKy*n1g43mag6D&fH0QqH~B#-0{^wxXl5nyL&!Li`F6w)*Mx&r}QSxJGjY? z`-zEg|6@u=ytneiym`tQOXiXXeLa|A4#vulwKU~0`5ZFx#2V%1AUewUJrmn-um>`I zy06~mEQ7pm>rYzjv1b;n?=Qukl#zRVbjU%Uq{O=OZrGO2XOvDu;+57yI?0o3BCV=7 z(t)W%NzZL6)G_0N!gq5#VoCauf`?Xw(AG}*WaLYdfA$L2IL?{bA!Lzqsz8Q3)61}N z-Or;Xxp~S32IXjR+-~&3+6>uTQD96<1=;w=U6gxCMr01;lDsabuyrZR(f&g+g4|Ch zN72er|1=A7N<}m|SZqmZS@ zcC4Su67J=n6qy=fh-sHjj?FSBhxGWU%ztJ~Hb$L5DfbxU#9p=-alH(Y-b!rmO$p(W z5QPqVSdyLw*`zqjjBvPe9J9Upf%L51g(4Q!VVg%7lErgW%7!XOJZpau+5gQzw6J11 z*)VV)Hm1FhNoTG`4>Jg~E9NR@u+5d|6A*wI8l6-oD>k5_r~Odb?LEl*Nun%%iyoHs zr5+VqPQ>m+-9y35-RM=NGtqUr78#{;4%3QRsMH=IC2j?d!F*kolGpfQibeV{svO^8 zNcA!V+i~Q*Y`cFuq`WY_zU+)lX_}N)UlDIj*jPlZOWkLW<4rq?x^!k(>LMqUzEy$}8HD zDDjL9;oQN4Ffw#wehv~b7mRRZwtHa4TnXpQ;g=ldv-S>5?l2DX{WCXWz!-Dpp$R;u z%PIlWzEniG#KQj2*2Fun64s}We}_h`V&j1(9(b=$=_+28GamiX6m{6LkqlHZRM*CF z@v*fzdDn-NVVHRPqDy(q}AJ98qd9!2fhicQ=eP@0gqcJ3`&c-|L9KIRboq6nmAF&9%kx+eWNDvLa<%^?=;-;V^(HYjy(cPH8% zrOBT8t*;Mx_F3$;Z#A02=Ml+G!z2gZwL>>Y*fPsT8sj^&65%}eA_If#kwc;-@o8EI za%$Qma;ABe;;wcO8FpWUhwKVf6+P;X)8J>&>p8inz8fLx3ja zN27zYUtyCDSP=#{?U{ePaAwv;ni7oouEe4O9`jWakLg}y%DlgnPk3B1Cw$+XQK()i zv1F6$8&j`s@of3HBWfz_BJBw_{aNpUexMLCy&q#tX z%b9Qunz(4>G&^QvfQ-n!Y(dCh*%Q@Kh{!75sB~*wi)xf9lIu4t34?PU*e*v$W^8H= zzC$Hq-dkTPb1rZvg37IM#%~@(8Qqmg-pOUYvg8oE1|g=y<v>>lQYtt0NKRTT%0_gOBR$7g=rQ`dv!Z&`V@`R5-pjXSOQy*i5{nEDe8_ zqN#Q#_3OO*v`DQ)MMdFP<{9|XGLQMvX#0I=*Z29*8UQ(PeXkEK6_D@oq0xZr4NwNq zfa@wBnl+G0f&}DBA6l3K%IiS~8tNbo$bp7hkihjCA6lWB-B52Aq^ltxum%dNAYBQz zJ0TAU+X3nAz&6kUnp$p!^cIjn;by1@q;3LxAgluN%7HS-SF;iFOF@=Eog!cZv<=AD zLtY`+uLFH8)L#Q-t04^(t^$1}lmiXRp-(`*3~UM@KOfRSVIJtYkiP`-7eihSkPT@9 zbw{YAfE-y1bqh7n-2Ok(5C>CfFwvy z1epLb4$8-Zj0PDAc@ZGPAsq(#C}0HiH4M^2A%7s~{eb|`{UOf}%6o$Jg*5msOJngf^G-c0^J~O4fQPmQ_xL-j-WF^>Or|K$a&rrscGJ{ z)}TQd#axhok~#o(0SVW&qQH$v_g207L^}z)+wEzyTZq zYoH_00ca2C0Xo2!9?dlG8(J9nl(rA%=Qe!jCm-74cD^(tLtonBPQJ7-3t!qP8(&(X z9qc71U)nPlU)lr@Uz#V!mo|V8QUv7^Us?kO<#J!z^&U{}1Nl86?GN;UIss6>AISb- z8wmO!upbPzL!ggfupb6?As|OU*+`J1ARXpQvkr&y(J+QFkdB1@qI_wo(a?5`FHIf` zWn-b8aiGURyYWB**i3}HM6gMQb|yjDWMA6$DUdf6+M5nKV4VVEnE`n-q0TJOXG6QG zkOutbK->UmbD<4j0n1>ON+^I+_N<9rwcV4V*A0u2By19YGPplABhVu1TV z@B&|28SoCU&H@`C6KDji7ebrBc7V1B`UPTuLV!kq4io~{0eUvr0);>$V4VYF1`2@& z;67lq80r8uz%!uB5*RBG3}gb004*2V0hR*|z%#%z58494fI@(_6xss(fK;Fmr~$46 zj`{Enz*L|RXaMLde~l63TmKJmgf?2@328MVKo0n|K`@lHBnHxLF#*am|0HZ8_<0b_ zQ4jEu0OrCC=EfdmS4ek(zB|G?F@(8l58tT=^PvNCqzUC;VL!cx81l-8R`>*Ba1+Ez z*kke=kbeczjlfw*pMv;%9OO~3JqY?N9L54xzNN8gi=z~EY0Q7@&Zvf)1+z0G>0CE80Z3D#GREV>wJSbxWZeZsE`3|6~ z22+ropxhYf06>gQg&0d~2T~i#w7^CK(lp?sH!bxI@B(-Y+z0MJ47&;P zD$oe}?;uYCM?pUfaxXxFUJr5?$SROqfz6;-fZPaj1F#146(E-Z1wbCK7+47TnZR7o z)p2(kppLcUfEXYW7zqRd{Q*C~3%~#gzz19b2cR2Z377(@UcY7na{4D1AU0SAFb;3n`0cmliuG+f8U`G9&o`KL-ixo%R9v>P>5aJwWXT*cUWi z*dMS*Xmr>g>N^Po^!88=`=`MGboE|>JB#}6(xBd7u+JLIpxhFqHOOv|*Bzuiq+wrD zcObY6rMg4f6Y}AXMD1bN%j!E+0}eJlKmw_--{n0)_JXuO&<6;BJh+cFsDZm#LlC4P zUdThB-Y6gp^wB^BpuXG1Kz((Li3c6-fa<$oD%=fevmqv>f`mAx#<~sUP^Koe1%;ri zX=sJ(kpB%@G4$~_tRXE2!hlquL7j%US_oK|0vn-D8OU-d+XO)TRo~rd+refBv<;;0 z1PO#yf*r(aHR`v=_6j&hj`=qAb;V}lO|qUH=g6!J21&AWhKuWxEF_zwWN80>KUuG- zeXwi&W6>lX2dUw%snV+%*Mz@mTo4)E&y%Tl*%^b4XnTwU8ewn)JG@a_w*MZI`qo{Q z++1IWuTH0*vdi8}C4=YXO6QL$lP$DM5&M?!5L+RRz)WT!w3`2$L|wnucengm z(Rr^sF+pB4#>RTJJ7euNTlx$+tZDQr;knDnj7{=t2b&&c6)J2>!BT8^ug>yaF&pJ0 zqny-xpBD1878Q(1MwMJWv~`=l%slLxB-E@?dNOh!ZWMM2%YJtm(Y-(6+a52KRd!`z z1%82IJ&Tc&@pCbxt}kErS=jN;WMRUk369(>x`K z2Re$jIB1ByuNg^}X0e2}9j6LZ>lwVX>$?20mNf!({hl$YZtF}(x%cR$?WRtbU75xj zx4_TgW`Vbd!Ng*h0oZCctMC-}+RFC&v)n=*OGJ4cKc}%eJi+vw)b?J=Q3B2All-|G z7w~(%jd!jJ-r@9O_yf09_u0bVdaUG62nZBhe4Q(Nb@nXpTvM^zdD8-?GbI5|$2%VL zP}lD}WjS}sq_Nz7$dMb_q|H5f(TKAr-IVS4;Vdum*lA9;qa|G3H;uf?hYLJChX%8U zjXmtqqbP~ZK5olZ*AI3~63sYqKv-4$NEn{X;6LBGpA-4^9AD7BSX6p#n&4LOOp(i& z#p1EUzVhA`ZV)z=xN;ZTzhZYXh@jro{r_;~j}Fe^6-*>}S(}{rIvonwBR6m26shJ2 zc0@1b&0HVK@9kG2cxX4ATbbB{Jv=wnV_c>l+p7C(p1S|u{p>{dm`8>hKk{pHcpK#H=r@`Vg)o=KF=7k7M`;~I?*o!%*y~8R0v1UecKd)AB zAKxT7>h{z>7yH$=SM)A88U4Q9b3)?^Zmu$$H~Y5SVG@6D_ht(?NoJLMs`b^5ql8{J zk#IoIO9I_b9PUM<)ts9>ma!M7EE9R;4ikK-@D_H{87;c((1)LZU*?-HwC0@gd%?DT zG>RI(MEjxO$)!PpU3bj|?HDoKcSf5yBjV*8GLj)WG><8GRry}9ahsWlGx<5st?ICc zo7(}-2dloGS7)#1tNS;y7V_^gjrcLW3V539ocL*(N7zkMH*=!yk%A@jPVnM4&gZW> zw_EVw7M**`FpwSoB;V7wpDTOpT^*{v-j;U4PHQs-Gj0V7=2SgqYfPQTIX5PUm$tow z$Pi2CU)rxLWLsE^mRHpBnvR!x=B}*tDC_>7z2N**YW+6i+M>sjb;8H@`U>mwQ+Q6J zaV}%Y6;8MDPeoRDb%i#y#-f$iT*doN(gl${>IFeVuW&RLs5s?yld1W4xKS;{N;U~Q zcQzLq-V*aZKFj6{d)(#CiqaQ%)2|Q^Q!WS%=06hM^db327I_Lf>lt&F(zN;MzjdMN z$MyE&H_7_(&vP<(<)s++WY@kP-gj59iaDptrR>drwQ9Xe#@^myvlLtLwdely^yCNxFFKC>#F(z~1aE)}(YM&@7Tr|m8i_^^HW)fO4thFm%~ zaegYh*Qiy(ZExT5&iB?7)O>m-ptU>1743M;$9uSNL~jB)m*R@4{b#^kEnJ<>7TVcq z3C~|5d82$e?8AXGIE~r)BD0>(f_*bK2@B306qN-o)Lm}=&}>n*#w@{aXKjSSG#x! zaLr5sPf^HmWE^4-zrv>KcQwcpnqOHU?44RF==xwKH#}v5r^e^q?EdTXM2~y-75eqx zBs|z~LDW!rgYRm6!eiOeSspt@&ph^2a;fnLKR7Mwy}M8}%7QEEUNuEfdn$|n^1h+q z;JWMLy#A%awNLJfE}3XbwwBEi$n%|qv%Rf&x;1+Iy;6TF{uJKb#P9i4An23Q$XmR0 zIpAd{K+c&fh1C4#os8+W z&xPJ?`r9iu>iwwx5vAv?yU*&QjU^PDAHrsKv;IBHR-J$PoNYI?RR5NiU7+-3zTRAg zu_H%Ox|fPSz3-Mfs>=@?jpjXk$Y-m>R$LPu5pTw(OCH@`y=Hca2(a&;W=+|s?Y6vF zAb9GrS&;XfCRqFY1lRgXjAtcVgEM^vLsWPxjXx`-P|)W>vGCM}uUvyZB*#@p?D-*e ziN`v*Iko;fPjC`%)B8;nym*=@z93t$BQT%8ZDLnJMoMpq?w3%}(Fi|rz^t*7D|Hg# z<;T84f$%=}c$6leX%U+zM9O2IT;~m%4#D!bLi}PrzD|fZ|Wa?Iw zw3C~8Y?G(->qqXSlka#@?}|OLHymIW^_t_BUGvtNNYkL=XXw&JLXUS#1?~yj!X6rD zxK=qI*^}2TWN%-vRumffo}XJkPB_geM>N{#1b4And(QcciS84l$FUV>-ctSx?K6$H zc9oE~eac&I&$rngH;o26Z{KmmysOaU*5n{Wqvn6MWB|t8ow-e0O@3G=H^?m=T@m5_n;8SIX?yOTxzcMoMI zj^gnesa~w6*v6y?xzt{lcIj`4`mY`+AE`SVpKdr0VI{@beqlG+EuwrdtMn zGkbmWJxuC_ZQ(P~K1qsn>CHmy&VVGeI@bvs(Y_ovox2LHcF)DmrWDEoVmF}j5FM0Z zHx2u$)dl~QIGehMmVZVvuUmF_{~H6O>U~ka_Azz8tq66MtJCQj=Ojy~NoCh#oAB=U zPh!t_y@W-VQ}K4m_SE>7)@UIelWgv9SB7#;l>?|T*{!&Yec7!cx7cBU-|udV5>E`n zif zISVCLT6@IS-Q?nJ({-^3->K65M*}5WzFd@ze1lWp`THJg>Esj|a_Hks-K$TRX~??o z$rg;*T-cG+fBd)M_*9m znYAVey>DD0eK9{xzI1{!R`fJX#w&=H*<7`hf0-4DDnh$qE8d>Phe&Bu{cc(Jr1`ea zC@rlkRe#4&E!4;jklL*A#_#W-VYW%Hr6re6NOnmSD8J`&Y+?UfGXL;;67X8ve5(GSCGJ>^;~~+dY18H2PyHo3R&b>+SsAi3g^uz|Rh`k!r(GnM*45+1 z4?-zl-RkLpjh1(imv0hM^TFGB3L|Uv`SJ&yygphU5V)t+OAk-(j-}uyGgUhQhj*^7uE0@?xuwB;*FJ$%j^S7gI3!|S_P zp&O&SVjY_dZ0eB zY4~%q_n55Woout!H9X>EIW=DYTS-#Ch#>UIbrI#ijOn(r(in+gb?=e*w0C*phB@se z$*e@Fn_g%9dA&9kwI)FPDxie=cJ=!Hx4%o_reby7D~WYNv9Ly*ArJ|BmiOU*cy2Gr z8JaG<8+1;xG0#JM?}V{PYw!%-dZaJ$cUmbne$qvp7@Q_iEx1AXuWs`JBwrUOH!0AQ zy`7OtjVq-{PyV0AmD2Bbs{dh&-LXN76zIHfmM~yXELFepfdJ)9{=!zbakEbqWp?kZ7qooLxW6s z=3Dr^WFwe4)R<*m5xP1~k2*(oH8e`|c>&F9v7-s)1NH_(tb0W}s;^*kF8<_cfXsJ? zE#_N1gKE>#(gL5CBc$r=l}yJL9_ftC#KWcY&(f&!6`l8Bb4D6b^{q@qcyP7=+e12I zsqYq2Ip{(oF=D9kkvl#_;euKY_%9gE5en8cCH(7M`Gu3& z7;WS&s@!ZIE`Ray95sJw3p8YYj7+RYOf0v9wLbMtxfOa?%<_@cTug4*v zM6q+4-_Dx$U+{(R`%?F?UO~9{#A}u`xv zHr_o?LG`09|4%>3;f zJ!yP+V(j$rlRlua{v-HMA zCWa@4hEIrP7|`3Z7)i0w@!`pn5}{rUgF$Dqbip7#ay)}hH(+Uxjtx(Oo()^?+33ff zJG9m_t7XsXo;tSZ$@qIuCaw3>>BpWrx7JgazxQO?q9?QOJ(;)Olf{ocS+>?w*T45< z)uJcs?>*VH-cz?9d$MhES-qRG2zn~9q3#Zb9`iYVtj0TbZBCDawMZY zoyVfbCB#L>Cr^rFw4?J`T8S|UW_qx8wG!i!x{L$WpjjOcYR6_Z4pif2H6B#cW>sCy ztXZ7^s#UW(5mf7DH4#+1W;F>^`(`y6RF`IT5~!}t>SP9uF@&K5dW9vNU)g%vc(H5LPS=0SIfBh7g1uOG5<0o~0pX=tBFNY)_D`Ald(K?QYRv zn9~KU&hZdUeibs>h&uXoA*)?nWO8Ecn4dxrgDzs}Qn5G*Tqp(?QW5)`b*mA|iY{T9 zH{1R?)X^BjS-}j0AzlOhy?O-rh7R!x2=ZkaL`23XMTQDInq!xlpt*@34~RbtJ>0zp z4<6{>BWSSiAdes0VGLmn{;BQu-`ZBkLNnekTUHmf)h>-;0FG_BF8-dT{2*=153R;v zeY&irAAShP3_8}r59ntv%+`1RI|IiC?{;0hG=TEa2TBa#4^lr-wt=?<&>3v#y;fG5OgC5Yr3w?j~LMwM5 zD|)}Sy%540_EYROY>wS*&$isa`v-0q$_o0aapw2NTa8J)f9MA|`PF`alfT&yEz^`A z`nTnWR&Ra!^Z_mX@WU05K@V)P=cmS)-x{NC>SoS=wMJ#M)!ax{$WP6gd~5E9 z+rAm+uV#NJXsh`_tiYd|H~QB6x0i#N+g~kz%WJDqe^#%b8rA>SsQLlo_*Z+7Y^y06 z!vuEwu;#@!T)o(I=ppK7f-@)@&DomG*;>u72kqw9gHH47L0A2Hp#7Ks@Zgy>f~Aw3 zkQ_c9)R8QmF$t66li`mEqgp=TnDo$=@3aXF7Cnq*keoOvGIT;hQfzYUWcbSgiyr=G zUVLOU{Aog+*O5M&Wf&Dc9`5CT8Fr+P`Ih;YC6gZUV~>$7d-Q?9Mg29-=x^gRpvSNn zp;7UnSu|Kvlwq+~*S$%)#N*HRiHD~LH7#xV@RtozGx+NU zsiL+TRKEyDH2Z#}+V_Tk_e3}=^ruhwnu<+*1I=XqYj!|z`wflZp*1udZ z)H3_kg5mtHS0KmZKd!*$S87!ACq;i-gFo!5`5LUb8bA5Z>{}T8_Ec_uhI_zYW6TEs z^1=M4fqVY}gZ=yZ5BD7yIw+w3V2>6NG_K7Db*cty)=$Ie^7mm-&vNx32L5so&9C-< zJA{8U72n>%txmr^y9o2fzkYAU`xo&R5_;@g9?)v5UFQTlJk@lRGo^V_x6 zsrdGO{kKE-N2}u7tFYCn`0Hi(Z^!XZrlR=)+3Hk$dqn=*A*5@t(teH==09%I?@zN< z=i;yD*}omg91Yg&pMr(yPvdAaT6}xS{o678v&r}#4O)wwf4!0Z?Lhv~Wc(QrS__@u Ko>TvF4F3mp{yxtD diff --git a/parte_2/mejor_modelo/variables/variables.index b/parte_2/mejor_modelo/variables/variables.index deleted file mode 100644 index 429eeb5ff5700725effc917ee283106f79ccaf8d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 2563 zcmZQzVB=tvV&Y(Akl~Ma_HcFf4)FK%3vqPvagFzP@^WPkY51c8)bLfcCPqj{#85viF{d~+J})&r zu_UuBwHUuG!&Z7$>=5aQ|U8RZ%jAME2FqMu(- zl9`)Xm0F}NEJObg{wcx27R$#(HRH{#uNt;#K1E_AOk-bPVNQE`TD+Yol|PthpFv#Vy3VJD|ua zKgM{CL5mMjXQZSiCsyLG<{1>;fI?|mwV)N3JYQxBu%^M&2;l@aLY}B-aF`Y@HSy)r z;LAx(EXvEwOOG!~EJ?+u5!8D50J6xxB=r=RGGA_fZfaghX)Yl>U*L|D<15O@C#3ub zNcrE_$L})$!7643hVSeQ3_yy3!O`<#Jcwol5eGgk+`z!dT)?na7%ujKN!M?aFvosj RevlA;5dOQNTcyHa2X$3>3Nm^!5)u*$ zsKN_P5)#re;`7QS@D~vwWi#+1>MX10tY!bk+111mL84;f>|kT>Y-9QQt_#A^$pQoI1W zL!$XwbD{0%Z7`IxhX^FhjP~CT(lXM&DgX09`uz2Z3;%f^L2_~J-(w&o{^I|>zxqFi z|If_)j}iRO_8|EmBlsU9`2W`kT%zLQvcj0eIr;ebhS7ai-`|nqhl=(g?+ls(^rg8O7uBc!gr?!cRbxvj?dIL9p}ogcur2s z8x1+0rmgRS+t;!+JlfIQO+MLXhxQB_`__)mT)sI!;jx@YFX^@C!$$=!nlg3I;WD`P zy)R-&>}}qc+2Cu0hzq;Pz9;&^V-5jz`}1G+yzR>2s##i6Cwu7wx%%mWbp#nciXX2oSMKc#mpaMzJzh3OYD$4o`Za}q zV*;<2^E{?o@JUOZV0OLkx8bFh2l7VOSG@`Sx*N%dJFC@$2#SV?=9%G{nLK!TSh%Lo zTIB*vL!)RC*@u4hC|lRqTU+<#+dvNj9^H{Bo}-p5S+$h;WxM|L*gkw&yS|S6Hn%!h z&!#Y@9G~NZr9LgSe)omMtYBsj1$en#C||wLvB$XY>9N@9(N;fNi8j%5t&(2Y?rUpX z+pd1P?Wo5wVGy~|NSgzW#t-CuIaxnFQR~f8n_Q>@L+xb^f12ih;WE~GFkfu7w70L` z*Ef_-Ku+p-yVq#&7|bqm(9jhFMuqP|e>&J%%?W1l(fcB7Ke6D$w$!U8)!!~WnQK(* zK^&O2iwiEvZTf>ZGr8v%LF8bInR$BxnrLnko;!V(S&5mcGQn1xvn?Ox(mluOz}Ud@ zBA3u{#H-^cYO8rGXK#WTK1JD%5`2CbfazVK<3SK@qDxa#voB4S+;$YFlB%9PV6>o` zwUvUaHEFoStm>^ z-$x`R<+pzkww|bQPY||G;;mlcm)QFq;5pXRDRr6)CQqK>iA}`dvbG?7znau>262J5 z7CHwR>}yhmtOphkmJ4((Eipa4y)>b6gsn~~>z)kg!AeQzb}LuG3cXe_QXFr8GmCGoJd1bfzz54Ll`okZ>2e%*t|@->mia#AU;(zVL9Is_ z*mOJ+ggz~?<=he%`0nxU#g3&$!;m_w;a*Xt#zQOK49+U*D(OT{0fP66YL5qQPxrv7C7?D>cI<53+S~^-`Oe zJ#EU7_aomsIyn(X%(0Vn=q2gBKNoj!wAESWF!e*m%J(8L_1V{d5$QDLh~K#j+uiak zjqvK1o~vaCi|OH3N1_oQ*ww(8_d0hcee0jtjkzfhge-er5P<|@IsNwsAvrI0_}%MW zz>u=+>yLGaw$R2`p9`k@JsOiWVk>W^J`3`!LM?Dc_lU_9OV1^^5V(80Z&AbGIJ8p zww^fOk(fgqTe8mqhK!uNAM6Ni7;JH8)PB-7<1mPV0ZjiD(tu~kl_8DO_0wZ19ym^! zc(9SzhOB6!YAA!SUAPdRaotPegrs$6d+e-W-n~1|V^kw@GGa4Pqu(icxKcNfR!g)$ z;tejV`5r{w<}t{S{dC*%QY7NrD%g1N#GF>QRn6Ks)blS84wm+5Mf`!9$$ktX}e zc_Go&3Lq*t%f!8Y5Ci(n{s%a_iGE?JS6(wW`H+YeZM@aW#6_QQUtr49FPZl%cb|*V z#cJp1V6(HkoH`|3)sZS+MKrt*wuhIK0i^Hy;Y2NaAbAF5ip16W`@=2ZYC7FMeFb)A z2%yd5Xrq}8>U%gkNlh7SJs#FP)13j0avrhFf}+Ok$}dqeW?Sc1%Atr`;^#5}-$-lR z2W3x$K>1a)h=_cNf*t}*5OtboUgqZF>QxaQ&j28=zqGW3%6QYBumqN|H{zZQ1PW#< zm%Hs_!7Z@Wx@4$0=tHfx7rUzt*Q)#T4aMn#?lnAe24h)nVNdScUq~+4+;mh)5X3Y| zo}TR1=hW1^jE|2`5VX`hdLGg+)m7j_;Hur5{)ElV9W!kwVmS?EFmk1+`D}n!*}tmK zl*K-XdeZ6nFJ1BJh$|AU89K_IT zqY+@OR&S;X8x-6@)kYHovW=(Q0(?Cf#sKyWD)`J(5LyK~pQcY9uemx_kAHk||IDP- zlFlG!czBqI--KTRoh!QQZ#f2b-t7IELS+a~xXt)^wCa*yJU>$7zGZa!;(p|Xk$Es# z9MGx*e9rFB^9L(3B6j2cGy{X`hLz__@ zuzw&+#cjM=Tl4L%@B*1&O5kSmkzai3rRr*z^Q%=kI5?_#oOXuI*O5QQkKY1Ux|H^b z7fUDt=xE%tRQH!U($uHdDQ3+#U4cCo7^=(Hz_ z>k@$hSPBLp?!%iOERGKd9)J)DA@MM(!o!`!)v+LRbASl%Psadm)bf^; zcTXgWyM~4Tp6D-XX3iPNgIj}HIM{6Cn|Zbc@PrLIH#aACxKgrPv8w(M0u?f7&4rh% zqS0tn23S|8@Z}`;`FMauO?JCr??0U=_qJc&#rG?<#qx~K%p8JK#2Fk8C~4;C@8N4;V34=F{`4xoE_PU}n%+|0t){$L*k&jN zpxWQ-qotNn8G0#o?pyP<`F#CecH;Kt_JkOcD4zsL8ekz?f1W*2RVah?oxrHsx0`O~8Mt_d(y6$gYXk}$()$~WMZNO=)r+x%p z#Vov98C#pnO7_7H`X6?rZ|v^ub<_@&6cmBT_!r3LK%<%URcx(+Y^Lxihd;- zl&>tiGg0=JY5QJyrH0ZVZtt4`P%YvJeq!ZUMsSAghg%-C8_CvRt~sj_k>B_juZzmq zm}zFO$v+0DRqZw!u{+_(XNg=1=c_-`q@kfHliX>blCl8yhI(B)k%L?wP(i_7zRcyT z+ne^=83ag&c=JY4^C(TxcD^&&c=HcYRz`D{dfZqwUxoe3D*gC_LHrXFuMX5;O$zb92QGDC3{zfOQQ}vGQzG0$pa4*XJhq93-OT6|0K% zN+(&;dpbF0A=$TX0C57y47Rwqn78dbSjO`=h`QeIh(zZeC@KR0!)e5b3HQqib??KS zekRwk)E_^7(B}zrxAhR&L$lP$V`khNbMqWP4=60Gwzf+?BI z^kegDHWh0(Te*ZDs1pv44<=7fvWRRC5bgCS9dkLkpd`;VQ3-&;8$O4CEBAkXY$^!w z2HFGM6QoygX1U@eFOexaR=zYSHv0gg3P*21L&yT3Zy*Np4RZkDF|6Njx8EMIF6bXx zAo5XQ@-flTi{KBT;iz(3IE&9-YJUBR2Rbuzt!N$)QbQ0f0YK=X5FSeb?il(}<+Xvj zdW!g3g^Xk}-($Y6bALQ)t4Zp4=!3VDU^XmFR`5N1>04x zKJf;~>;asG(3@X(5N2i%=|cxTE8{#$-T1ec2i0N`mOuWwN+fJCNlCo*lPvZuf;K~s z3;_kH&Ksl4c?q9W00KB21A~O~{?efu>j3z3itN5Tu@yA=agl;W z@};piA%?eZ?==8kj+-B{u~})@-4OMS1hRANdSZhO(*bX5pZT=V9!VyJOUPrl1VJvb$z0>rA73&Eql*jS8q8t z(U~uTP2Pv^&xuJ$zyh5C54?77p-IC|g%Jo7x7VuI@nwTXy@%`d1;7-aArJ^f6_tJf za0R@ERf}UzouRw^lf#t@NjVs;EIfGaJ=)*W*3rq#&E*C`w)Cm_!UR+-wu9f{)QxlavYG}1R?8KoZUEmy**$p9#es|&g-?iil`t;CTuJZ{6WqO z@C`^{}~VQ3JN6u44wG?{|gbW0%b^|J_xv) z2&0M%UFf^f)o4iI^GJy9yPz;r3gm|w3S=O7{r3qzA5J@pn%$8rZj-+7;&+%FJ7XBO zR4`(NpFS`*_ZoDX&}7nF6jb&1Mo`rc@cQo)eD-enwcW(`i{!%#B|75m5Fa=F&b9{e zt>4AFL`Qt~xO?t@pMmp4qIdTAKMr?btNzcQQ&Nj;;W%6N>X1wAkFL=LMXvDs(f@k} zzl&Ec@n~ynXJa{2ECf+2j`XC#4VY-^0!_`H*^SRFyqEubT}o{PA`oXg`W4(wqJ?0Z zbc(XSG%*ZF?dvNwi~CD1?BCIfT>PFwLp7=*plxIyG-ekL8A)U`!aYw-Iq%P}uY(5X z;Lhr8RB(mR{F_g5xB`M`NaK&4U%$8yJ`UdNRgP(nO6%!)4GstYb7d?N_P=sfj4fE~ zc@(5TIG|AC>a~W5!7ukLn?27#$p3q`2%FI`wFr7^)&R3?pVjp4_co)djzSi{{(IK} zFo7|Iv*+fD+v?S^Nag?cDK0;*VbcH1v&Gj~Uc+1vTF7$gcwwYdGy#npa9<$w&czw$ z0cLI%cbV~#+`oynY$u>IFjO7yeAxy-(K_>(7%*8i1SJc(Zz=)T#5K2TujKOK+qp9W zM!bZ2mQMbWqMC%zGnDi0xbMIh`;M-^KNR36PkrQ>#FKJ`taX-)nwub%iod^|`FY}( zvbCbvPh~&|K0JIu(0Q={U@rtC`-xlP&o@>_5k}yyCwg5cy}!&V`d^UwHvyQ^aq;{) z9=$&wAeKKPKDl_-cps+s=fSCN%I9b!SS*KJ;o`rC{l2o(qhxn{ zFo;PI=}uhH-1#)Q9tYX?s*~W2ioD^O3m&Rg=Who7*VLZt#{yzxS2^CZTu_bBZ^^fq zeD^&C(y}_SMS4EGxx{;z_4n0t;%6Z|aY9gw>%Okb!u8O8Kqn@Q5cW@*mqG;YbMgoQ zpub_;iCHegKa!v(TYVdkSD%=9yqxjit_J0i)-~dnNl5PAYi-RCo^;NU{gj=lys=o^ z_QR3!+jaehh^COD(zofUI(as9P5y&_Myz>j_cP(NFRu@4KT@vvgsO$ z-aD0IOBs|%UFryukbgl>Jxf(`pBgZg=RiFCYjcaGf3}5>LqI^wdLUN^Xx2bJOOIq- zS8<8|-*?OcF{)eIn^EfnGGiJISFCk=Lcdi%wyZ;=qbCkX-#Ih(25Q{{vh93yCEES5W+aeR%ddH`g!?@p?m4XOJW)cQk(#Ev4?Uishm@2dj*WM^GQPR@k(PqxYXW#+Y-WW;q`e z5iimmy{k1R%uhL)24!cOJyC|D;LBavkAD!80@>km;jwaIeFN)*TwBG)TzJ5C;5dkk zrk)+z!Q7*U@opj`u6YAOmYbkaZmo%>0?CBz4?E9dm=bw3;JiV&ub<#P(;k`Y^qG z+pFcq%S5_Y+;*Ol?rc{^*i?ro?1nM09`S;t5B($` z8Zt0o4AM8NKe>n1g0){6f9r`7A&=jmNsV^H$Rcz2ML4QM000wwCpR(I4Ov zB>zlT%ginpq7@>l>st^FJ&ic>K}&9BguGHGyEJDru8AlgLl^g3Pp_IhHEsHNyj?P~ zXIRP2Dl6BeSplbNS@uP&Kw*zkLC~Bd%5xc$j+T`$Yv%>1gYRyNo1+=Bc zrxQhun4_=J1Nhca*s9U846m9cACxN z&I@|{14)J@+;lPLIOt=Zr|yjhWo$ZN2Re;;^Nb8lX|!S=WE?>yglQiNHO3a`$|ved z%AlwhfOjJHZIVP4r81hmDn)E6jb#d<@s(i|UR1y)GOCY(zY&41}Qm>Gp4oSXuz zN*oh#-p6^I_LVA>^~T>66s3iA$hNdp`T+~YgJd*w^%==zsv-2E}ye^u6DVcD})#urL zr$&9yU-^-_fBu_Jn4D?-BLT0XQ~7jMue%!=X`$NLG>II2{DjWU_2wJY`KK@11{Yf2qaDGc#1VCJFFox!YWB||P0Jrl=_}Qz3OH`dzu%|WF`Ech z*tq|?6P||4Yq!e37SrOG3AL}|;n=Bh^{xZf+@7?m>EfbSS^4aT3yJhG?KMu*zw?T{ zCF2DqB7IvKigp|i+g5cNKfm4l<*oa@j#j~L_gviXy?yq|$hJM&yfrnN4^hHS8%LET;!y(x;4d{#o-{I|HDvK z{7;N6d}%i%LjRE=9jjf;yYB(mbJEw&V30C-`nBj_UJL~MqaEc>`_QQ?a5Kza@B1Hr zY|_})R_R1B4a4_0p33fOR=2GEixah1;;ffm50BR0W{#8zVkAo%P~ler1aczxy^rD1 zy9Ap9qbYNCp=@&cOb!ahJ30mld5@bcYL}T)zWL5uv~+nLui7)mL@UV3<_~G%xbrIZ zG*k`_xD7>4Z{!&uvelAH>HVJqAFFAFZDsL*fxEySrOH#;ID5XkxbBqZ^wX_y3%1yRWnW|QD`@SHBX zT1b`*u9KE!{N#5)4{bA5%)27rJsl3&XXr&=^APonUA`F6#pgoa9$%R^By%&nc{YD) zA`lIp`e0XqR4Q5G07kRn*YiBCPS~Lud0(bG`iZS$_PRdJW(WgUC$wIDk~BQW)U7g~ zLZZMyR-KJ4h>YBjVom5AiQv;II|=FvR^3P~vBBdG3f9|uu4`$Vmsuh;wU+BHrJPF* zCi0J+NnVwb+I>@Pezd|Q?O`-CPp^l0kZOn*PbK<+L|B~DiI?cg`!s&Divb^7F<7KW2VY0v1PwTPVWhum#W?%-eQ>iKFuIt1D@reZdz zs_ZOwyG_D6wnjDUe5E_oEr<|e30M`YnnvooVNsN2YjofGpd`;}esz_O*Fzax&vUea zXQRYshlDP0&yF@D*{z@WVqWrAel)jq+;$ytZm;EU4;pqA5*B`Fy=RC*=A4L?V#cg_ zCv}|M?3L+% z;jn4_bbLL(ZyjV`69+Fda-T^xch{P4UCu!cQXZUqzDF-Lk&b9!j;n7AJg`|5aevdP z*|(t8I{TrOu}f_tD_Q*^yZma;vBAnBM>1z=U$+cRYlIB0HRQpl=}v;Oei4p8P=LYc zG%A4lXS>!?$gmKvbcoOTQzSWGbkVW4&8-8C^xST;Hw!-txrgZ_Tjn(H3aiae-={DV z)2ytd5P$hZrDZ$5wS$st_K}cEKuoHiVl)Rlh}*qXb+sR3lgcb0&&5|@QV%==V+%+F zgE;c`sg^$7mq$--e(0;H2XaA6%=ybrg|^i=-^=GHbRJS`SX$m4MhKGW>(ik!rl*Vl z)o(EOSnN*-K4oho&$Krm%044(cw>kCoo370s2}m0O*jVDY<-*^D%F^}rG`qcd5IQy zqlDs)-wgBCqho3BekmZotVQ=t)EOmLYx2 z8W5c2K1#6gyd05`Vb!eriE7$QUwZqGO2ha$xe!?%Wr#Vv+;GxDQS(#IhYps10%@x7 zmt^=Pa4G>=M@IEMhy0Kj4#V)VI-|;Tyw7wctBQht7enD6E$Jqd1^DuS!KV(%Ke>g9a@0q$R)53OWlk9>=0{Roh`E z862{)HP~qRd+4eL$8kp$FX}Q4qkQ#pW`3O79}bR*;ISfPPDraCAdPE*TWs~lnS8ff z+ZMDe{=Aaa6oAeB;Y1~*c75{?b#&hGi5FHIDSU?Ttx;k4!9yr;VRd%>ZK9v4Hf2A@}30?o4eLnqWN84aTz~ z8!%Bdd|GEvn34+=0AMz0R3=EY+-(x15n1*^`|enJomYgTOyp@Qrsntft5yGS*mjOP zZGiw_o@rI}SKs)LZE3qCL9f4BbBAP}{n)A9+NWlW&(d9usqFl+h4{(YaU;Yj-w3N462S zBg5p_Su}RtJfR0(-mW8FqGvc_GZ5E=F^HVd%DYXSow9sK zU!u5dCC$swIZ_vdh-UgdZ?%~F+j2SwHclB?cXRcNRkY+}E2$~j50?ZVdR9wz-|_VL zk{KO!D|XU;@rW_&xv1zzX3v`Q<&$V0;{uJl>p%netge-%gWVhO6q*pyWau~05G{R{ z*YD*M*(CX@S!RbAR8V~MmSl@02GMEm0S#y3<1djbmo0t6%K#MXjv@jLCT;zyR6#A5Vva7ib(TzSQ)p0QamKTN zn$3M1@4AP%H?+g8Qpg0y@8rreruU}>=C$!rS#~hSc}c>3>Qhe%wQ3Wtp!WmjGFbuhw<(K=fR>0SfG7m#bvL4oQ= zx(={DBtz{#BcHW@zR}gi=89>Vc6D|xaU`A78114*$Uea$=jbWAo#Qk6wy`Jp$hzn9 zmH}o7*c!`jTTYqbYBPTuT zC%Zz+={PIBql3!!q^X9}X+9`02-7D>jH2tjP1~+5!c$9i*;^{{o@mL#Xl#{XN?cfc zik2!=cXw^VObUeMewRL-AxIgvgSVYKIl;)sUo(_*m>+}$vPy``*HLMgg2E%li(`HO z5ljn~{q23VwwS4WxGN-RuH40%>h*zg-ue^iiQiAWdtOKQY*lB98+;HX$&X#_M=tWs zTDdzHD`99IodPzDPSWK_g=WSRY`^#ratb#$-+|gYKO6W+RipZ&hqC8m>o_|4zAZYt zn^}&F1%Lb$wG9DtNH21xH?3&3Fr^C??Hgj9Gobvi`CqX90j%B?n*_4?YtaqslaH~r z=fVY5gNV*Js~5BBET%oNA;jLYB1W)7b0?wA6UNz-J9RW7bDov1f>{(pSba%D@oQIg zMy`d1BA`453U;n5xHh)AIntQq_3lCwBZ=eZRYneD*#+tBORVYP{Gt3Ry{||SSi|Z? zJ6mE!V8osLvz`#YgHAzozwTs~6ZvT_94DC}fa~Z!u)EOLLrXqzq0*h~8q2dTpF4U! zN~^IQumnTiYE4JlU(qh^dEWY&#U%}#oQ}kh>h46)PVFcL7T*fPD8^vGd$#I~jJD2Q ziyfP|8Y8&Bbgu2M_cxxke_iVN=3mskrj=PyhRjJ-SMcZ(GT;-emtR$Nux>0a^y%(L z&z(MGx4Gy6WwZdn$6jLfvR>SPeS4L?Vx+OhvN^qP4mlXN3 z#-twN)HZWu{A=D+$);IC5yA#e7WjJkuLcyGmU%K$Pa9wG>{cM^5JHmT&wovZH%@-a zK|Lns96IX|WvH1B)7QTTb*y}PaZQ2qY^53R0IwA8t1y7h*IJLAt5*r)Al*e}3uhG8 z(wlgOSSlJ7 zO{Oa)wGCJf+{fs;+I|re7-kdVoX?+pD4qUVzejsgDy2>68Nvx8ro*NH znlGx)b|)D6rW;jx;PasNS%dVvT!5v(MG}I(l~onU>2Pwj(OlV^nc~CifInzzfqcr# zGafy}-iDIozOwkeRTdkK2|<4Xt{KRb>g>w;2gsHeqBI(wdA)9?8NA*zF8jsGa|@n= z*0D-JFxN3MQU^JFj{15NA5esX=W2K~yCoFW9Cg2q>}N6eunS}uAw(856>XWouL2TP zHKkF{dd_4M!Mg(ouj6fRNwKC`DxT>YLK4WTGIbEVTp9HjGt<|6lc8)EsC}>CqsQ#h zL2foT*AopZ=!evTy3L=DGQ`)e;P)3y?|FGtF|o`geNlqbk%)W+MbTDP37T5H5Gc;J z4Yvx>?JuMYdiE{MMWjt!J6@2ALAfvvO%={MHvZUscRp?)_c1jk16g3k&Z_J7+l3Mm5@hhB zI~HFVTX>0>8{G6oN(ZwVuD$iKjNdFL{`9i`@+YdcI%O?+*wD#rgEqZas@6=CyBSD- zToSpM$uY~4@HbsNWdi_3|ZletvewkI2>*3>l6;(U(@ zCZmEN3x4Bl5A;#AjoffXxjle^F>71vF1Jw);DZs?$ZgkNyjlI(0J_vTv>tHaw_3Dd zdcG6zWVP=g@YT+>$7*R9X8AsB*OrA-Fg^wnxWp(M5qve;Kgsro3lVfM%T@85l;)i5 zf`*njV`epOWc~hpm&qy#sDZZx6>iQrv{{mVe2 zSg7Q1=3qOm*)%=1`Dw&T5B=@lJ`E;sq*(E|fM;x4e0;HOi-rOAm5XX^LSpI4YJAn< zsg8Ak0arzBW7wp9#D(eiCJ97A2)O%|l>~{Q92Tyt85TwdcM({a4`NY*(Esyy1AbgQ zO(UIh{pXGX#N`>+&Bxn>!5%xN+-5;tT+9!FHZ~%l`4=genhlPLj>WU&zK3=1aL>R^zyW^R3u>(vJzt-q^BvbV+w!|QI2Unc@-PBTH#CkjdDj%9G@*Hdq3!_ zDjd`arScl~AawN)zDX*jmOjAyczwXp{L1eoe>?HkbTggziZBN@Wh-u zNP<16z9uMrMvH@Gk<|fx%Hd=y=d2L+u%ePODL+*=jx5# zZsRZYK(;qGhi+N)K*E&;cF=Q`^^9zX0s2)-3*yVUO^NaoYKaDz7_K%X0V|H+<;9lV znD_CuG4sSro$!vXMy9((y*uX3ExI;L%)f9EUBT}{qF-(b@dK2JY<4`yRx3*h$1{kM z<-dP}ZYm;V)3MULV<<8x;v=JmqdeV+^E`==5RL=wjx{*8bEuK>EuL&mYV?vi zj&j(MCi&>QAk>2<3$)v-pp^19brBmg(ZG6Bo*9L*tYe}Qz~s)zolUN?Er%5n{@H+8 zpnd3=2n#h9DVitys1WssJ1MqYX0qA`$f8)o9hgo0>ba|7j8qKiLafgIBS)pMju@_4 z?}MxR)fBn3=LS1yz5Q4L6=P3kBp*vuwQRYWb#yXxbO%^;=3E=oNO5E87kf&)|7H5g z$7{PvqJ%yID?*@avED}V2RI$O^SIrt6x6FmgwVpcRq6m|QrXhzCmyK)G}?4vm{ z-PT(eST&mfIInu&!Y9H6VK8|BGSsO0EM}6A$C!Q~&_kCYU7w#@2{)SeWI1ky*@5jU z>*(7Ieih4aeuX_fkcNmV*YKZ$=$5E)Z1y9wQBB!E=U$aiKAX7L1>u&8vC1mWli7Ls zvDjh>tJ}l5d_FeVn5{NKBb8+P;k<>)X-3&eNm+q%N$ez%b6$Nxob;V=M2mo@&eQ84 zua*9byfemWHN2RKQuJul%!XH|^)Ih7u{k~4Wl6VYvG{ltqfkO}uv6r$@n3f6Y4lZP32wg&V=Cync(c88p6%?$pKzD)V-yJC*x*s_Fpg8h)Uc}Gk-I1 z#VWKECJQ&i5M(80jsAR~E}J{BiGR27m6m*`#A)%eX0lEF;_JA-Cm5`^!f;ZO$u2dz zqfy^SCaMzUfATTxRN#&Y@L9D{U*(^TUUB!sGgSG09W^r2PE{R8d#TmCA zNagDKiolzdnRB{X+h(=m=X0{WID50maTbfH>QcmfhlMT}eG=pyEKoeY@lzx`j z?ogX#p*C&SyY^yJCWa-1t7v^T`ZUnnK^OMjDviJ0;aV)a>7jQ0s_~6NZp)pOp(k%@ z<1(E(DRN5t)B!KhP<<|pNYxYg&h`#lh zHzat`f9xr#U4=fs3c5y27ALIjg4G>8Id-u@OC06@{3q-K(P3*lMH3wLS<9;>fn^i~1ITTju`zdv?LeJyq4!@kS=s9TCl?57R>3ECKHrtmKpY)gdT(v= zA1}lXmzAfU>&liOM9Y79LN`*{(xt5%Xx54{pJ1f3E$+j)1#t46=AGBioZn_fv)>Mf z#WC}aPv_(oQS?TGK_omK&f9d9$4zt-5bnkk0*pROMj8PW2{i8Dp{mLZ_n_s1q6yHn3DB@PYW9Gt~ zs0W+vabFMbULrR}L3oysiBi_;o(9zL2ucGcxO$m#Wk zo#cN)@q6)^Pedg=j?tWk)rfcRHnW}PUQ;A9cm0{-jW4!fzbM@k=HwepsSy)PPcQlO zj(GBRTcoRMDkonZ%s(<6(l{Ue-f)+qzbbF4A;4otKb(^j($XanLuK_XlP+QDPHwQE z0S1FI8|>Et>K6s5404Hzi9v(PZ13=JwL~#(cXxM1D6|{&u~`|;Pk63t7Z}x2>V6>c zgMj2IRCp{mBuc!6vhkoyUVuL%S0cn=!V>0G!+zLt@95W3(IL~}nzOEiSW)&*^okRg z^Y)g&Txe`tY@gMMa;Psvw=%t=&=aIl--%v`saj&AgJaFaP1k44>q>-dDwhNn-I^S!*rRk{@_n-tx3&#`3`? z{6>pTPD3v~a#JbpC!yaFEqOX-cMH1)wX;(fcylpYytNA`6tF1;-M}89PGLRSQOm$@Gd{+7~33MPR#)2t2YMmFX&lY!h3v#8xD5%>4<9? z4z{bW+vV>;g8y2VZs^~}fC>-i)Vd?vx{seINY4kgw(ZtVPeSZRT zuQ#f7Px7hXRGpjeDFHAFTCANME5WA)NGgTOfy;Na_btlFWmUv+G)K@No zwjVU;HO!U|XQqGZ=1_a*1`C-i%zz$L28BM?(E(ML6&2hqF)67tdPr7&YR;f{0zR$F- zdaUQWF_ASBUJjCkMX|RoTprMDyOG_^Vx28OIM&ON|asHRyGp`NV<7}<*eHc^*Xi;9fja$!6Nl9s1CDz>&dkc+EHfcde|DW4Gv9hn~KWS+VrcmJxJPP2d+WjT)k4scT#8O0-{@+Z)YP3?-?{|esJ|pSs3J3EHooi(z zBKNf~&kqkXhfYYc{5-G=h&~9F#}p$8{izZ@13Bz)9*)Q)&yIA37YV|hXw*%aslw<4 zPJp%>b$qZ9x{?$PmLwH zSu+O~w(glD=F!-8Z1}ci4tYOf^m6fB1eb)i*b-zZO6}&87soYQ8G+?dTeFR2At_ird(3c^oK~(gq~#P zM}+T}HAT2d&-Z{PYVWlmjr5G$JQ?Z_UGA;*>!M?M(50n%zl|n&`9TVUm4ydUXw1pU z3Cd(4(5l6>Pn2%QpwV>vZ8HH6gRbZG(l(b@5?yDII6+6mI0!r^Fzo{JPf}Mx4L;_eE9R*~eIAG@wNq zZIPzogR$23u{ZZlkgEw;v{E8|faiW27WVe-k0;}c;pGfLN=ecFAGmVXgJ*Q?YBE1v_ z3eF4~T+X8BDq`I&1hhClQ{j1U;oP4bBev1Vw48zF5V27B5qw7#C?R}x4+r}&F;~a! zOwIJG!E4x=3Aj8xO8gt^Svo=Jy%16)4#>H2iT zl#HM4>xK_k%@~9`(rJyivol_R89+OAT;*bX0t8}%zpt^>t$%yU$M-PURGz&*&d4z* z$%oolR7c@sSx=^GGfIYXKr+;0TR|(F*%FkBXl;GJXauq3xA99zc6|4Bd9Wqc zOktBj63v;LJhB@Nst$&SP42xMLb+_B z6g?`;9mh2w*7^vP(5up3+;w47)hu}(iCdE`&1wv||&xCn{b<6{<7P9nvqy={P zCTofxbXrKxf*Zb^f-`AFJ*ARNnHltk$Y_)qmRp3gjuT08qGx`XBH!R4hITPH=LFJQ zu7$7M!l`J1%3IN+6DHQ*JW3e8r|h!j<*2tJ)OX(QPT3||>w9D!y6uabTg#OOg%<`m<&lb_`{0*qUY+T+DqosLzJ=Vm(KlAf3q)cV&Ne$& z8Q;sUl5DhHk#KEjBM&=*bDE1u-Lq|o0HxMB<{*(z&j0{3nb8A4$mj|LASoA?#kZVk@%*5@?TvvLoW=ct0HD^Dl>S}jQxP~l)_&jkVzCtutX`zOxB2n;8m@XpBp zL)TXaRr!V8iVCQ-fHVk*bcl2+NO!k%cXvpKfYd>{yIWeMK|s1ex;qYa;O^t^yEEU+ zo%;s^!!U>a?sxBJKhJvBT3gK9cC}Zs9VJg*d?oR-TH!BMae#6_C>eFM1hi@Dtf`e^ zUARdJW__;Q&Uyy`kBV-jUA{vhCsqeN_V4-l-qr##*p6sqq+fmS$H%S9w0Gir4F^|P za2QGy2N8obEjU!>`)lH>&yLd5);AE1@v9<2goBS|2mrVCiscuHr}2C}eAXnYMh}AZ z_w8pBKYM`m@vd4@Qqp1pNVv1X0n|&a16OLIYqdV|(@}@;)x0oLjvu69PAst7j8Z7| zX~&tvO6H)wF+HHvW|T_LehdJOet_`IQAnk8*R17iT3V7(7Mc8AIomNc<(-YSB8a88 zpT0Xg9rb2j=flfO!5fS$BFPP`VDv8+chRtqu>s9K^0ivOJS&hwmf6+)Pt>G-{u zy(cVHU~N{56i0!*8{QWFV{{y}I=FM$CYm-*3OmjX5+D_VZ27lVG9*aTj>!#5ZTOr% z_vUf3s;2*i_3Lzch`a7)It<`?+S}iZB~(;mr!5EL^o#q58Enl`-dYo6+sk#ml_)(R zW_K`>KWZD~1c=^6?ga3HLvbcAfm!r|H~lVL8?fGG zOKB&~GV>!F2gV1*VKgF~-9<5%noVBK?ujXZ{8#q|Qo$-z!m;F9<%k(wv2joNx)JJrueU%wkpcW7 z=s(9j@H%aWb<(zv<8loCW`(IH-wCYsfEK-|h{v)mB(;hv^S@%BNQSa26pW575?tM9< zgB_vc*|ZOMAodOz>?qdX$oplb#vuuoFJryFk{to>q}Z%U6#3n&Brk!GF0D1o9t!$)dEiy^P!qE#f-lr`NG;_yt;agC<-RVX*V*J) zXH@X*--^KOGJBIZ8fwd=d=dF%oTR(eH1TZ88rYSiQ=sMtb6wCc4GiXgURR8bTYKMC zDb+JJF4n7-6&I$z{lxE)3s#GyT%wg$abYN|#myd(+>?K7#wUcL@&7GUO6=Eq%ol#l zQIpM0f_G95JeXj|ubw`d;T%-lt&!_5ERJ`)C{Avja9stv(5mwrE32~e1=;!89$E20 zV#I}T^ZN-SPydzcZQUc*31h?mCRJ%AD|twoetGj>UjK%*vB4q~=9w!!<>M&?^<&=!EI;1uNh3CP^b z^PMzZ0i~KPUJC$qp8QoW39azqRSjSl&U48Ro;m7!Z`h=G;71(3YX-|4GfQSFb<;|_ zL&0_WZqaNL16HV!#;E}N$6>~92X1Rb;PSM`A>N??9njX!{UUWZ3MNima(khX>ywIL zg;Jq25kYKr{kc-b@{zs9V7POTfo5P&$=*cs#;rj;U&H5|e9@wO^GeilM{)hzANJ|| z=^1dw^_JihI{JvZc#Y<%tb3T@peAJ1y5cc{aH1~hn0>E^^P~znQ~BdZemr8J|M5Y1 z6*^dD7h@$6oEs#{tg(3*mQSTL&ZeFO|Lnr`GjjlUNIp-n1m9S_^ZC|#iiZkn>Iy}C z7jb`A@T<=|k4@-cbB!xk9w9n-pVbkkaP-~&a+Dy@{OoYHsA=0U+B6Y2VZDe7TGb>A zT^VQ#ofw`Ic>z)yC@)lqt+F{XhE;ov@wU&`Bqz>y5yH`lvL!o93W;w%_R@?iWN|Nj zycw95N;gZGYTy-KDxjtT;-Ea~q+Gj@Cz^3E>#BVCNo{R%2p4u7Ln z02xsmUvtgq;sE3m*|f2VEa4^|XUVly6-tvEX&`xWI*+blGwVnTnUFQvSC78G;xJ9Cf6`~29IYg+w*ao(xo8*APpO3!g^pvr(>$B@vfSjf2YcK7Ct0ZqWv@_^j@ z;wkVu0G!v!QaKFvy-_NGxkbRVNOz4eicbW_G?Gbt?`VY$WHO3=Z>y%MUVf=2PEmO& z&RrQMNc1I3SPA$Fks{Ke4Jk*BQO?(vk8>wuHmR5rkHY62kK`qrgRl~JAXwt1xP z`YTGjA)aJ)UC;Q(^ox?o^&?*uy>5)yH)7^R0M~TgJBSi?!_!5)ZBZ_~_Wck2;HOq2m&(`Pw z*O#0g51)r9iBzxzfp3mj-|#g+vEHD-E&9w}-*rQpV9JXw69B@Y$a`ALdmdK0!@X&Ql9>wCDY;myy2!gi_f|2wSWjO?i=yZ|AM;U)g2NiJ z2{ez7vFj=y79otIL4$9%El5h%+ST(U;ud!QbkGAvg|WFjcDs+7%94}wDf8Gstt>42s z!Bj+BX*qBiG`OeO(?~06w$6Q9wxyx$oa&3|SR{Sep{BiDEc*^&%t_|wm0z1#;{r|9 z3k1r4^W>$G|Ehtg*l!H?op$(rwQGyqW%>l6tU9DcU~>`PI>>(VLG$$_#_7=ZmhvuNds;*vE4y94i%t zHZ*tkisH@krg)+RoPS917##G*BNX8R9)OTsF;ajUf02t4MmXyy37@|Ey zXA|oY8ay}6<`$>j40-o=jT{WOq6h66F%w(kf4n%1O7GH`C&C9$6Vgb^M@84{o)=u< z#8dl>=Jl5_caIQ3r~m>Cy4W)E?r%Of^UQp!ylEs28)+069EhE(i=ZP+U}d$^anDnW z=6{t!^csYtvtg-u>ojzd-6qL>iEA;}gF7GgBZpWZo1`=|AMBNyxJz6#Zsund`e?0jXUsq_n_xVNS~*>z z6j9zDx{P{v@+x6n;9F{?&RAeoJzV+sVfjTQKGs5erT6q!t&Xt35(E8Z2BTK)rnR)W zW0iC?Xxo&%cNLA>5rVaLA)`t(_q5#~P zB5@6j`mt7?b#j}BEhinle1F*NaD8dm6m{cJnq~hNpgBe+9vd#aaXLtZui>5vf4-|j z6!WEH9Vel6a(cUGv&vZ80#4P$2bdQcv%C6HTeGh<7sxjzjeZ8*UTC|{O=69(86LRK5#yma z4b^L$pfFg^_uSm$;XGyYa+3#hcMs++eVMs8H*sB2oiymp{L;8{W+3aoI+t22YLusU zl=TfFno^ly2K^wJXN_xG=BfA!R0<|QngbOwEjsFrHv5e~;!~!!I84pII7OYoRp-?x zJR-2C&|tF!`>YG0YHwdjWkwHq#b_|@|A``2e+CXGqcAdG|2Sergg}i@k5V$Bedq~S{enMR;*;>ieVsMq&nA5Vn zaHK(t+4Uc~HAgC|1z~8Koo_FDM!9D`~%{>juQC(2){$2=@ zWiTLlktdh`YM{Ku^;07|%gYPS9wmWR=pM=2pDaxefiAK~^vTWj)xAe!=Tqn1`23SK zqTcJ(4}k4-F-cx$reC5_GZU22(vta#x%|&+H!dMNo!ci;S2TqhlQA>?!e}SR;kdA7 z*5;nRrF4PQU&_N<$J zHc~<@b8#Kd>YmMte6G|pejRH)s4R~zvQbE*rgs&};~AcTMnFF@J~Ggr{|UeWxci=8 zqWWiwO=NNgSO)S=9o%1-9=;QAFtSKSq93Q3WJ81G@fYw;=6sft%x#AaVIOfX;1d^7 zrtb0n4~1uf`ZSNZEfnp-nd?oWQow_!(&8(_~&0x!iZGNyfR zx3sE8pdyLfP~M+IfYUNn>gNHC>YMSw&DCi(E7Pej{!i~X%$SiSlO>H7F01wibK-ZB z*Lx#5K+n>we)FnQEkn1M`8@01Y~G-^yClm)thE{OvLp|XI3p3@oTEr-00|Kl42MB& z8}6$9EX>rG^*8`!SSZZ*_L++W5HB>FEJJrCl%#;a-{^1Yoo-rIqd|z#;5UC&p}59Y z8BMcmMv{wJE9;Be*y(nOFOJNA0)|7_+?DF-9;2%up)57c~Gn~5Z z$>6YE?ew=^HlPCNq+@cSp{FnAb|h2_6@3KJn`hPwYWqw{Nvt|iPt_^kw=!yQ#t`Y7 zC6WdK$ooj*5``FBc4jaANOkwgtY}I5to@s)3DUM5*|KC-DbCVX#|*r$E-*epKqdI% zmxaZdXnuX_z^G9Tb^ju*#3R^S1RX;z$!k`APaLpu4%)x3mr-Yl9$(&!*e20Ap-nN@ z3YFD;gw8}$H3NSCE*hNlO_&51jllAYdZM9SzV{UkfJUdaIvBVi-#-ye)h;ODzX&L% zdzU~YNawxA2w#1v^lAe{Guf5BC4Mn)lk$H7iLOHD50z_bmBEFXH0LT;hF>v zq?Db=dP-%8X9bT8VcuW^AEhsgh_0C2m@Ci6#8O{PDjnn_d%^#JYhX`jU7$43S81$< zXkOtj3#KUW?D~{4gE=0~8W5<{u>OGZ=Xy|PJROlrz0(UuE7vg^Y zyOF*2qcBrAdc~sG>z;q(zN~ustvt=GO|zZFrd`u)eG`e@=tPIdVv<4UWGGFuF_v_l z3z*Z5r5-lkXo&65!-UFSz3SR>17%{>zwL%K%S}Vi;AB2kIy2&mOsaZ3VNQC^*FMyh*CJ;MXj5{dv;9U13_LTk&e zl`*s1r=6YV5N`+-|M{AFY335+L6M*sspQZ1B8I9EsNWR9fpOm-&APT3S@>}clo`C2Bx2MU(nsr}oPfe|Ka4^W4 z^=rd*P({Sqof0-T`7|0@25^x9wuWfE<+=oE_IBNJV<{s~=|%w^I>WtJjoIYfi(@+v zZSVCd=c)Q9qI{|nzmFSTyOJqs8R1J_2 zg#XwT_|2MfixaCA3%*RwW=xyNp~t#B=k_WW+Z9?IixuH7io7E7^gCOc+$x1Zw_16d zp!DrrzUzL+3$a|d56uKEEYzyv3Gs^zx#Y7!h26x{EI`u{f!mh;7m;JC4oC#mLQE)6 zzg~%7);ekRI*&}aZ@hO2?DZs!-2oXuS;*JSykm16WAWHd^3Hl}GQO1jEPK(cP(#6VfoczPz(8FEh~pe5%$E9a|W7v)o9@bw-Cziep~V?$A#Y=>d7 zAVgV#92dy^4xIgj-vRy}#EW1Iw2=Cl5Fhz@{3~olbDIz)O*W%k7$&nc;2b+dM}yXx zK}&P;nvgf<^AkyPr`-)N(nh7~lPI`}Ur<%r-VTF6GN+13WUZ?;qsAYzru(oP<0TN} z0gXwEEtWqLh#jG>v4(Jb?-ge?>dzq?!B?gHz=ywaT69Ag+zR8cqXFtNtv0IhgwY&B zD~id&yd3)WvD5^yk`3c0af)&`r;WQeJ=V@`M@@h=(tK2~M)t8Wok- zi(8@9=5#DxfsZ@ICZ5d$@%Tm(zZB@fC6^i3Q(wxI|4=@>CZh)#pTmCt++~ke2vlO? zS9PvNjW(b$dK_|t8gC#47@yp(nfn<_1n_tl)ThhLVVY&TE`<_1aNB59#lT{}9yBPl zD?^tB6o1LX57lA1Z@w3A69S_YJz+G$^X+NXM)r}0P33IfK0*guen`1DcU+CzAKlw9 zcB40Z6~vj?6_Nxdm@iOzr&-@DS_&2uH_H=ENS4(pRBS_E3@DqM*Y=1=gH}JAESyN5 z88fSOWc+_yhy@ul_62ZqD+Dk;`9y+FVh&G?d-*C`qnoKY8ZDMlVq>}BBsL&&yV;=* z0aWH>URO`gkTidZ@pz<+8kM~O#!1`E_vFUOJ0_7>hbBDcTHdTy>cs#_5p?jdvVCX~ z@k(+)8d%kD#%a#P7HG9x#Go!Kr|s5SBmRS_l0oL%yepu=?>Xq=Q9I!Y5rrn_y_B;o zlM&Qte`jj8mxNb5M4RM6z9!3`8M5v&PssN}U-mW1enkK`JKNv!=O8lu7qpAnapr_8 zna00DU85V4su=a^UU>P-1Bd0BTvORPpb#a%DO~yv{yrT zV(KBGnu6$j(IUFO<-Jy-uWvMjnR&Wc1sBcXv4)Cti!6+XFr#WOsS&uL1XM{4O^)neQY_EFwd#6?$tibPQklZtMa zBm3YV--kWLZ7$zz|ZC2qQ^rA zzlXG;nfm!a3)Q4mf|BLc#(#0P7*1e?e5)shQ0bg%*E21j#`~Zf6&tyA?pvpc4{35J zEc1>ijzf~1tJ{l|=<6Je8&%6060N1445RO*FWVN!d6T^y|LU7>C1GC7XVr>#`9otc z*73J`UDJ(05V6g*a=y&KSl0tv#ltcV*C$@xu0db`z|34&gostw?CjS>qMMzsc0p~7 zTn`$Hpm-X~lf}i8YA4y9z+T&5gaAchp&S_?T^Q`09}rE+337uVRWsrNhz9?j|DU*N zqSo7}8Cu~RV|kq@>21(rq;cX`)}N5r{|sq^=8S%!H3ZO>Wnx^;sb#YHYBTk~?CCboEcD~qwNa|Kijot_}=FCqN` zwUQR^=gi`Q`yv@#YX!|*X`j531dd&Z43xSh>c(vPno0V-i-Lnz$37CTJ%b$!gB0ke z;)Kl*-Ycc&GYTp+!0O`oq9cKwa;XNBv5Dk(ez#3DK9+KgNj*?6h8SX}V-P`pv||HZ z4+C73q37z;zAsPn>M}^E>1LW7?ciua$*_1`v;Gs7ZIe}Wk#(GIbYwX5cgGJ1@t}RE zwHe=wO@x)$7jx(t?^-b@Vt_5*gd2aBW*)+4FvIG7!&g_(f-a?-dl_#$bz%e&`##Pj zs1kGF3;Wua1%9j>zJx6*wtJZC-?=Cy?6y~wmejz=Xh4h#q>H zS!K)6*(gFJ=SDrB~MQwhL)Zye_ZoXP_nqCWohdHUn% zl8zDfI`hnD+5;NqyoWVnxVHZNI39Q-%~n%!D_hkncPHxhB_{lMVhvy?U_dj_|NQ9Q zLmiU3mLcEci-Ie0F~I+@rvB}%5_GXq2Ht*r^`wpHu}}1>JQ@+CI8jhQqIX*iR(QF) zuU)ihy)f4@n?+>v40tUs0I^DZjDBA|D8jXhis~UuW#8U7AEoE78VI9@tUE|FED=uh z#auv%BPpM3aqLT(u0XA)-4E;ogE%T&flZIs~^-iE#uLWqIAfe5*K6o0Qb>ewljs8$+2;1Ae{mgh# z!{ezo$Yza;#~Yu3JK5sS1iOcllQ>F)dpW3+s&Sr)cXtN^r$l89RjVkoL@5VRh9IFa z`idV!ck92w;qgyQzdvf<+bvq*lIGEn?DbAcr(mf}_l{3y+4nfo=j4oSV{3Zk=MV^D zNdZh>Wxh7G@`v;q((kiQj%gNvL=v#t@3Dxk1#Ak8F+Qk5CfdA}gRyRXr#jHSi@hX% zP6;dmUVKtyvo|mZDD-Y4oyWsJz|ToJPnC`GDk9>D8bx-b z0KNyfxQ&F?EcMxwdT9#{0gwj5*nLI6+#(xnyl41yjtzfcJpng-YYeTT_p zvi*A-Ns;zN-z8|VT)ef5h-PVE_|F(84hR%L6L&+sRZ`SAFE!>Had=;epO{ZV_>yY|(zxB{lTDD#V2?^5;7p zFHNI!GMIwQ`?j@Ajn^}qN%2WmDw34-A~D-ZD;U^+Mkig?19247v>EjL~;Yh$)PYY8K! zgGZcz=KeR7FidB@3bHRDnSpP*2P>l5b(DamJJmD6j)NXTG3L1|R^;JyYv4-&y9t8R zbL76(sIYL#074yFdzQ3VnoFuOmb^GqnKCj=NVi0K=ah#bZQ4HV{{1|a1W#R#6xA0T z3BdO$@q}(;x!;Szem0`r{>m-l($@Z`D<__PNmw5Zs9yyc-&XAUs?2lXHCWq|LB)Z1 z3D$wZNu%*k7d)^L&Eq1qR#^<1v%CUhWu$fW8cl2K22_F<133CcSMnAWGgn1^~B>ytP~`j2L*tG`W9zpY&GWvyPJA3K@NJm~nISxBX5OuYZ+e z_Yl>IBP1=o{6kO~4q}~%M)4S7UZJE^YOB+*p6y+#1FQ^vD3w5^-KWaY1vp)Fq_!hG zibRH^kcDInQt(zS7ct<}_D3zZpS9OAN+~+`CLM5Jw?6>?0NeyQ9|DrcifnXZnL_Oi z59AdC2^3O9^Ui8hsX~ZHg#@c-(O1EyTgSaeoadV<2-kg|u!BcX{nAt#;%2#tp_|bv zHMDVWy4w`$FCJ=Kw@wr$wx09~*7TyzT5&x8=7%JYiHocJEF6mX^5wITy7u~Z&8qrI z)o}PNts);8Mk6&9s^+9Bp%oAzp_deYgOKC>!fEIpKmI7;_omY%Zg%MK?q1#Dqma<> z;yTbB5OO4?T^}C0nwX{^y&r*Y&R=hKd!bKuVMWMt5b#-EBU-dXWX~oz?+x@7l03uU zx4E(<55%NU6#uF74E(V2ar`(>wnxzcQ#vj@#kR9*opv7)@k&YQ#Kb5zA@4M?eddc9 z1mofP^j-=0LnN8bJcQt2f{hPFrv{p3Z?2>iSWXPLzW#9VqK%`{oIxQbyNl6l#uRcY z7yaVU`GK)d_{8nQ7ud+gJEkjA81k^8ZrBqqB=%Rl=pp|3sp>2BE7P@J#wg^0p`Tvb z;R!t>|1@)KV&uOZ?b`2Pk**sh_ilELE92wf3%6lM4CcFj37Mg)us0VW{aW^%$t5QV z?vrV*S(_C-4(phk9b@tbF5OX3!IGFh%OiU)NG_&O=&*`w3qOb7lIbkj^W@_Z%5ied zji35KSd^~?J{$H%y@uT)C-G?vbc4y*c4t^zd;}&%D3mAo3$#%!6eE5tMI}o@iK3a!lCi-$}JvVAq&81-PW6@4qlVVl!pMr7GD)VZaE|NiaIhBib}jNhp{1(`qT zExur^H#5ikS`y}|-q7Y7%i^wda7Xiw@Y z{W1rG>N5Stqe#0xAxPiQAe}H9DY=Zad?pKAEGG#$p%xOJA6Pm(z=q(*dM8QM>!LHU4Up^>0 zy$iL7zhA4Jakw6Oep4y2QdXsNw0H1i8LS-- zf#*Nq!=osbrf-U#Ik3dPRAHLiWWU-R%JJAdcp97@WIumE-Kq#RF;Yy|3T0mN$u9i$ z_^ATR+Ny>KkAgj&<<$AtN4-U34F^K+g_#%p`#T(&c(dL_V^VnSGtybRlW$+wNl<*x zYMd$kD$*&2$fW2N*@^7+Ni2mcEl@H?P-z!#mnlFPQ!^8M%KuNBM;dxsJ zK*7E6}cHfb{^TUkXn62brbskK%P5E|vC&tF`@q8A4Co{f(DEe$P z;qLy?#>Ud2jcCQUZ0xn{LktLc}JcyJ<7{!-kpzLx>VT zw2j(lD1Erb__8xj#f67J(O3~yKd+@c&|PGT{h=egANg9B3WnX-G*7zz&v;sNbh2RBEn^}6RTLV9?eZacR#-G!EW1W$>+`YcPinFEZ#7@y zZT+-qaB+SA3F8eFe9+HEbMTuw%*kGzM!LM6G*f<9O>cUwEZ6te3Io2krdw${T*!aT zd|Q8d$@-N3ttY{lQzgkCjP04BKV5My;~_pDjs{G^;|fU@S}*4ai%W2=IClLHTs+r2 zHu*&?{SV+F$d()dzP$OREG=gxhvrG89L;f}C2|(V5?z_vF_v495ooN9xz|Z68lrig zVIhFGaq{sVkD8Hs?c&2h*}!I1Z}zRRaZzp_x45iJrBT>GmhcO9cCr>@Td0sF74>EOHzQ&C7l$caDPT$f4ME6xen$N zG+E-gwZ8bjo(qc_?0%Ridcl!Kz&7Wu6}ZdukMqQ@$No%syUBO*Psdn7(^zACa)#f! z^cXGJBoLUZ4nQi*TT-`U*wkp^nrqpV1@VLg@ffx>l7eg+2EdC1%Gg`y{_?kl+e0BBd{%X-zlA#e{2voBCH5z?uiQ3SAS0%G@P<)DxiGK=y zjrG#5Q93r3!t_x&^%$GDOj(w#?)LJs(J--~uGfnGtqaCl4y& z2}G4@Gs41)FHfm3{XRT$IqGRTLmAK=(vR_FLQWqED5jJCDT+34h37cwM&DF^Jo#H! zF-DCBTkMiTtKKb%eXuta>n$xUdyL?)14DJ2QJCZ`r$F0X*T~h$%5@X!lNTt~42$p5 zkrUG;L>xR^IcZDro3QGiP*L0+ENJvkm65s}mX^*>|MCWd9_%}=a(AQ>5lJvIy0U8& z3TWfzR{5R0QKD5|Ae%}D-`be}B4H>)vgqWNLbP`i!vV} z(V1$w)?ATooo)tRgAaOB(~9SDrBBw_xb$a>tfMqS$PrT=k56>$EV{DD3IBng4|UqM z`WI`7%J}Px0ZMJ7JG_kSnA(SS{5+3AxqZZXSzrH7%C{%eSaLxdrqmR|ii+C>`5z@E z(VEK7zkca{mS--LVZe7+8GUZ@~lOxn8(=vdLh?^HIku7{b6{>*C_q z&*bFfNPc5uIg1M~M=5uBU`%|-V10C(1e}c&I2aI4Ovqm*)~zE`v)1f$&M&3kI`2f%`D`+0+WBe+gOTrk8Ni#wZ)uNlU+v1RMZFxV+e-MR zg#T>tP$wo;cI^H^k#GB@L4-q7Gxy@~A2d2qne47mD#!~Thb6622D7`_erTZ?N+;Jv z#gC{%%VyWkoq|C%Yo)o<>+?4b+Soc0Hz{Tk+Nn>P7v~m-F!{fgH50uCPgfh3uix|I zgMz#^liQh$n-P{myEi%`dCWY9U`XCuW#+kBO$F(=OiDuC-Ss8!JbDVz{d2a`qt*z6 zw=QJ+J?4zr1HySB%q<-L`fahNX-I7DPVn$y_uX#@cyQYFxQuq;`D*pHo z>_m#Vd<7UxOF>sFU}H1o!?^r(1=aU&p?T}CKX%GJqJQ;RPwiyMU9Hf>)3e;kb2Xv; znOsv;nc4erf~Oz4L(l~E45<3lQadm&^*cUwbSdNbul3kN16ByED)O9FDs`qi>pxV_ zmz_#MABie`44=ov ztaP#nIV$74n)}X@72N2UvMjh>qVX?t6}5mL_MzfY-O<_Qo@mQm5-h#~W`u3=%D=DL zu9zfyU;UI+S-x!9X7XSEeZ(Gt_>~o-Li5y%Y`*zY3~}F zQyd<5`nld;pxG;9K3%0LF!C&ViZT!Gn>@7n!nL$h@Pw^goyXJV>TUB^#d? z;3Ph<+@=risZf5TZc*0ht*?8gG+AjqyI}T*f!K^t`{LkBJXQ!I4RusUBF65ai3o9y zGWEN6$tP=Rz-?y{WSD4XgbSV(?W0F+cVkog`V!->+3S$T*^0_l|FFe5?^$(qCw+e# z5787Ce^za?7`DfPdNpLLTyNWOd_Hbr%X9u5J_Elc;3di@H@c_Qu#NWb8cl92)X zE#}3So16LrT?hH0YNlyd{FVbHQsyY)LcBLqV>aeu8t+YbQij} z9H+iO!?Kh2+@4VL=s65?FD|m$w=_C>d)?VnrEsd%TZ}1>qr#Bw&I^BW>IS99CGAjh zPJ=7CgKs^A9;1>HCvO=X|9$=ZIms;{h*8hT=Oq6{sb9hRers9M483C$rB8p{z?L%w zF4fHtbb2pWRHbE}Nc$_GXZt`O|4u{U=6fuPxvW7x zBuO9sGa4WcI!^|2mRf<*<9dT39Iwb4qZ!HOWWDU?6t&`d!nF;^O>w{#^fnx8}kBP`!6Di3eHzfl@kmdoheZV3V9HAqZCIVo!Nb==F{JU9w{lq`a^>8?^XiZFbg{cJZTy5=){!#W)6CNp`nl9G{r>azAFw*}SX5|e;Hz~$hS zh4O%AXI)X2SgBus!HgGVvNVini<7GkNz@CI6iM)`JMbCjKLlX(z+zDNhqg&h#I|1i zlW79`NdIkcU%exc20a}ij4CRo2}bzx$c-<)J$d{cf|$;h;zP6gvzI|12P_3k9#THd zif|UGC&^7RZ|V`alioL*zUQHi!*xg4G@{G0AwcjRPgq}7n#LtAA^x&loR!AAA3yDQ zAFJWK#}dsS^-0q|qBWr6XY{~Qhg#t7MTAKLuJ`Y(16{?I6YOG){fIy&X4#HdD!S(I z98fXZ$Jc~Ad714m+v-oyP=}y@DW{j2a)iSefzPPH5#R^bZkBo0^U-2%1Y-A5NEkM6{?|bL%tkhUn!=~Y`XY|(j>gLf zd6t1(xZnsA7B$gnkLWt&G}@w@$`=?&nm?U!?3ej!v*v-Gxb5WtJ;Nfhs=(EX?_5z# zQ-5CHAS?7Z*@z9wg@(MOrgQ#!WZ&)4VqwNPAAaDf0g8{W{GkPWbA6hL`&Z8ElT%W% zy_?&{g*qCYaYW&G6A!4`zRfnfJ0Z*ReJbUd16EHExf zwve6Ps@T)W38uZiVT)y#ATE^{d}G_6f6!tDG~`4k9>vzL*Ol0~=OWKrN|-cbW_^Lq zp1KY!pmyg(%X74>uhUNr=C z0!^Ib*0zx9f5f0`WBQQj!(mgq>Xf{`HScyYN#}BS&SIgw_VZTv!GfA`=p#UBNQV9` zX|ve>8Iept?McGEKK_wrc{Z2+8{?x_b)Kzt9cR@^u2=;}A_%1)$u3(asWC*w!Q0jc zc}+h-ip<3fPLkF~r|?pS1fKxx@12g?zhC8l=f+CgA!TxmnHXMCa}@O7h~gWK-pOAlJ6h>h z51cZh^1R(XP(Q^f&}FMVj8H%*W@;7k-xd1wsMBv6<*~L#eKND;8h3SR=KOotPJjJc zOT{@R+|7(>P&z+&Sde)?s~ZpRPtoq+&Y?KxrTD!`Q3NZVWVuRzkF2ZAu&k)2;NB(X z-uP>fd7hT$SwcDi$8V!ORg7jA_wU@}x``yry3_vx0N%fFhQ*EgTNdUQhqiHFzBG75 z!^l53#E8Woq)?pm+3ERceu!jum~F3^8B^I#n+ZO?Sy>eMIf)C;t7zm$<0fmzhZW6i zkM!|Zu#YgQse9{>!Iijlwy%(WkWbE0KDH}Zn6?Pm4gRHthTKEv;&V8!{c1x?TWV)T90=(aSMk)_&6nnWYH?UoL**jm~ z&f-HDYYda^=B<5LS-nnmW}gJ==wkCHpL34J{@_A(X|8KdA@_K#<;wX1Jfj&}i03=| zAVe?cIc{RQ$=M9PpwS`erfu~*8e?CbUb?Ysi%n)N)RqgW-H_Fa5u1vpwQ{D`Y}aO$ z(^D(ybnS6U|3D$9M3As7IAWM-W_BBU5`s^hs}|HRI>-F#pjTAt{vtnS>bQa9a%6#H zg@MY4c0?J$vm(Ma#G<#O$eZD1uyVb1une4yxq;P0lq%(iNdTqJkR9yN_ zc_njzu#@a|skgHR{hLF_=Tp;)Pa5sv^!I!zF_dX%O>mzAjY1UdbwOyJ{Q{)4XB$n26#mO$AFY$5ti=_*ueZfoZn0iuBGfv#o=KV@iYA@r+ zAxQ?qz=c&NAn82}mB@tEF~7ZAdh^hx0{->`G0XltWz~%lq$3-|{=IP8R1s!%xCzfth zI(<9Q)OTNWKY9`Wa3<*Xo|TAktMyP6r#%|9Ar#koIq!SQ>0fy=5H0VHh6ykxJAd60 z#1rT`2;+{wTK#b+&*baLP4jP*1AWKuPUa+$7`?xD#R%{4dOd5u_ST*9_TU-K-wND- zIv`P&??(&*C(1Z91DBvFQkO*=(95!t{{9+U8pXc&#S0<9jTZQHZhQTgJ+8Tt`NaRs z>~M~Tsc9oVe;x^Ox2Wo`v%O2cz#AdwI%g<8Y$CGV3>Ye}dCw%@N{|Hd$W8+9Xosn8 z^zw^M!>{cz>NWm+S{@~qgdi%b&9*OZAHHRi8q)kNEERhtaAam9h-Xg=;K&Rb_Tfu{TEHoD9@8E@km?SgXo!-ikWzmC3%u&M`)R3T84JWu~ba z0gU%k$a~a*daICC80K0wQ^FZOyXCuvyZUb{&z1W0$Qvt$xy=t;8np5%|A& zcO-3bv?>L%&LgoYp^KUu!V z71>V{S7<*&866t9hathDVOpS?xX<5fsuJlPW%E}mkcZ7ODUa*bcyOEgo~ogfOm34o zS}Dto6Mj7w;TR9pt8CUH|8#{fz?bZK9+Vq5h%)8mb9vE9&7h<(dS!2%_v?Iz)r<-( zUnc;(0-P~>t1vBeVyCO#`2EKMY!C^&`SCk{zEJnvthhFu5C})xMEu$e4xX#Z~*Zf>A$7zNSqQnv3df`{}>>K1c$*` z174i5wnoOMaSTQR8;wC%he_jiO->~9QxwuFhBH|*>-QHaE;^a;bUB4J=E}4NgoLaX zKAdebOtt?**IPza6}9ccpiJW%TUoa)`94h_reT+B44>_P#1im z2(dja+!=_DqN2)MpE2f*j8wezI^h5-pLqX2a8BszKzHWHnm+(XpcjR62q$orB^QU~9bFnhTj6ZK%kxgo zhf@(692kA#Ox-A+-LS3dL+HNKUF9iB z;(p=z4leF5Q$-U=q{GAXB2_^X4JG|x`wlA(_qf5PWE>z8e=$!%=p><6#^_?q_g40Fk`h-lt(rWl_WjI)>jxB114cnt8z`e%%0$ zM3h@h+QH6IK|0@|Tv1a6w4yTZ&5;na^t4RU_yO~O)cVz*|2)4mM*a!Vn;fbL1Leja z1ga*)QpVQg-j+tjtVxK$=$z<9RkFhM#mw!Ie<>QUJAz*flHAn1g9QPmUmU8xUb#pi zJ}~&f&)82d@DITT37ujlTi5TLtq*m;H>J^m8xlon|| zyDROnn_{dbH4@EOx=3;O%u$uS7Zv^Y@!=h9^ze{%pB+b#?7-#MD$fWUoP(6guji6K zOq}r5|5YD>e*nl2YDjAteaT3PX{T0z!_Yw@j<)ng{~XnjI%2jM7%x^+2GY}sD>a;* z;Uxe3NbCqy0x3ONg+aGE?rsWs>`E`Z+#RM2e#Vo>9VF3dycq0aK~k+BAIwSl>h$Q$ zqo#J@_@lCGBqNQ7{Ou?HP{IShNe3t?l1E0DPD6k|D}6AzEqYh{x0)TTv}gV}oPq>uK8`U?wh|CP}Hxdtf+hch*F zU;qNXKaS+*#jmd4h1eEB9fF!hd`)@T&NL7%^w~e<$YV)HORFoImJx~buB2tNXj$q0 zx|Nt*l9MTx$WU3A_fp|pQay)Xup?J&LF;Q)o zhs%gQXO2?@=Q6KT&J6%X>g$O4{o7qkB&OT^!oZI0=g(SvkJCbOVOT#`S1m2k(%fTX zj5EsRKcM||T&gPnCijpkV`H=3(hBgE?@L`baG^~5b zpb43=j!{%j#zsYN_E{u+=XY%O2JeQ?5bNx>+z!;`jE5_=qGsG1XJhzWomewOd2skX z)~nBDm{?CJu?4$d0Z|K6&@Foi;lcV&j!dKa7Zm;Arc)OnkAPVgAD+hM_@!!xq)2bb za`W_O@OcOJJ0$xLBOIOGhMcE-sYJn!$9ZmKkZz#`86UV}aGD4buqn#-V|BZe@9B;$JUHkFM$o!w#k~z=1bd!#b)V;JFeS6KF zOUWxyqKg&VIQviwc24Wm=3wfykOr$1?~^s5E)bKMfz8(21CR!(;))^^Ogz`)Py#vz zY@=ie*Kjj;Hvbq{{t24H7qvGP&W#;Pv8vPES()xRd(A@6vV{-v|LOX8zd}IxRF+8+ zA9@N0Nkl;7tvow2`#=>&QDcFIAg0^2LBk7A`q!Pi+|@;&WAlA1`Zklph;ciqlE7Cg zvtRuJkl8JLHJW$T8um(n4P;fDq^vIi8U_E1M5WB{2f{SC2QK^&x>y?N$Vg$$pK}|` zV&c1-u+Th?%BN!~x7cjd-TiUyw-<;H?tF+&F*Hto-tC?7{c&qTQ@VS~H2J3GhJjTU zzDy8-DLkSV+BnGrbr~43jCb;S7`jJijrvvJrhs#-%F^nI zbtR|TD3L$6pRZzMn4(JEf(YuKcNax(*y*CBT@Ci=c0su(Y=|Gu^Hq_qrDO8faTbI`ovWo zloapRWB1e+iieu$wxw)V;{oRY1Nk}Bd^q<3giRGIeVtvPd%nZm$^UAapR}Sn%iRv` znODmMtY7e+(J+S-JTj4-oFcgqI-2u26a@)7;RiYOB?DUU=ezN4QCf7s) zMlth!>Misj0PxCT`_=M_ZJ5z2DtQmcifHG`x?ee!Z7hG z5tRAYaTo8}XH3l^Tkaz{a)D?UPuk5@MHOiU?~A0r@0E=aCrqv~Rw1u*uaBK@ z8OE~l>{x>ZzEX>YFxy7jnbP9+^nm-X?zq@xtS+H;w@*$j9K6#=gzFP}04e zL`yl)bm_FZ@q+)_W-CS;ocxaVpO9Zp zKsYDa;lHxMqp8EEuXeTn9ht#NT4Ic$Ar|j(1==8A5lP~e8a2+mT$&@ORNYdDJykJ) zxSxs2A>J}+_acD!O&h;E8>N^UKDsF+OxY<`N8E5UwpE#7T?RnEwnHQOHefsmpPe|2O^&kYbe;ul+esQWGpevEFu0PDA*N0T28`_-@*J zW0{~IAFrrcrP>NIS5*^28OSizwXr6?39n_nK~|XP)+W+a!EnAb*Ou{UXt!y^iE}a@ zLI`{i{%&%8fU@t-;NFm-za=!xDqYVFBoT(pomd`!k9^YwcO)gY8?Q1i4=Hn4Skd=q zmoGHVS3G8}@3TnDL&D!s4UrP3^uefTpr__io;RHzHZYpVuNhWbc>aD71vGg3GZ{MA zY4Al|21Pd-@yV3~qNm>Q#@-z8-Wxrc(x)-h!iImb==`XR?gD931sEM+*Jzxlas@Sca}{PVtRUZ3rpajc%yqK3LsK2 zPEiBeF({w3FV6#lUukyi=1CN<_x8;HLrwQLs|3JaLNQPAcDDXEhrxirBi**urDDkW zXhru87wqOhg$1~6VK)op-s;e@H&8lLsRcF`CUfgqG!Ydz6&`Hruu@zfunlnd0-W54 z42#=dIa-=s?d_WmvieHeptKH|lj(o}&oIv*4asPnuZP1bR#J+D!S zN-8Qh3J#8p#5FYq=wVcQ`}>oVKM8vs!^pi1vBF&RtHb_tT4(_#rcEX9?2M`C`Ko?g zhRsfKN9lSEy%(ThL8@JS4aabl(8|eP2GZS@#BdHrr{aybVVNXS{+1O(0p78~uupi8 zb>GYf+7nJx$kWSn1@f}-S`Txrizh+T*Pu3VGF<=vuaq(PC)*@wWn8}a4K<~*S-$rL z|4#dBA6|%9+HF@}gb;MPPXt=AOK^sYv_ME@EfY_*mtqtTP8odm7^#tUBk0FE}G04 zy61lVowEoq#zU7Upf5y#U1^0zT7PDYPY-xy!*&kwaTN zM}c+-4%mPWX=o^^o$kdk{+T|$2{ZZBcqUDR$MJ)7`dMT4pDEdE8wwcPGJV9O+v71C zQy9JPnnG=lCtxF-2ssc|v>(k$e!>trgp6LE(igu9rt{2Rey!}~&YnwGNJb{Ri5r9& z!91l?ndx=eJT9G8#|qj@rcxOgZEfzjs~Vs3rv~EANyg$shXSBbyw>T&XeSFLc0Y&7 z4KRiD z-I9rafZ<$)Yn^dHJ3>E8pMyp?tgg+rx)u&v5C; zS9y7nb8dP0?7eO}*YpA}1#K|A-ByY%)_;?iH|_5JMocru$VlY!dwYpbhK<_o_@riR zi}Ap-?%;Wmu)eP5m^H95nTDIgV?Mu(ax=Mb2!WaLcxvoPdE6z%_BwJK8ftlZms$R1 z@<+)!F<{kwU(ZgZvDn57_Jula*ENSf=S? z#1}+0s>E0d39bLw9htblyv)b%@40V2GkUT#r#aDO3X*4oi)m^#$ax&A>3LWZLoCwo zBBOnNA0>(1e$_X7Dq^|F*-AwdhIHv|o}QdbCcEXieJ}FExcll*-CIyHdp%iWTDyj# zJuS^ZLL7lVCoGYf8MI9cV4)_!5;lY+F8dX~32`f`V}|%Zlg02x3FDj66LW&FGhO|tH=o0RK>{C!l}t$Be+7) z-{3F;^%ZM8p{zd|@?EZOYb?_U5V6BWM4xN7+VzRwE=Et1u?5=mR$6_d4<41j?t+mC zm!>cHvejKEN$6g?wzyX`mh#@jjITp~6uW8l5k=ifBGab#s!ZqQ2~yS=NXH6duryACLcX zspdE0lf{3xXqYZ*5TR%1Nzg65;2HW;$(Hi#QiwAo`m~uVT9q2R4JDm%8iIxrApm33 zPPK7Av}09PeeLQ~8dJjQ3BrETDLIp@H{+mBPaAnRzq{-+MHwf{LCe0qzSc)YC@%K@ zEtx{t(SC&$CQa{4FGIq&XBk;QAt#M*6Zw7axQ5b+cld)8*kJ9%t#*f>%UM@Rl+#@SwwE4PVUOdP2!#h8<3Rfh2cqXPl@v{}MVw(eJHa8n- zsh5~4uRaM@(>wjDN13Y`XXJ|Q3)8_D`|O?BzOYKazJw6)_iXMQ`(=3kFFF-zeoP491 z)AO}%;GvlXoG#qqbw#L8&4pjz*xcWjJcK08qhR*E^ufS>wjtfer9~L)bs7~kYRq=d z{rwlNYX5FWS8W|HmqgENnR}>yNCOWC5bCn+3nv_)X!CCvD~ zxX^N9>_Er=@90i(UzG9tz-RF`q)G2HCja%l)*F6?Z;A>J{om&Z&6l_z5P(!wZx6{a z!s93aNGSuZUjycfSOO@iaNm+*BR!bYPrHMgB}@`yyBaHwLfs5zL%?;COWFQODslh< zh36d>@{dR({&O-zzyIr2NBQl9Yh*_4u@_2rgK$)_W|pLB$O(sV4dTH6wKdqBtZE=jSom90@X z?0pM|h~=ucKc*|{AG4->P{4!FD9-gda z579dIv-}9Ycf|9Un9eih9YS()XO2F}e2V(P@2H*qlVucPpjlY$xX( zI9ZYY_CbGb9*Tp}`p?xfyt1MH_rvtUg#B#7y6sBKsj2B(yhoan!&`3NPn8jK zMYdDxC2`+loJaK+!BIvX&1FB&o*b-%BO`1Ylt4ltZi&hV>{k$3;>%dVLvDS68V=hA zC3*REOC+FqC6$M0f@%n9+WRulI7q=ZFO*qwVd(=6l>g@4XQ!PZq_ogPXzOSXV#{dm zioaFsRvI5P5)R*!Kzy}Km&LznqE%N1Ndj=%y*W6+s+!ruef@&tf7m9eZQkwHuLoIK z$31u4Q`x@Cwe~&F-1IQ{otWXOc2fcu_w9*xOAzVBkZ$OcHQ4kJ>PDjA)l}dXy zn+1ij4C;YPvNb<#b!$(s=e}TA8H?7`;(xA4M4e^|SsQ#od55glw<_>J$A#)*<3 z)$MsuL0UHaWpl6V*``4o#a>Zh>dQ(JH3P0Z`zW8EBBJY_umhaGbbb>$RW5mm_hi`@x!+wVei0psD! zz$LI1$iXY|ArdHWu%UUIC%Vd%wR0_o!nn`UmK7RnMZl{ak}C z6x0Ic&&s7u4ropz#8IoO7*B-sOHxUi^@SXHNv+rdW0H%`UGLaaD!_EJ`41rTLem{$ z;RP8<8e@9Gl&p!rF z?|2>s-4&rSQU;&EOS|hvXaoc_{^=eO`Ycpfyt>NbLP^K`hyCa#-o$jb9H#BxW0die zPA^oN#@{<@qcAxQ-xC%VsQAiMil0;4FBC`Ir4&Q5r6%he>@N>0SmSmqv5z+s*rmTK z*^+Bpj~r*rmmMuC6YvllVvSaIH{4`8ytf%5^d^%~6bW@;w)BYv(ZoP`@v-&{O{)}Tq10_^nHCv4Bu z=$J2xZIm6@6jES6{=6m=MpXBf_n2%A1l` zhLwoPH!u_%Zesa(of>Mh_JZR6argsbgQL0=(A|lK2zOpZev8W%{Q4C<-Dzi`>jqRq zfHV&K^pAV;f>&RPv(ycb8{$CHfr6uIITbk7saY5px$i~AD6XouF<#8pyPrabzidDz$E}OR5Df?u+C`ou=br;Y zba40}=(ac3e)Ub9&!b9R5CF^s!<3S)3Yho|7V3|C$`4IIu>I;`L&DQNcu=}Yvv|J% zQPRa8@BZ|M4QDWLh66EJHJ$e-KlqI+I7$X9z6?>jL@zIFC~=8Uhwl=?G8ArfzjuCA zTqW*t2Vt+Q$FL#BiKAGFV!a+^*xKfjxOYK{0_WnsKU<|sA&HHEU)1b%DROueL zs5bel2wHdpN*8AUAfNQ;dD4o!s6yd*x%Rw?WUB$)io|IR)fpTJyDRFGks$?k zz*m3It{Jw>bBwN!zu9S~rBuYrI8G!UU-@j&tXw+-DYR8OnT-v~zJr+~htRpezk2k^ z&k~)7H~2sHxOMU;_dYtg@$uHR{taq&>lVik0Eq43_ubd%;85o`?jDpKIQGGcL#}9; zlNTYQDd2Na7}EiSHN+5WK=ng}eO^`bM)(Sh25jXEyIr>KM-Kue@>tflSl zzCN;evFK$oTh*1pc*~3j-q@e4Nt8QjuX#_Lei-U|v*CUr^{f*!Ev}(kT zrRT4nX{Fa^Y68EuOttXO6*F3<7A?SA6d$%0baF=Q8PA8;APpD8NvP!t2p@!F{vbJy z?0xZZnFSx(y%R`a)r%!*bop#GP@QNjF6Sk?7My71F={F|fd@}H9s?YKc zKIu6YA|80~KHFZaN}qA2>52WJL1ndy&G!Cd0+@!{-O0c`!Xc@p-UkoPf{u%%-IF85 zyRXK^W71%b1I0ogu!Bu}>dluta!OJl<<4U6qtqh4GMRx)L-q@0 zTU!~i@zn<(esyT{i{1xl>my==-rZcOlt7wSKnJ_jy(!qs>wQ+%J95d~p~ZbAoL2PI z^yP&^%TMj`w(2jmZD3QEMYEjdE49$gyZ)DmfzbD{kgT=$TZ1x6PnA7li|8=_n}i2^ zIrf)K1uRn~d!>efm}6e~)ZKj%KaT0KKx6i=ea*h96J{-XaCBx{2Yi0Q__-@o`WX&v zqJ4Ake_6Y;DHWkEui2rQHG~TUp(`*W12w0a7GH{0v4JgP%xP-GhfS4l*okc_(=@0V zyic?q*ypcEL?@S+o@ZWtG0@-HlRh`FBEPn&N2iEm9Dp&s9vM? zqRP7FTUakJ15m^Av8JalpAGQ_Zz|wax^*8;Qccw!2EwBADBC4VRSs|8$pJFb&C;@HgSrW zW9`CMjKjl>rEA71wy+~`{JY_om2WfuJWje%zh2xZRHvBWeYACkE{iDM?tEuYzhjov z%BbqxQ4uuL5)Y6<#-i=!L(36_b9v8PMEZ7r-we(;+ePVU{wrk2gUm>>0b`t^xeGGnRL&WAN zCntTda8;t`+UP8SIhdL0iS+fiWmRiSJ#l9MaP!fCUIz;@-N6`*qA|RxiDIe?EtnI* zM`Y0%WTVHWD1MSE@ntw9{psFaj~_*<*mcB@+NiUnU4AD`W<%FV#puMnhw+v#<+H6V ztA3Zr+4Y*d^cUcE`cKdCbJ%;>FvCJ4%-qb*cH#K9){E107J|#J@_5$UWqnj**~ugG z=7x(cBz${492{^zW~dbK<<+aPM&4-bb2BiGVB zCv9IZ0PaFdu9-UAe9lfV`8OZoqK1#yo~7F#s_O8-ta*Fo>;CZP$6$Kc2+bjdgE}tivqR6xl0r^hoQt`u`RWKWYqVpvorr&_v4ehQB>R%C5)>UW{Oz&BUs z)O0Np+QGTM@z74SUKA+u-2^mes#W9y_ZB9xBO|JGf|9hHd88AnVp3V5B%*Jl>6O6Q zh-b7Pyg0$Q`@fiP7=%%0rj(*?;OPxiOU1m{&Ay}}CNNEBW`YCJo@c_J>Xs)gj+WQs z3Q^6IEd2luaye3S=HyJV65T30TJ8C`>>L{z8DBq&-~%ngn^o>m6deA>8=RPzzV{kf zp6UC%A|EFog5;Z2Ud=T$l~mQh+nKSCOr#i|xZj5IwH&5h&W90eq-ZxP6{C@Uot)K(C(LoM_%f`$&r!hNuL3fI2HC26k&|S?z9+OMGeNVmHqZt z4z}!51xL$%DqLHM@4=hf-n(8z!9buAklim?v@0US9oTlvcttJ5ULt!^Ed_LKFz>zC z1porAIyiVfY#1h0my(n`J~Nx$=49GGv&Fx7G|6oM2tS{!O441oj9kB~qtBao1~8eB z9y~F0cruV&E_m3BJ^ZN>RGH?p{WOZ@%k9n6tDKjTy09ZeRhI4g*t7&(+L( z8QaS;^o9?| zW}o9X8V~{zgo6Td0H{N+RqICQibwhAP$mg@wxyn=@ztwUcb53Sw79bpWQL;I4w661 zmq*k9XbzAra2A$2tjq?b^hZv$4#ibCpYoZ$K1`7368o_Z))&&w3Y_QN_4Wkn{L1j~ z6Z`gcpU5!5WVI_!0R=>u0~ZDcqwLOElL>`zDo9y) zmXY0=Q}p@ri_O49sK(tJJ1M4>BT+h4Wiu}u z2f4i$$g$)B_FI=D`|w!o1!p|;f!72ypEd$OM_XHKv1ejIlt(A?9fEf@SDmKSxuVr? zq7q_oP`u)Lb@o{@*4)C8;Ne{tD;x5{@N{KQfNm?tlIr!I_Qpqv|FaW8)jnR_an6+o zuJqEsQ`^MAc*$Zs3CGI9?D`f{$@Xf2Z*^^F__pj5E5Oo3EiH4OOmH)^C(#HjMr%rX zG#$MUOSkjfh8a`!M$VqC{dvnZ4a5$NHlXVUf)(KgIvgiI`rbx)?$d8 z43cNAy&0~B{@kHzZ#1TznC@0=c<6PDam)I4^D2fo3pVWfhBxfhezqVt7>l~LEn{`6 zXsm?Y*N~@G(wUqlNnyGA)QFM>k@F^{c{(3&h6Fqb(SFd@%gev1)kx#pw2iZ%rg>H? zCQjehDbC_C9!Cgk&br^u#W(;mpRv{(_1nf8|-pDOdndknDdb$Sdo@ zeiB?k44_Wl=)Dy%h8Qxl?0Kesva9xaU;yaA=0KGBq6UugcX&J28ug9yHu}M@rxLeh zy-}7bw&dj2efNPoJe*9cxQ(n#-{|@(< z5IB-HC7-C8u3Y%c?oxmD!2k(o<$zgi{Y|s)c`J5entiS;ElHl zzLT3{Gp4}o>tSohL;O6dZ`AKxOqI*vJ>n-T?oxDrZd?s<^xj8FUKPt7&uN~wwZ2Nv z-5fB~{;Zh#fgJW$z8CEhU0?<2QvUI?$((Ywi6ZYY4K-|1-^iVN2T){hY$Xx{+2V#a zW`)aI3{nVRf7B-IyHi%r1?imf}-TCKr)?r!Lusa57;(ZCH)I;5z8FI}#6{A*_4zMhEz)1K!-m z4PQcnIXj1uVedIoz-Yr18a`{xi?Nh2XXqHE<&gmKn?>J0>Mu#z2)?pdJhRS~i6(Wcf; z5o)g8;I(ZCZV&!+&e_I7AeRO)m8WK2d8QXX!~IW^J8|N2^T_~ArC1*RRnL0{>uA^U zM@)w{KOwi9$YrV+8I#`g9l0RfjrHsTUV^b!c$>{ST<1yIn}m;M+{Vdxf*GHQ^#B)e z1DLwcpFwPq_)x0JThp`$PG7rzY?T<~`{?MuZEo&`ld=z&{P%*-u|6Y&0W(n*C-CU7 z|I`__^3(tIydA`gx&J^E;!t(#u!?owrW)75e2pe+9_dz=v%rFf1Ka!+ep;ELYZ(IuUpCAT(ZY#8X0k* zB!u&quUQYCiGb-CP4LpysFG@W5&X)w*65TpJ?QSO7~q(OYY*5xVvrvnFDohH@Kt*} zVh1s1h4$yBSj2h7JTU0|1HbFks5dm=q{D?jFF?QdKrI5>AKQ9G{UnfQ|DN)lWT5vl zW=svwG)kIIS1`w?5EjgtPzP|WtAAUQ$3`*Nt4*FeAy{VY9Df#_dw;z zdLUai@i+F8%kS(rh7xVYQVi7LK6}u^{Py=*XNQfYfSoebUo=WlNh7 z`5K36aPEnZNwH4RaSZf}PQ;|#!Bau;@2SXS1P0s}k*CawogbtFOVW22@3`)7w4Nga zN(cIT6u;D35WkcBO?ke>Sh94Dmn~@nXsGIOVPHn9Xs!Q4JNJ=qjD9_sW;4C+hcp!M z^9gr38#=K^Wl)s4UPlm=H+!@k6c*?|VG4aojzkMk5o>2k{}^*k>e<5KZ;Ua=1zp$* zvKtuFHokMB^O;ikIo4ufa2OJU+ABQ=PQ>Z0$)4W!gr+=idoNP7nH7`S0zSdzKkS!x zHv0BjYq=G_sHb$Z?)ya-W^U4o2Pc_nj}H00p_4TELL|NZDVTPie6@@6RU6u93a99R$R3>!Jex6oS6*?zeE3!@glzUdF$VUYK3yI@2RD*f z49aTtidmW5(T=rmUPeh(_vKY~mYc_&V}Y+9_21V|%7~Qw)%=HU$}lw@PPFErS+^fA-?NmRlHmDV;i(u+_C ze(NwQt}Z%(`Jh#4(ZZ=~@vRwou!Ogo(*7y;XSb$0LIY zJCh>wlQj) zi|?j?&Xq_OfrP%eE@N5?Z+d(8#`!|YYR%v_qThN7Jz^>8^^RFOjhM$?Qb6Dbsywrr z856gn0@TrgX+WEX2PmISbc<<(KlMq^bdIT!U(w?H>RW9iBpL`CnESh0P{}_bj{-SxS9E3T8QiI z%?^6bdh^rC5b`babTVd>{QvS{EB%b6SZ{SY>j0CBn7w)bNX&=vFeYsl250-5lYo0zI1z>YF)^@)EH{cZX$<`0_2u!gM42}BE1$qU3C*#Hqop|O7s8}o3M!-8ziMadRzo=|+_@B!%PM)+ZWMjT?#TKkwi45+s(}Qo1$%^63%fhzl2<5z z2o-#4yEr;YbIZ!X|9O}zxd!yu#Uog&?VfNHx09jVm6`nrKhy&3Om=!Iej_iW>Wz~E zcLRzx45Y;wZXnD4+6Gv9kC$&BjFRcNpFv=<7ftnHT@#_H?{0A4I_ zU)Y0yK(1cx1uKQyTti_0?R$gL^VA(&Vjyj_&08?=GX{Xb5zlbmf9P7>Ty_=;-5tH` zm`7-r9<88W+(hYTik~yd$XCl67k0hb1NW}TSVvDcWkXUc`GUT=E{+0VmhcnGO1(Fr zzm3T5keG}^OV^}@h}zt4uc-Qj?jB|*zNeyk`|bDeP%%BtSeP=hbLxn`zWxXm?^9lf zk*^`{mCWdM!yXD4dOaK$M(Wxeww2m0ne_34@Mr9lt?34`o>kSpCBIjhOp@5G!5PXF z9`kRc%sk$ed`nnp$V04txn2LsFzXW|ygR?s$Jd`fD+5z4V5(nv>cq=x7FAN=%`$!x zT(WZOYpb@nXmfbB0NJ-WX!?Rn8y^>VFH0o5R5SFK|0&P*IQ92bfvkM`_ye-enUR^W zVSR%J(Cb45!qC3s1haU&!)jV#)m?iJ9|k0qK7rRt({7=>3g>i6^8R4seT6ZHDp3EnwUWRKF3##0j3OmvD-jh28!?8h6$@OJT z6be6daZ75jMYRpU3&m&9J3TI0twMhU4!KPz#xk|zh~8X#jMiFAk<4$Ybvq_;0Yec2 zphXL+0SK5Dvv9#6T#|F)h+a8e2J7~U)}iu|LPQva_w?ffQQQP_Q2|y@n*&q|s^nYK zQa!R(bqxqi##byiTLTazmbHbQi@aPus?pqdqs1y^a^qh#yc2goAUVagk*c{M@Pi`8 zkP*r0&H^vsO)qQp+`zlJSxmAOX6F0G+k7AuDKw!hV2l>bM3lOFd8I zlCjo*Pc3T_fIScv8CTfSlDXtioeOMhoHD>uLQ$o-0EvP63cxkT8nd-!o#j+&K4wguNpf z^UDJpful|#v^1PI4+UMIM6!$)8Wjh5$QyL zOLzCD7omM1dw4@a%f{57=v>@+6v=brhuA|LfhcaPekBY^-Rw{~R)O>5{o0?((>XP9 zbzqS#6RHP7hggh+t8TffUhc4~Z^?YjeRfs|>7|Q3J(7Rlyq?3)dfNzIwz6TZsICjFKZ`kbiw$Efe>q!v{GH z`UCvKe0fK2)s)Ymn=uIFi`mM`%nS!uE0d|>pE#C;!!GrjA2ZDh5HN&y_Z6)Ef^$V8 zz+DF~=1YewSS`m)cDX(0J8bA63h-i5U0GcGEee6WYIVOBN9o9@SN1cP&$cFyeep;H z0_A#s;VYiC!{8O0Ez~F1guebD?D$LqF#4hptR8th@j!+0USdOhkPGhSu20r(PC`A9 zhV}ArKm2F_Z1|LxIs}eLHIJ1RzZ`}1n+gIcQmf4oYESG`@Gq1xVQAAAXz`-q zykRVB_COVlZrAxI{Ev?A z!lBGtR*eXJg0xIEOADbsKp6jgYuvU6_6xFg&hyX)w`b-(bs3hEd>R(xczU~n zfN&xB2tLWG3G*x82k6a#!28>^dK4m8wBC7CSRwnfw2cSTwi3x_^#MAn0KRCq-001s z1%;1?K{ALm*v1Dy5P{Ld?Zx$j`{2hjN&1HUa*W5vg(G*Yp9ga_6^=)X#g@rv=n%%` z0S*h&i;`7tH#W?iB#GmB^vEU^FDuJE@k%>o$oPd>9v7WI?wEL87Q+!!i07lbhMf}u zU>$}UN{HH6C?bfG?%rt++#3c`9N@x&G%?+J?6oD~C|;kv3k~_=f}m*(cgRl=skpyr z@$A^IU*tp-o7#JNygzdwm$oalm1M`vATMLS5mP2J)+b%^BjJ%)Jxo79B00U4!QgRw z5;bD0@1t0BRE5o)&1KJ($K3xeE{Hjhb<$Q#bQa~tNfdM^78Cg%L9_}3`_}cferIL# zyYs^ZG#TxY3yxdS;3jV_S`qK9|6#$3xGm#-f@A673VdN1{F2U2NdYBcG;1c&O#0H#iSij9bt$>j@x2qTUAb+b<8YXeFtk)NPS#o6nN+0GmICCt$8A##|ryUte=G9vF z!(AHczLAps9UiON?RfSXPyBen}_I27DeC) zE6kQ_?@)01Zq$@odFEqr&n7Gt804;pyiu7)PS``4iI&QEq_y297R_;RZ%hHs76Por zHu5R%w^Vg?b>{Q6VW8JI`-{l%Cpmer#N)y2#V>&j!>j$7m#u$32*qn^A1pZ>EiRZ? zyi2F(?mj-*tZFfsUKv0`N>@}G+1lW@GdD8Eo7@=aZVw7rtq;{+rr0Xn;t{h7>(I~} zH|=z9!Y$#A25QcnN=tyMVmf<+Bw4hEqMz$gVVJ{tbTA4M|D#W_w-?2OtuuXc-;5*A zM&M&r4wH^7`Tauu>-M8*MfE$=p+aYx_z^*vhyxfHFeupw8KQv99NzRN%7P~;XG`4z z3cYs&W@fTkHAdA$EiaRHz4FlFoovsyq2%Opq6wBXMc$U^z3&Jz=GC#i*+{A>O1UR} zJ?15l`T!o2RUmt}>=nkJQ4{!<^5a;JZZ)Lp|5(*)2KK&425si>+smt&*goC}8VzvU zd>UM<%6h_kPFX#6N(BaX{uak1yn%$RwIh!!W|!)cj@bh=?xV)*Rovdj3zk80G8kw| zhL}+%@N8h3(=ibL$Y^gDK5V|TEN;Fv1#N=Y*p9)~;llkziO0rs?dglAgBVquw7x_g z=gmn^fAMpAdfI48{f?svPr+s1fd&DAX`%XI@yp^7J7}Sdd6BT8wB2AFc$DYLn&;4s zyAj_BNTWz5y*}Hjd2|LFteb%Bo=^&E!1d{&=*&~jRCkr+2F9ImXXHD1+ZjcA&VnZ@ z_H9)n6Jzb2-R8^9D%7x2u9R>ag*r>Ohr8?RwNmR3-{LXjbM>FDK_+G?AR$AEHgpL& zSWe(re>?Ehbd~6I`Qa!!rPu9{W3zs_OtT&jdnnpWgPA^^E0sxp4{Mn`_y5&jclO_Xb>Lj(+B?xPBdTl2!=!<%Yz1UK(`4felv z3>2j8I@s3ZUdVXM`2}ye3!3Utj+)iMKNDJ1tFdyo2$h!f!|lWQQJ~ubZaUT=oRry_ ziISsPA5<4bO6$#*@9E23s{RDHr3cHgEnX?ByK%m~1S=mbZKNdr1=oryl_We(4_@=x zS8JVZQXFmhN{Q$9$NelqF{o8~`nt;kGzvL?=j#SiQZ5Znd8xg&O@YoP{ygc()mN>; z$Y#YGYqZ8nTTy8P3{i${zhMjv44_KE@N{{!qU}@#hl#g5gP*PuCkD<;W zjGAgPo+;(+{;(Wx2A|CT#{E1)BrJj5_!3A0@)_yr?K<75X>9AJlQ>Z_{_4p5B|Dxq zL&C-BA`o4;ADSAHHMBXNv`4qgni27_l;zrUr+2=iO3x2LYtdDTh&vqMTlzVr^)l*q z>w1_`D)%G-pW8ew7k+e~y!gU> zd2n!bm+VzCgk69;nK1U z?p=p|{@dnH!0;XCo-8|dWs*|P8C7OsE?-EC;>W6X1)5t>t{pLO8R8 z0{{#(gMgOy1zzX9R2r`T17di|1I+K7PN5f#>)pzKx&t-P0BH zy)|?})nX@XqMK*ldHRwcO3@gY*a&jcR3Vooa`?umqL%>_WXe#?AFgw6*&3(y3S)xf)SYmaR zVESP4H#X)fCJ>J}jX)GjTzSHV2N!h6$$O-Qxh--Z9Z%iQ(-MPZO^6%KH6Ar4t-^MeJ!z6Pjz$S8%|Nqg$s`IS#sKV&&nk8PruE?(XIx$ zdIwX9_#Rt_GW*81E%J4(6uB@cG}^egNx1yl^yG{2Q5ew~cbbWBS`J0QJU~QQ`LB!@ z1MTe z!&O?GRy`(Q97^PRumH94e*_+CTHknW`JFLJR#_%JL9gO@P}A4w)}#Vx0kdaKEG|n{ z9b_d-O(?Jx42%B9l?Z^fn4BJV0=x-1WkiOCjMHfYnvRZ4zNn;K5?5-M zsx42B7d;lW@6v!})Ft+Ny=m-h1rr+^n-i4#te@par@-~v!9qP`q(U$V!wgViB>u^D zM)sy{KJ`+(+2RjdV5Q>DDs#*ipS|wA)OiD02|kg)IxDe%A1TVPzL_lKQn_9lx!J_D zcdZ3Qn(k0rr`g%3i7+2=LtIJ-=oW&e=vAex1Ym(TmZ#lnkcr;5(_3xG9 ziZo2Jfm3)4vVPWb=z2+~*7hV>`S0fE3}Z9Zgqw%e_vE6&VJYnRq+~_|t?4^1Ink8h zo3*_7!#~i)a76;hUa;79G{mYkXC_O@auPLPI%~a zvl7qOzk~htN9sGBW>z1hRiG*Wh+^M4;~aqUN?zSu4=7cj4d8DI7zI!R^V5D78X!o6 z_z(c8m)T{mW(f>z-&Q9 zT4YRj_8%S{76yp6eY6o2f=B%Vy-BT~Z*$Qm~~z z%&c1*PiF$l~BQ|4B@+vbo;xlf1 z@i4@SjQ_Ytg5#HyL*jMUT3G6CXLivMk*;nT1Ldoe)7qK!vYFwap0{^>#i!6A{G#)Z zitdFw)sP1M>~MMT6PTzo4$HNSX>>VMUq}>bqd)eQWUQy(G&T)Q62X`7R3yb2a}^Hu zk=QJh*TbUtPX7xAe`M4As-8L&!fDI-I<%vmRS0$(gk(IALWMO8w@%Y_xzKMmrxtG0 zljj_Z_b)H2z)>_^$EJ7%sg*~FZmu(Bs*lHv$<8@TaN^^3_G@yPRoLeSX<@*3LqvTo zujqJs*1E}l22P_Po-xjv0)1V%<)X6#&QywtiOdQ?i>cY&O(E06vqP$?y9yuyuN=IX z?^5t=g9*^Y6m_#+d4*ACp+1#f`M(rC4ofZ~r2fQBe0s{(MzHOwftGJAwr8-Ulv0O# zs~I2`d5CN|mjn6FV`Em=QXB-2&c4HrBp90>gC*SXQq|BJPE60Em&FGb0LycK387(Q z%XCH~#3N@Yy<42JJzMl(v`VTxJlU@7tv%5|dsRd%S^{d8{~Jn_KJLKQVf1v#BD%oGpM)5#wbN)oY*&cDRf$2R_E*V9ob@ii3X4 zH)Xry{lA{SeynXtz+E%$n(+ zLngrQiYmlGrO_1dseYAOL-|c~;$Z+RnCRD3ShDG;bg*>v>kSeR{|`_Ia5MjY`)&i~ zNIuTz;QPMx{iJ}uFPte96#QSc)K;7YXZ&!8bs^3{FR)u+LH?Eph#0Te#Xi$8)Dv?Ss zYZhrGJ4P~h@{uxsuPm>-D z{O9fx2OGbWgmS4&wi7gNi3jz@TBOsY6IeuYa!vUBa zkW>&k8rsP1xjH+VXu(RKn!`yy5ClPD7mjR+8qH(NRx-^7hV+SEMeXgUH^L6PlJdBwX4r#EaRm81zOuev{tWl@{XYbm1KWKRHxP*<@^})VHz4cCi~P9Ryj4R-w0|<<`LO6*Q2K=R?T$lXM>3;* zDc%Jm_f&H!u-mJuNC|gppl47y*o`Yx(FctfEvX&-b|Y1m>xHgJ5*QU^?Oj0neJ=Jn?!_Lk+g^jw2?4Lr=IVLjB=6QO!P?Mksd)Zs3_gFPj3Cr*3D3kMOQJ!pG20Ro^}+vg$>9nedK z-dplIFvrdENB`a=p)V0|gA>ZT?ajyZ0O_?9j_k37qV>1@4)0)glRUK}#W#Kw_=htP zX}HGnrPL*i@l%oX+@eY+V~3WUZS1JntweL+&Xy8*@T)+6i@u};I>bDM*KeKyMf>64 zmJYclBHrk}$@_|lJ+*&gMm_J|3&R%1-M*vl+6ijP-5Zdp#+F0LmYbmmYqB1e9Wnm& z0-838s-CbuwLzDiXdsZ8eEF9(lAU5#Je= zimF{2+@U{ON(|Po+MIgDez$8Rg||eI@^`5zIIMC0h+nfVuCdTu(50Y*)_tJt)=1I} z{N!c(v08s>k49{1;6K*I|9?Xm-#zZOxqx%^tCG~dlBipMRRS@gefFEL<*LI+3E{V^ zN5^Wc;~6cj#6BXAxnp<}Hr9o+%L4o+Y=OL9u4@4|?F}QGWtqmGHutcnj;{*xYwma) z_kX+lyNa?sQP;+hoqvq5r#PQ!?l#1)D{)jm7#Q5O2(UgrAH`X8|I}P#QPgnpJDiZ4 z4wzDYbu3qNzbA6bxj3rQYyRtCd7rgwmmAeLDWKrmv?LUxCPY=qyR!>Ili1J)flvTF zi%Wc#h}liIQ=>v`ti6WIsyFHV;NC(D)V>>N!RC&=szdTIrvY`w$lpkjzmYs)YpER4 zs#87BKYHyTd$yUKXNEjhzy8(k?WxWFedl2*>snTEK@;Tz5OCUqOn>!eHw?P2es2AO zc8avMAUSMaYb};t|!S@Xz;p-X~5!5R&eH`0uS+AWCh6^>Y%@Bl`XJ!rxyVO09PxI=trmG}Y?xFm> zZEH(^k*oOu)9Fr!YCVG?!jUEL`;;g!hw-Wo&<(AjEaMNZVSu;mF|wsAk9hmUB3;rg zf~bh3VeeS1>&aT-_LV1=XvBB3R-sL}MHEfp)zPj5KHh?fy>V8+n&RIPr=L)#>*=Wd zKW5iG3o-L8v^E=5r#Da~3#MspjrhqORWj9I=70j&r8jcwGV^VbGah+T=X2!V0luowMuYJoiK$6jBohh< z@<=KfeN+hEpsM}t_zrRA%23-Jdm{95&Iq^K!#lL-H(lK+7EIvi54;A9(4WrX{*x~(UuyTr#Km9#I=cz@Q4?2tzs0Zg z)`fXb+t7aH&SyC+iJ_*`Gqkdwp~e^cgy53pP@h4e=VKa~;W2qE2fgWopG7}PXP^nb1o(52O-bE|b2)Uqlp;{C(%i-GfR!QcHW;$mbd zGi!?HkxRPv0GSV0^7d}qwYU@T1jZ<=h;Zb@QH}Er1SbHZ-xT2$ zWBIYq2|sBI&sWAy;RdMRJk)#au-?f1gA@P@`Xay`|FVFEu3(#9Gs@PcTQ1J>6BuY? zx!au~1prsWQG>!aIXR=Rg!me3vM2cmejv(wpWSG^Dx#%wy>Rs3&cXY$%g(!hdMTsQ zO#lZ%?73^w5mKOFK9%)`2*VVK&>H&d$Y$3qUp>poAAfb^$%QOAG51BhTIv)qEj z{d87BSO!tW?9{Y2SZs*3se~YMIW-zIu>f8#<>+vxfbrn|J#3t<%G?v?i>xe33K?qx zN#OC|TnoGH0;D{*>yRpLNTYP!$A$jG$3G8= zf=P(6lvB%&Kh2Unk75H)BBWcM?)!edFeq0dGK%pcoRLFkVr)uE^m4%Yz26FW_|dKj zE_X5;hj(#7g>nF}a=XV)H#xk3a1kdB^d=Z0A7VZ{*5Drm>-dOK=9_Dy>d{jB+Rux@ zI4df}wB4ThItj{-V4tkEB#WZxso_k@TU;?~-&mt+2K5|fqY&RNV)Th#f7uMJsrM-G zX`VSrxMq{iODk{DKybv8?sKe!#bTQPn{R*V_1UKgO;+N_a0l)h|1{S98=2dxUp-D zK}!qdcO$&aC-rY52!)r*vuzDcs@xZ}l%S8$rz-t&z-87A9^GEzXTA0s;{Csbou?a_ zEyPEB_42F`030aNoN<~9BL@TvCVjtHkol{9@~*mo-x>h3{OEXWwVoHLX28GTynkF~ zAUft7;&IswmH}4VT!EneuUj5mDc@cX7Ti)R-I*vPYMKhR86BVklpAE@a zH*WP2i~ebMov+%i=6Lf_<{L{7M;RaNIEm{@RwM?Eokj_Zx{+gISbVIy>YA+RO<-%v030Ft(S=!UwFff0UTBx-#ukGoXjzY_zEjLAgy3! zv2_CzE6%zjNTW{5dfi}R(MzpfL?YRCR&+%3e$m5`RS&tnc&yV=W2#-cO*T$vb{95% zvy~M`S-N12!{~TZ>SlB`(e8DO#U>QEmU@94@o2)9g!tc5!8vTjBGm=CQi>0RiwjBH z$vt2LS&Gx%SH<`Mx1|Nu+p7)`9iVkWL!R8hp2huXC78ECc~#@9p&KFlZ?$$v_iS= z*>`wMOql}B#81RF2Q^NXO}8y_1;-COIb#9Uny+TvZhRbF#won`hQLjM&PvuAq;txqsN+xyUxH5sXc z;lidlsLe_R*$dCM@5Ali0r#5TC;0*L^ezu0D_aPHe76~3E(Z|I0%IR;TUkK(@u||~ z@I>y{)uYdlwsFjY(W`ib+I(FE#WKMULGiP2FW$Y3U)vG($UOMmHD)f?@^3g>p277C zhdHvgxyNjF+Sp{8&L?{bIJimLtXJi5>?A+&e#XFjqe$-CH#YJ1L8+h7>~?agOy)V7 zLXO!ta&`uiurc4z){Q6j`voca6IxAIN902xZZ&m#m+jitR(EffTW{lCo71`ID`y&W zQ>yFD#Jetz(v8Pgk?3YN#)6DP^<)A~P>g=E-$uT(>cOR+e}X4y&8cY$vj6^#*yxjH zxo!7Q9sb6=tCjfDq&L61(e-R^55>RvZ9$tpo@2YZL&#%!kHq#7sm5qi zZgHI}X4o|ng_$bzZ6an>mCoi3h+sYFFaEAr8N8s>W8)Hcem(+Xq{LZHpN9mzIz@9PQ;EuQzR3}rH7UwL`xx7Ky%j*3WBsB-7J^T)kGJAZ&puZ%sY??oM& znHg8T^9&V3UN*=a53L9~l@RQa3T7zpGET{g- z;y+?Pb~SW9{KvGnTRGn(C@5q$H8L?$($^O|Q{L9u;3fsH+9no>d6?ds;Bt*ZkeLf^+t74&nYgq!qr_G|_DX^=Ghvz35Zg`YsWZBIce%+zfS;ueqHl8nNbJK!oL*b3_tNM0B z!%5`^sisMOSvbGqCYar(xdh8o; zRhreNw&~1`IHO|Q|7@T04#JA4x*~(tCC{oMzg#bQ89a)m^v8W}a5!L?MrmxLm>5SdwyG8Y0}lxuTsjmUq)8&61VV#jU9%AZKgo zN>Iy~{=IJ?+NDtu*BAH01S9F#kNXzy^ObxYp}?x?T=-}*18lpvOZp?)u|(PGKMPX` zkyenoWy5^zt{1+uL0fKa%tQP(Tl;D_`}|U{GvkawnEAio62EsgqmcFCiv%LhO&?kW zu}zw-$Cwmfnp@}8rGLn~-MgQ2T1tOvc!*yhsrl+Bbdf2@>XLDDKO(+t-5IhfW&uH( z(Q$Ip>=Udh1*zB6iVnOs6;Dyn4iY!F&tXIhE_<_61pH_$#x;UIM{`?7^EHQ`3`ihV zVsE_%rWY>^j+vDFzr|`IzyUCuSw2J}cKV%OR9RurCB-%hX$^9gf6%YDFA;vi26d60 zh2KaWAA0XP`R{br*T{ah%W|tTW85{I=LBOxxG*9H(HtC$ER1=2p@3#9NUDw{dXw|y zgh>zUV)k2q+=RK>qW;#NwSitY6Wjx$$bKn~&#HB-V4F2%EJdPl`G@G8#W_K{5o6g& z0s?#@uyt7g5qj^~(6#G&Aj|BL@)@Okykago_PAUl z`imThQT=X8mr5SoKr)gvd$U>(qjg~Ixru8~Ibt0^Q%WwS(zPP$P!+}$&&Wku&RkbpXWMm7%=qlx2ymZ>RWMm}=8i7P^H&iA^3Yp%t=N)3MhuCr z*rA7qm+1*fjP&X=AsMU=94w~Ksk;obayrPj9m>yg&gDs4IXlPyaz!cvTQqbpEs@AX z&Mk9;O)a8H@7(K-M z@n1wMqeIoU+fk5(qS0l4=PVst(WJ?_Y_dGpVW#@qT@^uL+QRdeu*G!rr026mQANUV z$U0ezU|vVN)G$QW`&AoEy37aKLS(cd=lx$qk&+?-u|O`*+RKe1mXUS=htX1>Fy&Qd zvi)a~3g6D7Cy8W4T*qcK?Yi&3_CJ&JUUAbcs*``|!koJhutq8L?>wU03oRWpaQEy_ zo!d$?2|RPtMF=QKrdj$-j`B-IN8fP=>lXx~ha&y?%5QwI6=6$Q?%2dg&MoJ+s0234 zjzk-HB5xWPh6XOmYZ>3T2wLc5n3Wj>7B94xgG2fVY9nmdcRx}e6nW(_6U#~*?obYx z5K~*(^O}{qU^ge9w%5euX4$CIbcK;FRA$6tG+G#! zMe~RZM~JIQCC*NY%@bLO=5>+~F(?wy>c7BPH&z*}NNYpUx(Inr(E*GD(joK$9H;j?D)#Gjd;UKN`tseU#9*@momKoe(+(Y))jj2 zy~AVL#g04tru$~xi-|1}Pmx_9E3e-HY^@#TeROk1fCiUIx;s%B+MBQGGA+^ATMZch+wA;0=wF zYLC%*hFua?ZNSjVd8Iw~_`xwA*-caciXuO$i0WoSS~n+k8gbxRcz899 zN}LU6#Mm8dSpMBmph9djwW>g$mRiK6uGx5PztEUIA>c}$8W$v0z6ag|g* z`1eZwE=z2A))Fx@=$}&&si_h9uYaW9-@CJ0nUnBC(~i8x`Yx*c6=MZ|`yf~DL1f*{ z#X|W$rM=p`UUJK0Sa)>cLS^bB{qa`cgJqSg;%J2RdV|3TjktRGq`Pq!i^DQ%#OcgM zD=-{iIG`T9*3S{ak&Ezr5m0}^)zc-zaW@~Ya8*^k%MM69ygbfwJ6O17nDlg9_DY| z@R9t}&_lim3p;^ZVDR%Ipv#e`xr-amvWoguD__YDtC~_TW0J`ppZvN&<9nQ{8sNAn zFc;}I93tI;J|XvLgkqYu%3_kIqqiN1jIw&FAvYg%p6Eb3?dwLv7>HSea?KJ|8y49+ zl<(ld3D1G0F>|0Qwh^uFtyBKyRhc>pc|Bo%ChXI>1!D{*9GPgeeINhY^}rabRNvQA zGw_Kyrs*zbT@pDu$|Ww**jV5n1#@fnl`%9O4+oK)5`TX|L)6U7!3Q%9?_$j3qx4X} zaYAv@0G&Qd=(o(I)E;DvO&n!RhYY8V*TgECnGSack6+cCetdbemBRDQG&f2w!3Sw) z@U!sPa@CY&=Fb`!h9*;D#;uP(zK{eVevlUdZ3n_n>t*L;`pJj8ftR?#KQe_@_#V7- zeacf?EwEQ>))(nblDT;HTyoog7ru!KB)ztyl2Qs{pf zML1Q`qOK6+EQN*cF)0h2#k7U_{sznmdpCtY@BUhAc64AI{N>KU8iTe?(b5(MFFh?r zOwp2llhwA)tf)XgR}t3huDAg;>9O|>{(QwPzbxjN2dXwJvBo#1X-gb-{NG7KrOY6KRYf)n7F`Ir9#9!Zj;Fsu2EC>bs##6g+3A9Z5xx-2KSw4Ze$NqzWliJ290toguO zk_fFAMXD=nfB2Q{tU8QS0+~^Nr8@eRz#*_Y>OB zh9FL)8=JS?L#11rM;e2)k4Q_gpz_PfL4(XWrlR2)o+s+cr`IPX-KQdW+sT-E5n3E| zJr2%^B?Ty|n1mdJzy$~_XW6lO-+8do-;rV|u`L{YZ@7EUGNz?85}5bl$w~%_IR}d= zwIMOkzB*>apI2}VV-kwSD%z2gyP6#D|EI2QW{08ul23T7UyVsg z3FHx&BY8%j@=lUjEOzS&ikUtCwK`3`C{u4aRO}v z=gsGnaLyTuP07LVRZj9mK}l$JtLy2KHsG3e*a@C@1~y5=H@aQP$>s!XAE~$+)@?{v zs&u&)H1~RK>x~qXmC!m_ZDr+Oe6cr>a&wGdvTj(Wp4p^re&X717B@u?t*al9AeRz) zjS$sP)m^Uxa%Zm#AO|_#HzC8$YyoI({AXNYnQi?Cb2@hQ>G}e6ThtH{TV4mWpy#BiJ7Xx2daWc5toiFsboA(&uIy>d=b0xPdVG` zIL^40oOZ3PNo)^3%YUI!(JRX#w3?cp<%J8gEYZ48i`~xVgcH5Erk1ng&4I-1qDe1I zK3AJm53}N2wfdaax9LzAwYd|yeKkH%PYgpb`CBa#HB%{kANT)xtt0>BV3$E_jO1S` z53GEu`+3u3HQwjjL$wqjm(5)0jsN};vm&`#z5x;(Nc>w0QlBeVJ2xr+3@cfgf4yraxY&(f{Ygu#)YYk9HPWAEv(`7>*I`j`{cEUVobGF~OM zS{B-a90m#~WapYtA*J&1DR|xNV7W!Iu#~u&M;Fw=0BJQ2r+iWi3PrHlC-3c?dk@C%v57DPp65VT% z)b1x9s$GN_@`)^V3K-7@Yh-$=v!m&tQZi#@<<#ZR{7X%0BR;vTqQwz^52G~7h_#dK zc5-8WdR9-=2eTQz`^V>AMjKsoD3uMJ$+Kqg>9I7mBb2ba;s^PU1?#A|_uy;IC7qbU z!0{j@|M(V%xAWhM#Jhlj2tG%g3x4gz4{4O-FQ}d zfXSqsn>|3(P*s9V`g3?l45V7rCR5_Hs$rG0eUQG&7}1-=w{Ux0V>r7DB_mtE;+W-a zq%$=^3mB)sex8$_%Z}3S8mcyWP8wD5c=H^5pYB(A~;rTE!`A_`)$BBX43+8&4P9bQq9wOW}7-1$V+QQI& z@&AOt)0w5h+V2YMEaXr)%=)G#9UL8=$m%_XBExaVv7OuWnJ)_`4{kLq%~a;V%p0*-ace6 zY*39BRd%}@x9$@se*XBTqb*rTBbm6`y2X-bz@2)WO?;zTRj@H2UURmuu_SK1*c7Nn zXSESditHw)?wf@J-i|c~)zwErP!N{un! z9QPcIOAW2iJUy#!XOLpx zhj?P&RH=+CSko1VUr1=wE0VBM;iX0fRYQ8k17xJT%2cBqQ^$}ZM-M`(w!We+tbFmd zAx3aybc8`EL^b3#LGvUJ$)+F~!Ku-%8U8V6l~M3+uDWBWS-pWV3X%Nh)<@wTZ4C>X zFIg7`@OHylrKU$Ui)8|vJ9!7DNx1yj{a1&kxRf%jHFnWjkmc_;dGSL=$EAm`AEruq zSx)UL;5B+6o5yQIDwpnBNHhiFf2V2Ap=-)OsT_Rsvz|mfNDLQLk5}WKW_(wCUQ7%= zQG*;D{aLQ%NQ?_jZ~{7O&TYe)Tt8sMVgwAxz@nvD!zn}y6`ByW<=x+-abY~l-K(qh zH{2&5TU>KOxmca_SVH*%_FU#?irl6Y$l8SMu}Qb~h&&;eY= zn!fwb-!sG9&h0h?A-OFlYmFKKU1YI|JLD{5GsUg3pbK`coKpPU$^)7pigO!ef3s)#rXwkoOLAj;tq=UnlrPB=gOj$G79t zj7GdY@a87j{w!#V{Sv`WYC!3%cKr-ep3O9Q9fsG|(S3DF-E$*jp4*>in4edwBFES~ z!ivL3fQZTr6P!ctn}p}OiJRCEIK&^^e}IVjLfA}$(XK6^dR3USNvZIrE%K_&uG?z? zdjQj4MGN_+CMS)5f?+lE3(Z}EG&3If5YA2pLZ_YDKD{Oi?c)6ltg24WR>r9NN9QF2 z9~D2|^!;|`Q~av~A2-=?j)rB?NJBcD9<&7;oS|Fi-PrGsU6;Vr)-hc^ zNc2f!tpCSK9oMT;?ANdB*lRM(j$4tPBM4(%cc~L^&IohzxZQ5e5=Z6p7d8<5AHK!b zF&rY#QhF|b7Q419rYh4F!072g#0tfAn#waMk>iP?Px~9Bkoa7>t-gEi9)H#db9?_B zNry%f<2%FsVhU)%Vkqra%XtqK{KFoEd})Ot?IMu=4%4(Vl0&s=zAK6pky2Xq+N=$J z{&bvfU3AhVKO7O6f?ns)Vy(>b$oRDSy?o?rI&-}H{yStWbe~kDa5ejC5Ezod9*9UKwPHQhl7$G5qQW?=Lo zAXkrp&hR=h`@V0dt7a`Ym=_EE*NQdVrQy#uo`8XX6{0YMHH=O8Ellp`-k&9pk<}sO z^Gnk45Li*!CwH0yCPbrwtqxiuuq$N*Li--R`l;%ynuzXaDsN-T*v94_8|uH)Cj2;6 za7IxpXi6q;>aK~fSj=fM$@u2soVLLy0hZew&(pU+em)sPwwH4_ikJpbmRs~Q&$%S0{IwcqOCi(!-vUv7oD>(CpM}rwH2IUrX^8$O=?0um51wGHls#(Kc`+0M*Kd!uPP+Rxi5{C=`if z?L90#C`6V~zYzFuqtok&#afM7bjY&xaE|$(3?jMp$mcs;E{D6e+Z4%hW_Z=(~ie#`5$dj&b>CpJ>aQxCY6wTg`hnDW5pIA!9oPb{DMJWh|^%o*Osfcwy9+;e{P6hyUA}8j>NY-5#K@3+D_q%c`apk64m5teX-yp6 z39TwadB0Q`G(6k=`3Qptb$P78j%Y|)%*V)(8eDZb_;1XMKol%buHg5wiz zliH{u82A^&pJzkECi`BJFn#?LS~u2sp@+j$dj0V3xj@55q*b|{h73ulscGFI?|k6x zu^a@?j;iX=0p#wR%#Bg5xIkPPwRx4RaRTe(aObY^0glgcvVTVzRaUai307sg>ogzkj2i$0Hgw zbH+o5Zk@-w6Pu`ayAuN(`}~i3pF&%|=6`9#Qo-#!kV~%z-?|AIu_tkUZc@&cci_Rp z!*)Ih_Yt$`7;fW;%WEpbkD(E_5t%MN>D-s6He4JoJ7=TIbYxBHva+o_Z7ckHdPI(y zG&Nr2c+qT}ZPqW$x|;Ed7VQG_Lgz+Z(=uJigDg9SK`lnI^A8u0XF(J75SOl4lvAA% zWkaa`&CbqCr&M}e^;qV$Mk^vV*1f`=)xtr*d7{wGuTYp*sENhB5Kg_?H?)XKhvih+ z*&H+@+Uy(&TXFD64Vc(dfwu>ym^J$}A^IUrH#Zkx>?iyFIsI6T23cOmN}+uI{RR@<{E zZ$|gojto>tcs{TI;pe%HTa9?4A&_CCh8Y*5MoDC*I8VuKDbZp_AxHVrB{*@w-^Rg! z99pnCq}?1G=FeG06BEF_Qiwd0a*|NvhS81*q?%}G4Rte!p+>$R(^=ztV&L?^0#i6^ zxv23KwXWs;+Dx%XTckVif7;vMBf#aVmfNJqRaqF>J9zb{EwmplRBKlqOmgHMD*CUE zAPZ%U&(!5yM@Dh8i31=3m+} zehMtamRbHXo2C6pR7vk(&Vhotu2gkqWe;f1 z&78NeHuoD;T@t;uRhAzoW%!rRVj_nliGpTto!C97aZumMEU4OQi9}jIYK%1>#m_ce z>O4(!{eV}7F}L{0ih6li<)<(Afytu~Ix^cqXtm`Ap3|?!(*L?*KK4ka?T2iWY>#Ab z>JH_lyOZr+9x1R&rBnhzIwPIrSs!|%f?!jFwIti4LVtsBWRhOxsx8;d?)auuLMJ!c zFe0)M7WAtRr|%VQ=Dv9ynlqx%iF_Z?**CG>=%OpWNA+=+#^$j3Nq=^;(mj8Ga5idz z7n{Jv*1R)@C9mM*e8fjdVTz~3u&?`6PO8YO^D=3&wZ;3A?tTTG*&6brB-y%TO1m<% zpv=R?(J%PVN0+m3xzb8y^|k~i_j_c!ke@c%Se;RstnI8kZCO5I zwsaNw$IiQPPof_qsKPA}5~MagtY#G5kGj#XaIo%U!iFgIK6@a3J0n#ix214cc~dpy zK!A3jlsM?Yn#Jhr;<4fQbp7zV@Ald&Q~RYP)_v^gN2b1mfIetS@9{`(RuR?Li5a5% zuo7d3E*5JJO$Vty&q(g0^OI1WYrwty@^_i`dx->a!%+Xaj6Wj&)~YrChIh-2bHu(H zdKMAaDKcF@g=d%N;bTS%W=7I7NnOO0y!6HvLGCvcSJhZ_Lpa9<|AFJs5@lh2HqL3e;tH#hRhKwsAGGxybIMecEO{t-9*+x~rRj8SY5VFm-Sv{fcL? zZ7teu<%NU#0|a_ta$!!qH`TYlxG-PMhRSZj)46|Jyl=Nz_ILYG7QeX2uU`_o!g6yJ z*qr&EAs&r{gp|=46%{IStL36&Nk?@mX_|2?gjx#>5vBL?r!M@LFp6_5b5sjMw&^3fOL2K z2VVF4Y~Q~!aS12qdBhldjS2{B2x_jwJlaUdpwQO41#;74rn}_PZxPGld+!}JeWXRJ zYoHAW;*CL-@IP8Qj8R>!Nj<%if^WBS!HY>*S0@jWTGY9n)usRRw#rQ5tif_3#~2J7 zbZ%@~f|ZP|byku5J|yoxIMlHn8G}cRq>4=~YyW-E^!|fdLJ)-Uwg$%>zkp^mx7in- zPL-YJuUrJ$EyYY3vT?VE>VJ|JS1bLpkZcliXt$2fV(^C*8{W7)x(%!cQu|h9T1;hB zR9>i_GKe^8Jzq?$k6I#Qf??@W#)y*2Co6&~N$#7UWVsK-{cZQsJ@#7>OOc)vtByPm7ZoXl%H=S3mSj!}nUJGsgGQ_;PCR@7mfD7=GHjv@7 z>>^Pc8z-!2Qq~>0ta4`yww|7kY-~`?H~A=1QBLN?ifY$gd3^)63xhb0?tfCf<|?T? z9|qo$$Cb`Q`vd~0V?y-(Ai$-PD~+YuRPvqE*XqGPQc@1udN)|@n6`((2M{0hDLWuS z;=1sprRO4-VSd3N@%a(?@H?e@dAN4_Ox(-73VD(q%eCG0)|2up9&ySdoaskQ?%}F> zrG2w$Z@6_8mA;eT&zC{T5m7wpMOho@A(omj9W-gN>X_0Niu(w2)>~6P-W!C#M@M0t z$b1!?uL+l%z=iDfdE>Xc-VG1YP27d`+$WrGcSg4qQ?i)~Yc)1k!SB%DPiB9L#jJy1 zLF}3`To$`DazzXl8JUwvE!Sx{0*vpJzSY^-Dlf zf)#L3R0m_jZDYB*Dq^P!_X8uPfW%@`$pnR4YsGjQnXDENj3R#Tc%EUTHTzhi5+WE8 zx0EH@)vLNACjPQla+BkV8mTr^yy9FL%FJr4>-h~kw%mzTW*vqdr+;ZQEY)J78xwzs z>F4H%8g@dr1Xsz7`+&7PC6@v2@I1xns=V^($%mA<*snx$spF_uq*){%y%=gkF%PBe z;#_DvFDJgmNsr_o__Ra_Qg7Do z+kM<;F`S+WU^;mIKaNFTaW8FV7a_i-XI%9B6}zadkek=rcQUI@4np+{z{EC$I>@I% ztc-^{ifwy4K_ts^gRoA%~QGaM+y zKB`+6vtCEpM}48@ZPXN99pRWb60tLHxT3h&u{~wTGsJSGkL$0^tx@%VFK-B1@C}vC ziHrEx>xWb3v>@<_f!8o03O=AjhV7dSuI)2`Ms%&~!qv_l;*`xh^Y0|FSkY?NR~TK@ zmYhkIr>oOsn8+!*#@ReB@_PN_(fJb0;y8?lIz8LdtQ}UEoYy+L=*~)GU-q~vqj`ZR zq_xI*C8}Jw#d+1~YGmSje`>wjNDRr@ zgY~-78W@n?3KnjIW)IY5{af1qsD>3c`ovXe z-GxS5#dB9oc2gb%Xk>Yxt%8czI8T@v=Of3 zwWn)NgJ86`G<&4CzD@Jc zVv1SM<+B>aHvnjVUS3dS#zB2zqh zGwu-Lr5_)5m@p%*kOXuWM|$*uuqo{C7;pkZU=iwmhpjNL*#)>U%(80;55dcyiO*7 z85|VJsFqoKJ3k%3RU_LE1z5D&Lv&m0T1d(&69lc1KX9*^bY)1f9 ze$wye4=lI`SZ&igsx4mXFiFXC0mp5y*QV5+xy8c`b#J{ zzkc4P+YNrs9->^|LgMoo%M7N;`sQ&g@}`Z%o7S4kk)=otsEo%IMayuVW0RhAMy^6_ zexzdIR0WG$e^15QIzv2iux7|apU2X|NG@T5#WNG{!t1_5<=-QER@1r24-qBezj{zNlC|Eu3;@`!$8~Q8d zp5qK1-{cV=y%P7|-=~iM+F==NRfYmzAvg$a##O9GB+QA41@p1^*lFH`kN)Gem&5GQ#KDC?;TrDRXt@pDy?E zZL5bS8Ezve0HwzsP=`_`IbbNQIZlGT$-0;cOik;4G3rK_Bni6zg|hAuzb1HPPV4S4 zQGO)1xS^bT_vh~AOf}LQQ5U38ujb!bi}W2_gbd#bXpc+msH*(hu$z|NsrY2~OT~8s zxB<`}en@0M*Gnn*;i6P%y5rv;qfL4|B1R=^rkxzoyQ^X7Mwpv?-o8<6XRuawE zEW3?shwuG**uv7p>$ay~+iq=NJ^o-5U}IxkT!3N?v=pC5 z(wcA`CYOuf%k7;Zh$9Rwx3D;wZkHjATJyLJF0Oq1)v=v5EADa7C~uc>1%P{l@6pA@ zTS5)YW8eE?yQ1Edj<4KZdfZL@%?t}%4G*a|{eQZ~|KpTObylH`pdLMMhobm_qvk-O z&E0#*{DoZCNf4aJ75$X_6Ptf1N#{TMO$5oI6{Uk-Q_bW|-S0zhcuCZkF?;_X0r?i; zx(qBIo9|{ZWuFRIeOmA{ev>fg2lh!Q@)Q>bY1=y3Z$+gPSXKcG3#_>KQY4C$6km}L z1n#`=5@*aDUx#fbBsOo{2*BL9y2f7;OmG4j8EeqtlgCEV-?Z<^4U5hzk zx_3(IY;pbR=JtY`CwcWEU`Tw&^G6wEVXi`+Lrzo)d2n#u%w7zg=(e#1VVwkkkpEL# z`$(`*fBKX1w7Py;*TGUgHMM#-Sd8NajgNRi?<;drn*mMi3;+3caT=WB9(ol^Ynro! zyc@1n_1CtGNB6=^<*J|h5o;gBx0XV)#V|yyk7A)?Q9xUm-Hy{ZkilIRPA1lF%RTOL z?0M%YXA~3`|7INPkHDbzV!Mw3p6BpE2oUwmRrN`zVP8MwZ|Kgh^}qfgigO8RQ>O^E zQT^HpHh`ag@`ONFpCdT=8I{1&a3 zoRVdceiE2e(?kvxKA?FkZC&V@ud-KI711-{dK>sp6OCT}77SMWbhdSiQw4|hgEzmJ z#;}RhvAB7u9cXAMFAoo{FCw5;9!lGKj3^{spPVLtryH9zNPTb$=`9Ql=4EFie7@m- zQ<}xb&{c(%enr64VbD!oJh=Lx41sFXCDT&kFfno2hipgxoGVRG@7;e!Hr}C=z<1~Z z>D`+MsQIeB^+0VvH8(;VJ(kw7#xBPOD6I<2{J9MQuqBS24 zCP|W+td^zBk^rBq3R>ev?f^$!lS`^97Q2M$sc{B2y?3$RQk4%NmgbDu zz*OJU)6JJoVZYvf`=)^a{qFQm!#p{V+19dw&II?ut!(QO;^Tc^5xiGwrOzW*Et3Bj z((Ft0t8N65fRLjRi{9y|MX0oe>vK*!kRB}%x@8c(>ghpeI$d$k4U{BiH5=e1eCCft zXOSUwkVY3-3;fM(NZ~K`GX7=Hp#_t+h<{*xZ}cRnPFG4UfedNU-RK;4$?y$@k#tsP z;m;&P=`4&UG*DzgiDdm#A&nOR9hXtP<7mEB#rW}2U1;VchkFf6ds~Lq&<;CEeEOAC zWD_c&h5+Xvi|fVn5BR~EX2`?!4c4!+_(vMA8$%0H@8D@S)n0M?@6DtPAucP1FgN8( zh$f#?{@T^!xuf8y5_twd1| z2`(|leE1BHlIXi5J69dQV^bpEHcb^=WM^H&nc{AzIygxcDi~@x;cI@_hk6Y(6r{Lg`37iL%I)Z$8luvl$#umih^R@#93ULWd zho>j&k*@Mti9BAlcb$LVfd<3qm@GBK$c@agD9w)A?oZQ7;Q@y{b$XJ%?dmugGeEJ+ zSrx1{l#is`xr~fcRSYF#xj-&RFIYrVvmc_~^1;z&laX&du|%z zKn>jZEv3K$c_ckxv!utq(fodtZF8wCsB&I-xG{+t*ABkr-gzLD#Z&g|Znqgv9v8^m zs%u<(yj~QO8g{?UVoi3rAE3b~dduo$`Z-DeP|u)|6aY&CXHmoD27Fy19d^DdV+T)` zKXN42Hl>jw3_s2KxIZAGhKksfbni^?nT=|gTO%Vz*&oyh>W2nNOiF3;;0~=k#lR5B zDHjT2r_n*k(Ks3lpJfn;C_F?wtKuT;XO&~T!klUpf3|)|9UYjFOs0$wzbI{>Zck)9 zaT7Q{cgEVQO-wS|`h4XwF@Nq%Q}lMtm4HytG9q!LVUEQxsH4*4(O2`E3y^oI>(>Oc zU2HSg#;5IxJr}9Ck4}FnxCow)ugU!W>Z`|vG8Y%`VEA{Q;)9s_WZ$AWOdOYH2a5EO4HgK_&b=UzLWGcDQ_CB7-%&c3`qB`RcI?9)KyaU^ zVH2f@T=ci`!!qJr+9^HGS4jETA6Yr3UiIC&{{RVY2O$=dP}klVlldtph!IVi)_!gs zxvFxv_@`cX$I^)G?n!H^UlL7^pC0w^!=KGT_ct-98%pbc@K7a&&TGE-oSPF-Q7wNd zSJ!|aiF>1{MisoPea?N@GV2U&2LySSy8bx9N+^Mf-tk=q<$iv%8-lRp`Bg2vmQ)M! zSD$>oXGR(yap{RQhAxqR7|(rnDmlmlTA zbHte*BsS-{a6Fo)N>bLs)#`uvmL()MJeSv7`3Z7cQUCEzg8#G(KF?(6+=>sJ*vBus zdnY3)5JH#@SEG6z(xGei0;kIj%Tl?;B2e$$%3M9x3TY zh-%1KYvy+gI@y%pH35bZP|wANP!`=H#F+$XzW0q_@KL_CL19VA&EvCPFvZcE-&J=b zgaGQf)1E0o0gi=sQ+Al7LwU3#1!#fT9OIyN3kCilCZtm|^ z6%TNq56P9}eiHH%3W_a9dt>+|VcPGmb@dAI$=9~-uQ|8w;8t+~KrZUvN~*jub0Lc* z+Pgj~9FLS}5U4XDf@`A+huH2tl4?}PL>?QlEu{0Q^&Kwh$!A0~x3BP>3E{+v4em^h zAF0c#n7{7`5TQWqfy;PsJXQoW5iH+-k2$o+5b&2F3`RfIPL{6KcGZ`}KrLjtrYa|P z>Up97B;YH}(W=~(-wSl#0W!kpUL5*W^z&I+lVPTTajmkGI1(_5wei5j zk9yS5*T*>vU9Lq%DQ-&7i(HlL(Ne$kElM}6OTWvM0&ZK;DZ>5BNE!hxsx5FP@9>LoT_oN;X8J^}lqy zr<)i{T?6_k*d1~rZ#}E#vRBa5)PM!Qid}nhHL2~}&9N8~a5XV#{=WIV^zKJaP7JQz zvGT{QABD7RKKjLrYjKu|&s3$(zR7P&rQPbgF~rH`=QZu^EURcB*EnnkmW)E@Hf?i$E;j_0rZmJgjz{k<`lQ(K*Dj~0s@R^QDcLJ)?%*DJWk z%#0Q`mONML9pvwQo!s}xW{wps$~JT>@Iwleg%}CEd?4iWKH>QyzOB*kvj1#k`Pmwb zrf(T}Eb;Mv8$eOiVIUXfGkm;X{-YR*$uLY{^PTaxkC^4#;WRUxu6>zdDUMkxsb?T4 zr7pq5B(dJHQC)TFWG8pIaJ%lx6=IpHSv_~ah36D5suaiDMHADDeus^X?E)gh^y0sc zq=ZyNnJHskJI{~ZtYO=!`1I}SVW;3c7c=+d5&4L)ggNGx`{rd*(R~zEP6g5X^DYAA zcl1+)Wt~5LJJQ(I?Wec0(wHrEb(!w%b%nnoX6pa!ag8p_iSTh~!QF z!S5O)4xv-eDYDURSR!lww08QZ_1KhznJ?$_*5xJA-$zA)j8Yj(=FR* z@azgwv6Kt*_Z5P5gqzM#TvmM8#)KdYhMEkp`rZZ+X5WpNP|@O>1yX1-&2gp=I?k=Cs3w zSO4Yca&^tK;P~bPkU%yO#SoqKLe}uq_#n00xs|^O-y!^NG_L?pz$Ps^J-wCDkkA5H z+_i!G6KF^Qi_-wrtxJWfp#2c15~*Co3Ru1^BUpbdIrm&>j$ww zJ$cflI7}vTdp9N_IiLGngb6NJ`g2R+$QNXrni#}cGfqI+V7ZBGh#Hti zP-$9Wc-JG;UVLVf9`>;p>iWH27@&iOKElhY;jZ#)-8FvLs?4RVeCeIBM~}?lqiX+Y zM1rnoOHO+Lj2uq}Y&5g)Abp^9H>&j)!>nmA`ct{f{}<59Ifk1qg0bQ>PFf8kw9L>YV{Gb z?Xf09`YSnRfzvI=j_29R%8mT`g+GNPU&9(KF8JZq9A#h8%>I^sts4OeC-R0}Ab`dl zCA%odu=?It`n{ZZocmh=2B0elczouLphTv|Ip!L%7Y|KED7k0*NS-vt0M$Hm{Nij* z+W%Y6=2OF~K1^Z;?1FM4-bDi(J3t_$Gd%>c|L7Z8FJh(E3(oK#w#wud>-j)++xwRZ z&m9o)18XbTrwL2+ye>thPsoXc*Q7;}M-f$m>5DofKYqA?sO=dj+ZJEzeqw^9P8gK~Ubjc}a;7|CNlt3E^|6 zD1nO$h8{B(*7>JT+d7Q+zqt80VZoX#E-u{;fiuJB;z$nm?sEF&mD(iaUC)aSyEV4f zuG!DS$f8UcYErwt0)G0yB+)&QD>!9k9s zXXDqOD!O?ESBuz$NR5qtKm(CoJq4T_+*o@Fz@%Gh-!Q!5EC16yGtAK#?G+=hQ&7hrty$aA;J(fLf18AnHrVxH6Cx} zMjM5ky)ZWJtkZFJ()#-4o=n4%sT`a*s~@T{Zf$+_zayO-5WWC0P@5_4NH=V1ZcvQw zs)}hNZjAbH6E?&fHVu^+;z=0^^Pz{%+iAP+M*@vNps&cXfP`F2(AaO>;7mJizt&e% zGK|ic!0Lh(twyYqZMJ3uz^FC>% z=Gk$2dSI;kCqsn}5BP6gy{ROV4V&TE>^rsRR$cA^vL0YTn7qaki^7x3q?pTeJm!o6k$OkNYu-g!l6NZVPyPQ|-3f zI?V`#0&`VPk^vk`uFw88G~xY>aw3L+)XYO`by8GroBcThF|{TxsrbUt%Z)yRqvfr( zr~B>FHg0n~fTa%rOyXOjjDzkkv1f%;z$MV3gHxWVB*^^0nCfE-!Yg*GyXtR)g(7-I z%Wv1MCtmKVuRvz47Ri7_^6`8pl#y7a^_ub zf@dAK8(g$yf16z@FZw-h zux9d>3Ho$*= zfg_QBi&tswn`KgY1${M4KQT72$%i2m@)zpBQvMge+IQn&(GbNE>N`ff?L-sOwMR!& zXLa8fz`)Bea;VoW=C|2{OHi-w_gNj^wmr_x_p0RGcnFKxUEHe^h&{FJ-$!1G_`Z%p z2Sk3XNsBhI0fVXf#63*sYGPrg3WLC5&~RyEy%u(n5uMD=A$OoB@6D|e1aqqaN&c+Q zu4TA|vEWoQ>TZHjH4l`AB(2aF+<^>)H*df_%8zU8MUDj*8wlL@)S|Yf%vg5M@jP&- z&br-CK*z(>U;srDqce3Ac}KS}6Bz)!zt0goLbv^3DD8WbAKgx47v7iR z0*?1QWZxIx^IeVIKWwGxN?}A1eQ3HM2?%-FrY{LaUkLaBrOB5|d}!_~uMyt-P1G|8v;V zf)=njfu%K?$r)V#T%25P4jiJvHa~hYe{2q|u8TQgu>WTPja90xH$-hm{%v(_rGmP0 zuO}0WQw6m9At-DK38r3jv|-lYB=!hTE}66&H>}6tnq;ET;wt7H>m#~DRjTvp z;3`2j+HFMij|8Ty;=%s(Y-s=g8BR1?4%9mYhYvqrM|{vUxBioB$Vomw)semtg)9j@ zQ@IDE4>u2GD5%6y-Z=JFKyP@pxUrFH1*O4&!EOpo%fJy_@Aoj97%)Dm;AY1{$~ZD0 z{8aU30-at9sRkXgJ}iiR>E#suI>P0zXrK}n?NidU&RCj2(W0cZ^wpl3IeznL1jX>JyAGDo+1yh9hA7*cIX37lOE>+d33WwaJna(DN&2gV_?aEcd($;59X=x(67PY?9 zKSXG$Ki@Xrm14J%TpnQ7SizFNnl}c!e;xCm#ybpi_@{t#zw^AFeocnTG~1w48x7EE z0qsKjNuB!fNJ^T0N=*Qdq|!Bu&&$Abd?8td#g25Tla^e!4F z;ydk@D;V*xu+DkZGVAhs%DI+XlB2ux?{cOh0am?t>kg7m1=eMty8sY5$v<-ZWvw3e z$hXMG1b~rbZw(hi;-N`4oDx?5przrCV&If&AYjZZEY~ygJr*dv*CBeqCT!3W-+ZY8 zkCh{lHg@0y^`4g3|9RMRD>39VtuI>uHyaBEl(X9DsUW>P^tKtnnxbq6XE2xehd>+h z`WO&sNzH3v{snORw2UQ@gREsmEEe(fSZzvLy9a9iVCaR#myCn#`{XQj{L;Q8fn`7$`gfC`z=Jg#>jVu?X)_yoQSK+aa*%hp z-cxR_#25%0{_>58wzBf`n5!(mCDIh1n1LUa@YaVQfm2$_w!3qjd#3juCp zB}MeyRFnWAnz>jDd>%qr6B8VKf{{1sW@DmYNceVE-Pwes{nG=>zhEa^u!b6rgdBX{ zqQmFJ{-1~$)sYDhq zFw2E}OMy(Jb&z*zRC=C2h1TUKR?R?(Xr9`w7AU;V+(VIjC>2em>k>dM!@rNHP|RI$ zKc@L9x+r<=q#t+^`v)V6#VU+{hO+iRc;YI){7m!3ulVDdl>NaQ#5n-RE^0%q@NGY& zbdQPHOa)r^mV0@wyXETE@b@S%wSsX^aq))PKZQ(9Tv~{TWrx=Imh)c+3pi@hmvpSL z)IVI-#w^SPrEk4|`VeB*x9YI!O5olyB0mCpSfE`6MMZm$C;*-;3NbFX( zyt~nZd*I%Jv%3rIhftxYDS+3GT$GX=kH6^3@4Ym6UtzY2co2=jf<@bqq7*%CI z!Pu#gFkgB7iG)iWEUMfJpSuWiq+hA9;0)j01y1O|oSc4%Z{|ff3A8DPwn?jd;K72q z;}Vud9TU0v7p*SEqRkgJVDSTO8c@!rus`b}tz)dzf-`3SoJ=>`{7+>qUw7x#q-NWE zqm1SKxdTpTK=yJy35%&sr=Yz22!>yd-Ki+>mE2I$T{72*w2vTIA=Bz`q9?2%xJEKY zL+S%Nj}z=@X3dwl*Q*OwuXK0q-qNQbdDT)cFKFpwg!kv0r@!Jr*&1^@j`hGb?HmJ~qqpaL zrrg#W37dq6(=%VvtrfLFrirPmaPq4;pfFsyiOEv?1qPK2fa0Jtlq4X(CZQz+g}r>9 z&$cSyF&0$l|C9U{ZfMt}E+`0ZOnu)FwZ=V1;^1^l!ClT;{?PMdcKu=A=e4$}BC$k#OoUf$-N6Dq%e?mGA!j7zCDjBL zwXl0B?YUQVGwB3ysA5cDEyjQj3dksd8ng@-yf#Ecaz6nH3~_$~JB~=(LBNtpJ4gNq z+4#ueI44mP2UHNLrDyW>p0!}^1Td-yqUxC<_)3F4p;1nH3-S`NVK3c{amMOS&nKT< zG9U*b!>ZIlQIk$dod!rzdMUh5!?7GMn6$TOK$Otc3ipPNo_EFfp@)&1ZdZ{H0X>3V zZ)+tt2w!y6_X16pT%3JxRB7ZhIW||pWLw|S(;pWXJNSGesZQy@*R~w(pMa5H8z3|~ zjbv|>b>}46@GhNK)S5)f9Djcljit$e!0ZC6b*3CUNw@1L36G zfK98yjhTb1GuC(0=+sycOU|?ckAsW4w?Um0os#+=1ydoSq^NwSlppk|UAb~o$+9&0 z!+^5F5pKQ(@EIumUIcEk98A3>RNJ}~7m#PHT6x$P9jG$sjxQw&g)gR7}AW2 zM*!wxvb6kb+?x5>;!XF=Cr1Anh`O5Ggn)o#BYl$qs5IAmN}X2|(+ga#5uj zMaZ9QGISqBVpndhdCt~BAx`<8v#!ZT!ojW0tynz3>*xaT$uAp57#WJ6o* zHs08Qt?X?>GE3hg824`{9p0i5naximJOg#Ve>WB)xxRUWO0D2p19AJ@u+rOdoOOQ{ z$6Qr;C<0^x@3Ku;b>aEAe<&i)0la-&-K}YCWd+_-(hf1-)g;Tg=E+X(|I&)Amlj;i z?uM8lqJD5t7@=rxPgVRBcve%(4N8-%6@B}JLe^^?a7|B3U3U=OCQq6eS1xqwFlH>6 zEr#++dfw3QiI%QZ+xB~o;el{1-uDhfxsqvptKu|tk z!ESvmbYt?5mL|einx=A%;m&+GG*3w55NGt{*DWPI?jWq9h8XSvP-k@`goC75oJjv^ z%ZTHF0n@E!1N-HNCCHz6L`@WMzN9z2Zkx)Gdt?*epNd4EUy* z8p8nIy+40UCuA_euTlJVSW|QSSX%%ouF`@HxTX^5YPoPw)0`K0F`pW9TRXG8{D=of zyF&;bau^QS1t4{Cm6*SKB#rcAcTq_O)2zLM4bI|pJQ|)*<2It?aj)}#?1-=C3t6=h zf;Vz|1P-O#=0&}@f6snW2ZKLi)toFs+d}2I#D%yuU*y0dTBHlR_3;8YRJQMNPvi@L zxkDlpW-Ik9XoOr}GFC!(PxvEfiwXJhkYM>RvXZ7L7g@6{SX`}-*s~zH?B73SW1}Pc zZlej6uX3n*pOVU_hmCD~XE#uo{N&VYG+f96cMjBw;PCC~0TWxDP7L9|ePA{w11PME zMaK{4mv!}~ktomgZc5Et1{^TkBnBx;0!l3yn5O}b5*>{};=2>QdvopG>F(Kxsg@um z9amVi+gyT;(|LcxNU}H5uABth3H=arh}B49zOCy298&S$F%Bg{->oXzaq}!h7r!bY z{G+Vrys|)FL6lmM0d%)i@3Gz~tbYoK$$gIrd8vqX$umMX4B|Fz4o|zzj)_nMfg}?s zL+&4Q`U=zdvQ}bz?wf(u07R~=I!;(bNr{USrEz=F(Vbj^UpXvyOCoIbX=114zHbbF z{SnVRHiMsxhZG7!+eo#Da?Vdx9W9;qwYdM^$+S5e?*wK%aeq6mzSye^tr`V~ij)dp zAza`sHd}e(bt1AmMYk%~8u5KOTzp}cmB8zxWeD`xBu`yqYU&O44al#FzP3Xf8FP#* zPBfxcnTq@AH~#Z)w5>375*(a4fMdZ1vJ2q}iY4aE6(}m=)0Y4R=#kHui)}kE+yCM6 zgyx1#^=*H_Hv!6z+-v{^WY_(la+c!tlCt4j14E3xT33+gTQf&2U!AK<-Vsk_N;z0< z5sr;CseO8C>}rF?V&>1esYk-zYi&m(Kb1oZs?WevMBJx1R$RL3P?KRA7C-p|#xvjyq?`m+Bl zNM@Hb_gf0mJ}p{;5|hKerem2~4|vX6#QfA1IhP%Z#nT^>R=@~zn~h)OBIJ5iR2XZs zNp>wJCQrWf>blrK(>Ir)aQ7Crh%=+6rc?BK`6@McO3%Gx=>8_INusQnPy;3iILfT? z>aVzU4tR-@_E3^<}~D=taQOrt&lJ3vSrU{3b`>{b*Lw#(hBo!wLu3tBm^g@~4p zl6dS%8z(0=qO<8w=FLnH5v>`tjC;H!Hfr3gRX^4;IPTcvE$Tj@N6tMvjkpekY+L8Y z80)U_INu6Ee-Lq=YfKs469!oSk*0G|sPT7`t6RZyLLYaq9G?6<3w4O{?$KZxfSj^j?e+Xo|4M;XuGe zMW>=iyyTRapCT_@2Z@qHM1AK^x5c2dL&~fWGa6b)ew}fYS{Yd}^OeEzFlJ!;5(ZRD zP#=RqmaQnKcK=$Ro46zpntn^_TI(`hvryxFvROieL+$p}4LIPszje&ckmNTSz&I0V z0xqym5qKoGkn+4I>_`>PHz+jqAQY1rV<-1z0C9L+wF4PGtE|IZd_d1FZyMTOUyf~$*~|A!^RZN3lrqp!v6 z=hTPS&R2Vl{`u1V=8S{|`nAm>fwsMxAc7F&U1jM%EyRGB&}7!~bvNj^f~r=VZZOb_ zj7%D~Kwg}AMVMJ(>t_1^4_3$XCrI==nU1R3_qC&~v|c@vR${)#i^=ckjoym-s?q)T zJ*HeBP39M1-F{J3SW*sR{o-08R z_p?a^Lu<~sLXTc8HgcHLsu!HBc-lDV(i|NSyXO%(j9_**9j#$jzw{ik?k$Ay3mcdq z43zpEJWt-I{3=8Jl4`l?8aRyz7}alyo|t;pxJ&xpPOC5QLg*0jLa@}f4?);0_)B&v zFAu6tf1#OHU0&gyZTb_?GSxb+eg>0ajJBgxu_j+;X06n+7?Fcc*w~oI;mMJxjsM;x zM5rb+98(vlh1UsIq)fm3#9ZT7hclci6w;Z8{@$F9+T$Abc;YC8ak4nS;6aQMAg=2p z6mBuOfa8KPiq7Lwbm5zDz4^7U|R+! zlAf`gGh{IQn0V2QD+2t$A*S*M=37{VXu_YHtI#jpv19ZFV+0%!V=k;F6pu%SI)NX| z)Q{0wauaAG0GtUd53JXh0q+epQqw-zX7-d)0AW zS#$`E9r)^EIt+iD_S#B=As0$9Sy^tz>F8a25$fmcwBPGm*|Hkp&#G8$i9Y z&na>^JlY|X-r7d4nf_wYEQxWk*seFq1`YfP5E9y0>Trh7=J)`3FfTf*7@v~}W)7Zr z(Y7d>HMb0KTd6s{D7&ke2ey-H4pzDb`Y2))Tem)lOgwVFZ1@Bs6-yB!71c-M`A^{L zD8g?UTlg0NIV!A}k+x@ab?8|kUxie@8Az&>;tEfm)k(jEsqEqZVx6RT*d)os+ zUW}6HP3FZ#wuN%PP5O?rNo`#AkrEadObVK!va_lzadl)xER}C>xJTQCtkJQNQI_84 zDR#l6f9eSE-;UZxi7;%GK441GjUfzy6al$0Lc=^Z%*V1zhwTiZ5H#*Dl!knfq;b5S z)iLoH%y!Ld&zQSpZ0eKm6+d&6o7WwsJoW3p!ye1nomN85f6n+sl|KEE5$+0kgG^*; zKdbx5RmSU^UWkg^P0`_W2?9G6ge=S!IB@OSYqL3!; zDjq)ea(ML}n8e~3`LGN2shQ*`mg2WFT7nO@)~vKAT_mXxiyKE0Fd-u7r3fjy^M7eA z^%OhSXg$qX)_o^3Lb!8d$0L{u$H{v_05s#-khA2yU@Z>YU8R~w9!if=)eT;AG}z(u zT!1e|x!51MXZ1BUPBkCLwk;mpjy|}Ub326Z8O$yM?@(FnRs1YOJxvrn6uMVuYHj5q z?hiKo&ACEZd9$I3ewj>G4((R7jmXQqd{O0ie*+GMz8M!Oh1reM{2Kmheuxx$(laJ; zP&3zEga_+=68zqzA&Wh#J(g}ql|9*RC8KwD`eZvQ3MURfXz;mpSM96&pnmG-w!fA# zb!X3q^7}Wk?%B`vzw)gmO^ZBxa6VDyqfoo*w2cKytH2Z?o1iomrEr&u-ye{Ei1pqGo%|EQ*B>XqwnX<6k z%hraoH|xT|HnMN^e=<|LdD!$LD40-zV+~Ln)&t&AC{_f|*1LX0kZP8`bcTacx8$D( zl2Uwzqq83U^Hg!=jQZlOPfoZcanKq`dbCbpYAHflb(oY}FBD$j4Giqan~~TdiwLkf z8@@G}iJb6f+v`EjNM4xzg@p-QRMo;60TqcO;=*~qBk9Z3G#r)kvn;7x3nhlQ<~)+1 z@_1e%;F=mIK)Pz2YQmTmCOt6mm-~zdu32m%;8mV%Xo?n;Uqm}EDl49ARcPgap#UJ8 zI3hAFmncB~`aSWBJv1M~;;za;WjOq&yxsm)yF>FTnTzV%`G8J z`_Uo-%LFDT=a%oZ3oR2@ZZz^M*l4~YNEQG6lBMr|ah6k9WskL=GMxaI*dk`G69&{eO7_yGmGv#T;fWpsI>IT$QO_SO8QxI5z-WwmWM>g<+0= zP+O+)OzN_a_2=d9BEK;lT}`dCW8}5oI3KotPBJfA@PHl$>5f2-D}@1$HAPj`(46zu z5(|8wi5@;&;@TRqvQ;VX0o)4<4Q+tuPlCMbB@XTdPR0q_RL+v;w?+du|W z_B735vEmL(P70-uB@rw2$)(RR2H?H3B7=D++uAFZ>tJi)!Gc_nEU&}A_4){Qb^zW3 zAyILZPOj@g2%b9{Vv~xC2X=+#S8V~UR8&2n^F7#`Mn4w=7&c(v82`=U`EKE@Mt|7D zZH0PTn!z(u7Cb1UVqK^4%C$spe~S_Ec&r7^s(&Ss=tX zwCa)L=i}FB2hgScZj?UzGL(ye0nY+& ze4MnxrwPS;&o!NE1n3)?*w_e_bhF-LdCin1ff6;pT6Nduyz5=;z9?_%s9@3&zA zj&26h)9L6;9X!i$i;5^SeLfym6TwbAOUn2Y5&)TjVKyp7$ZLpj@n;(oLUvO39UOQ6 zWznwV0PpO)3y136a3mSWreM>TqS5&KVF|*vClnAi8t0tRK8K`qiBk!}Qnn(GoYYf* z4|Z%B=2pWf=#)tyU+TUc4^yb@-r$nS|;$)5=GCW z99)P1#goy~BOma8MVTx#;dTb^04M?p7fcW^MV2Gar9D2dyL&@<*Ka_ehHUU!TWS3I z&@ES6ia(JSkwIhpy-!Q`VuRe&w1`hj&-}XW{un+nN6*>3K8S7d7ZSksn3XSDX4*REr!s%Kms7SK zH0bZWuqmw;ddkw3YD7&=TIBQG;qB3f^M4V&(hP%4B$illz%1(4@S;2qRm6>_A`j*N z$JJX$1-Z4`+Xf-h-6cqebO|U(mvnb`cL~xR(%qfXDc#*2(%l{3!uLJr{KhwiL&yGS zt9w7|dG0muIj`9fSN%l^4>W%`D_2u7)^CF|I&Ma7n7Z(_eoseXN#P0&LWgzvIy{m? z&87o_2d|!jm5^eG%?Rh=EY1Oxqr*ylj${wp0tVswhqIcnB|w$?Z=PViP616eePpE8 zmmoU($v$v&q3x&E^3`YtREIyV+w*-O?JEU^ZZb`E`5{j($3$No*!N~BLGzJh6nD^B zW55l$+9;$D<&cf^JmNXOUhR)y-_oRXd<~DQXVK8ND8*#>hB^F77zGfzM5G)Ubp3)W zbWs~6CxBV^>5v>{f!08K@-P<9!=`rfI7kV4VFQo?tm=t4<`&~#1?l+AEA8t}{*A0Z z;&eLsYKz1|LV~1{J3`K28r!Q6yxC(fu_GwF51@qRf;~$b)FcTf@WL)c%DjUZm7QQ$ zwR;5`T~;2+YOb#*m}ybpyfza!PNcgAhk+TM+Z>{$81ls{1Yn!2&ToRoe)xFt^bYZ_ zaDO{uinhYB$HJiY8lZy?hAe1!Kd>tbaIj)2aR9(2*Q{<<8l9U#X<;pmk=H3ZT#^2a z8u*}Wr0Mg{;0D;Lq%$?z1>6J^?1)Dms+h@cdjNl=e!~xjIWxkiyT=kwd!tj*+XYgZ zWbCe{U$k!hz2eR>zkic;T0(JQMCx+Wuu!-Q*HA9_Dt}H*-!aju{+GQ5|IadOGo{Iz zO7wxxKz@tdJOtoETpfoNr9I;)z~vHn54?vAtcF-zCeNk-zF{lHaS(59EXy8TZ_6;% z=#**(3E8l3jEyD5VS~R42&mVt5Ds~i*durt7x?6g0HIYjZ_n+-3tb|sD5L*7rvb7tVW|vY1zJ=yI?m$Vf78NN-TlX?w%e!&`S89R=5<5jd2z zU%yKR-QllVQ0f<_$-1!68AykNOH2uaKzK!Fw?Y~K_u=3A^WXOa{b!us3%rBBbm))E z1J=zWF>J?b8NI>mFR=>u6UT=M#tH(C5cd_0>@TnE@COR$|9l#im5Fdfi|?|OS^5=T zk0T+v^%u5u>!63c?(wM&LSZ>DHPJ6JG05^Og5QF9&><@>h9#|Em-nXKMGiMG&p2Oj#uSEq)&H>mVCj7YoH$uv7ca_wsaes zeERIq+e6K3yD9sW9Z1}Pfq%YnSb!?blM+J?gf|T>Y=3%Gu*0{*f05o++n^c{fbSX- z61f2JSo8<~Gfz4@?fl!MGMy zk>LK>=3T1q-2>ZpQ`C?P%#5%XrawwIKz zVn?RHko%aF$NJy10edj}Yw}%7fEU{nGQta7ihWU6s1~0F6ex*clI%k5ye^N|_4X?s zJ)y6SdbnQ!LGM^jdWks6PMa$@W@asE(@zHu0F3`GTQg|m64VL^xF79}W^O_s^_*@M z4TaY>n2s@SpVsdYWv!W)iwb+adNM7|*?KlNu)0#aBE;njk{fdDX>QAX_)+&Imo|q_^jYA0Ama zH_kf>krw{`_;$EJMJ)n262kxX23Cz=>ONHZHp$#OXlJu0XG?csKl8Ds5kGNZer1I_ z)U(^IP=wgm#KUTLAML={dFeM8mw-0a9gcW1ZyNa6%mp49K*!~>x8G_Z029<%D4?wAcUAi$DK#&oX{1?O=$absO~9jkOiQTYD9ZE|!96ekWd7dz20cW@9~}c~3&T#GiI; z63N8Bow*cv7#CraXQiS}$)ooqm4TW-urReMb`1dXnYEeQ8#G9Gpr?N7RT&Yv_XXiW z!@+C=F=C4M%lj?;O5501?6&bS`skQOU`ZeZ!4#STAhrV!+_PykfCA~#5N!G2LZJC6 zNH>HeRFp@XrqEr<))Rw-ha0T+`mwT%)8&J_E1Ew>0x>vCXrF@ev<7)$U|^v|L3+?B ze1MK=zYRcTL3VPxiv-nI`Y)OTg#p2Z0;T^!4sDsM9Qv}yLdfP#4{!1Iy1*S_qJhB$ z8?&%d3DLmGUeOp>-e`E#d%fUWfOm&g)iy)9Bckqh>xsCgCur4!in<6CpjpCJ;EQX! zEVA43vayJmFKcR~ItfHT7tRs@`%B|WpHc~JbGA^p=*D)^J;&!2^~C`g2ydnTfCqUg z-oroN9TSOQDNtiUJr!X0mbHqG!#;<4sz7b>({0~oX$m$D(`;=gu|PW?s~V7o6oQ8z z(t_>3=Htl_-|WR-Ki6y$Mn)2Xn+z3&-GnB-|0lO~RL3@3m-&kcnkUm>AK?{`*ogK? znP(p)I`qxjN7uX1Mqz*lfCq9nkdP>-Oz7J43%{$Gb@}$&fnvJ^SjxX>1!`YDlIIQz zSoa(qjV7`B9(dOOny;ePy-MIlrk09xwEX^MB7N^q;5iTIQE}ts@y}3H69sUiYekAE zBb+omg7}{V?p-@$w9k_Nt%SR%@wNdgq!h0G`lANWAJrLvheIVIFR#!M-H{tHQ{uW>0?Ja zlYt-JASj-n7ag^+(HAKv^BP*eWD6*HzZ{*-kLsG#_v`O93hyY5Mg}h*CQy+Eu&?te zNAy+=GdnaAGckQh*)SlS5NYo*R1-$;xIK?Y*E4%|9-KZ*DTz@N29X)Mb*AMx9QWXr z7l38LIv@j4NZ556NFVu2?Zc%`o>)U-MKD^m13_W_m1(7JvJ9 zKqI_4_tf0!!c%r7*-K;SC$N3uHvBt#lIX;f{WHEb!7wA;9osd8PFzPgVw^+XOV-lgg&v!-xX3s{GTK|vvpUdRw zSpQ8lT@NoU>MJpOme2tYVTm<5p1WapU<~@yEg#D3`WlQ=w8@9Bg8mg-hXvq^ z9GjoI0T3r>PBDu-MfjxG@xNNK^S*VsgKSB*_VSr9vpTo?>hMemU>wHv4Lfue|1j5F z{uAWo>(v30!!J$=SOoKoy;0-?eZmNv{D|boBAo^T+3nmjN=%)uRarW{y~Q1shkt>L zorbpMW`*g}!-qN^_0m&)d# z>*y7Y@)-p>>K1@P4ElPycr#OB`NTm=(4U|BXOaZ47>+nRII=(PR<3p+HeNMoi3>Gh z42O^gp)9!L(Ttl^dy|SZop#@LX-Y7uH+nud`tm-C0N8UE;0YVyz+n21&p=$C{-O-T z3}iuqsd?0jlxuCh`Q5vFhMrCVyt!qd?Tn?UuSx0sJnDRrTbA)w$I-c5H%FeHNwTdKsD7BUEho6g zB7GOq=(8uWAW}~W-Fon6`Ma2Xn}xJ?UN`{w8T=K*7V*yDhX*f}@4t4?SN|2-p-@lc zcC`?t{wFNze4f}j^ffs$-I1%_S5V3o72vQ$Z_AGDtPeDK z`H7?8Xnyj3u6&GVd1862Dd}P&5oBk8gAri_dk)Xw{#RLo@Rc= z*WrY5`6V$}OoGRg#_roGjGlM0174zy_zxZv*o5Jdhff{|=-Q-Wr5)snRr-N=nnxn z67b&>>nw?U5Sn@DA+IpKuy=okfmxUFESq{R>NbA&mjW87BKxF92bTw{IsL|}5gYd z`k_Qj9QpafxdYtWmS=ZQVWf~)SN+{_y{qGJua4#v_*x*Q9W5QQFABIG*sf2}Zk`l( zL}>=J5EV)2DKs&SE_NPf6yV^z*Y}qzjW^!HwW}=&OknU%9gpmI{C$B(R&Xr6mpbe# zRC_UobLIJBW;ob+I>k-?xM9~WuL$XMtzHCNvv-iD)4c~vrn+|*WKTCjT=4KH*L#Sd z9Vj&J5^q}66nL~>fO1_q);IMhkwSyypt3U=5m=hP!Gaw+6doVoTt>E}JAhq|^O2*{ zaOzh=795cYkZW8WP(h-KZLll&`OvXj=WbZ8Vh6YM$2;uf;G^yJd%kndgQg^0?t#&SNmj&^uG>&|sNEM|wu`+SB+Fn-e2@-lLjm{f8nM zOD90#Gcj?R_YJ#tPf~S)S?T}!Po~H_9nm_W3krVTobU@vn9og5+Qh)-N`4}_8NJEe zcy~1RNKwZ#ykoJFUHC~q2pGvnnO{t08NH!SLm$EiZ1dAcq^Gtr&k~^keI>g_!Q?bi zFSvXE?($zVja%0hS*f-Sg$~MmD(v;)?@S7CT8IB1Yo<>Ik0XnG7qoHRxkX4D%n>icv*8ZzGOZxsCqFdkX0A*0ALnjch^o z3eJb&j~Vtb0$$*a4E(vcmS!kAjp++&9?lCri&;y*8uGHz!E;R4c|`$om(%}4I{}g2 zMT_C7n!w>Z7>LLZ4;sYeecs4e|0lr z|DdF&7}sT`fFm32f|AY2fySX=dTYpOYG!y4ymo3{wP^z+XG>(S_0#xM`Y4DvjoCl+ z!4}zH2?mkG;6(&{)!0la!0i~~4M59*g)Xkk0cWV4DsCd{i}?&=SV2xmFJbgEN%}wd zD?X@xG9SjlYkZ%mzF*i6n)Y;HZpx8}9vt{P!ou)%=i?&YhN{~%c-koaT@TDGx%MNU zAOH+8@aF_uwZG#j+o!!R8X0M8II`{`cNp?JdS(ou_^r8Vr3K|| z9Ow5G@s-}3pYBJ76EA&AGZf?@h&=v;1WpDHhglYYPFAqcr5v@@*blLA#;F;AYql#{ zjiDYps2LOx^do6Eo#p82x&$%T>JMIBUFCkz9NkV~45?g&gnMV(c3W;-ZnHFhpbjy^ z<>Z~V@u@){v!mrj5M>e7!HQ)Nd;>yPm-;=8ye|-xlXONZfbCQoiP7)EumY%@Uk5-R z_}`w!c;-I4IVce^Tkzftu3|PMEYjb1#=67 zFn*hLm81d@-xTaqKCL1lT+brg3Vk)a+W7`^$c>osaDL<#j^(y}#iR4+k^p4YH?Pmz z=WHyT94E^Kua4LRN`(j_ogb`Us259G?GON<;Tp@mm{L>2K@x6EUQ^*IjsTL57S}BN z6EfxL*RyNOI!Qi{$QnrIw>Fwd$N4WAqSaZ3KtXsg#=4of#RaC%wbowDdM`gTWn_&2 zt&IF11HIK@BY@3>Zw3s`2TKd?{;q>T+}FgwBi-LWh$_~E;U~_#UZEKb*@jJx5xiSm zQp6N)uFQJh=KThg38A|@c84z4IW&;Jd0Sm_spu`>`WmfEYn(Kz%WNhutwvUHhLvE; z4QQRuH$v(=i}TC3oX6Tfw>8ap=+L{;E63Zx6-@VXFLvh3|BsIRoWbNvmx|V8Arti* z!M6KFuaQSZ4!K9A}Px7r9tV-{*zi<6>1 zg_)=*D)eQN7FuQztWLlAx)mktrdSS%U{!!rzH*{@XrH)$X=Rhn$J=M=7s3W`=N!JM zSfHjbWWxBOj!eLW3Sir^_P0h_Fc!cfCz#HL;U!RX5nC$bSjg8mi??T$F{iHfNgIih zZ8QE+2Xi++{Py9TbJ?k5fzM3yKg~xpsr_qiXO3Vg3tqC{W8dG-CMr`()fY1g*T>Fu-~MH1^pXSC^IB8jdWLry$!A zf^I}Ws#R`TdNq#X4EU^z^I6753Fj1L_Dm)bqB3J)l5ugu*hh(l6`S*+ zgM};I1cnH~K}TT&)|F0s3v%eW;?~3iP&{d!UT>Ri)vo3JT-g($Y_~aqe3mFM6@_Bi zDCt<68EGRcneQhA7*@!HYUY->{4;Qu%|r4>=Bl<%)5OO#2Qtn6-@g7Af=sy%9teQA ztt;K9b)PGXiQ_k>98ASO54T_-0TJ|}uZ5+0bpW~r7Z|LsZ*Iy>$|x2~Dl3E1tjwrx z4hXh*Q>OA?^+3IQ0(eiZtfhjfeo_{nYf&g{@^;uUarS>e{!?u&JdU0dcgZVb#nny? z2B@9nppG{H<3F9e)`RKEGzQ1d=n4-*_3I|^dDL*r9E>4_+pzq5W}{ zzFTATy-9OjQj+?mJ*x*mzD)_5;S1(fy__Lvh41sERKX4pZsTxaNZ99!&gZ2JiT-)~ ztex}0K2oE0Eejo(#QTM^&ol3*1A-1m842$aO%q2$4K&sI%bud!=4==2*J_?pMV%77 zPT(^s;FMX@q<_lQMDc@e&y-Tx%z#6%4y?N}eVEu?k;zDK-hJObKaFj{22ewPwxi=& zORmHA!NF=XJLBMx$e^IAT`(f4`MGP?b7&#mL4rfVd}#i+)NK1@VRtp|hoL;mATSZ( zhyeuKlxf!hHjmn;hgf?7FLde$HHU;@u!!}UOIBZIt|7K-2|<^ekcid#+UCEF z)xXsz#9vEKWP5DdAvQeSHz0f~XBDX`m4}Sf1ptjOf=d~h^_=2jI_7B9!GsiGc+?(o z<#3rC$lxF11&~disxrsJJv~io(Z=luCuYMJa?Ahb2z|2B#=G5_+y@tmpzBF_#xV|-Eh&_Hi1uiW=qBYpEpqxc4*ng^Wi~K1)xw}9IrEbB? zjehNTmurfRVsT`@Ez>w8?ynXew;$ocd+b^u@{;_x7Jm-srZ41>^aG?Cz+`c+3?>DU5yecr;} z56$OTQ&H&s(fvK9On07|(Qq#IHLn=~aAj*&YTxW%FPJb8iH*Daxkvkf7n;51~@@3o1%Z|vn;3blDuEB1qGGHcz4XYHRb)%q<1e{Bl`-O=xnYkRx#?2zSS6nhOW;$Z();S* zIX}df!v`_&{3fB@Bp6{;01U3&ggk{$3xPX76LwD8ic_Ahnm*;8Eco`4#q`=72d?!hp8 zc{AF=@Hc&fAvw>m!3jq0QsFwk^b5-xBiVC)p~iY7|8`|!TU^cIv-y;{#b4vO986s% zMdWCQu(u;(&q_W*H?@c20fj0I(cqSl8&@Kp;dTiX)OrND5PY&=_N$D_EaG6?!qWXS z%>dx?XuQHGkDyiS(xq8%Jl5)Z51W&Nvf^%-E=9=u@gtOY?$OfnB68*LrN!%XACd8h zH(QJzh~0~yi^bBiS0qsTD(JMt=Uiw49X8-0-LAf(%RV@>KlEVLK3=0qsm^cIwe=}x zMRK0XfzAFWbj-Ez-`Wg!H`g49Cw__DhWa9(Yd$1IlXUOHa!S!6x4Rlj%ZEVvx+zBg zk)w@U5?G$#k%~NNf}BswORcP;Z|3#^ngf#rXC8PlnSny5<5n6`ao1Lx$J~EZX#He3ZcGkIHpHC?yc?D*Rfr}^@k&D zpBf+fpga=1-u;5^$Fx2V!o4wAWe!v4OtF-l-PQkoqtt?Tm>q1dhqPZ_HDG#v+Ow4G z=>U(tA?<2viYiFUdl`_siC zbHCWj*cVwc8`RSwA-IUYV zr$vhQATHDVC7S|C^NzB$VV8(x9U+2Re{|vdR}mAJMss~mQ3uvZ!^ly|<}kN)G2SkY z>mr3iJr%xiGepwu=(?-<(lXe{fWmxyln$wF2@88VU#~bVdD_WXgi)E%z_n!$9YRZ%E^fP9Mm#qhltD(_`MW!Maob>2UP~AHBlWC;M z3+uNDA`CxB_?t;C-;WA;alC~_M@wW1IHsNvXc|o3)gDSTfr1+aMijzkS0TfQ->w?0 zJv_XBR(X0vqWW(_U6D zNZZl}3=?O9<>Y;HwA?%8z1JPN2%(nc^W;)uB+}?vtp+e{RjXl*B)?ct(;Aj}d?T#$RKXH-f#R}j(%{S|?n6;iPaoNqj zA!_GVGwAODNJHmH4KpX_@OSghQ3^bMpcyn47sfjiuBd2%_OA88JWBk}32~roSdi-D z$1nz6v+V4uh+a8)jwhMdr>TEQZGLf0wra6V*EFD(RO<@vf2bs~>t$TD`ia@v`sB!y z_DwuwI@=?;Z^TZD|MNX~W#|1Pwh;vo>0ytLH+6RHrfy+xME-#xxY+nK-3lpDqeZ#= zI!J~sLtftLkY&lzcB(Lu>^BlN`an0I8!HzD-JRP_>*84-&9cTd_k_b|pC*0$!kK`K z3yQZ>BfFl@*$o>hueWgH7$$GfbstqZ41_puxS--yhSP|li&@WeE2_v{d`uToGfh+ZI3|12r z3XTWi!~M~v+=xqrmZ4^!){l7{x6`~+sy!VCa{W(7{y*npCQl)e@+R6#P>UMqP!xIG z+b3foHYTi#zir~^bEC7zuaD$dm6T1i_cl3O7!29yvhJ7NUtdShh7c?`xw_;RiI_?x z(sUFn6VNsEjub1WLaopaf?fCUvvC4l{Qd{4{x5`!ZqsFhJg1kJ3j#rSIM}2e(RE{c^}b)R zMuVhlW)2f7OkE{T%@`aF_vmKS%fh_Y&%(BJN?O+;algN_Zj}0nUv0E#yCLF1u^q)| z$~dJwr<5XAfwpB^-u`t88B<;c4>PHyQ$-aaF5Z8>Sp7LE95WpCEGgqB=s@(&D&M1JXXj&P|-@L6l9%k*i5 z#pG*C!7U)mp^s0L)P)s2JociMj@SJ7nz=aYUlzh&UPylX6jTtRktg(86_eNN;f(52 zQpAtPv+s*NY7gfvwTU$E?LT_m)tp|UbU#{ss_yMfuiWHy#dems{~Rudp6x}#zF-@0 zJh{By7PAi^A-SO0dUcy{^59ckV^ z0Ze;A!J#2Io2K@Le|G09uEwX#lQRDVAhXf{FTbkJ44vZSoD(GK-u)PIvLvjpFIg#` zhd22%(uDqs>*|jq293`hA}i*%#Uwu^bhl@wR$6mEcYI?Bhqr;c#!FntF3rjA%qT>u zEUu2nVkYn58&AVv%5dNoDvR%jEF!R|ZmHUgZ=-l`w)8%ly!LzpQhUwP^JnAn(S!B; zc< zynvz9s+$<%x|AQzic?53%y&@@)e+y#8@Cy9c1b^(AEpp(fJp{pz&u=9nGzWnHY$6q z#OC*q75XN7-Pt;-TuY?bv2|A4=6W5@2=zSe=T+6P$h+nS9IJ?P;VrJPG5>hz<4(3# z9y~^(r>B()Q|#}RkV9JE#Kbo`!_?vBL$u`irFWRt`Iv)4HWWBo_KTqAYE@9ba8iYR zlU0Z15t5%m?X*}l0!0_}zYQC~l{084mpq{PfRS)>6Q$Y37!4i!w!{&6LP_j(v~$Qu zV4szPb9MfXFhjBL+`|*IaLqk=Nk02tEKbGhL7Q^dLp`MAar1F7k@|Ge7UPVqhv9Ud zioin-bG&3YM~M~VOw$yn)qcoOWKrkNQ?0iq+qhWVsaTbKuIh`n{Jb*4w)&;7&Y<&0y!Rr z1CG#gpLNM(y})NQz82GFchlX=&;Ibw>vAQcddmTLufn}&(|v@nKYV|7dj~`G_osin z%B)_%pp>~i6JvjVIMRG)LN6j>oy_R8f6;7Y+UU^tQK99zW!LW^n>5tpk$HT4z7~sy zohdMv!#mv-%nd|p@5Hdd`zGLfW#yvTqS8?0J;A2L@nyEvI}#6_YLndil`lp16RoXj zH%{~wio-j`M zpDqI-lONR?o}9RPF-$Cz=CpE+?CH7~>~-83#TxOC^T&iO(815}ombN}uenk%$fRm2 z&6G!$Kj7i@rKVcwUz*saY%}k~V$sF5(6$0U=sYuheLYJ9;zdjSXZAa8i~%t$w$fc- zdf*B-jrklF^DV4zw^AQN<4Klw_o<1qF*5GioWx!54Nvr7QJKO_;9>qHtMIm4lh^$~ zoYhe<2Do2J&mcU!}SOo>vZP;A!nl8z+q3=t&#r-Oy<)Y(L5joB0{0vE9|v3%K*bDNJ7seim;_&Jh_}4gc68oW`{b z(H-hFWOrNMz(7?Pu(>~on*UHk{oZT=gT_Nx%~{`01rO5pYR+2Cz4}O-P{M)2^Bxz1 zoMc+lKTV3aq+7=r2lwXrDb4@EEz(H#g=ZKU`a*~FBJz&ZkH6j*^+>+K2%3b2$?xuW zu_fEqFxtxFy{yy~Lg#Xj1F5YcTFt?n5lmb=O)KSGhpm(wD77EP(<#YZY(H`M@ifG5 zKCSosz`*pkyn0M#8vOdKnZx#d=1rfBr_GXF%^qdb@8hr2h0RI%QdH-`>1 zxbOGSilR-YZQW)R;X!gi%qYL`q?Y&g_JHYa>vOYjUTRQkppno!HCTWCG+_m~$$L2H zhy9u20%H2I#JS&>Fq@iBI@*hM>{s|fn{lmnY}9_260zXSqeG)N>89Z@)G!vlH+eSRZY(b@3A!|7`{~_0$@Wuq zmt6TmjmkpdMu~O}oyRP~4wr?T$BvL3u84U?xhh9p_NOhyAj)A<0p6UbqIELC4Tux z9IS|mrYl%SeJ-%r^n5Ql$ex7@6+ z6O;M%d#7)td>!nI-SK=TJ=iAyZo6VuxXrt~dfaT0>UA1C^68kSotv^moBe>Yi)>b^ zKF7yTVOxe(L31c;{=)luQJJB%(V^cy38KsB#8Q6DpKL?uMt9Z0{(lHsjuv_!-$$zB5SP~>B%9k_LKR+zO ztx_`9VBwpI_XPz2opK*vk>&k?y#r}3wY6Ia>MqP1&V~zp zmq6s#uOFE^?J=3c5+9a+S1vZ)Td+VJZlB)bkQx6vWP~)}Zm<25+?IR2o=5|=2XnVa z;;UbOAEoJl4*s=*2u#t5CWl9v$+08Lw7U0=cksKV2I;hy+RLBW_O~$@CpGw_7psf8 z9avzflfp3&AuHiPu4Jtp_VM$BRR=^%DD0w)9v66ORs{|4?`+Rnt0%rsp5!MNX0q1D z?oUrm1|C7Z&Cd1na1^0P-L4@!!DEC7>2?{r%T2nl{tn1@ybsy~T-G0a$H%EazE!bS z>Hc6&Hgsy<%5$q!U0nn2Wx#wl?|Wi}nQZ+I5ljP4TfXtK2K|NasTEZ~IP#j}Xf#$u zezP+Im$KlngQH^e;#P70RL`mR#hOP_HuHZ3rc()ml+tez2hX3F7RImeE{gQIM1gEII!MM z&0i2z|J>21zwqow^V4`5-yZgJVdhzMLKsx)*lWxC>+_o>l24`*aS7`Vxh*jhH%XZDuYt4a!_uv6_8|i)m~1)+aqPCDSjb}v?)vFAd1^SE$x3LmXi>rXY{gs2lg-UUapz8%Bmu_Xkgd&x@sK7(jrQ?Y|Yh!=bffP9WYvomKSb z834N1XUdh!Ro zpUS=LWuV01U~kR_u0DPY*=oQLF5I@+m9F9;?Cddx!%Ba72tcSq;LqyP8)^T-acc87 zD&AR=W|gH*HIlFHo>I*YuI{@0$7Q(JRth^%u}p7}{?572d4Bf#UD(>K^<$Pt0dAB0 z&-Mh#3M#7gk`4J$adEk3`tW3})KgQ;DJ+0wNg@;_<>fI9x>(xx`px>gZ;55g zn!T2(0TD^~orcG;)>DY|-`c|=+y>uupAl0r>UQ7s4#BtX5aeraZUU0i>eKzwV3Olq zgVvC;pFaQB;7rGSn1KG>zeP%Qx10}Gv0YDF^DlR-=W9>0T=7#zPmdi;XK+okJJFN8 zx#V;_E_YN`-GOz*MP1|pma^3y>35_MF{A};Oir9OHk_ERko)zr$M_8IM%5d&Is?AP z36D;^)3Abukq90J1EJ~vI}plnG7(oVXm`Zls#$uZ!Ru~0vfC7MlwGZ!sk@d~B4fLz)mb@g{^Q)p z*aj9mIvY_;jP`xUL@&QkRs147O5H`ABCD{Pn#pH!JvR9f-*jvLZAiLR>T$&8AB8@W zW|l?ve2QaHvk36!NdUja(PwdTtm+cJguu3fH-M>$HCr#67QulhVJi(`)R&uidi)br z5*+9Zekf*%XY7Mh#FLF^j2d$$s6sA(#QkHKoS1&g)cjgRWg)?DL5Hs}HKTjK4nva4 z(G;(d$?1g%-ds$Sp5DglWAQEzIIduyxU9t}4w_ez7Yz63ekgN>t^JOg%=XdK7HxXCur{g7rZrp{n*HuO)AE*7wUh`DO)2#_C@1t>tM?>?k zScTKHXS;BDF=iBV9apJZ;^1#`=o+p=ldFzp&C?RTKn65q{ufR6X8OfqYC81bX-xAacXo31Xw^>t=9o|`_Y&qG_8KXQXnUZ2+X>G&41Dp^HIM`qvs1x?o- z8zsjrrkRRmcR7hqkB<-Qm=z&d$iK|kAqMGE28ymR8M(X<{lPt4@#;R2xH-&fvx{8G zaW{*U{JuiTs5%XX#dfQ1cS*HFC&T?v0+VGg^gOq2+g|(t(a`$PVV2o}2UTa;aANjW z8}%xQgnB^2!-EBwqm0jL!S7~X83RLVNx)ic`?RmFO@g|}`>w%HST&nR7EE)yQqAxl z*U@Qqvf3a@i5*)03mJS_#S%(M63uxaG6bY0Ngh%vaSP^}31Q$dS?>_`{SEtnu?D`4 zRGSH6N+YYU`w=C*`=TTUAH%YXC10srGAEv%meZ&P+5fg+k>%lPly5V+?vdB0^iRUL5^&~ba{SGK@!tUnly{A(W!P#;p=0%G@^~QO_4)l_Is_Z;f z4y!*ua*g5e@+%A^SR7oht5TQ@IvG6%baH>k+RKpr4x6TztLiGv&xW|Wf-lQoQozj* zt1*Q}`19j6KBY4E($cZMLHF61kRV;_Vh=3+WR-{+J*8J9$^PR^aIm^|YaD*pZdJL9 z{l>fAlKcdH9ajfsK zIO7Q-=R(+$rSmPxSSAG@p(bYK2B*x$XfO-xCFJEK!{WuOb1)UIMO+T4zSRU{D-Fa$T=9{R+p%+(MY}`bCUo=ogu{N-#YQZjga&zF z<79AdSSdUjdqrDLVSQMw0Wy4IDMU}fnsv_G`0f>a6BkQwSd+SIHJz=*Y*OCU=mq*d zKh=6jlhl>6v|NQ^zUKSNd_%Imq2#ptktu5Oa$WoHyR|VA@q-fKc2SlorMc?cS3iY% z;Zba$jvVi9sJ8TGEOp1L}7jUBjw>Sk&IFJejtwD0jQ8490oB=3u$-DpR zsIC+|R9x#G7E&LIY*8EaCdjNn;0wJw^0p$T(Fc3`FGwhW+HYZ*UU=eU&l)qEFOUYA zsE&SkmIzOdU;Pkq$oMg9yrMx$hLMVUL&sIo3Eh!nNNK2QjYRI56V`KG*^N$p5MI8% zNq#kWabLIgFE$eftzb8kfmts<*P%oE`C`5a>F2N|K~)RcKiyknLQ6oE>o}Y~tO7mt z&yNRlN1PSS`Mte?g;;8I6cnT8E?Xm(b5MDw)tbL^{nQ)Ph*1~rFN1X-oNyoS?1u?R z7L9N&_VYk3sXDa`P#%CJqq{T8{_@MM4Xj|9C>#|L^3VQS%>wv?xcBeH(J&I7(%q12 zc|707=3P9XeEgVB(QtEgEmo|)FvKbmG=6k-_UASC7~2jnBHlax`i6)w=8pR-d1NO;ZM*58d zyY7|U6HVr9T~8__>pp9S!-@<4t^A6{#K)w>V1{m#S^e`AGk7oX*)D=FpOW)LZYe6O zJoS2_QZ%thOD9*LmSu7~RxPmmdFkO*C-F(OWs)sgRpZ+6fu@ z9gK2!o3+;(HIr9VqDJ!##WZX{+NjVKl8+XklJ}J_@tT_yE{Mdj-DRI*jtDMYXD z*wUIVzYafI7$$LFHKNH2Nb7@5gI`Y;Il@xw3c3tK5qXVyLP7-?ue78x3ok^|0(7c$ z&#Ck@FEyVUX%UL#vl>*|4JNGW?J_7$9X<5tU`&}WG`@;kn z(@se>auX;YB{oc#Y2qc45sTmems?%ul^rJa25_b^=jfiYtEjv4rNoGDg`7a!-5$q5`A%t}Njr^3va&=tBndO*h z??a%z0zv#$ssCNOZ@^25+MBP!M#IZr|wO?S@o^l1f6@TsNi`>Vb9FM9kV z<#QYBi6t;WAe30UOU6VW+0X( zx9&OO;c^DXLGup$@nV&cG0V>Joz5hhEhQN*#+~Q4Vs;f<4+IPOMRujCeA9lr3nTO- zw#E-CX8tY`zu$+wOl&({Ply|fTZ!$bp3Zj7jytW*^hvAYk` zzXK9+$+YJl$YAJcETd{Q}8r~0KlP=dSO2$HCI)N3x{zMPE@|1leQM~r>Dk(Vbc zbWZ+-CoX5Jie`9EHUQ)~QI2M3Vh_4nLZ^7=^F?qba<=k=jr~50sv&@ZLmStbWa*_>VlPimx6R$UQTJfE4tR=3(B0AsI2R%@xD zRCOlk!l&SM!+r}ihA`*F+xvHcD^OBU78{MReH7UZ@6vbrYTfqTG#lSLdiPmr)rqiCCS@DK7(vr)#^srs%J0_ zl;UfA`9LPPqd%bW)fb=;x{dUG`1P^u8=_!Qq+POZ8(z0pp&?SVV8 zv$-Dj)}XcRX_v>=Ao7??q01eNix@0>P-gJ{D~mn)Y|^&dZBqbgOX6|Yaw-h0HOEdi zrzMx_H#*VyF+M)(JmR3}W2=aQ)J8?6HD49bi%%OMsF#okW6Ykfg^%r&?b1jt?>kjA zq*Q{k<>NHWDHfi2d7Eyj$ty1pyhqCqw$t;aSdIAIq37BaJG@=qd6KrUNr8b8QR~nb zX>GB*rZdwgt3NIL;Ln+CbIFU%zobhH4IkB;nwj-LcptrREP1Yaca%Xf&5ZP-Bc zIOg;*Onr61(RtA)sDqE8Mi{H8faTi&x0@&3G*ay z>@Q8Y7kO7XmI&m~|39j}GAgSrTvw$;N;(B;L>lQ*8Ug7}>F$v3F6jp8P`bNIy5pm} zyYo)m_l$e)ukF~5p}6LX_k9xRaVAyH!D3>~4wP?z?Ai;#MdGe9RFci@Rd-N%FnqN? zyJoUWyZ~h!qVZX6=PQcimuqPSDrdEozkLf?yiY&sy-r_2#^m*bsu-2P%fhxJ{w)bD@#|^^ofV+W2b-#af!vduC_8zb9uEc+EqrpPWd$g$0L{)k*XEeie{)Z`{uFyT-%B3XzKn_&e z&>J$C%fe-CHbuc7XD#(rpisIumWkma93|PXg4SL%6*xr?*;oh0vXzwL)10hx`T>E1ZkD_p9nt=*&ZjSt15= zW_VE(pPVZwN7OAmbHoMIww#kj94J=pRA=IuV&Q9043x$yEk1O#OyABnHLM_Gsrai| zUT8CkrPziO33=5l`LiwN8{5N)wF09z6`z3rwbMaWuFf3{cBl2lBr7b^8;wW*;`htR zO?qP2x1pOPk7}m)Lile}XAV3IPut*x-S2Or2Oc{7&I#F)PSoOFEMM$CR5ZxyyGjyj zrCV8D*CEkpd{Jy>5d_-9F@K%UGM~i-g33HB`I&XJrf5c`zjT`AzOGX>}bg z&;rW@IP z=!!r!mV*@5)~4@b!=Vl6%(IYJSlyPnemJ^Vs+sx*P5)CWaja5OrL>h_U;mt366qWl z4q5b%@^>(7&R{L6$xryfWSLiMd-t~Qst22|LQ`0(^>#GpoS(#!#1iIs$Pflysh?1yS*eau-K8iRosy;`|e9t@6(HU`#BaPVo8SQH>wZQ=3XnTlB^y5uhT!6%!+~ z!)LvPNJggus__-NnDn5#=cuV46mP9DMob4GdYttS_owN5o#?#rwae?c}&@glNR6ri6`iAdzFY$ z=9pvyDf271{OpuiUV%;El9K4;!$q<*L}?k(TZNkvG5&tE?)HEE*QO^ueRDr8smgPg z%vrC&ZWr)AIevrug`_}f=lEHFO&Gn&#T1PB?{B^@Cy|la4Jg%|IK{I zYzOYQL58)}q?*VOd0!a=tvH>h17uPttx(X+bK_C><&1Kd-p%8m_Xk( zPtXu2?muDGh1p#1&X|<;@%hn~Lq$FGW=2L`S+oxf^k&9Zkiq3CW}}N2ltk+6G&(OU zFr$4Fk?=0xRLetSwm_7VF=$7HyFp%eD42LAOd$b%mAy#7gz^bERX)y>w+`(43GI}xom!V4hAcega?CN{Ge$!)ah1N_zfgOsn2a(OA=t}Fsc zKxXEy1NpW&-H9PXf80(`45;{Q)Sx!cs5=9)9}wU}flO$IQ{r%UU}0m^ZX13PWKRAG ziSWlSL$bd8KDX^L%1;(fhp=euZ7QzAHUd~B8t3eOB?N-sER3eo6LH1o0zz&wQu=S= zyT3o)ek6-W_=HqY4V$jTAC35@bg08v?e%$z2C{~jRI#P^$a|7`m=%7(e`~R4mQV)s zn`+MZs86~iwi;6H1@hTZWGiv1ikSSUW%dsj44Wh#P*NM0Xazbh#}}xh=H>zlZI?ZU zC)Z?u7p!Y78klV?tuRJpKbcZ}pe6y<80AP5p`u2a{pxdo6G2TAW^2@Dix8_^OxrOYx-#RU85MpBB0k4Zol`7a@r?n}XULi;!1_ zfVmMKhygzlI=`-PjBB;!1P?_d=>i6ZGDy50x$L1mAPDTd9m93DA>ssj9Y_s+P|bu* z4?Pm7p0PMt1R(|e05eb69nPtJl2@eQo+>?1P>|PCEdEpCqO(8k?rh_R?h6aXo!8g^ ziw6L3ThrcKsFdC6k)LJby@f87rEpOh|@@{M_^Vkqr@@x4co;WsOei1Q} zVR#)KwQQ$ax=BMSpw{DYfSZaX=7VakHcT;NvIc_WJqHI3yC}Dl=j-a{#$IJ*wl24^ z-aq;u5wS{S=D)@uKev~ZSU0{)r%Hc_E=9`7%mJ4Zf*32T29{wx(QI z9bNl2o}}B1p|RSAH~LqxiMah!MZ#cu2SD#|wf$~^TYe$GbA9Z?9XXkpPU{OG?kI|w z#DIBxOc8$EtW|_8rd4l`#hy>xQoMc#u8%Lm_YcqArG^X-vUfo81SRd2C7|Q725t3E zY+#;!n|4=bK?m+H-39rPKiFTjUEG9(wyLMET4ugQ8Y431?=xsFl6E?blnh^=Xg=N@ zz_{*lBp>Kw+uf?#!_kt%S8~R$CUByf4l(gWiNg;zyDIo?^baOf;eF1^6-HC!ez&YF z2BB9~Q88MYPK8!8f2LWkTJ~7kQZXU;kRIsizQ13S0uNsBJzAfU^luKnlgchEyk&M8 zmsB)kEgD)}2fFqJlMT|54@0hacfVd{hZ3~b_~hCm6qsbYU*15a%C z7JlKG62?ru0=7%F8DlVXw@fgNfNBzUvZNGFN}R)OS<(WsZF$akb(7&-1qHY+JTK)O zv7d>0=!KA)bG1v1cZXJbE~TCrq9jHdCp3UQGh)Su6>0-8P1meU`?BcGr7kxYI(9 z<%c!Ck$JQ(-NVgQ1r$%38a&h`)k-A;0~$-`k}Z?PEiwlR7aN&amEL!yF&{qq2;L=P zt6rY|A}E%bie7?6i0$sf=DKSZeb2a!+TZ(nkP!+Y^rfliGIeZ{G{yBE@08qZ#MLTVj( zN-Xj#B=*LUVCP*RV@gZ3yo3g2s6W?IZPf?T~xE`I3O@`E}D#y3R zV`6n~Vz9*vT2+wMq*-n9rX+>ld- z`^akug-&+`(t2!M{|sv6JfAfnU3JNk$~LO6m<@FD>9!8leQqeg81p}slergEpRm@+iY`-NPws$U(*&@dTDHJC3TIHP7;CVcGt`j)gN>IZYZW7);*&OCEil z85d{9S)T+p1K<@JJdeOWn;tG{JBiw(~t^Xw@Lh466`i=xi0&w*=fi8X9yn>G+1JmGBTot-;7qG7S}X$|gjt z7YY^@z)EIyLLx2<7yJ9v}?%(cjV*3zaIqMM+r zAq#l{P09Ct%wY#Qk&f1$6Q#(LzI%uGx<80tQJfOK66O%X`Ckk|NbG&3Y0aqgSDZ9g z@BaQ_(_8-Kec_L|dRP620F-|{J-Xk!2S!YbN>(x2WQUy%Rj}kIw;k;*EiJwG=ElSM zL=_%MYL1A9F}~S zy~K$gI+%Z%{3Y(~8Y7~i={Z_C=zy33GG$tP$y${$=5VeoRH zWPe877HM0whE!>xlCQ}2dY4-r%Rr|`(MOL`$_s!N{c$P%c@%PGb2#nvj@nX(ge)ha zkKBjM7UuB-Erg^hptZd_6t^sub7*dY;2U!Kz*G2-+;M%AP@26uoI}D}I`HPt<2lI8 zG;uhzvmWA5O+~3&LfM;Q`IFqXxIHQ;7DOn9d=Nr~0$2D3Tt-H_{0L%!`~BH*2QFL{ z|3qdUKsy2n8Kn*h1XJjBdsyUwO#=xe!19jkVbTq8>9&Rfp*gago!%&I`ElOplZ>*_ zs@JK|{OvuGavEC3q4)7VFUIqpcn$0|-V{bj!q(P|mQ5E}LPA3OOD#n4{X(v;+}K*K zjERYfdU|^A#bl$0k#U)_Cv~q5An~+n)xN*C0sSk`9-Q;%!$NEQ7~-=zre<%VTw`-P z!7j>iQ;vx`)mE>x`HaFwi%ThHzBocRyesB>dLKS4wF-xpuYK1LP`8{E zu7Xr0Y_G^VS+Ol6M4qyp2x>RsEmc`M)dH?ubJap2}ko|QY6)qq9OccMG9-W*TTo+v8YuPigyakI|c; zA~KztuyeF-?~bGg1xN@Vz?U>C*I1_|>DNn0wfWi>-;>kAUQ7(ez5^FIIk~*N{0m?^ zoG!E3_(~J!Kg#s7&F%VlMe-4L*^2$gikx(nsdm=yIPn(Lpccu z2sb^Wc1#gZP`^viK2G9{w3>But&?cdrGHiJ<6}r}~_Z>|pn$|L|`rJG%m7!bO| z;mB8ut|hpgJnM!0H7fTc+>(JZAeD=Y&*^aqb=c}=lzS?&Et*FA%mABI*zVejIO`9h ztem+r4IW`cXR$`{v4||2^IP!Vs;i>_v9B5$y?vt*iIJ#}x0n**_C=INnZd7oU}twV zQHT!ne*NOy9sbRwoP3K|5McXZH@)pV(_bvy)`rF&;ZvLa^fPl`h3omn=U!eZSy@M= z*LSX}mNKU*!A0mTp?A75V4m#CngSLBMDZ$8!w=0&F=2#5NABcm8bWTzk;fAE&TnRM zvu}BI0#0n`c*j`ri!R?vUPzAcuoEZ_80b1;3yeU4>X~2gYBd%cWj%ztn*)gwiA;XH zZnqN;2VrcBpsbLvCE8v3dK!NkLs$Yv%R)m$Qx955Kij-TqUMckkt)z!JR5!zrKw_Dy1p3sW&ZU@EC}73L z*qtkbeHt)^@KNi}j<%sWXIMk>3#}HNs_Tu;ec&{R(Z%Zpegsuk7iB@Kbwg(s zYz@}{;e?x2H@*9cK_41G9b{BZrSPUT6#UNZJ^}>SQ_!3i$IYUeAv{`^zPK*CvCI9= zt_RCEkkIveR*nYP>M^i(xlrm&uLdJZ9LwCER8Zfo09I(GRz_>W^a#0-REt{O>O$Kj zGU&_3-qoc)_ZW}rZt}0Y|Ab`#!$zm8TSt3?fKc~v3Bd=WHF%K@B(WfPKHYEeT|?b< zgM2~&bJO4>0I*$|6~i-A8kqHj7Q3Cxc=!>m_8N7Ry4TWT{M$C#c?uTqIBOFM-#8sz zZst$LE7!DtcWep2F%^72N?i?QuhTGYyyD@{+i{YSdX|MU5wy`?=|3qScfpxS1rVu$ zm`stMjuyENQ&9UXC~J<7P6NL+0`U{8BznHU9C79{oy(#Nr{l9RS^gAbQADJGUyIFZ z03$VwgG&?K-P}aDODPfEMY&T&NS4U&>pxns*kMEiY3}3vvch@e{Lap2&BJ-77E^x; zz5|cYb(dGSc~+s#J`R%Wdc-?~h3O0FgWt$G5=i1o0FcJv;SA3ZSbP3YXsEI^-;DA*8D?ib*;sXLIVenZLJieWiy1u=UH>{FTcyJbQG&Bz}n4%uI*Ptt}ID*PTeAY@D7=^R2{+W;(L z$B(+wSRf(ec>`nxN!k^&49SDEj}J+v#V>zlW_qJjezQ|3gZ5^QfB#*!V%BOP!P~yC zy}mC2aFUuk=w+LBmNrG*nq?bT1IDFP$NREHZJp|I#8=~I91#Nf2_G&lR+Po`Xb4hv z@~O>+t{9ssBG4Z_iQMjvB!7Jy;4KSGR+?{}n=r(a==8=8e02 zi-c8Cx4`%%pQKa#{%((ok#a96 zjKFyb=lCIXiZ>H0k;sV1#wvcSKo{26-|a4&f?q%lrkYNL3&8{*3cFpn%DU zjMDK7hw}?lIoo_3*2H*NUi`83q{27A(WOq8UmVBoj6q?pHIU45%Z#{eWdw|WBHJMv z5{hxj@3;!7s0%@?tXtWd7?u_0QHS@G?*rTAm%V?s z>9@}Cs?GT1j)g{bIzm!XNu$S!pxv|khG4zui8dl;CJ7eW=B>Q^wo?)?FnGU`^U<3L z>v;;RyYA&|cDJ-t-q(9pesDd%<`yQVrluaaC@6Agueh(~ZRg#t7Ur#c-su?{o^|6} zE<1$ul6(Ei0#bOn6KA?^H?8k;6$sD9=jroL(h7f-EVZ{Dq5mpjI+$j=Xpa<8p?!m( zpEnqjOvU!gU;y#iUvrOUuh|W$DanDBuXs`(2MjOD@*7PX)0+E0$}fq5HyR@h2TwU7 zdM*xt2)|f%hfMvENs3aHz_zc6Rf|&=(*-=OSJV(J4 zw)P>BC_>`PNIMRqr+dF|BEv*H)G~6U*5^iU!an17cy*!p8iU0e3M48fY{dPy9%q|% zPWz0t*E&CrQ41!!A^_M2(udlMHEutZXY!k{cv*_UQw1-EQw2}#h+cu;)pQ*dmX$T? zbn*Jdp{FuzevE$wZd?ta_P^uMRlcPHpEMZ|dlpmeOL!9Mz9+HhV3Pw^!TOdGU^WAq zT#)vc=udpaB|-_`^<19k)m_~9uRU$PjXVGcO$l7SUm8?eG$Tj|IPIudlZ$4r8Xs@> z8m|^z%ogfnSxl!GEEl;cq|ye`cwFks^S$3@PzlB=&*(<#lPT$^YI$2jSmlNE-{G=n zznO~k`g#@K{rq<~-SSM=O|8{HIL`C!=ZX(G-~6kJ^n^}0`G7PjUS zZqh@r{Tq|23_?a@frZpsA~n!{cGZGb#HIJIjV&-y@0G@ zTC{5lQ!D}<6SLtrJK^qc^v;1_2mco7f1FKbDjK)9n;ErtZFZvn(C}0wvC!_F#dANs6swu&=P13@`5u5H5p5_I)^p^|{pCH`spNo*$iUpuJ&kG$h z7iY5ib*1uK^DJP!q4RCd8I3A5m*d#(s>pZZ&krQ?Gi8LQXTQ}RB$k@N_Iy#UgZ`k zD9>^m5UQNzDDurM^p-D9T^;=13Bj0DvRxYO;V>0>xirmLyAM$>Zf>Nu=|%!O;0R1$ zc7eA;nah=hMe~h8qbB_@?;VX?u7vUN)!k7``p$SBv)#7z5a%9EVPWA+wK;x&JpI;4 zh5$PO^5Ty*q#@qBeG5*gFD}vw3GAr3W)HOEx@=5jrg)%xWdE-7MInN;LU>oY6w&aN zeTz+e+Iqp(0Y+m+RNMzPN0<6IKLlbn?0pBVn6SitCsvDmBAh-&~bU@5a1Auwws}`KsD%lwQR& zj?62&a&-RE^|rYkMk!q*p2}>#mDKEMfH3OJ$-0$NjvH2KPAOdxo3 zzch29XL!)hco0R#nYHk1B1v?@jJ?(em>qWz>xD(@?eT=~e!n)flojsU@_7Um{GV(- z`qinweCR|dAfBUC+biwpRpLAm&3d`d9=kXv|G^D5bE%^rZ{Ut7X}uLOC?TebT`nmk z)|8`SJm2baa&fwMM4efwZjFMWmWvO|8dz)n0<$N!W%2k%^xjXae5}m#^z@J}2LLd3 zNB|GnH) zP^*`;3cQ;cwHCqa2gk}p7=&ZKIvjYU^il7EuR)&pSehn8uFy_?=tO8}R;Sn~<6KAj z4-t+_NH;gv`^eeRm^7*7ek?akJ3HE+(l}OU)y9xQzjHxwJMIvc-t62^>zn)*!+^9K zrte^(>+9PU{F=sjibu!iKXvXL{jYlyxhAeBx7|%9$KP zINa{%dfT9`=_sW;>4cE9F9A=vH??DK=kj`kU4M$^dOV%qmd5KBOAHexq_Yg?_T2x} zMw2sc=-3iLS&CDxH}4f3_6f&V2|hYkcJ%Q~WV`jk;HTh^k(X{l3M{UM?>hHwr%zfS zw~ms$F>mF#JW#c`o5G*YzIFHp1pM$n;s~*EW)7!ybra3?c>3=seTl$WH7BUAPhPX+ z&Xw+ViQD0i1d;$JY3KSXJD=`{pN>1xrNEYXz3hYXGy8BBZ|ix@%s-4f3dfSil$BdM zjwf8hhkd_73CqTUGW0z|A0D4A3B*W-Oe4_$nb?li%eB<{aWQG4SI5i5!pKPISzi9v zf;%})Km`{O-ykbkSx2UT*uQZ3XWQ%6e;duK`RFm_WsTNdzA3b5y)4Vdzgm1Pn-iVu z%-_0Gy4o_(ahgube!5zU+tX6^v^&v1gd58e!ZTA&lUp5_JRZ-8VLgy6ExF-++<>gbI-hBhZ^cSz7b303@CS(jHDJ4$k+fK%k{2=>MQZ5wQ!PB;hxJFIFk=lXX=Zva#$cP9XL#5C zo4UFWnA7sukg0Kc?(TKsI@cl`?^9g(HP8j&MrEg;hXtkN#69OImny!s>0kB2tG0B- zA&Y7Jymfk|<^yJriKei-jw@BMKm(zEJe)JX>-^HwWA1PTD8Lz9s=0J}VDof=I3JJ; zjd>c9uPE6=vep^mDU~|`DNm;%8W?v=@&DWKf%eF_ps;WiJinV2!@O(l2=wbm9#1X} zAci}VROFSkj0~vJ5egLl@R~(MA%rSs>;pM`R-dQizVhD+!V>WWC24IE_Z!*8OZBc) z@{rjkHJ#4a_&#uu1V+;8hL9yvryX(x1LjVd4*hC+(r;z~x6u9@6%~n>cVezS%C1y0g+Fw8AZgZ=T%u%$iqRKan-B zaAWbr&u?sOo9N*xE-^H=+Q&~xlX1;z zJ9vI4>iB}pKP*hW>>-GfhJg1E3MR@sCTYc~K^RV?!Z*V_hAS1ri1#~EarHes{}YT7 zNEWitmg-oKuk4|26BJQpYTDaxx^UM}q^Dm8C<2qqLl$X83hPzh&fAN~$O$&HUZ%r7 zW3rULORJHfLa)Yri{OWpc8`}R9nJPv?>!?jzN~+<{NH|Zli!UAg;F+|!s$z7;7iJ+ ztfMJvuyn=F)-`;@m+EQV#{`5Jo9lsn7{gZ8J1%i_Rmb;dSaB+Zy6vrQ^6sY}o|95? z+a?MY(tYx?faCRgSB<`}CB>KHgVz#1kxt}y)V1!LOePa8fTDAH1BY#qtejj&)74^s z50S^f%~tww2z|3CKR-Q_pme3aoJ^l0Z>FP1{HCMFKxdjP!HhYWj$g1U80x@FU- z>$ERp?!5P<0U=-VdfnA^M4oVgl8<&=*}NG)VyV}$`*B`c&9moYhH-rp^fv$9Kq4*W zirnNT<+fpa)xHU+QE}>#zfz4NS;{4q<|EsQsS3>u2`;2gy=|Cioe~^j`3JT;zxk{( zb^IgyC*&8;Rf^wQ&&6funwMpBq;ee-r(a?9a|F8KRMcb%tsIeUal30>PAtz8yn`#)|1Q;r6u=*y zJq2%-d$fc=EU$iAua~6!cK5rIqPLm4ypUIOj%;KmQZRP1viTz@q_6_i+5q$lK*2BV zRNL+D@p_SmgrDiyNY$^c8Y5{o3Txng#^7>QuUwIv+Ymwyz(fsyaJaOYh138{A|i4- zNA2tDYdjwlCv#};y!c(x{OWTY@SuwXegzLP@H!K)>AzP<(H0zZ_-eZUGa;~W*Fz21 z`l`FthtFInWyQFW&$p??iisF{I*m~22L$oc7w$iKJlx|^n5lugMNdm>Z8eAHf!#+o zD)7t3*>!&z<=zU7TeKS8k9-OYFL(`YH0;3oBV;aI5Hbf6*AQLxKiFduj*0X%$jZxE=d$S&A)Sqj++@Bl8_G_p8fWz9+Z zypU{Km5|b-dyYMWRSWhyo&+PPOj{W>l0bzN3u)ID?Uuk^_ zMcU0$)i z{BtZHaZTLX(89>*o9R+RU{R#Es1XD#P+{RNHYug#X(knqUQId;TPXo%f4Dsv_IQkriHRBaD1`xⅆHqMYs*H^~%NbH}#3}ZIzWM=Dk^~%b&h!$1B10 zCR5)!tv5}T(Lk>KBitQQpj%K#*mt=R58J58o+m~7!Dk@bqcS0RU47_gLyy`cbz#*W z-qrodJ?MT8ALrmMP{TU@jL#AKbm=Ln{@z{077_LZW`3;n-Sr{Y$_gR8FKJs%Vf*O@mg1k%<%_8&_d|8I+1b<* zThz!HZo&2SZ4P9IgQyqqBYyl@sCp`#u|KK|Cs@Ady}iF*Usnb;hUF`9QM3dJKwY5B ztBGB%Ekr|p)8JvSbrbF2X63e+xs)TCqJRjuRIGnNZK_@&v}A47qpj?4SqK7+mcsaetBH#WtATPSe3x&<74oaT6J z**jOXI!79BHyV(~#kqorwsREhIL9>Nh-nAK`Mrg8GP@%@3|iN0&ICB(quHf3>GXu_ z%ets8TDOMFsY5T_e1iu9cTsMJ&nSa}MoCuPMWFuKG-;mQMi7IC$+Y~+<=5TMI;S`6 zsRoxvY{%#0<`FvkW_n6GI^z!S@wzUn-r+v3uA_^QzlI)-Bdv*RcpagH#vz+di|=~Nn+2E|%bJnoFhFGlsXHId7?xG6^~dR^i=WNn zCAc7Z{rjyRlv2Z+n>6>7E}1u?SxQlK)h&#>agg8GlyiQLJxloQw#dy!@GxBGKahpz3<08^P1vg{_6y`f#;047xEG@xrpR zvqyd_(Nll?$YHhoA}N=+pD6^J-e9iMSi^>pmY8H-?X$uTk27>sKOncC&>h)!R0*4o zL=909W=h*S<)$b_XY10QF1{HidJtX;A_xg7&?3Li`jGh^Pa3nzLd_sME2dxu9ilk` zGA3v1Dh_07!pb0PksG)5xzr{zZmVhn3ePcl3JPycrEz~mCbqX93u!%F#dfGWsy+QA z9G^c@cQ(c(4zfado50>%PPdy3hQ^aY8_1d~ z6`>DdCAGH3tCm~v9ER%&hjCEy^i!?2!mP5PM?<81wz#SFSR8yI+Uk-~$Vu;?DRXAp z-s~N!29cRT^evx`)s9G*dN(xG@W`*Y|85Ru>>QD#9=gJI@EC|cJ15CQg~JkXc(evk z+($}zp%O47Rr5(z=lzEMVgVJSef6n+c(x+szU6CMI1B*p#G(*se<&7kGn`Qqen zC1!&GoEM8OM?8zJXOa#_i;~91A22a769xg>bTm9urdxMV4PghUZHLM^E6C)+dW|;E zk{m{==CI@ADM$J;M?$FiJKCKTd+E(Lrlw(+d7FTYNw3eJLS((e&pHsHh}?C^S*i}= zFkg;#ZkV*t1_HjLs75bW(&z5*cjrF_ix^}|EUZG1o#mCR+MD5s>;fd;vXbX4FOzMs zAIJI&8#y$WEXui|pEI)J>{-3K%G4;~+rB_8JKM7w8K5YiSsNt@TI1rX;gK-Tj#2-Ri zW*Wa2dfuY}WFeb_x5x#-Z-R#T*d~NVUY!RQxahpzCPZJ=bQK=MeUyUvCVg3zR}wE)Pr}IAEKGA_(6F^uw^?@6U|d zSP9pH(dCb-{^}Or(M_g7_Ae@iAEiZyDia5~c5NC@8m+v-x?YumME!L!*}2R%gB=U< ztKpIVrNW_8{7@rUOLcQl*BJ7xWk+h!(pm4C3~gxZ><+s%+#1}Qy(n+MUTWts;Iewr z9co;gti-9%MD*h`(VfQ)Ip_=TxFRFp;o^m2{o|$WbF$VnkeH>FmB#QGgazas|4$gG z4>Tb=S}{E<69q`HOFrhmcLupdh!+sINzp|^htl>cFt;eb>VcPgHY0B zARNW1h^_Y9bY-#V?G7|_u%~uT;qe+#&y-Ldy*4rKdRaK)gh=^wzK&5c7X1{q+{I3G z+O`#>dbeKm#0X1t-=V4aL$K!bs|(W^1|lwp2?W%xuHtdwdN}B-Lh7Je_96(hqk>;d zjC01`2(gm!+Wi>|5T%xX_X*;0N#f*49>jx(FSR$t zWLwb7`A@O$(bCXE-!6#vPqzpLg14_u8q74JX=wLuzciynBM< zhI|A@s!tEtRR;K*sazvw)egUj+BAcTZfL4=B!CMakR^wuK?g6gaxd}-;9!3dz-8qM z<;@_QHzq6KoB?Ut-WB5Mb>Dr#QiXks z>F~u)V4kg7=Oy4S42G*u&d2L#G&N|;OcWq)OQbn5VT zBo>zaxeZRzuFGZDmtaEO6)f3G8!z#LiA6lkZw2N#r;VdWWUag9>K)+E&d$AkEx1j{ zYo@&__;Eb1hxNocVEc5&GDVlH)*Yzsame9sFU=uk21Dlz+Mek^y|X|;QLH|DYx-sT z^^l`>O$VmZ_3onq!#0+b;>YvDA{o^;*c#c>l#)KQTz^2^J$~$go2mWXenp$ngwi|k zzSi%bw--|)C0~+OA{L8G#;9RN#2q^(^mwqxMB&{oMu)IjvW_;?2&=1)<0wUl5aDw_ zHTr=^G$s~TRN{R4!uWa82fW(n_b+zgJoLXJJ}0k~@e{F^s2dmHV+?^jTk{NhCQ@Vt zOaV>aGI#8g+S+d_J!NQ&sykm_^=Y6>Vw#2bFRw;YSkxC3yck{G;$mL`BuRyS2(K}I zjLv5NyU9ikX8$oag#%eMAIcD*ee9^M9zt?8(=)=%lLk-%5N zibVKMETF(xJS=i44-|1U&4xU3+qU02g3(1w@s7hJ#krU%D$G|#16Xp6>R)px^y?qd zVS@D2N-KS&h7ev3+KHjsddKV}1>CS@!c-^<8BjaI*89+{v~%N6;2G^fAZ8Fc%- zI=8JeD5E4~kmt;>U9ic$tSUo$vW6Z95zj&okVZbw%+WALJwkfAmViw;k=Ph1h6dd= zh`gcvwvFKGRVGrK7GF&E9@#*@juGeFncGZRJ((9@bYw17w|lk%zxmP`vXqYSO=`_| zw(!mWHTD75vlO`bL9r@>)vx9k(Fw2lZs0r9oIiyM&y;nDs;WYILL)_g9ngO8Dv-O_ z0wC;t<5gM+sR*7bqy485vbn&Rt{N+wby0-{o;dvkKA@AHojt7QIB&Xg#$g>m`9uIw zF1pP;N#U?KY*~`ze`Pp868hPS;ynl~FeGS~&D96U-#=TAtY$Qs|A_k+P@jQKBSo9F zn}|K?*@AnxQJvWkc{i6Fqb6gwv~46dfWeaThEX1T#S@b)Odt-k(qA) zAE81ZVM=le(c;d=B02nBsTUZW0d+i6A<}*{4bzHBdXIWU{?0<`P_!+nB6N3ye)Y0- zsV;fzmS=SJQg3Bt@$EkyMq&dNbC^01KUw8)u!l_&NpZ2wDK&v)(`z!^(vM54_jl4^_zC8y~EQ7b>$VL zPjmMEajstRwBzPMp~8VI6SB@stl8CEFFz(*uQhgdww?{EF(h9!ugN^|=U$&t9rDG( zMer>i5Z(okeX?mHSN&}omOfrR^H=bV6p#K&q9IL+OL4j{v~#7Kh~roki?)@G=ExK9 zs(`Gy(=4K{(~}7#>!CVzMr2LR!kF3p?l`p5ssg zj#oK3x899yFIpa}8j4$x-8C~0aDgE5Ild$CwWHVP7u)adAbz|S`9oQqIcnY$^0j-4 zvsoGAj>G+%5wT@3K;{2(mn??3`< zmf-Z3^G}D+W{Pgf5T0>i-p4Y7CG3QA7`5(RCIa^NWguJq;cgEgvL8!A??t1T^+}Xc zW0CIoHWKezmib5tEm>5lRp*L|N#5Q(@wfE!ivB>kh%}Q{pl~@4y!s?XS2$*4RJl+b zLTpjfnJ?4)bF%I^%3x2IPfta+FX}KN)chlG7AYmqwrH(x#1Bq<%G$ZySv&eUvlv;< zeU*|p%*%Xyx1{!Cw_rOAgXdkFgQHiV>d0LT+tR1+pW6MfZ$I$h_JbxG5=|FuzI}z7iqbU6sBX>e>}8UOkiVsi=z2 z@NaQ8b8Ks!p?+OZ*rYUuhBq^wecJ;_uR>bH|Dg%&6LfD=K7exr2HQX@%fx5*T#@SE zPc~u+9Eqo3xyO5NuO#Rtn`t$a-!@^y#6-PD&pF`1x{H1~v0}hFsVM}5JQNOCpF@7s zokbP-SWS=;aN(dW9aArulNZ8(EEpR=VmuMyK`?xGe>*hV%Mz6rrnVc#q1 z-*x!u`V?ZeIcV#srgwL|!pco}eDj_{7~5VIa$!|p?*P(0!3F9RQA0_+&B;*r!_UuKHlp}ul;9mGU2UaFxXGif_oxTb^Uu(|TARc{vuZ$)a zFSXfpB?12UI29Vahg;)k7t+VyhPRTJ(De_^H0pssTp21J$1<~my7MXgK3((tZTNzp zIU0o6wc$flbe5DEoExfCRO{X(s4!e?Vu_0S1imiApmFOkW@b_IRnQwriog(`^YiBu zLIEcP<@R^636@OkYQW>53NI?^{F0j;t(h4$2dVjL!b=Yqi^i%#**Vm@aX6Z0IsK{9 z4suZgA!eBjAlrG+k&Q|pOy-IYJnD_4K5QHx1fEYBTt9-bQ-|-OHt*-`XUn%k9n6Q7 z>F0Lk8N}mi_qror0CT@T63gH%1TKGxSl>t~>bRAaHQ84*JH{zhN> zc#y59!i_7GU`HPyx5;d5Va}DapPFy~w)V-gsp0mMyS@>vEj#X{M=5ufB%=OEzPiTp zJgouBtB}&e`#935X1PI!KCsU#udwZ7NvnB{Jq=R{PxAs#*yrL`4H_LAV_C*Z#b!8>i>j5zE~T9DI+D8@OYQ(CVPSE8HA~-Ym3lcV`&S+) z(L;5%{T4i;G#e0vvhR#v8@eGJN-cUUi2^XQ+3n%{P%^~aVlCBs@WAHT*Z{IO=O%gtZ?0Zv!EKf4Uy&dv=ji@)v_c+(R4F2(&M^LSpq`$?!j`_~e8O8pl?4`NY!-L%* zvt&qpDo6}}^5wtqtz=dU;)FT@Khn+e*|XKXxgnRCjJ%7{u^3=jwa9LZ7DwtVh(ngB z=GzUkpPq9~DvWz=Is)y43L;o(skQ|>8w#I~XUU?cJmZD@^Q?Jyl+3=Ba{I#j0220n zwr^T--y!KdD3u&Ta^4H-cDNhB03?lv1=KF-v%OQpE){Hs0y797`x!v^BUiIq)Znf{ zC%qQd>~tRHP)xCPtEWH6T&~`?Y;moFQJ8FMG_S7i`aFlO?{JwOyx<}G^r7?8LO_9- zZwcf&l({zrfy8@*if&+#{-apbrJ>NK<6=dau&jaXxUkW^ER*=vP4jJzMA+Px*0bIA zdAQ%k+IP4H&rJ5ssTD35-lFdn(J$die#&|KxXx;SQy$Xk&{t`^%Z>Q($o-cEZahbw zI>KqUMhQgxcfq6plS_V|{Zhq@61L&BgYI>ZvZ5e-)qnB zUZQznIsQpQe$RrWKng%!x&t`)hUw3A&#i}eoO119y)yW=G1?iai=q_-_(bV4nchG1 zfnj{$*DFn>g>Pz>)Kw_!B~P|woh0m#NBLWksVMUbnqmMeIe7ajb@X-3;+z9Q2Z-9t zRO0%x485|lnXG$rZwsYXgJ;eDNjU6uNC69hu zMS_Qc^{>t@a`PV49!?*c581(X#`!M_VVm_adN1GyKHssMXc32|V5$gy9yDB*_=?r8 ze0YOSE%BgeIu}JWfzr2TMxT{}+q=I+A@TQ!($Gqszp9b-_JT#hS-+RJuY4a@f1`I?+ zN2p5T3JRlkGYx=k0hjTgujSw|O?z0AxKV^I_|?Wny%zgtoAUH9d@gJ;SBUuwuS*dC zf#N@cTn+|1BLaZ{hd&lo-Ic~=AOc|p)MSpy0*Nv$>K^`rEYZjeJ?D&+`A<<(cT|M?{U^gE$nF9L;xk6(hv!|#K|0iIMSxX%iE zj=li;kx`^L3E)${-e)G|O;5A?@o+nIGZ+xEu6OODakca0^H2sGIgrr}ekNx-g6a90 zWc%$*2q)7_+3yFayc-qNAB><6ZSkP3!T1&QT&OQJ=!QQCVuUhZLioMfA-!8noa872 zGXetjPVVg68f#}-O-m+AP2)p=H@yBGQrpF|4mtYq4xIe6fxcdKn3zS^KNcvEXAbb1 zTsj6Dw$PN+d)JFlsuB=@>`9OgAS}S~=wF!M>8#;O=)u95_7!!7&<`3qAkvhu7++n{ zP=EX?1Zn=XOTD;pZ2EH}PTl7BTUVK0kXn9FO7(x(ddsjVzxRt*5orVo>5vAcyFt1I zLAtxUOF%%nM7kA_?hfhh?(P`62hQgE`=9H)Id6tHUUNC~%(I`p*S*$fO=-XsY)2d8 zvh_ygN@>~o5jz_&?Y=US8pj;Cm1U_nLf_%D+Hyv?$v>BjTl z09(|{tD`HiEdaXck^-NC3Z|T(TP2^)t4aH5PDdt02+F`XgXs{7Z-Ox$Sj5ratfLHD(Ov{lw)< zze8o;$I2vtbqmKgF7{L)b)M=BS#F>KLKmXk#3=B|47niT3v=@65ir}Pr_5FIJ0mlL zl%$rIeb1qv2mUL#&k1VdW|JVecETCgZo1hUd4#bS+Ry;ffD2*#hYL6@-+TYhzr0kj zF9pL}Kx}xnc|~*(B{gC%qYnh|MNrhp|I0ak0b}k;LEFGGvDA=kazZ+fwhn z`NeMUQs4NylE&fC8O^8pqiI*=*DedwuL;r$;IXkWlHu6d??%#iBM7-NpMFv_uh4y9 zwc8}%1nwR&F>xxnv$JuTcRqLLuwP56s<>~m_xV`IDBXusDVH&<4)JCb8YoLpnbl7*THn1nVK9WU=Nao|DQN8hkZ z<^Le}F<|fnP+-dwCF_b$&-C#$v)U{EjUG?h53FD?@aZhRFeW2XXJxr0lbl!QQ&%#( zhp48Gjv1!me#|jyjB#^ISGNT&O2aIP)t@OvjkBT1u!%$#%Cq_QRRO*B??GG0KTf|E z24(Mt0zx}ncVvX&D5>@wzx^izFtm`8!Ur&!@;Nq8jC6B5!vFgZ`=KV!xZq2WGS78| z+;!FWONYe9%BQ(><`h^jFgx#l#$KpxTC&kZ#|~p6h)w%Pf+GsKVf)Fqy~>K<$B6^YCEd z^XQ0HUVdk@0QN-y4i(=iDwv#0Vpx8Qh(uSqZEyZ|3hcqB?1-_|G7(h--T*M94+TB? z{(JP)_ilUwbaVxcjkx?sVq?_s5%4}k#(|8qW7KqDBYU`L-f1wFs9OC^7xz)vHaIG- zc5&$X+6Z_u<4s8s;0p?nBVNDu_>}c6L;ve90`Sp+AP-SUpR8T2b$#)d<}!w2XsTKd z%nGb#^$gl!wXJlk`%(Ul_-q4tFo(;ULpw8xYiwcLET@EwE0i4zhF}*nD5hi3YK@N0 zE}B$jbyk}O!!8X@CGZitp@{YQXFrv}N=Euro%i!tG9 z3om=cxed^9-_Rva-)jrpW|uQj0^cp@ELkcMY;||f3So)DO14~pSvVCLdk2Ql6^6kv zAQ4_}8ucoJxZCprx}|;nGxG-H5sr8=RbU@#QZ-@|6R%UuS9(&owjzR}J@Ct)_|DTQQ(R z>0o!U%uB-VjeleX%bt2}%m5EdqBefILruc)WVKoLv-(su)y%-)5|g@E?o(KV^2oZ5 zmwV$#%OtzD15Y9@9&sq%fCnyvv*8KQbhXKdgP-xVD1>Gm8)E^C0*|v(+wPYCI-tKa zFYa{}->+TzH!5wdP|nzWItUDi157tUsdqMwLmeP*4+(~~?pP}`;0Rl4@gIGjw801; zq*7gw0$nppL?L5ST19^}lMDQh?Au=3d);KcttGI)<}`owB1~68G5(YISmw{%@c^J5 zBHmQ~3>4_~K#GmYk)RZ~>y>opc8)oIS?&#PNzW@>;0vAKQ8{wb0KVE9i7KFD)~~@a z-riDy!z%dzz{|-rJyZznjtmr<3?<{AoiDUh*A_l^u$<_DWXBvXpW3xIpWTZVI;H&_ zL|(lgNr?zhr9tQAvMy*IQh75f>~>8=SFg}|7q)M?eLKO(*1QYWI`?sC+tKuFQ@wYL zR;#a$#p=Snw|mjaf^E>%vD+SE@7Z40m3E`NFQJ%UvF2sV%|?_n<9wC~bTIAUJu`EK zGf4ZW>av68+|B|ORQ~Z-(+sT-e{2p6g#Q#Ev9L7#&fVut6B7CLH|!mXz>JWQXJ*EJ zzH>)TRD+b%SkC^CiQ8J>Znc6Ls!CuJA0}~BOP&30bk>q}{L&kM$6+ofS}j~cC9iLt zCt5B8j4b6`v%71#DTfaHz2&(bJC{8zow{ZwgU&0~kpCE+v*L}~g$sCN%RZL#6t8lE zlIjPZU^-@p$RCZlSSIX1Zh+lXJ#mDr%E*{~@h!sG&JM%C9YgLjB*8SYQCrxcqA05M z)wLinC}<=nKq7mT^oIYnNde`VAPJNDfg5OfOryCMvkrvBq8pi?`-_aAYf9iou zx;#1Pl~Jjvn*0X<5{E8{Ol<>waY{=Z{a3qPN0)YJUfY2B&@0-HX0;%~jGY@pN6Hy}^{)Ck1sN$Upx}Q2?!FcgGJMB)m& z@&w`@U>P$BVU8};fB6F7r&DZ`EV5>?O#TbMWJBAh;NkVq)~5moeOk4ZEJ@e5 zbIaVyD!QUPE`vhhOYJ-?yJE)LKb64V-@Ge~o7;eeH83?s@wg^k4jO~&M0QWl-!;#*Fu zQM1!G=;=WC<%A0luY8DDkn1{lfYN!_<9}6waub-}Ysxs#FZ1apr=@3)?znaA#mpR# ztKu13Cw(6aoEYL?2R;;pk=2_LrG+)rGg-N?_@|4If^NH^OHE+QGX`Z2#uo_Waf==V z9D!bs{Y!+Di0mb3%adaOtPGBj*)^|}RhpZZTUY)~DAd~KSyGJ7bq=>>WC*T2C)1^N zP20@AgR-aunf2YVZOmgNSpQui1W-7W>28E~{hLj?wP-UCl4lPMmggu`Wma{E$xy&y zL`Ifd^eheT6a_6+Ra9}yUxL?Y4={^n-RWN&l9Yy>fh+vwb7tw`!jausgcselPoV2G z6y?V)v5Yj?FFAq(ajG#61l~9^2K}tuJ%g({dx09OzXq#9{M_2WKHmO`KTBIm${S~r zs~zfe-N^s87>wQyN~6f5%SB@|U2P?0CxLCtwNt&9?Rj~>I(7!K?PG@3boA(`+}nS8 z(b4Pcqw7|66S<;CogXxk1o)rlYF0}Yn=SW?AXZdve&}^vccLvX5Ixj<-5^y}cmd7) zM$Y~QL$KHMCeXxW&`f97QdaNYUUed#H@v@Jlz@azJp6^!I03KJI4*Pc<@HF?hOn*F zJ~$;A+@AGjteOs$Pzbi_3!*o@l2$aFP2vMhN1$5MO<#piBxrZt^&4Xg6G!8VcWSfF z^*lBzo1k_I;w$&C3NH}!#@Z)*5)(n51`5)3(1W zbf^Rcb`mx4`zCsd!lRY{XZGxmfA@wk`sT{a>Xl`Ey!Sh$N>iL;MuDx()$*d z8XLow^j(gvpw0?8)v%BPq`A3{#j;11vEqd<+bH|@HU^TD^|sI-S$&-oHa*uj zIg^7PFX*#ewI{_bUttMfkIycP(SA`>QEQ$b26}=tTC5~i_pFI z<&+P8*l~`+B|;d`$RsSvvjnxRua=im@x$K`)JCDlpXdHjXxZ4F!UeM#lO@ zcTi5+qAs6wHwm`8kRgE>S4o}r{Q$l~_Coka=8vl-jeK{Jo&R2N^{bwAM+V-tNbp`Z zn2skCnQXW#{PSl&ft0pjC?3NISN&HqI{L8y$rk%YO-~&-=s67p7o>eB6#G%2y=*1a zmM+F=YI90T0QSm>WF#P&8oHARl*Srs&!TkBRtAe4a-Svt5^}Z0o2gT=$w&}WOu6jK zr;u`1-16(Y0Tni2@}T8eT+7fl591WIRJ2dsH#9}Q%InaI!|*+Zd_z*M80Q$qpmhk& z``&`@CX?73CsfpENoqyGfxBUcAkzCGkfB229#QON+j?C=I{-DTJm$`@W+=29jDcH% zz{9%bHWx8KxK_@i`wn*|$;nn;YP{ILVcaE){`bL1!0?NgFJ4HA3M=RCuU~@#5EM8r zuR3TS+CpgdKTHKRE-y8bP!B$g`g-k|?(2(|O{bWn(K2W{@65!%20D6rhvFKTU#J1yE>Ulkl z%lmZ&?;MbEYj8Y)W z80=x*^*fA zzDg*2fBX;t1eh0z?AV+vw6u@W?mZ-2FLqLM1OxmI%$dyGnj38E=8Bk2BlDL0KdC3R zoag+pyj{;wIllSxD4_yTvg5g|$#3?Sc8yNNMH5n2H=b=Fx6=k^pUv%LNrh{d`l+v; z3%l!h@^{uFrU9w{IV#hSY%VMPmK0ogKWdt+-R{twMMzMZ1!^OT^A@wJ>^=oEz-5MqG1IUK0@ z)sZ2XtGB*0!3X~r+HjV#aHP&#&32^Y-{SSGS(pk$-*pnurge`5|}cRR2E(qQA;{5-{!;r2+EoQw||K zd#8hvK-i}4pEakaWX(s85X?u|qT@I|r!L+H&*Ijujn{Boz!p&B`R#M+EgRr-nmMy9 z%?m02h|vbt&(SRV!D5eC^GzkQVN%;kF9GP}kG|h)g)W#g3;u1H)C&AQi~o9K1X>>F zg^d4*e!T?FP0E$TwkK5IpG|zwTPxkPkUU*M1Sj*55PV+OtHtNvCLsw=5@vG1veIks z78tW*nb9y6pARKq{6`V?{Pg%Z|qOq9|{AqNc!g{+E!?8pCqzJ zc`bg%^P&m%vC&3Zd*{X0pJzq$iO|y8=NEjZXaf;u_qEsBheZXkxGbF`)iWNz_o;y+ zn?ep?tzZ!uG)ZLbS=vl~WZuJL>7B6lA|5sY08`*DoU7XV*;7k4wNxtkr!dg}7~So^ z{MiBW7gp1BpD{5N0P=tHXE0*rBZyDA8;y@A3#j^?BkHgfmi(e&42HB!97HaaRNpm& z9ZdVDFO@w}T*}zo#xK4W{Ou0)*cD2#HFN!;L_fvJU!gssj3E_M3Ko-Yi@^JL+CR_` z$?-=RZ$eXivC~BfLbDk$s+|?zE0t<8fj6sNj;%lDse`oi|5(_g+;ta?U0ueYuMT`R zdw?<{HMaPS$3^s8@6SJ<6X|v6zgS@WUW`(|{q?~2n+^v9AAd9~?qPx}PSpg8!xoY8 zNFQP0$Y?Mbho#0c`&fQiMci4C9URYoH7&4Y3RXI5sOR>Kl=~9wrVAJVr^NWVg8r3BWMPVClklFBJ=Kr99;8S zWD)OsHh_6#HBr0W5geL5YM2GF`j~^QCPz(fSIX`6@+-25XaWq)P>?&kdU;`~3UE26EvMq= zD+Ik#4y)h%R0_#_Wu8D$gTd#QA-KxRb8dGq@D8O_rm63c!0%^oZzyWx`5{oxa%M$k z)HpcQD!oa%V<5Ugx)UU41;5|9Tl3>cObop&IK90kFgbL=<=4=~vd_`Al!B?; z-X_*r{d8qtdW9qFgRMSYd!p+Ykq}()4vd890Oi5P2mq1+6R;<+_Z7U}2rW_b}%L5YfH|sNh;J<05nmdiXl)1 zTpCLzRh6CM5*$6FjqetjlN4VK+**xdjk93#r1d)ed*R&%bK#c~F)PDWKgjF_e{xe_eMgq%0zJjvn`O&4o^4uJeLJ%zi{mYegU@A^2wq8E1D3WML z!&~10gzASw)AX<2_A4HRJ~2DsCpHKg?Ljai13LIhQdy-9I2D3W3$KxF`AQI$(Fyzf zd#dqVmQ4xi-hr1Hld9#_BDtX~gW3Q3>o1OwU%`)4_Ju7}M2{s$$huS^0j-)2HQ{&^|+qKtg?|4^nvm*3eI&npgU>TBGz z#Qr#RQp8%ez^s0NvoALP04jK)*NuJYU*;@m(ttiWg##rl{;`(o_&`DN50%rc{$y%} zIi62|ge_1)E2`FFh?H-!@fQH%goa)mxq082-4v(@lr(*F)0#}S(sG{`XyGLu08fSG z8`ak!?&js)?kB?A7v|d9^&ob1euGAZUlSJeY7H{y{83GBZN&GD>>VWr=31Vh3MgP& za&^42a@E#saLjv~frfzzb&i4LohL?808+;8AMgCXezR&f>&U8k1H_<+M4D%PjaV_C z&Nx)o09m-gRC-}LhL4~?TH7WX*hig17GJ^cd`{$^5V59r9x2S-8@pKXrnX-f^CJvq;%sG@(d%caFoHiy34`JQ5&e^CW{n4j};vV<8`YCLXU1_KPL($6JI z2^yRi=1lLoT?YSwV|WVRhJSk3-u5pd%K3XmKtKgO8*ZTeIX*#T)aCzc#j>YDJhsNh zNtT%&|NAQ4U}R_j?`~N4#1j9BX=&h-^~;^q4Qfs8PHm}r=U2hquRf|w<%psYGG!Lv zQ^loES`BClJU(u*6Q1+bF_jaV55T?8m%t5G(iJnps|p;DbaUmO!pvh+&qqWdwWQh) z<4Su!4?p3*s|Q3KEHN00l2+o!%hGaSz9R8L9LO3NL<%A+>E2BN!?<(?F5K&lI zumSH$qqZTaUTQErUa|zW6A^|z7dy9wr58=)At4^G`4o>3Gf?lH{^)C~Lo-jwo%5EFTpZd>7dd?@mcw~EqiFF*rpSWFU8@ArX z1Idkb!(k6{dG9&RN^O=7oQDFpqXWiuR0^xG)6S#?B`LV$C z0@O|XqUVKj3>JAtf_k-~!@0bqld8&q*5l&W6h9$7Pg8lRH!2(ed2Uv1!_q6_I9qN- zvnnxx5{^4I+QIA=<_=l5Tk*DehL#USh)>_K?phX*CZt0&iTW0%HObJ;@$1;fH=b*I z3os`G0(k+H;JEMtJ)wnXQt#KlqmTk+MYD~yq3Z@X0Qova1X3c|6-w)%F%*<-gd*)J zQu)M;gxmV`F4!_9JI#i#$LQs&@g;7(F3IKI1Kp zlBcn_nkW!W3QHkY7tBUKNF)T2Piy76Gij7{61syk)XLSIkb_oVeg!i!0EC(?&nd7$ zHg~B>i9<7SoQZbj<~rx(cU>(m_^3JUz*3%{Q%x{sXluav)?fYqEB6xloS7~n)Kob~ zDnQJ_no`_6^Ei+uO?>1kJdnbj}wWUtwnJSc(8oT?lAH@j~=ir*r=|7#Cxs~Y;ng*O~; z1E|7*eY9WpTLtUn_7RWlB=!!^l|a4e+&yx=`^cinkr6E5#Ansb{^-g+wHqQ!pYx%w zJ<`=mu!25Sx*o47{xp4h8azCft(dd=L@Epl;>eKlDG9zIr@zwE z;ZxFwQhNyp7@Uq;fD)HtZ{N#5LXt2r)8yIT^S{B6<)g<_d^f6?Gcu{ z-^~596Twt0LP0P-#yGAccuQd7nDe37`_+%A6&n3bNv}9~B z-*t8(`bE#$judy$pkmZmKmP``w7JEB2Stmx{7RJK}>k7HmA;S^A>gs5=6XuZOb)3sK`TS7$(WapfLC(X8$YjXjtdE*S z^OY)V$n_1~EykneNlkQ=r>a^fB~^E}B~P$?N~mf`$6rsjCM$zcAG>RV@Rxz-cYLzLw1 z)zcjVI=a{_M}v_(q7uINV|7 zFXMh~L(ZXgrsgx3wMCj^LRm8%jzhn^a`=nj-q{NYu}YFRA6#6pw<@29#B#Iy)1+vwL@zf1^;H z3h*X%-mIh2+w4f;k03;zy(Y)C=KVyf2Y9J@6L>h;%}5$#v!zSkwZsj%bgxWY%+NI``PfMC* ziMa+!Bl$%kw|_}oGnLD~sOAQIkYUHAliyf>ZYQ+8Cr;SJ+FKScfe}+f~ z$y@h#%Ks&N{aWYh__B(I_(}||k6gmz9)U-~774Mf0p$fA-WZ5|piX>m_Ov!K{ZO}L z(%WK4IzD|lt}>WGvh;g7Br_eXTCD3@@VYu|DMqT?3x+Ip4nf6I5rL_Mj3fN2a@NJ) zhu)d4YoByG!#oKdbD2Y~{|Xzk zK&o-~9#07)*mP-sNowrmnDB3`A?hiy=mE_3aG0Kvj2wB)%E?D5w&(? zpfWDQc4t#ctx{aS{d?l0e%q|Vn6qU%PA3~>%U!{qOIz<1j;@p4>bF6NPhOQ-7|-W1 z#rp?BHBwy3{}#)hPJwf-nWs~W<06kAptY@jq8obsVK7nu4>AN)^E^U{b>_{)esRh- zzFF=KfO$CEn$DD%5c)8-P~4tTdBxCjvfJs)N*&eT3!g3F1|Bo{3r-8~}`XU7Y7$fm?>Wt&WjeWpj5AGJ_qJ_yl?`oPF zwu|V&g-PnO`e3vu{WBw+zCLFDyLxTPvjYvIR71G{?Z#yBCvb%#*4J~rU0gE{J}XZi zkvR4{)m}H`PHE<{xuOy6!uHT7!yzM)=nbLiY>Y7qqX8lM>AWFN092^Zo1BE7F_D;(8t6rL2`p zah3ql<9pES(16$7zNg3}u~-ZZx{h+zGy`;8Hu5rsTgjFdw6rmxf*x4x^3okH0^j$2 z6IIbaUYw7%jxI@b3`dFrNKrcOM!e9W@0a zMLF@TM1`r*nQp-XD{$Z0vp@B#cbN<3?^?t|{|C#LmSp$0JHIknER<1vNiJ!|413TM1#Fys#r(b7#3NyQMY8b_vewS z6ds1jLfI{YNQ?BSAOFSN9Fl4J9&pa!NxRx&g{ld)+D#B%DmcY zVcJPi9heB;{qLeVx6i7dezmAx`uhUoIvMSRBOz|fGrz0P+a%X-!u+g9kWS0fnoU(l zT}CVr+s`MjCVb^YFm>1-!)pcoauV`GAtUnaq(iRAtOaUa_+rNY^;nUn>QFjA@pN(F z8*lm11h;uM%k0#jSVF%L#TsGBk7r7pKP!>hpZ&%%(H>QL`$w`nsoB2{Pc`_E3*R@` zRQHE*oHsEwZa6$n*V*TX8EE3=tbMrMkqlg~r0t@Tw<3yYA_TRJSe^FO6E`2QkXAaHD}Z4i*l;r9IGM=Hs*n%hK}?w-5MBdYSA zVOTWwpGiRL-lvBdW}5%#{j zWArsg$282&W(_9XY>>)_m1LhX%Sgy6a*xeYU_@Jbkda>V7=(mnz;qT!0v(~6q*#|BS9qkVN8m< z22n1Od`nG!hkU6q=8(Po;jfVZCHx0wlU#Ph+i+NYuHMTTk!CX!xy5CVLQiUHatVxN z8tK@+dr0lmIX;8`8{+su_igIm%1z>m(jIXJ6U~7OsNl9xRNGw(V=PdsE#aAD+~e8Y z(VQms`}W75ke|*G(kz{qy`+N8!qPr57K~~MwN01y2>&U@dfQt5K~m0Hywf}TkIQJX z@u0RVfLncSQ>fMakysoPui_hJ<<@G|N5{xG5;AugXrYW60T zEMlboYj%#gcFHB$?m|8tR~i-gM>k$4wXNKr{J3UxA%-V?-oWbh|GevM29Xf=ecHeg!GziL9f=QPw^sxM?x&Tur$?M5CQ}_$D;X*S1u96o zgjJ$9=flW$2gPuLPd>ECaE#$vfu8Mwq7lvL*O(vfJLy_W_PD%sC}6m}mZO>QQWG1r zs0vDBxt+tv_8tit3cTWIEV%A>3CzTjah1hzhYzt)lDX0W{d!mVt)gpo|M4bw-7D;A zLj$A7(YBhqvt3WM=nE=p9OJ-dU9Km^s#8|7b{I-Ydwc9Cf&H~#nke1j%$`OL4xlhr z@TtBn5QpQ*edzKFDtRjM6NE`|H&Kt??(y2S@%kI@zcT$xOL|n2iE#`2`u1AyW9~l_ zW5;3d@WKgjR%2xz!to4i=4YPnGk7@92yxEdw;EGgM(F@%DnvY>n(Ak*5nf#Ey3rKf zY$J|L)#RN|+sSe6TJ?09HU}2y#pRURT{5f z-D>=F4-Q6#w==D)aSE~q2C^t3>uIihS}sXpLjNdae4{l9N7l}h5+%LbU#E`rbSg<< z@$}$|;|27^u-x1xxSnj~qcDuG?C?{qcX!YTh{3#J4$Vk=ddJFQ6+;9qKIqKgM)CZY z`SmN!Q#OrLyK1qLU8zo+tnQltTFMZNH(fe|f$@;V!b_dULP)3m+BBh43deIBYZr=A zqF+SV6_v4ZTpu$%(d7cpM_kv=16vuS%D{=ELtu=)x|uZVy!hZIC~Ctg5>qHUh~~I{ z4O!=dq}i!0?0ckm)ElS$%rz8`gio1fb&r?nF%cyBHtRCf zyQw1OC8?dE+WOaDhLVL{R7lAu@Ne`HX7Tq-*=g};mGaNu~)XbG!m*Jj&KiMpCqd7j>_px07oARZhe z5o|JO!a-Wm;;3gNj!_9r#3IC`;AX^2splc@gXkzo{V*jHxlYM8c4S*JF>o9QBM!Zb zzlU8spCd3Ddkv|GwUpNlu21T%7S|z|uTZ&}{peDE!orN0bD(Y)+n4YMvv$OU37*E1mX9(KF{y zdU26Xz=#!N6^zWQFbIV%a9UR{dt8{fW z-36oFrOv*YzE*FV)dQ)b1nun}V729qjeC`bF{e>E)j#|-k$1wRnp1`H_&8&&Es%t_ z(JIcpnAC4?qS5A4a#}HyNq88uVf+2Wc9Fz<%Hz^Wx+NRW;JN{x+`-1{4o|-z!<20@ zL&g@aCiD~6mM?;Dq-Cq-i_A4*DwnJ!rbz6m3kYSTsM8%dqW%2l_k1$x{h^0_aUk=I ztN@XuVx0gF=t3Hre56bBw#SMlt@bT{8HNjo_?nPX%XO*6n1O4S&9d9j1#4@_sU%s0 zHdE%P^9Rj?6aA2COQQ8h3UpCYkjP_N#oc{-EQ~K6T*Y};qHnYv!HI7zep$a%o?n2i zILcLUmlcfF{QyCFEIi~!A>kWfbpP3?PR8G#wp~E=_PCa?H6Wm4$D#a@7@XGGYH~8q zg|mX+ciau{&R?BKx2VM_q_ZS!ov~aUp02uRPE+_DQiD(fs^aVsi>;OeZ_+Y+lHjFf zI1Q(u`!-$B4B@AmHq&sjVO?n!F+x>|Rjxb5l#C@UENkBoCrI%wNXB6KobP^K&(G9| z$l2c=BZfW@=LMqMYfp?h#m}@raVPi=Zs!RUKE_*-zETbEJ2Hh5tQ4ucC44*z3^?}S znON2c`+WRij{0Z_%M4es$lNKVH}|0I>aZtqZ{Yn(OxtBJ1VOC97g|5;+$vB!bieS| zM@J($E=sWGqZAnQJ3KWUWYd1EiiurE`+&ZD0-3*`^St_3Wq$egc%x^g!di2}8%ZPg zbap#lwMnkxYPv|#?T{JX@7wo}DY9w!nN3Xs(qCuR9?lI<+$a`p;zWY)N;B+SmnA9_ zQZ{YE)(Q$OJSk-Kwxk1Bo^*hTd6XihlCpvBmGme_TaC;05>I`-3t%jH2u?b?ok<1C zr5rxYP!A*#&Gw4Z1{~%a|NgDk)!^t*bgR{Y^3E@l8Oq+SJ)=LEhzmd`Msr9`Y89d% zyIo;H9&?ugY!`9uKnb7wd|bf_S63ya;>(ZrKKCy1^^O20MyI)`s*)s3`l3Ly4IDFS zhr@Qh56f}RmQi;qX&9AlIs2NSd$0fKCV3S24i=E}?aQHyddNuJ+^t{bzlIq#~maVVh_s3`{LNsWCD83$VwSyI)bVgmvWy( zaJlune>&OCLZcQHaTL}x9Dbx&Xc(o*NXgcp1i}}Fu7>spH~Z9Ben zJ$6+EEsfkwWv;N~>5(8-oNbtDIL4u8nQbNj=yIP0umbx&P7GJih|9N5XGqD0i_Pet ztiG6dnJq_ZChPldF&M3sF&QAo zgw*Jq(E&`k0U5l&5q<(}ff_22!msKv;B9)}D_jL-f07EpZp%N2PCurg?GtzB1~sJd za#stVU%X8I@jl{pYDXL=TB8jmw=ki9{jw!Uh2 zD>hTd&Bof(9Kk=#4K9phyM$}9gCd^uM0g9T*=7oXl6bP$J&wp~m+<3xm_MQDcPb$90hv-?Of^ zDl_RPRsi;28;3EmZQ2kKF|l$G3VSlQY!)8fsIUJR9Ap?F7KSoDk>>SSFKYbf`vfA$ zle<4b@1)#BNUmE1-k8hUUR(MSKH{=o5ONgaExKJqGR)0aQtt^>in7CvXG z3qoZUxqQ6P5JoA3mG0ZJ%yN(?$nLfo)52SGEC+5#a90L{3@*ahv=BS%1gYQ(!FJ!V zi)O$&P_8$+>%mFn>}CV0s|zE;3&wGWqje=nplZl{oWrY_+xNCbApZ>#TU062?Ol{6 zms#t#4V0~KPA^I1Zn+CIQN1BkALJ&hM=({-@Xn>5+6SI?)>CB0=NO|l-X3o^{0)|u z+B{0|w}TzcfS#sV5=$@$L_$|z(v?bYG^3@#!hF^t>S~4JY5nU-?dJTr_SVWL;I~-> z|FD#7Lng)oV<|b45rQN}&!34z2bL&7e(MT{KPOWWut+L(3Cu-P9&nj4h?lm}1fqr*H%!Ld$7z7oMXc|Ve zYlv-F7^BVId?XPO?{d1(MDlexM9!ahWXOG&lhE?NQ&oKYG-T@%0I^Y3szrrW*xjMd z2eq2@O8V19C-xzk8(z+$ra|c<+^2(+oM%%pC3~MA4_dR;E5)y9m!`-dhWQZ8&K zA|1D^HE7Rf8+_m_1Nwg?ECkrR?*&0&zygfKYQiP*YCT87INe=bSVayrX;aE*tf)FZ z+1_Z#h{4^zYIx(mU^vTc^hQ3%U#^eSq2sl!W7~jhpf^NSw_4M8l$6AL@o8CXyv^(J zV3Z%)kDptbZT?x!Ohi%E1yUoHx;jbgL}V-@P@OYE9?gd3yKSJP^w8@}j=(FhPLmfz zvt1Fh*7s7!(Kwp0a7{s>BgGlb`1SqCvI{k_F?#6@i;&7}O|h@`i1%CV3GSn2IZ=4J z5JWfJJDWEiAwdq*3;!%-Jfj!fqLmWk> z8<)~qEvO%3Y$s{rbfNwKY!YT$bxqEUs0&p;94=5-dQ_9$l{5TXQ<@WkJN;Q1;zU?7 zT$q;(N8+Q_s%N0jQ63K#^`e;oh~~&^e!q|KPg1fOItvtWQwP-+)QP#+OUuz9B)M*o zgv@x6W3IHzbEvw(=$HAr%>z_u=YLA-X@`BQp+vFe#5un<%bo5U zhcte~=Ye2SJLS~GB=E}q?COt}>s1P$-~%y=h{1f-qci`tlrpwlC^DjAN~WtK_K5~a*gVw0Y)W@;s$4xBk-6V2A`5_>DK^?4ml=tE&t zR6c83M%elXr3z%A-!!ZzE69Gw30e_hs8n0+-5RV;)8#^5PB2zC=*JQ~nDI=W?SrLd zC|O7IHM{i|p2;paDb#I?eoqw=LItRC*q&B|YXa69^a2^8Rz)EzD^7x;21=jxHo)eT zIz#!+IX6paH2VCp-oLg!)zcka%HMcE)TvPjJp=)u;lGKv)lK~A&iSA^jT4ECfoZtz z(1xR{)^4ZjwtdN2IvE7ps_D4Gd|2J!uL!;5a|)6?H9fQ?J_h&U?XAoBxJ93qGTyY1 zGZFaZt|j!4kOf3+I-*{m38Ih?lfHkcJAt8h;yg#qdF(cp zsL)k%DZ)uMT>g16($7yCPE~z4x}w9(H3_S3;xm90g{9*?HGH~(K}m@bVJi0~xNogP zE{y+5jAy*`Pc9FLJWz3S3keJFbWeX#vTE`=)SS$>mnC+LJxisRJCHQaB3z9We0peQ#!7eGtw~A#P5w z68la--_q1HF3G&iQWXS!RTVYpu9J&nIa$NN$JeH-aaGOqa&(rOmjRFE!kC6%xUMI=OPlR=k0nzC9e!{4E~p~vn9|Ql?DI@c zN`j#m{_M!)Q}aj7mjcYpREUUF94S&NDo+D!SP1wmwmNK2`N=YTTbsRj4~Hi2Ymi}M zLV?-E-%phD&l01$L7A^F_WiXd4b4ex%EIYScM$mEZqo8%m$=Y>$Z^9Tt>W6w7K7WN zP-RV#L&*-8CEoER9LQ(j%rA&Naa%3fho95%ejUb-_7duOTEzIas@TI}w7JP?!sS7R zmqEF(z!-7tphjAIw$4BM<`tS#F{8KYB&GSGFcIP|4+=3#UIsBkLrQMv&FQaJUtLTL z0*yv`t=*i=%+QYD!kddPXu)sXfsdXwvxg@nBs!Il6upcX6O*^K6kff%y3dw$31^vP zFL}7Eoli>~@5_p}{}SE@9`}nS374AoDbPi)&(?Z6)Lm{^R}rgIpOE6um2*v&ZXcl*iS zSPH90XB)$5|5r^51Az<|RAl4Yp*YDTrOP%#Txq@he~498mq>gV=dx}$v-lkHY3EVb zXIS@%AGeHbA>h+Q@cCD}w#Xg4cErfo@CC(ybf%xJp4;cjgG)t>&HfeNQrx6A;=7>a zN7aH=wbMmKJR-hjwxiC#tlakq#b~e*Q$1c@a^48~pV(A{`Hr4Nga66W?9#q111Aelw8{P|Bb0@mPTX9ncOQrT<}qLjg%WYKrhF8hv{#)z3b&_ zCa3XzOR+y-rF$v0L28k3;pq=@6-rU*wLJKKNuqtfn`)WvL1;*5aU!us)t;aw<`1h7 z;yeAx8edDZxN}hP=t@csFn>#dfR}^-hl@IK46k$%4mL9Eiye!Ht_oyGY0zUSD8O`ZKDTSjywv=3y^t&tc9akz7cB6pS zKbUGRrsz^_HZjxXQU;qbz*s6aLrH-M;y|?nyZP4gCb`DNM#)aI8dMm4gKWJ+mk!rU zYX+(Y*~T3hBrB)+kITOqkyDn0m6TAz-qr8#BRZwcE>E`%-)g>#vWKUZ(tCv`XEjXb z2RuL(JpVi%_6uvCwsoJBK5>Y}8l85Ec%xZ6 zA49>a%)7R$$gTX!WQm6n9OL@mA!$q_mTQmd0uce#2wj1jpqJD>QRK%FjPQ4I5Z2No z%`Sj?`~&+s9&a%_e0#H3D_F!vomr^Q;%t)=(2^C$%9|UopQ0(`SzFh(@&gCu7Tbao zw4#P`)?{Q1d(m<6i_7Dr>i$xUX_I#rGGwwo?l!yu`x~!^^1=P7R|7Sx%5@NdfK8(T z;y>Jt;kV~Gc!JAaV5CO$7(T2qkV72_ZQ@1PiKnX+QP3Z+qtF#I>G6*HPgnxm?e%XHm-McH{u)hP0 z*I+C5RS*+F?I|?sHc_Jnk+o$Ru7X{LPP_IP75Ya(RYg*!kWxV4;gZ0n4A!}}@h_?z zMGc}~<_9o#T$2!VI7`sKX5!zc=TOj))?fQKGz*5oNYB$nIQ)jl+{*`1(DI@7aGaGa zP(8avY!dhpKFsiVUPTNH#vVvIE6+CEe-g5eT3SD3de9$OjMw$Yg)w^v#ft^>@3kg( zjpj=W;0grCE$918tz2}w?iG#lx>v+$e7GmhD0N)-_BFk>Vf4J#sFuS2Z!>(L>^J+1 zFRbx-zuEHtF!h#ES#{yss3_9i-Q7sHNVhadH%NDblt_0=Bi-Fdmy}9(cXxji-@W%a ze;h*xLv%f?Iq&<*>$bbXjU#c@RcfIk=1`pQz2oAYKmX}}z!v2)_;g2?I@NC3SaL@< zEKao}{`sqwNi)7qFu*dfb$7N8&I!Sp6*Y6e1Gtxih27PiiF)A5Ie^|8EkhJ*esg0D zw?BgLD-N$uw&a_Y%wykB0$i>{KZ{2#!2Ar!&RU%U0d2e3QX(mjL?V^=L$K#GlVAM+xt5AULaO*rUX^NXZv*g2 zv$@u?{SUtF&s|o$?R?H<8vkt_MZg3YjuDN~)@8<`;c$&&N{&GKxsG_VbiF5#^L)vSynLq?>^cn^g@4XeT`rp~ z3o3}_Pr5dYT|L}RwBDC*^6;5R4#9E-NBmXOQq|t%guzcnQ+48=vUg zwaBr{kx}>0Zo>?fH>(r`e(V?NBG;#17jD`)Wz> z70^9if}_l8))0|s$?H!aH1SNbS5*?W(EKmIHQ`^|JWTYnKT{g=SC6;4ie3wgP9VL_ z%O#UqeUQMt(0apH@iq&YQ(uE$`f=C-CLI}Z;O7jxvo;B!&Vex*G*0T0>fgan+e zO&R5L-TQ(o0CaS_ly8wO0nUZB+)X6Tdcme7OZVfBz+`V~kEl#3uZ!$fINNK+eDZ52 z;r7*Tqj6_gRgQT~OgvbygDg_MHS}EL*IH{1aSlrL{$vI1cDFkawKOuSHZW$ZwQ)p~ z3f1B|5A)ZV@9o=q)A{v!^+eB|tPm7U}=tp_!p*r+FUt|m(%s#HSvWo(tP`T(d5V;$& zAQUmx^emY?8mY&mmqn)^zVH0`-sI-wm2Sn~?Jz39MZki~9_4}!?~d z(YEb)W7!V@${y_ty6NjtYxkH;32GE4RPg5XjHURU#{^G=Nq>;*Sfw1Fn1gE0XDeli zs(w%Kr-ZB8IgZ%mRs?*N@PhyB%NL)GzcKJVukd%g9c#}<@bNHNZb5KP4+`Ky<69UR z-;ws=b!V;_6YAkp#&VqD42>{b_(ob3pLDHYt4d$?690F^LA)~St$t?wd!2A;8Q=Cx zm^2WvaTLm~2?#QpFHsvVHh%^%xD$7AbJovlDGMp9u~9Wig=3zQuP?$B#!ks;%1DCU zn5aXvJ0%xsz-~U@B?YgoWoV7>AVoRr1gq=X2bOZBo=+cJ1H8d&qI0zy4GhlBKYU$V zK=@)5gBI#YQIQ<>3Ol0U&CjnCni(tJ90i)H26MG@mD6{Qe!nPXN{>xL4o8sxsF$lG zbB@f4TB&2i1wfbFZMvg6A$!|A%)SLb^xBRQ=-n__++U^Q$Sh-||E#!nI97&3yQd8| zB|$4<+>Mas{x1tX26M+p#7&~CYa>>pS&`<&a?PdPHxFonkOG3kq1vY({;-gYSxM$J zT4yms@+glpx!+k=34XElSLqA0!~eD})wRgkKl#+&AyS8^(jcuU%?s=BRx6jyt*7n# zjF4cEip%T!BOOR>Cc5*bg6t(y1GI=F_Qz#!+rHdlpsM8N%l^KRW_I>l92&pjMoPyQ z+qdObh@WRi7u<|7Y4bvFQNIKee}%<%8zc#KSW6iekB#F^d?_qn=^T-#LJb;~r>Zlj zf0K^wp@l}{`GLmjm*1N*p<~M(4?EQChNwIcB0HOrx@Wx5cyzAe$}5M4F6VOa4M8Sv zE1II{FoL%eU{wVCJF6?5Ti7f9Ijtj5^3>YCZ57jBy*xsuiY&9lf-E3g zM9$FApLRpPrc;KQmivGTxhmW;Zuxz)!ptDxiG$9Ge;BUu(?xy%>2e`MAxlBRb3)17 z=8e^KFJXV5%8GFNWHp7U*I5UhLFYZmRD|p+A(#3>N4K-48JpXq#gPBjG#r^y9}2g2EHkO>f$k^4Q(rgL zFaI-V{Uiyso|pF)3JFnTZM3l3UduBIx9yY9r{1;6t|YB7749YrpK_$3`+RRpUbbQh zc8YJPOjHUktX_>Ji)7-C{#tsW7q+reumpTmf+5MbU>Z5eo!OlbN6QnJz9(0 zEu35eN~5vTGiu_{#v8)so^#sV>A_3~P}RA}lmzgGGK9EtiaaNTUjdg>p1x$m~QW@yY<7CTY~{aj%i4S80b z9p3G+*Eemkx=yE~vaVp)%5`5Q#$%wLO+yX`wB~jgQD6jV)k%{wSM0YIgoWzQRMs~P zk5N<9N8w=xy!2C11tW3T`n~h@VGjyQXZ|#&y2A^Om$=9KZX->Q4y!*Hn>c3Fol3v_ zSl&4hvzl?m!7=r8H|NdHF*#Ue^bROe;ozEmeobQYTitiDa^|ra)wfCE%C334yrZ@1 z{K!0k!*9brnI9TDT6-RKTETdQl$q4-BA+HUJwZLXkxZRo-saCo)iDaIprUa)y~yVT zHI^pEbK0Xks#1E#Z0qR0Q`ZD*d$uf;L{7I>*VYl0Oe_l3*<@IWau29b9W_Y7So88W z4u-0~Y2MOy8SSQW-iuMwdJW(vp1LtTocpZeq~fY~d_#s0KBjS)br|7K;)#lV;nY{N1vrNE>!9PVsppx=$JkhbviP$@EaX-- zYQmLHbU%Eg^WF@k4gf+hm!Cs=zM(=KwYNCNB(*Wt2be65tE#=v74Ky+@DEeWHJn?h zH!yC=*F?QarQ*QfE&u;v$vuw}|HPkE728{%u2e?E+__4dV!?6aUL9u8ZP>+sD0E*6 zkE}F3=$?%qKAA?UK@ZSP&+*g($~*s^Il}(rI_|U9(5JINtYRV7lL0ce!~EfMkg`SIjQul?#AH|DHEOyg=hA-Ahet6<<32 zw4TxJN$jE^ycFs1{76{h_h)%G@)MShm|eL!4jRD99LH$i^yyN~BwcK^Z9Ls$QptWZ z0H}0^dtddrR@)~aiNr?=4(TV?ywdz&1=bUWf8s}0nIt^m3C3A2s+2-ly{c3mw&YOeej37RP0=x{+ZY%TyHZ<~FpPdetd`3e!V0#68fR|8xUcXP zADX4ct+i8Y5r4eOTMd_MdFA>08xx;6Xmfh74`^6E((<{qZ8Z?6-y&YXog@Fw)n91< z=<~rOn}%5{r`CBykQa?0LPq(+qH16XTrn#J}F)@ z+dok-lhRA$IPJTm{4_xto9ElA?%=AEBSjS|of!^3>wrim63r=oR_7^xYvw7ZuljJl zdMibF{f)anG}GzE7YG;ZJl!5c@NJMgNY>#vmFka4%m|mp*S$9~1TLSC%@r@o!IBjg z)Unzj(LNZWRSnkpYP;;tR`&@IDU?$v*~h+0ns{p6pT^I?Y_ujSr01jA%iP`?klf{k zMHE^Z-WZQTJ;t9~>D%En#9?>GW<6Q`EwFbDC{NJPUYnQsUoB&y5iBPV^<+Q9t zQ4fGho0$w!(F8M{k1I;!8_%Q_NmNO8_Wvoww-sxn6Lg2vO25^O|1m4TvsT#R0aB?v8OaDJo*1JwEFF7*>w9p zy@k}S8u&t5lsBl=?4n;%tTL90m^_e-!ON6wcgB2@I)M?_gCDu;##U1}V4XSO+q!~t zs)F)rjTSrR2vuA!6@!wp_oVH(Nm4p=mlL8`pvzr`fLBG#AiF?}54Wtwib~kpI@Yr}|cPVD3c&&HE*s5jNv!Ek#rm5!g*jIXocd5fxwD*Ef|e+!Rq`lN7ZtN9LxEDar6SShygOZ#1U&Hs|OuN*R8dQa--_*H^#(&;siTQMLMR?aXAnO`dPr13Q&kG1fp$d-f( z@Nq!o)!~z2x6zXoTcd$XSLR{s?Dl2S?NRspb0f=>Y0%<0Ayex@Unim*M@vnFOGBNJ zT{NiUQR?s4nV>F?&XA9Y_I1MhwTfrpd7^pL`(@SZw4B;7>W`18TXSDx< z>b{BG!~uZWIF~nM6Qf%6Q z5%AY}V5~tICE_$$nE*6=0jucj3V>1ev{M(GY0O>EsHVe>B|J-t5 zLfB-a8r~hlCTrIsR;9R8*VloJpSn5!ObLv#m+|V^I`Ukfk@$V-$$UQ8xeO}m17U$- z%DLi`*wn;)Q@uB*qq>+&0o$~02%X{WD>*}jimU*7AS3TC7C_h5M_zMC0q*5MSRZ3e z!`~D_u(00L_tGRNwc#)LH^h4Y1JPHwoqCj!InCG4+Vje}9M#(2RQALvxOlzlu+iaw zM)u%#V>u&3d<*)GpIliv`DWe-=2gGj?-j4HlB$4^5|1@e!*O+a3{+Fab@Jv#A1xxe zqOKY6Iy~{=TUZPg-=~~yTSIvBE^f|2KpxFom0SBx}kL>)RO4C20 zeeGQB=wc4rgcV>k4=>q};f4|07P+i;Ql%Qe2umI$R_c9$0u=hrKEaED^N4ZO_aTw> zJ;5ulMb*&}#O-+HWYLd`eZKToXcOAIFd}NIctLkO+Y5$;9-B{JwYUaK^d2u|JAw{) zV&gy-AAZSL%Fj}L*a@>EQ=ZGqertWdAs4xxpBW4X$Ug~=x}_&Y+Q5t zpcFd@)CJjsO$NT>DI_UJYjx9~e3#H`r>je;HJg-#rzuDI%Tg!IrUD;r7OlgkDo09n z_DKZVZau%NVV`Fwa~OCB`9~5M&?$DyhV~H%F|oN=P3u-5`d0K!86nPV0Uwk{a~zlo z0Jt+$n8MQ8%d_1B$Yu8`%hbR{n-@S8)CEM1QL}oveW@~f^RTB5wchuZ+wT2VZj><~ zn*aWFI&PFDLAfA6ok{?SW=CCz^{s{+a)7j)YyQAM6-(jl@#@&cRVNSddYb-X%IUN8 z(GO~Jmr*awoMKn9;%#_;^kPAoUQCEm_eK<1Jl9_6~G|$4u!Lt4h-@Xh7 zRr4IjV{o9(GVRa^v$B1oNNIiYSU$@*mc|Q3TeN1gr}Nnowsn<@OXh2^JP1`%PS<8J zV7V4>H{Euf8i73Y=d?Xq5_x2hye@n%f%ly&sA{DZH6omRbp= z*ZvN2Pwv(v;QFJ~tE|(4*ZWIA-5R+R3L)a|ZW+9$wWgmF)?}H3)dyZc*iSDw;(%vp zkR8n2egf8tf50qb^_{U!#W6AxQ9Lcvk#@AKD~t2z{jrubW!lk2_#1QhtS9`f^II1_nS@5!dPJoO38mVvYioNHp{EyCws$!dYP;%ehyHZs z=(MVu;`XS0oVIklzF)C)T`*t-A@Svbno)p=2(07M2?j2zlUcKOsZ^xHmnj?x31~+B zpVpe^t(CMa8OuQg?Bfyel%1Wo(ZGRZ*=|!dSV)Sg@-ixFvz5qUNdKp=#;K+oTMBTH zpgwTBptbdqrshf3?xY<^q~_|7Uimy25o>CS@3fVZv9e-)iH#j9pD%hpj*wmNQW}55 z!v@o+JpgjPki7gcVDyLHQ6u@_w!h2UH?9cTT)<9@p|W0GcVugvcO+&rn{ruxuRe_% z&r3AB4}t!9j2C+OU{>c-q3ZbK#bvwPpOrA?QkwCl{8R7k0o3N+4|$YoWlA%xv!g-V zsxj^F!H-zR{Xu;t)pHdEwQG4x#l!6sx5xXF^gQPH>&rh|iixopeDH2z zVz>|$Rhx_exhQb_z`L-yU2cJZ%#S-mfeb6(fvqvsSr+f? z?N4?K2yHE6=%mH)_?E|09?D=8SzG-6C`5H0CsoeMwm&sn;A202;-;i5NKE;SipR{o z#|zT8@=AY&mPbW!6qVKn@@v+6{lsRv5L-w#n4}B3+&}!4HZAB^Pd`8RPZ1bMkwPG} zdv~Q=eb_*7j zYAYR2VB&uxSCcb^Ojv9P{za|)K)GE9T0lbfrnO%X^5IM&%HHJzcWuDW3{qoy3EFYL zICc`5B1-o?NJv34kt_HGNGM>AE+L@_nUXfQpXTSFlZVC6;+uZWx3luDttXbrrP%k=)Mp=;A^$?|ziaN&bF`VJHNMp!3hLET32Ro$@@*u#xw~ z9QM7Q_SAWi1!qnN8!4Bj!yx_r2L0Z!hgcz#-Eo9vpv-Bl$4FoRxmD+CA@+R0cURpn zWm@FQuLKepX2JXUVnNpSc6wZDi-~DN=g02;+Dmd<>N9Vv4DzbZb`)f4$TFPU%;rjTCWY-rrl)`fLWZ{%BDeI*h!M%2>G%Juc1NTbpBUL9sg#}~B^re>k<_73e)~;DEAyKZR{4ZmWtVpItQtnrL z_ee#rA%zID6#mZ66tljQPJf9P2qTJ|sN%fT5#Xgxw#3cv$N7sxcU{PFr)Z{}TBMSl zIRcdW9jC(R?V4os+cM>1pDowg?*eC@tj2Hb!mhVP=W?*~z5gLwL=^+eBXCCW zC&0L|HMG5|;$V#k7nK<5+WyBjM=p^HZZ+cI&8KhO20$UPfu(d1u?~0VArpIv1M6>6 ziE`a`O^1Q0db%Y~%=I9><_}-`#4otC0p4j4N)!fm6Y#gPISKJ%&NUOW`}p?41$BJC z#ZmBeqXhG+KIU%QCRT3MJQ-kjLw`lqlC|jwo8}A4MAd&5;|Y`m!1R&!sVvn3$48$PTKMxLY2dhv_s4 z+`=K3xe!jVjkqjX6O9!!8X{7IxJWGV`hL~gr10>nGX)pZ$^N0BTiHyAEoqF|KI!dY zwQ^-@o=y(G;}oq#X}uqwv;U;^HLcDPhbmXXh0}Yt~HL zce%qYtr~kpfWLut*`HQ-yr~QZcPW9OwzIU_yD~<%D{45n)`P|UUCxR}Wl~T?bgUa< zmRSd96-fXqgPjnYwr{fff!M?Ztywn{WEQEv+s@cGJX+Xs37Z#I^qnl;g5Tlv5%O#r ztg)2+{pPYan_BN+^CyHt94971ADpC{&n?lV|{E#&Y|Bc?$^7_59a-@?Led+>_!;_sUVw2xII_20;ZuB~nh( zEU@K!gc20gRH4C|sBZxj>1*MJ>=*VRT7W2g7B|ri39=ZmoqspKR^`JFs1k};3$dDM zRi*Q%6YBVFt6eNU+-;HT)rZHp?6ER3JX#BuQS)yT3QF;@k$Xo4HK|K^LSIeASbBR^ zK`=4V*%|*KT6tJl$<2A@e#6Kwb|Ckjw|?sRk4u9jLHXkUT1z9(Qyo)wlD%@4;m3k$ z9B=LWMHYwiUu+;fKd`}4=G(CLxTdsp)&)H=?qB%WXOALRd^M3yCf3uxYp-Hs4JBn9 zCuhAbeaT39xy|Vvc7N2}JgPlcSfH6;j~JYQ;CqEZl7H&q;f=wk$_@@Ww`(1Iz)n|w zPWb&f6AR;V(I##rEzMN$?XqiA>9u8&U{9Bj?#SX6dA3#gwBdH8y-ZdwCuaC~WbG%2 z#m@g2a9G&oMS%`L4ub#CD6kV7o8Y2OxPY+nYjC3g%@Wz>vTKZ+IlLAXvzTJ(-X1#F zLQu0MTgS~=WV4f#LdVHD`h^}ar-DZc@kexUj1mQ11huZcZ51fqI~Co|@hy ztZe)N@>4K(+LeEz#b_cjo~ymWltnZYYo7j-KH+4;1VJbz5lG}* zZul@U+(4J|&BOUr1OC8BOPS)Hd;fM}Lox)yBbb_`=GFZ6CKwyBdgyait%fT! zCq%^iY|kTByOy%TT{dmZ@EcQXj>7Nu2i|Hz9|MZJUf3Ys4N^|d*7%Ha8Bn15!Z8mg zaxk}Y)xNRD@msRfN*bn{x$Ras>VE7mu*Ws|mBe-CwYK}4uI@&G`0L?*&Um{tywF#JK^;f^X8DKjxRS&^-woK0~YbVR;FQH z6mP9%DjfTz^cbrWHCn4VW3#J+Ie9VI`pK#48q9jDDlXa~P81j{AJ_k3?1#TT7o6(} z?cR;n)`;2NzxMv2w;y_HA+zAy(e?Ftds{-N?s9j(sQruces76qSo`m(IgxIkofY8} zQW4qm=HkT6=LP*478-@Ym2jiub3fh?tv)MC>V7(pk{2_>M$MRUaY-4?^^Q4u13pmy zJouDk3=+EHFlhd+W#lB_f;xV~lr)Krg)Q@)FDG^KSWn7drSIc8w`#{7N8fKxs11!8 zt~o84-Xvg41W~bczkp=1LgAY2@r8W(57mD^&d~Kve4IGCb#g%0(yvTSO_2bF7&(-V z^tLQsS8MPT%9o@wnhC*CQS||dgQEV;KykYBek*BJ8#OumJ$a|3%VtbMxYw!g&3+8M zq|dH>>z_Z-!^1H$p;f-s$lH6W-`3DyS033edPl*3f_B*nWV#(Df7Ke{)GYNqtG zd%sfR@FYiGKI3T!pT)z9DKCyrRFknPmHH1{AmG;kY9qnDuLa3e{ExL= zLkV*I!HDGZ0fzTSi}fF!yv5`&Dq6Nb%D;Y2YsJ~^^rNl6hAJwO?~8Ec(DHHzgkv5> z+(ho1H)rjPC0pDt_#ESNV@)Or`+RW;mVSPsmSlgj3QDAsTxkK;|{5(KJiuWmG34&F2JHsP>Z1qpC4h-jdi1YUS{-NVxHAGHd zRiPWew$cgtz|Gx$4D&h1nW6LIH=h9VyWoh{t)Ufw%kQ3}x(N8a9HN=tP#1WgsTDf8 zF5w8=-B(;lE%1Jy+D3oqQ|)-LS9;Bm8%0ki$B`g(+$?= zEIwY$M9Ep*qMx<)8Q`%%fY5wh>&T{?l|6#<_mv8+4%8uYtCAWUa|Pv3bgM3DUKcSD z@ff~;?ldE=FumxGpyez|+MI*rCT)F7PLeukvc<5!fQbMDgS~?1+cIr6cyj(nA6}fQ zUF4~Q?D4^Y5C zWok9F@j%+!y4@I#mvd`)V?tU*SbFi>K;(0>#l}Y!j&H-m4!{Zz(EKt*C4ZoT}?WF(~O>IU>YqkXgr7gt;;qOSz(BStcb zM|LKFy96zP!6H!fp)`K(XuVQ6?Eaa}!p1o(ehpF`9+Wil>CF*KR%y-www+ zdaoom{{g*Y)v$O%L==Oe=y4RvKr-{q2r$@!f*VFN6{hbdyrLBE`hWSl5H&9qMti~+ z(#dApFqY>ROe-lX6W0;#IXV+=hX#L>L0(oDDZvxIPXQ;#={ldOGN!gHu^|6fp+{P6 zE9jf)j!#G@=pAwISy=wfQb3PJT^tH5ceCpdBq+pD!2Xek;m%e=GqyN1h>soD>WMD$ znvx==KjrF(9K-aloFQ*E-7e^!7 zOTG|7DXOfXmgY64h;S5;2(ehIT~EpXFQ>zUkBOndiF0_V3p9%g!M5#H8EN^Oq~$MZ zI}giFTmV5pr|x61HwTxujh_04x0haFy5KT91Ma-Q$3_ zeGj}LDHf{+l*OTYYPWYemeEzkDpHU*PXvk zRP9(#_-65+z|8U@G74bOdX|_L$!MXZwDxQiydha|#s;xnGlzg6&Ww-8p;EB3>*Tp& z;u)PXce8OKJUc&h`JGof z0W?%0-0a-eFu?K;K{65{vJb=5gXA(o9Wm-fTOAEG zF;Cr`@Z9-0jDG&&1Sv(+2_BNx;96z1+2DD#q4$V!A24zuqw^jxg^7$VrlY0T5y(^D zUuiUsQ$K9rD=K{`WW40?sMhmbecSkScV&%#VTXM|++1D8Q=?9@xnX3Q#~~!XZ@`ZD zB)Erqq|ebWwGnO)tFmQn@kbxnjF+#8P4-5qKfd9$9ae5K8!EY6I&7Bj>N%A(F@b!b z8bfZ66A^0D`+IKzU9h&=?(m}vU4gwW*g_H@=X%e)KtQ_xc$rpmYEO6F?dNlRU=6&G zSuH52pdIBs2@XyzYi!wr?=uyP3qd<=;*5=K3lt!4%|A<^=T%V`0AkyImyLVfwxoyx z3p3#QAW8A@R2Pe)ZE!gE*y7KJ596-^aN^)cVZfX2#p*?u6u-r`ol3XgT2xF~Ps|re zD@8KcqvnHNAEp6X73=W`T+rEGfu1K1r>ZPp;D*9vd$Z3<6TRdUH~5_wJ`91=#UhWd zS$?QW&fI|jJ#zD7t|l1>eK@QRR#deVip^$AifBAR2@7tV=5&^EGLxz20zbPgE~-_Q z>Z<73)O=c`0wA%?gDmC$oSj!!*`n-HQmhN!4M4%1>|)K_<02fk!wXF`-^G_nVP`kF z1@ep3CsG)<&k;p%rD5-CaYsTAg*{nyf+dLGH8D(%R;KUULlsx9u2=t@Csq((rt;mAlG68w z$AlRc_^{-_@|KT_A#^Qq+bc*aACvimX&N}HkmQ%debFwGs3hsx@@L6l14 z0WG~Y$qvpiQRL<_M9G*g_CQu)?KQM|vDObKX9QQ;$x5V7mLeeo9-{48AGjKP#H%Yj0C5Fe>s~{W3jE;BhOV zC?{_93k<6HU@=N&QoGJwqpt6{CZ&=Y{KYt+hcq7Z05N^M>o&?^Hgd8jS=UKQn8Vrs z&G%RDIA7mTDP$YwV!qwhKIa}vd>FTNrE^kWPHbDCc&@|w{hN0t3Wiry3N{?yO!HSV z70r%h@$a4h4k2RGk-Y^o3rgN2(UK7?%!$&Oa*N9xm&&r<-nU&0=Iy*Wj(xaJ?!ks) zgfd^GfRU@^zBF6Jh()gG=$Q({fAPGh^&RR~N+%8|uz^mb~F(UlIJb#Vg z)SOcWCXbZ$4M0Z{idDz$MTbC z9H?1~C=#VwCH%b6av$$`Y^bUoXIwQtx|!MfCirv~)i(ft&C?YZbUv)mjbD^y1qb(W z>y>XtIf$WS{TEeP>jh#Mk~xM4+r8BgN*TI412V9JyZ|2Zf7TjEf0y4%e}!d=t{ER= z$~7x?#VB{gD0@cIdspmpapHL+Z!UJZiQNGc?P&m!pR+d86c89+1qS}*)z=yR%2`c{ z_V7b7|A{C`JEt^adu6z+w=2vRWqPeOMGxl)sJ4*UA&Q5`ork8jR?jtK_NsTGqxzdM zoCw=QjWi61G8?ItKP%)o4d4{#;S`5-ihfA^>BJq~x-@=?o|ujTF|E?MAaUE7T5@~T zzWL_ehej?b*}x5B`e1$@o}X!a-f}%xz)VrzQvS$^!-$G8pY2{HfOE@jDl1FV_AtXb z>;bjMXg-QFE1T?2JzI~6Cr%7azBo@tTcm3R4W10w%3X8Fy0!7&S=12|a`)$}>s`x6 zzNogw#!w03ODAb7>??uSs&5Pa^soy@sB%Ahu^E>0G~oCBm}5l!iEvAEKn#ZZm29IPxk0= zuMuFlTuN!n5%j<6OB0^HJu&lLyFhMWS>WzL@fDl#v6AQrv~BOZ8Wd!a`>YH)Fx%jj z6=RCq^gsNa6I!3Cgqew~pDMJ;WxF)QFq2N_|J$G|um+vr}^aI^`L&+ClNONal% z-AmmE%j{>EUj1sqf>pB>$F!P&g8y)y>45vkPr|Dk_$eo6WjC1`5st%DUR5>(!ASlT z26>b7w&3vnFbmsOhP0PDYSD5=Lzyw_7h#;)*wSkqz@$v}y4aGI=A<5nH7yevF=(g! zo0Bb)TtL?ce7{$q8x{aH+nvy)JhRmqu;Psk)Bam3O($JbnOyyTZ$A3kFxa#=*^0Ti zCdQ)OoVl^%59l-DgDFk9qCUI$ss5S!wPw5aYWnnpcDm_)JU5hSQp^zd%lfImtg`+wZ`=|!0ZSA0gi~J_l57r_5Q!Z z@Gk6!EQ|H!R2(wsE=C{Z8tc*c{nww2;Zk=xB$F)wxYmtaAz~ZgWYN(>Y~zjPxgzTy z{5bLJu)}ltT}w>7PZ!uk%O2tN*G>n#x^5|2hNO7;@cJVgAXrorDv%Pg_7F=gvZjN2 zGIBadJm4!ba^S3iEZMjN`&9O3}&i_BUd;ys=rO6 z^r5pG6Z zRTSH`VFpPqY_LA4AN|Q|f!ntt1h;0Qa|B0wO$IV9n*P3;XC_`QJf#2DzuW?p+JIh7v_UTU?NZ^* z!}_cf@DwvT2$wf#Nm&=2XmA=9zdqfPhQbNu7M`$u_VK2Nl#MoyHhCQoywWDX=4JM8 z?=)Psy#c|^XR`{#Syw=x)F8LwbZ+_DN2oqmkIbDehMy?DRgPPoUlicS+)2x}v}oRn zKhT|cIy?*WLuR037`vdA9l7MaW7G8RIE9`US~fh#bH z?v_FWlykn`Dk!XKTnzNmGnu{fb%jZ5wjqo!*W9i?K`eV}bvlE*bY9*puZ^)Ny9%CP zY_SwRtlJ(KRl7N~?e-mRZCx5{2EUV3u${}igap3y8sb+Jg3qn}$l1dz6#p4H%ZW!r zzljZ!M3kkspQrEW^5b_XY(C%csdC#Z(24r#oO5OxYzbG?ELwnrakt( zc6e}Wyud0QK@**(1X17XLI{CaPlis zIjaG(rTQI9A$AjIbf=zfZ0e#5K$4J%F6>US3bYQ40VLK=6es-9L@veaiUV}Q_LJA* z4t6)%f*L1VhkLH(= zd_iHKH`}loN%c9RKxv_!x^A9#*)ax!ET|=kmFe2|0P@gE4m;Ku3LJhMU3W1CGFZsR zw;<{W^0lzm4zIKi6GQ{P$$W|0hS}o&Vc#KA5F(w{8Em6AO&Vj>ILKk=p@BFqbNyKF zsaN9P4)#Tnj`{Z&Kz%0I_mAMoOfhJ-D@dXwrjt1g+B~w{7papg1hn%dOgrs&0y@fq|{^GvICJIqq+*V9}u%G z>5{N6BlG6{;8 zqa)hn;{6k~@}$$rW6~4|f_%SFKhZCP2OHtnjwdY(Y8{hPu)m$9!@3%zWNWFCUX-RW zWWgTL%}Xz-a3s_P$MU6b{Gzq+UcqC3TF!03R`!Pv0DI-bNidUmL}+%SMouvtf5sMe zNi%%zghEoqmHOl^M^lww2vz)DF`0d-1_9tfsH zeNo**`g7WqyAyyw=Bof`w-JuuxA5Ny!><0ae^mWdNJG%#YS65mRh)P!JBrn+d0k6X zoV%Z>aa@kw_Ts+*xj|N(bPf$GIv$yI)&Y-h$4$h`@kRO#M$(8qFn>ffpM4)C+R$oc z(lcW9Ca4vgRR zQ<>_Yn_GYS48V~Uq4N(5=u8{Eicvvr>K|7QD~}yM8jlQo+uAE3=Yn5X*)7S5EAH}r zZeUjN=vjrCBXX{={%B`VSqOtS7X}#;dDLWyqrcENm3b}Z@#$dp!gqCItW2yK$iM;f z4r0w0<2K261hFueJGq{Rw)=8jE3Gtbi6h>R^EEE22_ynv-`i{OIndG+uKk2SZgJr# zTO3FDV&7x^)^>l zLb%v|<>!V&MIHYjjp2Q-4N~nd$V5(WNCj!Ws6Fr{{eH}JTpKo&{c%)70c$kc+Fo)4 zGbdKb*rRh#xDjiZ_k|c8R>+0(=|Rt6{^eM0b$G|V5|x%Y8qI3P>h??WJAD$@@$>Sp z4j(=m7#AKW=p1%buPInEAXz&`e}{v!acsDi+k#G#?B z0u~^W6ME7e)5Ln4TRtYhHJ+QuTi~yTHj6!Ua2zNhH1;IFPhC}>(VB()?pBMeT89J% ztrg4v?Wf*4Qj`m!{|K-V6b70mk2-%`%%IwuFKrTrP1ST!aR?t&JM-%*z7#v&K61Mp zz3L#={KJCzwn?eG@oc_8u=z8NA3nwk2mK!Vj!}9vZ)72MrY+rBQi^ zMmO2Vl8LvKN8FS7oS5bAZ`e2-eAPR!N?Ng#&N~3 zZMcfHOzaaym$Y1#yr=taPMNT@@t3!Vq2HOVC+N7@of5l3iF~blzBVr!2DZ7gp*gCz zeRtCKLtCH8L7Yza#$b7~e;SrZa370xY8cq*Q|IMGtBpg1ecGKD8yBa#P&J|!DMOh+ zn)c%*RP_RT>SIG4^2y97y}SFtx@__|TdzAC8)Cg}l&odeWl>2X4p*2ulSk=cglCLc zuWRKs@+||M&7zXbIOp59ZQj8BWGMpRUQ8HpCs2^52&90baM4%)QgM|P%&@CXrY|(In8+oas-;W_jzd-ARc8MD5Ink|;mUm@le07~zqgu--=W;8u zp+XTdgF1`p9!S6g-B%QuQFE|GDi3_u@yJX*qX^(RRp%>a)C5J}a-w7k65jhMWYuG_ z&4mE99LsN0F5;LueLZmK!B8L~&QGPZy#`TTFSffR27$WugSU5vTKlv>qpnoXnYoUs zsI74iafTa`TxAnku{_#Wq;S?2=i8&H6~apaB^6sp=&f7m-K%q-K5mGb9}*(Up(x9r z`;AMmGT8T{#`^KHlb9!P|Nap}{rBwzJC4v&P);(=*PaZ4jQSuIor2nU zWwiO4e{B6rYHnE9=8F;kJW|!*mnqxr-TuJ&u#Fe)&I_*6bI3Wt9s(qZdfsp2s9QeF zgFuANbwKm&>CFS;{VnjV` zOvZEu^1Bp{!~{uC)K&2qkwsg3-%B(>p`(q5ROB0~Xh{+#2qPD$VmRC_s2ofB5IDD( zlH#B2`;1{K319>~S#o3ZDHSdZ4DsuFs#tSh@e?PSdn0OfOy~cWja<_Tq@Pn!_C^^< z9x^Kx78elAE@k+)JwG+5+8vB=382!}b72oIXQf9F zKiufv!li@JKz}&#DC~-f*3YQl*m%}M1p_qsh5{y}VVSXNMAKHzFss@us!Wr*w0)pc zpuojfb&-yUCsAfLM4X|c+#_&3*YtF?_2d(Nr_23HfR1~u|53iZuaQ{&^fbp#Sj^G? zM7vRiJ4dJPAuM8_opl|<)2q<{rTfWgKhPm8ItGota9$uU4}3cMKS{|JJR{pN6tnhE z+HmVyPo>b1KJPC_Q-B1>e8Mz~l_U)AXMQ?PTV&X9;A1fXa8}v|f`d|`l8y~1D=_Ng z`X(A&j!vN!Lg6BK#scQQzJu_qTaA5Q(D#sQHQJq=qDH*>G|(+7RP*({A=*|};GOxM z8jM&k^mXq3&PBMMncinh0pXK|6FwbtKIC^49|2HH^^O|;It!^Lyf(c=EvNkidxH)+ zfB1z#?qcI|N*6}&Q_}K4!z7-hNuI%_!nB_Xs@m9agU%ZjM43;^cdoE?U|H*^gSnQ> zZ<4&~i#aO(oZjCN;S)aVN5CnKt9`voXs}(E^-4*3KNGp9ehTZKTp7)#0hmEn;hCF} zEUV=*p5oxUqm%h(mzhH?1=%iGx03N^Xhzl(*AHuTCY+0v&CV>U(%k4?g}BK(;Pn^X zO;*GZwNjTZdbGJL`QWq5)z;P1&{o}br}M39E$`iq*%o!|4x=8WLT#sS8x}pkScl1R zIr&3@f=Qt|`_IoXo#+BB#u=ExN<2M&F)dSv=v-6cJ&%FB|fDV>uRoL&|YWE1nb z(o?GL@L_*px28A+XST+jffj3-c15SQQHoXc`0)Qx^_O8?cHI{)tVpM{bcaYvcT1Pj zEsZqNDc#-O-Cfcx-Q6JFUGgrT`~U8JY(D50^+49|TGyOo&N0p;#kE@4pYlSFZcTWY zqju$*;e0lfhu?^{I`i@a`3@xP2q^dyfdAubBSM2>5D^Y$8VWx8cX9U_NstFig@B8R zhg9q>u#=0pJ&A@ttw;L3KUY4<7Zp=%ak{$gQ+)`uGr+ARqK4jCRm>AU!QCE@yOatT znX!O}=Fa^MW*VX`uy;96eo;JF(gU-x6~_Rv0fepz`wyIx1{VhWWMXWs4TUtz_7Oc^ z@05<#PWQ3(9y@ut_}MeIG?C8{E*EaZfa~0+BBQtRL)i5&S-?VSpH16$>i&O~aUc@6 zd+~U=iBzG87mOhdKo)p+KnsXP(X=OZ9Gm>=`At((R6Ct2yZ0tuUdg(IHR~UfPuSD* z{Tom|=ZL|)S{;BMcDc)a9^Cj5JUs8O-u_oz*wcY6*iXyp*&Ay0V!NXXUAHN=Q1Q?>w#apmq?6WtLd-J_U2aNDduKLk?8r{dV|<` zLZ@Tp_w)FCZ^<0J9GlB29G-ugdj1s57l)2;x}^HH(uAG6qX?>QtCW1WZkQ3Zr9_R z?VXS8HD}`l+tQkSG$+Ktxc(QcYl~IElcXy@8Y)r^7OLs_uRQvX7A7z-S=0HXexH9C zBa)JOmgz=JYV$4bvTu)E5O1YZbhgKUK^6zT3ZPy7zKZrC6C+0yhVM<#bWr0i8wD#X z0>pdY0c;XngtUe(;cdxXyP8e-pn?4`Ro>ZhM=!6W=Z`|AUeO`ah0irzy=p=%a+th> zompIKexH5FF~=i2z1aSXeC9MK*Oz4L%lAK@?_~bU@b$sTVOY64Ku3?kfN><$7Grsm z#Pr$=ya2euI#_JBcSsWwzJKESLOhE!F+qndV4;iSQ;rUbmZgm`0f;FaVPYmYeIwjI z^(s-a@gxZt-`uB2K|AK_9xzLKWG^EoW0%8I9X*yYpda{x$F~8o`O$cFoqge6a0o)e zc(25wY^dmy|4q>%T;72MC3dWd_Q@9b4;&8$|limJQ4s}hd z)`?%NV|@S{9D{bs%cOOz6TJouR!1I z3vvs9Gw*KK;$?$#KOsw;qFrk^u$cgW?)ctmn8IE6PE`hHDLWr5X-YM&Olzll8+^En zii#|Z*T3uF#3cJp-FFevV&JPs0 zt0hK=w7um}&D_xsL=4j!g~NvWfX1`rgNixyf59yzE&5GQw%Gc8jbIzHS&A>GW!&EB zIxMl0v??!egH+qna;R4y>fPyN>&bW;2LijJq&bZ0O{GX@WfNjH;;*ls_yq(jerx;Q zNO+}wmv2{3)F1wJLQEvU z1@*U7ygEeF5EP|&Uf#eAA-P&tBtEg%>EzHEeJjJ$9j$+*)CE7ZW?KBELCN|}w4??sxb&xEW$ zGz(j`wW`t|Jx;D|0t}G9GI?P6Ayl_q9r`U0r)5(}j|XoK3f^8^_s+dLdJQgD?ti!cBZl+C`@qzd+l>3<;j~MD zH1F9HCSts2S zO+wWoHk?O947;>Q*pG(r!h7+5Sjr;#au;dT<<(ht&8}3Q5 zmzy_!K3f-lqBSLJtF4W<;AaWDgQ@{4=Cqq#B7<3UVeA&iPkE^GxiQQ8Q`}u7GhCnk zur9?MFjpz|v?CbZeF+3sTK}+9Ij){mGPz6U{W0-;iIHpmcLEEk*p@Qi0)Ea&{>bnk z)CxeMd`SiHjvp82X0z15%7vmvZAal=S7uKE#BJ*Prg)k6Zz%sUi;*T^=zkG?jr?)H zECW5Og)>#N?9o7tyjcmXZa2RJZ2(`5LRn+bg>&FyoZLe0DO34_`;Ca)X6Q3svL;@0 z{x|SJ(565xP!I$F^hi1T0@y`jf_ua%Nc|p8CpJqi!{Rkn`ZTqi94UL<5;5$hVJ+cJHcEkxb7Q{%v$&X;essIEX4v6+ zrB&jm12XVl8i+q1K4+D|k%kuij$ zA7fxkg%T3%v9IxiXRjBVKv7YAdit05=#r-F|8im)7W(k&O%?yxAl9p#P0B2Rr=_lS zOLnqS2cfp%o(XJ- zFl+xClL77q7?a^nXkL9c1KSs89rY!E;Qg7hv}NeRk8OnUF-{kC2DF8=LkV0uSL?<~ z33vvPJ~(UAkj}!(mbn)()TeDe%$=R#g3L+lYohD9{$v$#?PgaLsbhRdY}_WeUbsXG zp7-b;-$>UH*284BqauucTFhibf$^J^RG`bom=iXgWmRA?J2L{9(0q90|3O+0vryej zXp}{~CxmN2oT*EZ3yoe<;uN=vK!{B|&WN_ZL~r3<0$(SCA7z&e zh24=$ePs;#b6`Sgpjq00ykc;$%gv?YL8n>}+ zO|_3-C~s?NFg>~RM>@o9iQO6EZbuP(Axn&MydaN_|3i{-M5}y}Y(+Ci=vKL+pYcyf zGB^e#1cLNhwB(_o$JyICd#Oyzlj~(oGgK04O*~&?d}r&L(G0Jp(sl6Gc@0FII9IFW zJy~NoznX$ikgd!zJv*v_XVY+!)>VjFUOda2XzaRi3{1c4DWAfkeBJQ_6`E>~4nc$ZU>OH%^Cw zuDDg6XsgsdUwcQ?+nCcWMxB4a_ySL$x!Bknl7~$ z_LOQ~s(qtLK`x+m1sl6p5%Z*}AkE#8pAtAdS zlQ(K?3WXIl)=E3j|IWJx-~N1#ja3yYXYGjsos!%3Ux(6{y)ZszZjD!#NnfZ9a6>vB z2ZPkKo8y?SAHoBld3ss_Ac;^9=gm-_p#h>xOx{B^AyGyVji!e)UB0C?5z5(Ew$=G$ zV!!iW92gMMj4XC{gMj_T(mnigl&n@Y)8L4yVBLh#>I38B_(GOIX|9vjSl zXo;@4B5vc|rZgT)burw!y$iyOtw)VBpcnj)%CgxENqx#Qy2qK$?<@gzK$#?rZx~FR zw$2K~kzwkh3DA>hQh(bldTvN%gpK4V)SN-P#n3~kbtz(Owx>*d96KB*?IVqvTp(Z> z%pMqqrz@XM=f-`iTdxrPEOP{P%3jg;2JBIDR^5Kvba>J+*%-LbP*I3q@zLK!mJWFL zO`%BjF+v$(-$Bj5wcEXz(ba*jCbtZqDo8MP>+Dd3_ffiVUPn7!NiM5SI(S$#&b-x# z6UDrxcmei4J+~0na*l8tc>marvk1fN#<-dwr33SV53h}#t&1qIAhGF`%a2m{Mx!bN zCpA=~js>M)B}AH0U4m)^QFdbc(&qRlv-*85o=HY4M)&6}$7JP%J5<8ZTetT;a2 z-9<)7#FRo*%2I{mZxMq)wTbL>9g`%D##9379c&&kz;L*+>N#Zv(*2j{uAF5Ac+wWW z{y80$^S>#C->Jxe`vgJ&xHiFtk7Y9EsU5-KR;MG#tLsNc8*Bw0wDxM$(=hgii~fuO@kaqUcouT`9^nU(mzU^Ny5GbM>ioSi<^qH-t9fxoJ)u)DmM7H*gp)=IM+thm` z{IbbdeN`r#+k9h>e^kxwUqQo1Dr7sNI`ppsN*eUJOJSg)|KNNm&0~unpQuZ!;tKYU zI#IIkSNl=U=a;@YPhY>G;c^MWs&8Be^GCM_J52`O2)pXgJ&^n%I&jPK!)I@@$^6K{ zEP=Qg`EZt#(JM2zYKz~4rEJx9^R`_Da7G3&*&$_`b_ok#L`Rx;y}f+%1;1y3RgP|v zd19d7T>_H@NM;ALxx%uzJJ$;>O_J6TTT?X=F;qvG{~*MbuD3<^K4$9fnmto;+;>O% zL}nn0f_9R(@eKii1*t?NAS1=Gz_no;;Gmr4J40EGs(t}L(Iq5K&KY3ke5Lh)3|G3c z-5L~o8DpU7c{uW*F^bUW`y_dd6oGv4j@_6@yh6;XD$0s>!i9R@*Vzg0@Gp zZ|BxITvMH}wU)+^B^cCmx1_V$p z)-S&oE6nrr25P$D@5YpHJD}m+g*qxXV%KK)N1amfEz2F>>!0W4`aeUvC|vdxt`5_N zw^#cC|4o&`=z5?XvL~)Bd+$pMOmXmSv6<}0n4FR`hLKGGn^F30i%6{hg&QPJ%OMmu zl2rzuAANstjacVi?=-sKM zKjJs%72W`+Kd--%bi17JJQ&0o-%|u|B)m)Q&j{D-Hb$sPVjHPW6_-Y=v@hY!cK-<_ z13b^0vl_e@*df$I|D-?VX^Tso>wox~2#av7=SHl1vFgeOvPCl-7+g2$ciHR3tXoW# zb5BpnDeFBoWPAW25{J33H<5|S?bLO`z=ddA=F;}0*g0^c+jSIXrC3Yh6~X+v_~ps~ zSfTYxh?>Z0r!<@x&YMB2Xl)!P4jJBldhG9u?>9?`9q+=P^p-VZ*OGf*NtOQ%j`gx% z9ckNx9$&&kmmly&MfFray;{kv$){LG>e<048RdV|oPl!NHJv>Mr44(6zr!}RE4wJK zpWKSiXb<6ORb`94 zqsJaQm-?H~-eLNX02x_iFR~?W{d!0LM)35%^yAMmAMCf|iu$cBoqz!Dk;J4~bCRhW zkESlOIqSt1PO$%NOkslfu!_l%p(Z?jH>HSCY^Cm7?f%K@&dC5QymUM0_HAj_MHkk2 zdI|hWKJ-}hz)NM@W3VWrf_;X5)n&$C&e%8Wa$;Kowm|UwLc1CmrW~uo1Q%U)9~uJ6 zCxGbu0Rj7MZBCTfWv9B2hvaZM{$ysDkjpmHPZvhT8BXcISf0odMs30|4@bE$NBYeN zT>_e-vp48;;XDyr74>W;GF=OcM z5r&7#+=hnAHoX$q&i9^p5WFsKyfPAlMQ~QUf?|v6fQ1tYTP}Wd#KdB4S)i!p49T%Jp=iundK; z-*n2E%$k#G#0ls}G*%=<@C_?}Ltq)6;yz)HI-5cPgBd8BxcIb>gm7;`)-}k!u3Tfi zd+{f&FK1uNcTE9tMdK`=aQT_10t45y8aGR)e~~A0BtVzY_j${!{B!+%;TM z+$g!^3kbk>Fim^v?j+Nhh5=D*OToCePK7dQf%~DIu@q0;Vyb$NS2(XZwZ*OPVTtb% z$*nNI)?qhQN8kTb;gETOV658MMYyMJTWv$QCi2uDXjBm4KmYJH0pSs*1&$+a-tn~B zT$}6rZq`0c0AC!VOiYa#iuEvh#PK!z8HyBihaI)z%Y(yjsneP^4XT`^)(|W*uu=u; zaqYB~5@o`7ahYlIuRPv`XR^cvd$3 zbJ>%Sl#KkuDxHF)Rw6LCAmF_z7;TZ&8Me^TuKeQ)R+s7*64Adm)3M6uGej4Sy0Jb$ z>2aA3!QQi};svcvt+C44kL#Uf68=sX=64b$>pCvba(viB$LvZMx9zSU>EiCg&fk=* zwnpDFSG!()aE<X>wJF|U~c01RuKX1Hnn zv6L<)WU6p|&8sO5G63Mrpa7Y^$P4@sA~ zNq+$xxn@g8-;5Hc;yhX;#Rr43 z6DhwE3jl3xk6TjNGb<}C660U|%YDKGmG+bysv@f!gxl4oohGZHOnCqy8564Kg>|mL zo0l`x4>*^MTJ#XY{_n+cgFSna-sgS&E1B<4ZTAsA5|-F6d&M4O)exRguc)WjH{q~Z^a>!*4b|K3aFTyhb8&L8m9GJO2z8eDmc){K~HMjdqbIS1B=)Vp1+&LZU z=0{e$K;`;B4oa4vEEu_ZKE#AgRwJ zb{$X-om$a6xwZ()BiDqwwk`6jSQkTkdR8Md- zg{P-_+*P|m#ME?*KnI|^+}VyrU$I5u{qK~N(43v4W*U(2pxHFsTLuOKrH4|=bu-mu z;J`%R`2RK?W2UbiQU4>47JF8Wdh-5F{rQ3I9s=m)C@K_q%9UMcWpYRSLi?QzoHmVx zva$R^3+24=nOcPo`1VoM9rp7j!RKdMo*ng=-3Lc{ohN!d2!^{^(9RQz>9Q z$G$Wg{fuLeV4f=%aHNU`8Xiw{DH+@61tj>qVj82X4w?b1AQ1cr?2wWpa-PV@hYi;o zZ`A%KQoR+^)}AMocpaCFgZP#w0tQAQ{*HBCtDCEh01mavgvr*|->|{x3hbH5D_15Y zA9{k_wAai@GV42i*&}X|opZf58Xl2_3B9&O$IwaljPs=wsk@1Bi_mD~pKJlbdVmu6 znxXDESqjMW^! z;e{bLNHi?{VDN$N1l;g5g8n}F^S>9H1GPPSuSa}#sPkyeL2F|V;@T_P4tiNO>gJA~ z*13{www}IwGK0ifP&fF=FTg2c0{W6oQ>p7uD-1^qB$;=jQGsEsLBZAKga7=?H5??j z`ZbQ#UaP%hz<2@(!>;bu-Mxf#=jQP6;9~VI{ppY~vbcES`{zW}N$H8v2n8`p$KzcG zpQbZ_VM<}2bMBxozMM$qhynYL(ONraH%5Qm9N+(s#tVkDa_-Sn16yrRy`JxH4|Raq z;@!7sMs#Qm!s|5YpC<_xWd((wHd`LXgn>K%oH0Yi_y#_f?*7^y!Y-{5ENk52lZH#W z&7Wmm$ZQBMcasjQ)}>Ll3sy-^bubdMvGF9gb3O>WBESoH-lYwyG4S{Ca0b*-?b=3E zg+AuOBtJ3ac$*t z^*4Y)j3>HF;AnO|9vPsaNRMV^Qw9TagIevt-uNlu(Yu$^%^6Jxy?3wiSMjeYb>~|x zH}l-xX7^mcZR_5-YQELkd3?zJ$-H zMVdKI&$F@%(N`uKho6{3kuwi7zv>jx(z`<&{pK!}Kgq0#sdBEBPgy(uor;>V3!HQr zpVRJf9wpaiqvr`|p9+d8gNthF{=(B(*fhFfYSOogh81mo(Z`ztgI`ElJw4lKUwMU& zTmzUE#|96EG+>eL>S|*U0*{CFntSWdh1+tk9_!j_8I;4kp3*!X(7p^91%EKb>%`{)J>U zsj3FN%)SW6DiV84Fiq-qtLZjZZI0^eKX}bdZCK6!-|A@p(s^fXIhiSLzHn8K!9Ke-bTxYnQT`7~f@em7(>dNtYVzlmxpou_iR_ zEe#M0TO_|I>Rqj?nH|(KDzQ!PTmkYVGJUn(TmhFEM8zhgX^eP7ZS1cJO2JRn^7wxW zqqeoc=}E!d{^xl!%EJ>(s+Sh1PNE7L`Ip1;yg@eK00p*#Zp$ z4w{#6zNUXUhYk~Li;spJcY2(?&7O#-#2qpikA1rN(q>xm{gqGPxH&GfEf2N;x>TTpbQc|3f2jHkIL0r3wj+thi7=(zRrz z5t$3^H)$}*m_$rBvQ`4A<|FSiRj1Xa31IW61vN$U$m`d*_dMdj zmIZF79&c9sdr@)KmX&P(^r z6_Whq5Lhp)96Qp8e z6W>GLO|pb`{;L?L#o~)CCl)N+-W6W^zJldBogTh^xPRGMtVBwQPEPsbXhmaX!&c07 ziE>C6mnohE;~Z0XJlqYR6nZ!XdnldP#rLt%hNha9@i6(v6IRej3f*vO(bBg!nbhLQ zaH3vfM6-97Ye&?<9eD}$gmvZAj6W3dSy>^fs&E64?VosV?Ix!zFtAfT@TgMo>zq2W zEY;TvsZ7_2hKRt!yL`#jbF{u=48>nq$us%yhnemJrIc}paWvd^r9rdIB%OAkKaoAE z)h(d)iJlMB{`TMiW95W)k#zYT&qLwB&G7>-B$5zMW$bA0=Ht}gH=qPO3tSRUHX zp;tq38Y$pm z;{lG-Nect5p;@?q(1O7BXoTm{_i^Hb3aQ~m{&%{rp96w5PC4m5rJ7JgCW1j7f?lY& zL{J;C?9@8XkiyBmJzNOE*k`A*lYMu4e;kP)-wi;}s?ON5CPHyB!|CmPbBjS#&c#ov zE$Xg_js>@owy`vhNxb2~xv~<$c)Z^S*Ly5)B`#R5y~~^%G&mnZJ(-}NC6lGbzmcT^XULdz)h=7mcDi1lSChW9VbJl5W7q?Q5Hj=e4~B)T z*5hsWeAUDK`6JY@Q5XnzXlYS>qqrO`^RzXl+v^8Sjm1r$&=I$G4&IkgHAxP zz9oL_W85db9J2Tk62`eP8v05#-{9i5rp6Z&W9x%z&y zpnZqvrShvbfzJwItu56aw4wop0R$bx7~1AN;qkG$E8OzX^Ft9i#RM6t^%#qbl-A)$ zD3MhON`0j|35noVX^kv{9OT~Wndf85DojbyTQw|k86`k`W{lwUW;{p{)cAmU0v*-$ zei><$1F^I9aLRO?#omgR!yk4 z(J`#RxBD{&b0UxyJQEHg3f)_%UCHy6O?$keUenVY5N0WoQX1i@;Raeum-St0Ybk;h zaOCoXm|ZRScgstLv)Hm!U~g$4MlRSS`NW>r#cmfeEfqiNt{|SdyCtY=T5Wi+z2%$X zVmnd3bQMf%PC-C;KCI)fE@w{Z)oXI5V!X~DU(hLJ8z0YpJD^AO(`}5CUsozJk zFJnh(MWr5VHTK8eb$3c>gl1}eVkCK-buiMPsI7va5Qy5IvnSE zB$E!YbA|Zp2Z?V;|9f#}%by=8!-rFTty0Ezk%HCyrn4Tev+hJ*KDeC9juML(Opezyb@6qCCM8Ngn37S_SZsB>fNEsaGYRYQAJEuVy{p z)NX(E;yND}=2bBd7(YO({JK8^uw30O0s2d!v&i!>gVi0=MSP>rk3>!z>v5Vo7qE48 z@`?u8zkie1sJDCIp0?|(nDsb}=iE(AJ~{CS&7G(9%F_jQZ!x!Lx25)yy! zetfw5leDoCxEuS`ifm>Hc6ms!06W`l?7ZN1p^CY7}@$llehs~sVcP*WQTD%Q~(D=P1>MZKDo9$Rx#$864O9;g7%%7 ze{G}}`;jRL5+6Ctto+>OH%~nOr4);RsDOas%%2-NECfU@b=+8yPpw+1$n3JljtK$< ztz9;{Uw1||WSPD#^+>RKEtrdl5Zynxxfrx8AhzF$&WQ>*QXJ0C06@kkbBE8F2&&G` zGHXP<&DV1qnXUHLI8uqjEwuV@aBwaL`nfh-*FpF)?)YnhX35GD$Lg2-P(Gzahtz|e8^S3 zm5UY)PG4ka3dHw%GR!s9sG|FcPweQ&2)%wv2RV zixRZoCTrE%CW~zTgWDAmk_{LCQJkjplx-?f+Wi(_2f+WKeIvaCcDl2+cJ^?+!^;K3 zah13##|o zQh6Ij?xk*fu~X6wUBaIir9J1=R)>Q zj(Qa>7i5p04sB9n0&m0D&MtFqs~xRaUq76NQi&=xqNrZ3G@3DR&0*5IdRm7{^`C9 z1aev;% zh3I&kP5YBkZRwr*7r#=p$};z&>u3875*TQBdX?_#E71@h(9Vnm`gn@f^{iuxOs zob=w#%mq52v^u_Wk`sbuUqSg@4%2h7?R z2GMO$bgKk@6ic>yxFGvHo}M;xsBqje755EiT5HSB4-u42BnCr_@#rJDh?$`6w^?c- z1)v15XA=tL^oNAV&}uDSa7L2@{363{dWr2}8KG=C3rR386x83qFCQe)Kw9C>)1?v? z{j`cS&sAgqoyM}JV;Z)aW$=8QkWq&pIf^zfw6tw8pZS5T;vI9Wj z0EfPr$Vfu}BZGOu+q);ckv3X7&Ya1(YCo)z(!x>~bLGzdR=&b@K~E>5sVyyqIYgS;o7ELreUD`E=*xdF*si`5))9 zslJYz+R zIPaGxvZCQ7iKmEvMBsyT*O#YI$JdZD_N8CmAaAE9J6Ncz_B4}{T-UaxXt}mb_=iC5 zp}N#y=H{+}?#eS?F*GGh8(Uh~eNF3Cy8~`6qE1N z{GO7f$ER)>$@gQ$(c_pPTl9IZ(vS;X#3is;!hixGpYC1sgFo3(89FQZ6u-##gB%dx zhja7pyZKPxXXc8GMW8;l(8U!{D3@alj?@7=UPUh^c9i5BLJR6(!tc1@Da6T-=30@= z|3bGP4n^54e!P#}9lbv5LWpYD$!;w-G+N|v81~IKMa0XmGL(8uXZCV&$)A~v`y~4B zUv=;tIY0m%!p)>`vj;=$rlJR|t(`50hRxg^)y!sS9aAJ9rU=^UlFP6LVt}6a^>&AW zm1Q((FpJfR6`ge6egAm1Rp|b>iRa9>dKD6+Rg;`}5YuBy54~$86otv#wRH_&UOFGR z;0~YS5Ip^ar24Y~oC7Gqj2d!!dq_=i6NiamVF^(vjX&1U$bGG|WTv|HT;1w%$dt*F zu}%|Oe&!RpA1uTxs#Q!azHS<5|BZu=iyK+&(R=yH?9jrOXNp;tp>Ml`;g&d?92{deaMUqS;B?pNafOyLJ-i}3>l z`WZ-GRIAFq*Ef@cI9q+s`%yw6C^3WFWy?Fv=3yXzjOR%`REtgO8+ zcs6Woa2;Cyo!%_#dAV>|X`3rnbOb{tLkAfLJslaBg&fnZ453rb3-vhs;&V4)P6&AY ziP!4?_dX>c2RHv=MT^2GIi~u*?^u+C$62JQ+IpGyKbKmy1tq73F61iE^(dtBm1vvG z-uLp9X1E8-lt3c|Pa1EHqy|aE7o~af?%cz0INwPvJ1&QTzhPA4)$5IgKDEBEI`kQ9 z(KbFNk_l?++)7?wpDB*hH5P4C?SYXmMwO}x?n>(s5fkBx;>pXfrju5Cx&FPuc#VWC z^42J6AvG%&MR(Z}Cw`^-q`P#~s^MeqW7nkJ;OE%5q`fJzoYG+odl^v|E=X72mtB4> z&kP3bqmB9{oN;&19Hb@y~`_V_A&vP1M`^q%#;+X&K64+mIkf;NBfxuG+TRhq9UDs?$Z5sA1+-(Lna1v6jyr#RCh`kdvhqh&2PR4j_Wu=7Ssq%qe8A&3QR#p z$IK{;rvHsJq^4zIKQBQswq5Jk7GMeK45K3Wce|2@f54u^Fq$5w-y{F^3rgNv4?Z_|4BGJK*C|}WR_D9_-epGF=h1xWwK`k0aca2n}l*`uk%J=uT{JXoQwbE2Bit&PozSY*_+rMex)7&M*{68gR zKO4yFgy}Alh=bhYsJM?a*rV>Df__b)gkh78c0?2PfU^^-W6<0JS!gQ&X<&*zeS zz6f91!;%04oWH|WGZhX^*UEB%2`@>1GgffGO(z@=B~9s`_e~|_cw*exEL@BTQ>|6K z=WvD!8U{sK0mCa6BP=v@b}8xCt*emt7sI@cczev(S7$y$gkH4aZ*(e!I+BXsQ!#F@ z`en;GDvV$6+iz}G9fKiCl!L&=`u9FWBJf=RSjk(NsWC@EFKz?RjmC_ex;7jU6#oFA ztpXwLwey#KCjo(vY+lh;Dpvl^WBAIk@!ZIOWgoDFmZTT57&x8xR1fvIe`U*azqmXJ z2Yho~K_WP?@n`k$Sf2ZU$JPDA!$-X!qRi4#kIOFhXzIIJ5B|oiM zT-1_++F!I91ft24w+Z%OD_UpQRVoJHec*rEgq$PN%%j!s78HN6lK!Tf7ucUufw9jn zo^7{jjyCeyRVLwU7!ne?4ih8{JzHdNso4msmH*_VIbf9FM8Lqq4~KsEZaiD6N+~<7 zqW}8t@x$)3Im-;nCPm-syKlN2^*^+lAFhoc6D$5mYj-}QQqIg*%_|@qKCl%L;>6QT z)l@8GS_CKK;|uBD>qpyg^qx$jd98&Oq4~5$xa%^lglX_I=%eh%=*=T|rt|tS=pjCZ zLd0{@V=Jm4Z2wgk0yV9uX=T28P2Zn_jAW-1&QIO`MLj(oz!-Jdd(-hxeP|8T@VevZ zuSYb>5ej>I^Rrn2%2--NP>Z}+ULkzHry;fZUY2KJA&t*D_#5TU9Dmo>#0Ulp2&IZ= zoq!w6QSsLDTpD*QpWvHFtF)dzKW745$S+b_A$Tl-s#d}{4&m)S2o3ayeP}o$-t=Ww zytJB^3=A|+PbyI#tt2J!A8<*_x*g~WE>}*-zuF(qGbM6Vk#xC_5n>CIF^VPnR_seYR>-S(`t$EyVVNKQvxI@}8t#!h1)GKK zZEpT$D5?5``CAOA^52tvRr*;~fj-bhPgeze^_F$IHKzEyKZKMv`uT4F33cRF0k6U4 zyvF#o?o1vGuZI6`!%D5@i-^*-669`1 z1sYMshAkY)ZE1E#sTvzTGLjmW?4d_^{e#ha_y43&pkXsIn#6+()j7$CtT>Z*S~UAd zki_(|0}QD35ADR7Y3O3wa>R5OuKALwzki%x%JP+p3Z4$(2=00>hDp>flbu0c!#uY} z#;aB$C25@%qN+W7we(^+)&vcWnq|X_e8XoEGIn!ITlF0A5fC0ujVifzf+|lnBFs@r zNl*_!h@cPQ!s^)yGt*=%lW>4H`Tn1La#K{)rL60o-^Vhk&6ZliEG}Xn6E8m~=^LN* z#c^_^(NUe?fmh__?XI7wIm5@dq7#QH*>?1T<|-3Td4b#Ge)fYTBoy2qxG+ZX@SLj% z>{=2#eP)o|`*+bf+~#}!#3^e#2^v&Y$Ib;;Y}dyOxqO{kFvSqf;9=(AC5LN!ao35t z9U78ZcFGATDZi+)%18qDPQf?b8JZ}y8oi}!+KPu;m+5Vc-^Dm(rK$Se)uibu6q+mz zT_!8dxHl(dMyIO|5C1;FQ_WfKTvm(FSIqaca6f6<23gA3@8@}ZW_EAXg!op#cGoQY z*t+q0ZDr#K|L-I+%M)^_8QqS%pLX^zQ(GOJBQW?{k{@~sLQYSw_r# zAVoV9*s_FI;i84J$?4Ej3WB3+ha(HyrYJcyz9v?cxj_6}fcs*T_|j`+YyV|Cp*!$xGD&P>0Ldp3LDc>TriY zTN^N{3d>tBP3G)K-*1M-aXOCG7g2A!U|5eOnrh9<0D}Y(AYAgPp)WIiH*(fud$)zt zX}mX`m)_(06AG4;3HL|X5l=ZKsA+XSX?t`fA)bV^WenDs6|dai8&g1$X?@#!MHXEur_eM*>c*|xnER`2Ks z`u63qf6w&Vu4Vo}zf#dIa%}?C>waH2o9o?*bKkPpnp>{BGL{L42L+P@G9_VV-J~RQj_lMRZ4)j;Y4J1scec@rtR=z1FMP{Ax{0LZ12T+H< z2B?PC&pSdGf=kuN`~x#l&KPSJ#P@ro=~w5U<6YizhmS6j)cIz2G}_pt@+>gEL;a{x zDE^+#o-Pp}?FR4GQQN32$oHFZQq>z9J+c{e%?#@fW~qLx2qDJ6JzP)it?B6B81^qb zIiR^e1c5_-GT!r9)_f+%eQ^1-*3qeW@|atKQu7Tc9|NwZ_Oycby7VNxyvPOLI*LCQ zVg&`EKZB=HMdw(5S9YbipmIEP4aI}Mr|-vq{qG%ZR(2JrGO+#gLjSMI7}dpq>Jf{N ziskd4SCS)Ej3xVP+1Jb(@%g7GG%S@MjhQ0l@Fq7kzt0L^OI@q-`OOGsJ0{AGiW52;q8XS&668M2~ec? zmJ*WGzk3~ZHoQb)GgT3AG1Lps1s?a6t+I8Zt{c_#ovg%HW;FaF=rr5q?J!s^!e09J zO({Bt>{ER~ZqIq^=|a-yURjrBI$Qo}1XJ_-cMo-vviTm-FYL z9TomLLp0I12~u+OJa&bB;Mt;-z0$7|FfVO8AU&&S2}FlL(jT_)td2$*4kC6Nnkx6?T!k?`6CSzrcx%{TrXASNoEINZoQDFqV9 zvN$llBV4A7mx(TX_~+)9h&nEQ5w}T@zM5x0=3;mmNrLH|@y-6}zTQz~bh!70{E7@<#^TCy~SP zi(VhzP@Ejm;S6?NF?r2{t-J(HfO#h6Z{NWT-!M4@St7U>Pyz~3a0QoFx32l`kCu1< zne^0?AGFN?g^0a$bQ6N@3fKuF{z$CS$+=6OxjIJsu}}()aP?c_QkRa6(%^gj{3A9^ zA!jqW_G2{UoYpP{y)5=BmE6hQKO|gh4qfSHzc73B6^&lno1+?%Atd|Bok^;(n3(Td zeYnU3wl;f_At@El{xz``Z;{|o)K=%3Y&*hN}9^8u8#Kg^*y2Y7lir$ z@pP6^Rd(UlRvM+dK}w`S>6Y%4?vO6&mM#Ga>28qj?(XjH?#{D(&-p%wWBAA6R`;{l zUiX~WoHzR>ol&w(SDbdXp)?WvKlvjaAE#qW)4}MMv7RS<0`&R&*9c}J6ohugR6_foHnKI2XuYH ztSJf`gomUrdbB==7+)PyV9QA4Zd}Gq2?g7bc7wO^>bW)-s{N|}9;kym``=P^+xj-E z!28Q)x>&l?4%oZ-TG_13Q7da%jlR0398@};I(Y2`YlNS8CVyM{nST+Q_in!Z<}aV6 zRAXsJma)pk5nMR#))NResNbfc?W5tNqP_t3hJnjTT}*83YmwuBV2;u^?@7}T6Fw^S zLk$h~6vpqrnpap4pDqs{qQ-e-C&`#-jSxuvQP({ahZ0#rYgb(VHiqiyj?tq{_KsN( z!95gt5|~RsP`=gNfm%tlN5+JP<^RU?Ck?6_k`jFd7uUqr@k=A2Y|l`BMAshEmv<32 z|9Mmo97vt{`&H<9FtmmQ;c|!ZZP(VC$Ub?NEXC7|?UckUmBm}XQB-JmjYqYHeL{>Z zmhn6ry+_iifQj6`jh0`4YE!SSqs_IsX+(e>s0(2hthbhDeM^;;+#~szwT^d%L4X8y zIY-QwrkjE-z?4WYYfKM@QiAUG(6>trHp|iw+NJzIDh9#{d+v{ek5*+<=8#C%u6@Q7 zltq2N?@QH!g?%$wsaz6u3l01oU2dn>7iq6mg!0y7+#wLwO?nv(>e$B^!l1CQhO92D z8u3`FmL7$W0j^=VXD9*jFTW322t~ne@bUPs&bMCoaRV>UC6uX;!`0tHiWu`r;%?)I zczc+GNVR1=(z_e-sch1k;xFRgx)0o|+GX+Cnt_WO@FIrNPK9Ifk95Nc(WyQ$$tyxO zIwiTBaGd`{eQP~>3dcE4HKmB z)YJl|!~b2wP?lt)D=L_+TJFCSIj_B4vdU7lMCoQvi4OsL$S9#ofiylb>60C0A1 z@|UXUigul!8r*_b(`GZevaX?M4Grs8ICFE3&31JnK(xRt+xZLB0HJa19?xsnk1&AC z6}e_(jg1Ps?^NYF3WxYuiV`XCam8`6MRHJZM`q?p>e}emnjhaJRACY8x-EPS?+M>Y zvYqTm>|>pPVmKa6vBchXjQGK$H#Dlk6x&d$4^WLXTo-lH8>Ziyx0EA!%ko*EydGFc`-S|F z8c_gc$?s1di6PSelNxxl$*<8iF4-LSoZJr3T7ojD$PHz>-LKw5IkA}FC6ccbJG}jq zR3ogD*O+4djH#wKQyrY$6QiJ%q|mDQ1;@7gM@ZVTNT#|-W^XXq+h^2kM&(GsIHw(4 zmV=B7MK5MTHNyK-B7aGPEMzaf;a@c5_5u+T2~gB&+z-c@*A)wv3uH5ZoZrnDHk&r zxw$ew-X3mn*{_i1Q2g38fqc6dckzRY<}*vVJG++5?Lx8UrwRx2(dLM(0x(g4FVKv} zX?Sq$-LNrnKl6q!Re>u%kjIE;>g>r&JFqp35^6j$b_Jib@}v1I4I(%Q_ZOE@o*rF|_j#bFSYhp)b%q+Lh`29$((jziT&*e<`*%=|*ko&=sXoD=T-RGYwfsJcl71 z{>Z5H7;PdzMZVf7sbz8vMp$0;+>qGOx`>2TAiIz?;P2-lo{Hi(@jP6y%Z-9`>{66q ze~s@vLTQtJ_ddqKv7Ej^QY!G#Oz%a@X>&1Z7aVj2MAth$3TvubYEwoplCHpV{g2*vcX3(Ad+xmkqXnqo`zx}_O zoXXqO%RN$%dB#Loc9W&>1;7>Y{K*b@UC@95&&`y^6_reVZ&C0!iDdEto!Qp#Z-sK< zxL~o_2XRJ&@PuJXp8ExuiZhb(UldY1T0};uY8IJ3P$LgE?^U$SC>ch}PWJnux*UT> za+}yt2n14Npxka*tKIhy@VT%=$EdwchEu82h4CA>qKQ73*P8!RAxl-T7ehkvqsArB zhLZQmSd}{sGZo<_vIx~?viu;c)>n+j;0+iET*Gjo7`yI|4qJYHjowKIA<*4ip!Rv6Ns?X@!DG4Je;`lb3V z5eVm@^cAzA$8RcVXwnw ze1?|Qa-r*+ik5$2VbjF`ji%diwfjZ?$7QW5t91si`}eb2PK2+ItFOPwgV#F)6%`aZ zDo1$-Z(DA8sA*^#8-t7y;5X@Y=hzxitJPsJz50Cajh-wuH2ZYNfD8a%nXBh2bl}*bjWI)R(;A7oR)jdZ@Deip;f_KI?|ZB%c*OUK!9)d> z`5cX<@4XIm^`+mnRKXM6Zwo%T?{T@ayw+xr{vlsa;6zkRP{dw#Y8o$y%%L-O>HC?t z2v@OpU)Y4aA&ib9sx|k#Z3a7$Zb(f~a9#QwpHaFVJ%%+uPh@p>K)>fwYJW4g37@OU`Z_1SGJ*4l7jDdVEU1RJGH?xAmM%_9L7r?(hbad~> zPOe==lJk7JFVmw243TXkG=0ll#B?Dn4FXY7z?3%-QUZ~_+3m?WQ|f0Tiu=UJ2MF&g z|D7pvHVv{$+5Mv;RHTfEjdWuJ&qNiI%#tebSgS}!kx8XnSeQ*t7yZr&0k~C$YHJbV z$iI2^>9BsSAe~xvH|y$|fWD-j#JFDDc@c;|Z{o-5_*aByzHRf=4F4v-+h(|S10Un( ztNknuI!*#SzWZRJ^3?cz(I#Tvr3VjOZngQkVik;Kk)hdNm#K51DMmXZVMeFgpKWbz zE{BO)9tt@PpNP2OpNBrrlr4rfL1h74|Z=$C`v$_BELwff8{ zxOVukNCa!(>EKPwEw|rS@I3P+CV_+aD3iPvt6{ai*6u5n#2PmJSH(#KcN9l5!9aB1 zY2W#awBVa?q+~yX)tP`%OyOHgFGm)$RzoQxnI=XAV`T)(DuX_+$57 zA9TRSSUc^OeWYJML^DkA+(mr*4SH=ay`TM^U1Po6ao+hwcdwU<@Jb+LUpZfwlV*}e zjWj$JNrk4h)#8Fe-yH`o&?7dIY~a5gvev5SQaTimP>NSC;vd+vMVMja{c>K1dU%jL z*Au|8`Ui*Hq`PTRN{58=U(Y z%F$)&EEcRh>gE&Ve6P>er|6*woDt^)h&k29B5RdDucgdq=<(S)5ZUGqb&zp0f85L? z#=`KVt08fXtIk5qez~)j!zMkj;UrV30W*NM=lr|9ug04VJWf`$(9qu}COgfmG2kJj~v6A-G%`Tao^tZcprTGZDUGNDe0lidZQHQb>Wyq{KK{F^+7IZ;Qd2`QoA#A z8)!+RB3I5DQHL%no{om;-E6CJewuWtT9t2H8U&yGK2Px#eBKdn7(u(w$(333nw|S` zb-DYQK>l)Xx&XDm|1tiksK$R^GVkfjHg6CAs?pc+Q?S+U+nH`lM1lkZ0j~uqy$oP- zU2{^DRdiJcaD?6o+C;pepr8QTDOwFiQ+eQg_!Sh;n3$O8tQg=R7Hh3fJJ3YJHLRQe z5OO&(I)P#}s2U z5*BMw9SX5p!11tUyo79eFljFH#}->tIIG%Ja>YrMT8oY!cZv|QkIa%@sZGzHvFNRM z#bxZSs*q&jJ`7%Qu~n}q=PCznZ+VYKMrE}IPO0{t<%Z|9DhQST4xz~2-mikzB%iIZVGV7>E<>qusbo-IvYj)sCU zpELxIQqd4rvNybaEF*HhR=|)kHS3t{%p#F&Ou??yti+Hw6U}%9}7S$T-%& zHqf%A#2?E1YH)PT&Re9SX7;}u3`}aP%(6|1HNs&T2+!SD<_<&>uHC~5bD;a}`+-$i z@Gocg`!s1icCgs7>=(g6fhCvvkkN z$MmZ!K@&OTFeZ{9@Fq{&J;cL@H|n)uI*- zX^qzxH;#=1_9l4K-w!lrB1-8C17>*CYa$ux zFoO*tu7U#F$osdDzE-4n^Hm;=&`Hu+>21H3ORA~A#KbCJPDs*ANd9eH^71%YQXS!$ zEqk*^$DSgml#Tp1Gz9Nyn=52VBqT2Oq8DmqwhCz{o+R#^9?r_C52Mc56=ufA9h@4cevQ_>Q~eH3N3{g z2_vo|J@GoekZ-s@;X3Ll?2U6PzF~vD$vb~E+c2=X99u~cpe1&+_nzbC!fj3%`CREk zx*px94#(BZpchXkIjju62@>g$@GvNrhup-lf*;6pf5nS1#pcL~CMso`kJ?fSpw*CxKRJpVo z8~LB)(fl@Ye)agA2y@yz`v{fw88r~HsA2KFGT1XfKa_$$m@n@r5?0})N)k<8cg%{6 zt(pE~(UM5e<`k*|p_0!%h|8TrY#I|GJnkGckfsU}`{w#rx7PiCuq*L;3P)ZxX9_;dMsK+W#7d?`qEW zbNIebU{1Lqkc!X!h$XWc>;$GiU|ZgR+l6(JXeb5}EYES#cVjozGJfKre$xbmZ?f`a zoIyNZR1$XALh=XEq6vlx3&bx_=fi}>uVTwi+~|}fo@KCaqBZ@Gy}MOcSN++ta3h?B zy~FSiqm{%jt=mG75zEZ9$uZz~7adyHYY!J2v1t+92tgzW9{MttPD~pc4KHg8nF^Qj z?Xh!P-x~`C-oWd&Ug?wBR0&=9GcOtK;j@j}w^Ze+odf=Xq{KYxY?;4X?a@A)BSHQR zCrL+@MQE`mxpZ^-ARehvP-&A9IQ>_+X(il?Ey}kiLr@^<%Re)}ipZ1(a7|ftb6sog zk(K6q1y_Ee_Sr{@7|_baX!9-09WkGHvFI*zSrx5KQNng9KIZKo8u9QsJ>Ux3-6oN@ z1H_?!be3m|Oa0Uk7epJx;}h}bD!My-pi{qJdRGbAybh&rvXlEaP7@S4vnMgQRE}EL zQ_Z7JL?9Y_*`DhozsJ4_KfGRjodG8T>FZM-09?GM|8|#M-9k8U;zSqlLSr>L-KNfs z^S{7~`#`_vE>fq^XEwciM)a6jQ1@mr7h<)lI?E!ycfS5cBa`>D@IZhF*+jCRvn+Tv zbx_~m0X|N1qckn(1o3*PE&Zdub6sGt(~3*r<7sQ!#Du~ZX@iv}mnElFkGbQUn${&r z=kspt{{H^;%uxCbo!1AI%EhMZ8I2|9&9FHO)_3pUH`e(z|IU%r>x7BtK$l7J!PfCR zFypZV0S2d4L}b3DE;o)X2OH(YL3-aVA$D5`Bm$GWluS|_?z&Lq5t2mtWM+K{_h<9h z=GN|uJ>taGyY;|p*Te*PjheMuF2+Vf=hNm`SUO}rgu~e^ER3o5ldDK#S$%)R%+e%a zh%9#+y;l=>@UiFsLN~lAfC5zqtd2{Pm8X-=t5;pf9CYK$loUx$FXqH`uT`x9=u;lq zA}9}fBH?+rKsoL+e%vZ-yArR3YeHADb@4j(+ zv%JHDnEl1m9*Z1JHoLFWfRXA&^m=a1G+t$XslV!WC){smVuH_ytjMZ`fB;&yyAgP-`ZsGsMUZmQ#yOt360HfWYlRuvGDPO zU%CsQ0r`v_+>&*rac5MzmEhX^uFc-9h52$)Y~6#|GjC8Z7_FQyhXWqJ?~a@iiK>iE z@ZeP6=1vCBwDL84naCeSTWZxrTY1s9{@{#*yM)EIlAAT#a?TSM3)7C)QR)fp^)P9Q z-Kv4hiP7?c7l4rA3BAFwyLVcB<&N`NWVNP2-HR^sj3~N*+#8BIVaUxyIk@pOz;e;P zK(`&DIV@!0akMQxZo(}Wx-mF05swI5m90Q?woEd+fWAJd*V87kT8sNVE=3Kbt36E> z&N327h(0)^^1L(KE=LbL?kbGVrWEBg-hcYkFfrN6XEEQQp~BOK4M};~`WL^e2Zdp$ zP0^|Qoz~gom7jTvq*WE|;MCe%#^4lHwnquo zNXSj}oT^pN?C!q@0|8l3Wcsf4?g7vD*`SG3ad*v73Y8du35sj70%2C`8;$WbQzO;9qks_679z z%kG~6YQgu=kaX&a4FVMYbvyYQb6_>;*_^@e#D(f@^S|%kG~C^_!@4e>&1gJyiEnPA zLe*`A$e}jyv^Lvj(I3V9Y5$nE=OeX7WPRGaqQxql2;;PD6m-l3FFgLy84b<;n5FJS zGD`c^kfVyo(JzJTy5Y#a<6l&k&FyAv(;_gI-d~cz5^c9_BIlt?X!AD9XUov9aulY$ z%l7^dI5Th2{SH%4YlklGhYtN?jH0j{J-s-f?i$gHUSa99cKuLL zbOb#(j_FU{8q$wmH8rx^$#bh7R7rN?40)TQGJZN*uM~Pte!9Ycj$O-|b|)tF+oEA$g@FBtS7Hk)!PPy;Q<~w~ zPcw+EUW`RX`|p6hzcO@rDK^A>!gXUTm59zGf}rF^tRH~18+$kihVI#$#oQ5++%5bn zGpFXglDBECm(aGmd1(&Z+#)3*eBwOR6$to^etyT)3f2xzy7cO^Z zAWQ6VRT-Dsz_Ep7BIkaTp6JeNi#oIk%?5!M9%C|gB;jv*yE51Yy{xY(2EA9oe*}Cx zG-B7DPv;FjQi|w~65VZtDh|u60aHTEvxR6#P7~qNCu(TulOS38?X4gXz`_jGS~}Yq4DvCF%C|0eW%L8WkRcEp9FAsYYnP+oPu9BrD+8|i>mZair>i$kdUrLc zh-xm#)eTF07iH04Pma>vA`-+K`=~aseWcv%0b_Ut-Nr!}l zlr0_?sh0Zy87i$@pNrppc?ukP-$ECmctep>b6NHXqJ)ke*wR%kK3F%N-V=hD(`LdC z#2Tknp#$UIodSTMRT|kUMxFiVdOCkU=%ib?jYCF=?IpI|wZ=m3)^zX>^zu4F6r0f!N`+gvu1hQ$h^`h~lwI0!1TR}sKMu#?0gEzmU z(0c!Aa)+$~x2Ptyqg=8S6vE~kG=wC{qlpfO3vp79N0qdiw*Dz^Av3d5p_E(TzV1=S zuaU=B8Xx}EBApIM#p>5uHQtl{;&eg|pDT5~ZlAa}D{HjK`hGArSSrnGb6m7rIS^&| zdb+Zbhk#vfc%^wdaujh2`X3Q!(}u}>-l!|kX$w1I`s2r>=U6x)mPnWah@%?JmYAKm zsiv2W4Y&I~yp%MKNJ@k#rv-gO`5IjTCM6-PO-C+i`o<$>R;#7HrFy%@Myllzj@@L) zHnvswN&T3|SsgFJisJTtdE3peEnkpD5#!n7rRHXeCZJCVt?V|mI`&qS!|WC3W6uib%LhEKkVs7jcxYf2cRKN=~OdrBJv@19*O zXL=vVzln<@@E2xM;M)>+cV*>c*?__wO6|riY_sKgi7($L58qP9$TNwjVkt%-mou7$WyyK5krD0 zBf#QNyfJ>DDP>s3S;(*9@EC_9{%-Xt)7-Pt7fJ{=PExmji|y{DPygbi-`q)yTPvf< z=ENW-EU|r6lm`_x^2|Qc=$UVEV4J`QM-;aQlGeQ97x&VVSL;VZ6l%D#@6wZ(c1Ji= z5`tCnwC`j5&QY;xq1?D3h`p9-ye?ZjtfHa?Pn+}7uo4`k4IA#kh+dli9nfJCXnki^ z7K+J^?CMx3l9GSbT33YS z@uFV{I(^Mpb2t_(+LJ<{MU!NG)k|R%QTL|qRNIw9QpS9 z-L!~lv+m7vuv3eetx?+3llRSLCI!A4^2hW0k2t!YvP6P}S=7#uWrRUkonNr);R+#p z%TYvT=2{!DD2FW&UmBa|f3bm3ko#^}7oP?D_UW;uvXq@M!^|_%>ly5WG=b>q6r4XL zo*%MW4*>4Jmow+@LAL1JqftI(Q+2z4wo;D{y817G&E9e9d4-EVp^_;TA8xrF!s?Y< z+~??#6##dJH|`z4?{f5$)ou0|>#FgMxX-^pyy^URcMr69rJCTOPl%H2z#eZCU9<^3 zccwOX>2LY@F3Ne3DU{bkecqNWfRd)7W36L&Zc4E$-^#*_1M6wn>abTxtsHjo;N$hF z$SJ|sICK<3&^EjNTBET*n1M-4<+$TcUGa6|u|DP=t**h9Y?19T>!9KPbejngjs6MN zF<5Lz%^^L=*Lw}a;Svh*R{FPmO7c@+mdzzSFfa8Fsi%xSsm7y+_*zzY;I(+zs3V7B z7F^+%!+kmatqAu_NT}r8niy>^jx&@zBMP)&utzPjxmt_!yWeU>PEFMzi5|E%LwuBd z2aZg-kktwVfB)}7@<4>tB;J1kBYBznI-u0Db6A3S!c-)yza*g0I!dJxX`?FFMw$ja zolTpf*} zDFQE*om21&FQ>xMa&pgId}6VlpVptmM9&gDn-Oh(yS>Coz-)PX$%W@qS2wlKMdgls z9H3F2nE02-E$My}d{Z=oC?&&vmk!Vy(#nci(6Qk1Pja@HJ9eaRefsg{<+{|1<^E}q zq1EvAWckfdJX4nB;0#RxdP@#dCyFR?o?|KpHw>N*9!m(H!D%Im z_cdw#@$;^C!-#BCUOI9Z?2c1%%bB=fTBp|Mq{s>;^^|@i|5Z#}f2sAv?1m0hBtr&X!V|IoTXG(&@#7H>ELngnkvtDP+ z75DjgF|D=6TND-9W^qVLNXs5ob!r(sycm052={VrdzRLTO0C+wyTzq)#U zN?2yw&M+3ld*=T#;Du>f-@#+XPhQ*)gm0I93T%+!(_5_-c;s-A+9BN*G>gQ^b8qW6 z(28!izd0KFh8t!}E_o!G@@+NM?Y9kQXX8XB9T)~ErGhpGGt^?tKCz4Myd?s4ztZI7 zCYo-RgQEp?4K6H6#gOw+h^_?f=&2#3y0t(u$EwPdN>e4^uG^Q$`W)FNWCe`;{{j=~ zO`0TZwcBouWFEgw_Aha9l0V`2GzzHJ15F7P${Uzim!n=U=+cwKnK?N*OAfPI`Go^h z1&X*VW=d>vRoEoreWJ-hZjQDGhZ0M-JYw6qmg%PChEn6u^=o-%Zmw$;1P63H%`U6k zH$nFvu;d-9FUqg#(c~7d_r|p${xHRtR~72qc};aW&iX?{*-4&0E?bN-hgK%lfjg+= zHL4XsvxWHyGZiYp%Bt69BYyUHd_T>Q0C7km=1f(lJ#q73mWZ0uDDI97m;FlM!gr~# zvObj(niNApPO2lnHwg>IvZ(Y}yZe(oRIk^^--IEH7jlG1UB#AC7DB(z4^P_d_6(ME z2s>}*dy}cCclW|Q`q);zt%v-R8#c95TMpq~Wtt+}ZzRlejm|Dsj|q6F%N&bY)OWtR z5_k)!8s*T-kds$g8lVPo#~3-E3%~I;qSa$Qt@uTuX)Ams#K8gJg%eQ}5>_m;Q#Gmi z)QJ0IWTf)-%tt}eATms7Y?SZPlyCoH4h%r0x`-eId%}RDK|$e*<7s%ZmxZw(=yyie z@l*?gWir$kR@R?u;$Z%&X=CVS{5(VfU(!4y%J0mSRP9Ldv*}U>+2henwOIZ6P&#SJ z1aBxY#|;wJ#KM?NoY6d%XuYI$#`$(Rz-}sXS|JjH@mJr?N#3a(>?1kPY7g&z6ur3B zGtf5y*H=*B&EqyiC(2=PHfPlNAZjbsAue2rk}ryfLmtEO>5 zhcWKIg&kFDBcmq_%Y1Vy!+_-f>Exez zvV=p{iQzS{L}m!2GH#DL@KdvwDK`5JeQucl7S}dmOP? z3O%(}nFo=67xS#7g6M&I17V5EMe>h_M6@Ft6~A3~>RqWfMvjYTp2aHu%d=tS%HE!H zttwb>CAK2_o{rzHj@P;0PS!nUui+&21@pE1`tl>bWqANIs6Of3aOfy@(=S*qEKZLZwRz{clpSkU7#swJI zfnWy$W_{*~`qc0vYXSpOlZ-D3+Ds%g$b; z;D2$DLBnO3!++2vLY-VWYM43pjm^tFwVIlPWlrY5GAhBB7k2ElxgnVEmA_!$gk@%? zt}+BULeyv!U*nUCyQRL3%;b8sNNL~q1C04~sdYntXNA!?I>|V`_`eZ6v9S>crWu8- zW0~Yg(`nhE>FHun(`Eb5)YO#CRv#)15<%ZE+v?C^Y3oX{zMHiG@6HyjEb5!@UzTje z8)O?Ze=7X_3n^jg;cTEGUw%H>;tMjG`NiE0hddyuY456k*C%hXlO8y8ww|HLrO)ZgKQgCx1&jZ(woG9I=a&33|2q^)p)SR z7ZMs|pd;nhWz)T&#^7rVW1vAxjLjM6;XKiCTCewb z8=ett0?Vs6hPfFeDLq{qcEfRz{y-}J@JbF3&@5*A{K))I1W-*q8kOa6LPQOkfJj~~ z)%Xs;pg@eCUh^e4>$_sP4)4zKs(JWu3uGxgD2<FRs=eTlQxPxBPC{(nR^g z?5(z&VcJEuXjt#Ttjt%W@3sk*?Y)`|lHk%gdBJHec8hF*TsRr*FYllf6)bfzm)UM<6k)Ao~!pJ!t%QN3Y=i;lvFxJInR>T`~O-> zK%4;ltX-bDv71~UYef%shbWFrInGE=PrUc7okafl>_6dJ4(NC=-#)KY0b$U#Llvup zsK0vKtMD>q^=A+S90rEHv`d!vjQc&AFgZGRZQKdkq8n*{|HCsG+{0=K#$wpFd>EMZ zZctH2+5s%RyUDZ{u*lhMuGNcAqt?o3y~Dq&`}*mv_?NXk8t9w}h+Yoy2lR>cHa1(d z#OV<0jqC@;_8GsE>~-I=lS#J*pWKXvN0OH7oqZl#O#ei#lYn>}9L_3j-J`0~CIKN^ zPQCk*zx66^zcLO`(X_fvlu;$yR~#b{76_Jrr(4tTsKdD4pFDjcj(u;#e{|#LaO8*Kw#^t@Sxb9jR=Wt-lg0>i zFL&I(I<3eCf2dy76OcBEGgA=R%}vjak2QlMH#S!$my*j_rkP+OiUYnFpjMe}Gl^>( z4Zi*`uZsDJp&MKi10ZP%Zq3)!$@z<$Ji#{l{(TEq9^mKM4AK#yp_?kYBS>M?X%eDS z8{uAD4hxk2E0M4zk^f2C8G=cQtp&x<#9tfoW4wp07bBe5s(!+8Mx=laR1tyNA87%B z$HfD&9dr{!@rh{GRxOi_%Tf;zswuPvm;g^ciS>KRxc7ktcuHYH1M_Vb+gsV= z^^5U>3qAsREtDLrFM&2*^f ztS9`C?)?mfXAchu?bZkH2>7im6134zPmr)5oO$jhD65E~CL$Zw?Ma<^@{wQ@$v0Zg zXB@qzZDp9L8_F{DJ8WfWc6$D`P!LPUlpQ_)hRTVdCg`Hc>7!UiQTEf`wmU+$6;~tb z?UnAe+wFK5g~%(bce|?hLPSVVjfS~89RDknnNbJ-DOmGrQ&LQ9|Cy#3!e@9qiynz^ z0@f19bZS*poMelO0Q^i^w7O(8iFY-omyOsws@%lkSpfO9;(pdp z>{=c7qhE6SHf{dc4}vS`Zs{USKs+E5U2xfek1Xs2ixUx*lpQT&?5i&Frh0KXZK<+K z*aKx@hO91Jvae8dr zxkW1lIl0iO*m8w_C1o#&T!NSjX;StUUK?1361|q-hD;A_J~T*<1NQq`Zqit<$Ha;urljaH$^`Kv#o%) zpQZWiA@hmU=jiKk+){aU4iI&lL(dY5;PT@|WKCQ&0wHx4pr9grtUJ0fB+w(z&b)2l z8J@Cq9=$#%Q@vZYwfyd!m~u+=T*>>P`Uf<4suB_eBFP1A^T8l;Y+F~B1%XF7BwNC& z9Gnb8!G)wJfZa!X=PI4;W)20F)OI|hAruBnd{oC@C|U!X>h!gdY?&;KR#04g7pv$C zb~TPvHmNrLM-oH~O2!X$HSVki6OR`l(+6yA61Zfyk^%Elhauu-4h-mjR}a$yV0O<| z*3C^>#C#V$a5HGVzbSLElWvw)G%LiLj{ZE1s#?5uE65S-E=c`Re5<@S(||?6>0+44 zA9uj@VXY%1g67GZCD`8j@P$hePBs3U%KJLa-${!~ML;3R1K4SaDF3S0ShRx#n%ov35uefY1 z+H~ZoMn=m2PYg(PaK_F**=^#TCu%MeQ>Rt-Rcjp)v3y$ z0`Jr0>w+owcO41o9N4I+Gfh`q^;OU78zDOF%kU{g;r7Hh(cnSvptz^GK{@mXN9T0; z^G$rlzuIrmwoBzD)QNDF{v8(2X^IaE->o>TxjOYF;t6Xj=LK}*Q0f?{Y2M1Aqm}LK zTr8;n$r6PIRg0{L?e6nV!`%HTR9zRCfko@tPmp|g+D3U7M+R1%xJ3muGF`J1LwAS{K^2?(^R4BQ_6-T>8M!{VJSlva zkkC^0T$8(BU#R39z>D>PccRva$oKc?DvO)i*? zZWgLJYu$n6nBUOY&H4E{_O$in46Lw(_-hJoYe$aHtHU*14xihipel_8jf`j(Z@v=r zqdh7ZM^Y(OFgRd^Z=G~|&R=!Y});>moF(TiGM#TsF{r(zJA;vGqm?df$AH@(^&ZvyeHMS73rvOSTW zC{f>@B^8N1FT{7*vLC>De{J%uV=vZ#b(E~8kYa5f4M%P5As?KQ8f+sIgZnxd{2lDp zKvsc2CCRj5)gkLzL@a;)Qb0?$o8{%sZ)ED?gx#GUYRj$*ww5dZeW`8S^~QJmxmrrU z{V1y={gRxF6ly;{Mav#VF##Gwn;{AcsIx>0KvflN^e66qb}-%n$^1u!h(t&a=nd?k zbgbQxUB%;3%U`G~53r*rE_RAu<83BYI(wGlpOx5`O7jn!GF5OvU+%YZ|vp4 zI8D8v_RKc#I?TAVjaNt6A0|e24=CwLP9hlt-7(*D*JmZ=n~re*%rU3)r^_8m09-~OZL$&>1su21w90U&+%dG6#%Mz%IW!3NEvCa24)vvDz&5{nWAPufJl+hwrBb?y>=xWB977IQEUjVC zbnbSVfGY1CF<5|xCWb+MUvjP0BU4spr6nCvZ0>zYVB+Pw*ajx;>lqk2md}=2d1BRv zmpk1Ga{ne99qR-;N?O_|qdIpX%vENbF|n%Yi^J7;QtF@`VBUBf;Ptp%e!_KUDsN;J z*>-v1T*W1=8BM{L)XPX{@%R=_%%;aIpb!Phgr={z*J(TWddoougRcBC~G1ZfLY$HXkGtF$ChkHEK0Wr_4uR>MMB z%)jq{(9O4)>Zaa}o$3j*A3BPX>X|!zj3>J5M0u_%3QwMHMn6C|hixlx-$@l+ac45} z4&2);<|l?Gq=g0K+X~oG-I>_LC14eA@ zb>iegjfN^AIdZ#A)W4S7??Bf)D4Ixi)bBA2gp1P(K%32*7BdC*A=Lti19fbM2i8ff z{9?-*XR+4n5SCxdn=BlExZdndquUIK36pNc7h*q%`B4-vfX=`#DC?$Lv5TIa;d{te z8lnA(-dx4rliie{ohWF<;@6SVp53@V`JF6i@yoN)<`=#Z{Lm2z+}-U`E2GL-f&SOV zgq%^tw^zMaZ2meVh@3p9K05;qW`D#)M(pYJ*jVvgCs*XN3S2k6dUzHQM5f|vz zrpJWi$mJEuQ1JhrkBd$t5U;o$sN2kD<*+Ko>P=B`wQvsJ3iv9$dr!7%+^AdUU!lkZ zmKTVIE6v8S$&EyRga&1)EtaQr6KODGTR$gApo!HeP29?9H!4?D$MH{XRsAiz zA15x|A-I0O5$TddQB37cRvLT38%D_;^VH4!f`)9>98m=l3GC4J!J zQqQlgeOkhnlEKC!sPRi$0RzYJL)5IlWZ7kOaGIhT`s6X{$=i31pNxOatt1_2sFdsb z_bJK-=TpZ^G5(upG=dTz@U4EqIr)l#H4tDdAf>)QmUCPa`>XFJc4hsUr>mxERRA0M zAaXl4uZaSFXK23+xkNdF=*W@f!BXN8G10<1=01H{3x~8~cHMEc7&OH?MYf@Wcv| zwBESRh;OZTq&8Do823oY#c%mqk69T&g#@!z@<8?Mg7e+_$tPLSOi*!ezUn9tnxAO- z8M5OK6>ArS$7LA2@q3PnPE5;Pjf&(YMU}HR$Yg^M6cicTOU;WzAJgLNj+ix^JsCq> zHZ9?Ia}p4OinqGDhRQ;Yz4OHb1r3hP9YMp1d_ZNgTYVxMQvwNx8im2Ef~WiqMk+dH zOl_sk#5eYowR5<5Uwd4EF_02!9-cW(_&l1Noo-C(jmZcy^U{R{p#O~c%azcm+f97^ zLE#=M%_v6sa=P7;Yv(5^2Z@ZrjzHo>@v3RZ$9IUJ?l0iKYdx#_;0k8htxXl_@2`JJ zHP)AUfA`8{*=Qr3+kM{WIv{um=gc#D45pBj(Xe0%B5-me&S||t?Bq$S@TSGMGGEo7 zP|8EM8=r+ULAdf1-l&eNWzRt4V~cJv7^U#kcJ|X4-+Xt!h<4g+zR`z@4p3%?$ag@w z0j-{9$XQfnOqS4pvW(9L?nmVk?TO-tOibJd)eI~A;}3u{UPVHKmejvSdkocE{i3N> z8Rmu15*Sf`6|isf=Ixs|;z9ySzgu%(uta}2!-%#U{UNX0QO9?y^TXkG@8=*0CX^gr zzTMDv_fqv71uoJvxTvYNu7nLz{Oe+#8@qNj5RKx=&Fx{b%}n`cmpzMYvVJDfEY_yG zNLqC+SG_t0t?5a}Gk(Jd!t#5yG{|ursq+@uI%(=Kh-P=rFYd^^#PP#&noAXTt4Z-? z>;L+mm^_zx^p>spgG!1pP@tS$&YnSc8zmqr)9^LgX(VA9nEx8!WFSIOtrUhw@93Z^-*4Qhg+#XX+5q#?02%#}2o$Mxk8 z@6)_1x+r_xZhf%2^hWh;QGlu`$~Cx`M?Ykl7IBz=N*Ar;Bd6Vtcr4jqdQ>n#8*fX8 z{CBHtPw*pO2Q|Ve;p{4g{zuS4>DzZOj&hbOKrQKl9JNoB8_PM?@g3xKu0a%`#1|2qt_2Z zi6=%@Gfz~H$SkcXAZE`PXZ9)bA6TGbAQay-%?$!HiVIm!Wp|&@s6KW!zLnkobYZ}- zn_a;7hkPt9+Pzy&o1OU&wl)gK#U-rszz??R8S<4XW82{p;W^|JUEo2X(wGCI`Z9#| zteYz>gYZ7yZ`5%EfIO;R|Gm%b1c;~=mBvoTWM9_g>HgIW7eDq9bBQ!p2V}w>t*(}@ zz5}A&4V!jZTW7feJra?9WZLSKj7The8u5?i!u);%Y8?AZd*1sF>ReX43 zLpMh6B?=Hw7nkzWc@(bjrCI@RUnG6DPAM#bRM zojW4Y@muQ${OIT4*lO=^a1BJs%zuRIC!a(JHX({Ytjapyh7BBrK zPi%R1W2m|A7%zr@h)S)3&6h}oQxW>sxv=FzoBv_zt-`YGqU~=)x*O>ZrKB6ALqNK_ zk(QM14gm@2lk&^E2?uP&3-Fsi(_Z&Q49LNFdUhAG~&M|(Yv>|5A!ny5We)7Ub z6?jW}KqC%m1Ztl+;tWp>^Pvl$Eu~ZmedkTNg~HX3f`l9mG0(JI(%l!lOIn;|w=k~7 zB>B+p;VvyF+ise4w7ZGWIW9roDPu$GGeK`5k@jib>Rhd6wtN_F!U9u7YK`fGK?_r) zxV|Xi(gz*vHx`El+w~5w{At4rWrbLr<*m~rU>SE~9UXP~`i)xwx3GRVR_ZK31F34L zCEbJKz-GQ~cEWMgpMadf!7O-Z z@ZZ54(MU1*^-o;a8aqiE0LsbtN^ZK})>CY7XN|u~esa6R@-#8Ylzn(~z)a7?#$S19 ztJi8$kED?s4T$G~NfXIpEG)~Uu`e$PH8_Mq1mzcixE~kd-8<{N8#4yCYv$PB_^I}n z+qs3q216QA4GgFk`LO7G_Z{Nlkz1hk!As>gugWKUn5<%+9kMt19;h0j%7c>^j?FQ! zEh!5_zhMQo_(AE|oW_557{|DFwQ#?8MBf`1gWTjaLn}4=*Gwb4wx={3 z9mE?4OWSE9q&u!ez=Nw;SO~xr^930T!Kf)6Ij0pz3OFcwD_>deSkqQtr!K}JtpZ*< z2jx1l`!N%9O-80J;5tVS-RzNMDApILWZ!rh+5wuY5hNrM8o!9?f%71OxHKkayjI{C zG|d&&&B1kKw8@G6f9!QJ$wleRaUtRvrA8%yEZ|w40qopNsP2U&p`A7}TrQHxf_L}K zZEDXnY{;(+B<1>HqE5-=uW0W&t z?0aG~x769s%q&4;4|vZnyj}cg>`{Y@rzg`Wr77eK1PkPUm)$x4EtlSsw3Hh_yqCIq zDbuX~RV0$Zd^#5N<4qD-oeK&@(pU#6UrqfWO5MzGLniS#t*;f>rmgJ^<%5e;(g3CTE2@RUoCvu%~=bT2as@5}Ai zn#kQF^`Kyq21@+;?_eeaz zR1EdXCy&jV|N_;EQ6v<^*gXO~MAn2Dr?#!6eJc z+Z>IeK3EBn@4EeADR{n56c!V!9{Nor5?9D^B?R%9gsvF-rCAq5d42C_Oj2e#_qk{i zleY~|utJ|#9wkB%(MNr2@HyKY5W2`9ufg!KNmAO+jv-wI%k{zfbBK`+xWUfo+3KcpwU5|`j(=)~g~gx&X|BpJ@ZGt_=l+HH?;yoOY@=z0 zxQs%E&?StXLqQ6%dTs!gq$d3(lcvgC!8pD0Kk%e=5TykY(fsMJ3A_(zf|oyZgT7xF z=4^jwlKSZI8#VEB{n~u}=-(_6>gPu@^lA-3#$s&7)=52*r)3q-Ht?5^wC+Gc!pAfp zeVDf#RKDV12#=(#f^F9@OyhW!BKf89Swx|efs+g7zwY3|IGYUi7BUkw=H+KOy2QIN~3zDy-K7~jdYi~Ocd zRk|c*e*LzYlskm-uxS3)SRphq1+AdTkA$SzyB9J4yHp2^T^{drgODeZ1Ya&&!>Hg{ zSUfI|7D!j!TT3%2@|C`9C%>l5Bn1`Bnj74mkAx?HJG!^DXKD=R-_-Y z@PP7D?g}VBCFNA-Dn)Gl-?nXIQunZPFZW^QM)vN3_rjeXUk}m)?_m<*6CEwngH76r zeOls;SfaYy6hg$Cx9hHVCNa?h806;>3?GV20k#!DC&^AYZA6}*Z0VevRY|0X8AcyI zt=JyTKs^>$^4(q}rz{5FdvL3vVm`?Qa{S zm{38kwblFT{m9Dyy@=MJ$axLW?9+c~kPYc=?3fz9pAAn=^~1^Vxf`R==b&)qYp`uE zHqeqncp^f6><&_DG~pfee|QsQrW>7$$Etc3V-ixFk@YWD(yttH?Vsac#$TZIkz!@3 z)d*>C$(a6rW>wdty=`dXR3#A=m-R3VabJ(ba|e@<0(PdI;}LJv>L&(G@e6ZEsg~2r zqa><%B;dQ+K(;lh(t+fM!t!pEVBHzx#+}JpJNNH&2r|jWIk`Q+@W$|f0y|;=QH`gJ z{R+Pitf&EZ&+5@IN}6H-S^6ytGTdpze3^GN=XBk<<0*f9q6*ggW2C8iD|fk9X9QuyZ!rXvO54O6L7oKOFset zO9BH!M)9XM-{TR_SE)h~VWg&P*VickcUhpLUO^=ZqAN3pi)?##L#0zqUAC{SFJpf` z0r8WGF7AzB2z(3q>YHmg5{QrQ_ZgfsxgaM0X?9&)q%{%y&0fms4g-}~< zd_M`HI79ikSYc}+V>~eAME`2ZjO!UGui=|n1Q(XA74m4C-=?!FrFFxrnMyQlGvm#w z_{BiXBE&Q_s3KumdhALG>&d&Wz7B}qo?810_a;!Q7pB&0oxyD3+XRP>l^Pbpj(|7- z!eNaJ!7o*$&5SXB`6CLrVp#*E`Px)C1Nv-Yv4&E~JhCerzZPID$bEHtZ> z)vK=UVPy0!k>LFV#Bu$!G2O1G+eAuQ+OgJkEsO>KQ3Hr}5*XAdE36%W?^}>lShe-8 zUccz%TuDk|$up|M2!otz3!>eZ6;@U6y|$}xtt8%R*7se8`I52?AaKCMFvKJaJoo!u zayn33W*NV@?1fjmQ3?2dzl}LAi$h5My@EQUJ#pUn3RI~yx{62Av1ZPuy^;%u04y&d zA*O;Ex(a(EM^U{DMhXc<+ekwW%Y25q3>1eQx4Ej`;U=dgOonBgroh;-P0w~cQfg{9 z@^iDla96#YT-9(Rjp%#=h?}1a=z&Vic$hNr#AGit!e8y^lDcxKgEaPk+V^A)Z_S1@ z z_1sxl@cv05ICWxD7)nQ<;Z@7u`aqFD`v+K(O}ZR8WL#4{FNi5X&$+vex@(f@L3asu zbkd?H3CqJDX2Q%|59G#V;FQ;9%iFSJ2^xLa5O6J&I%fs**C%{|`v>QE;Ks0g^#=So zEAMu4h2ba6>ygUV2JU&$Mz}xO9W{-J5)(kAc=<~Jd#jDs5;k7^reR#JURwW`;I3{v ztJyuoz)R27$(o)@BZmCIx!U5VE=S86>QvYak+IfHRAMWQOjKB4gqKM* zr(v%pvoECYUa;kCZ!Ox_$p8t^{CfMQ}Xji zDdZgT-K1hiOXyiZ;6J5n$bskaFfFYcFy%q2oOqP-LH06qU-Zp}ozLCP&|Ss}0`aN= z)Ek@D+B*kqNjQtzuOO(gVy;PU?C&5t9{Zn>?>lpN?9%mrrR1h*Tp>zSBTGukF7~6K zs;bvSi3N3sc|o*|S4&g8Z9s;@2)t*jV<8RKG|dO}(Q z(edv&$HGu4tx5JqhzC+&Tgcy(McdGSl(^LXfN-3z+j%jl5Fpt4_p~zs?pghzP!N`m z`1LogEVETs2`Qa}%P-&V`mO@*++4cb%ejDOht15((vq<3XQ+T3bc#cO>m)eW0Mv7b z?b#H#i5Out{SJuu?CkvzFm)x@z!qDbW#*rE>w)84c}P$D`E$&u^^k=?F8`A?gSLy# z&f^h?>|E=3gPT%cY;C)UOpCyG5g}<&_{oVK3p&7eltf^#iDW#jxylV4H`6i?3)o#XV)k9rFgnbZ|}&YcOZt;3wKeaSQLnwPfq4l zh}hBZVkbYoCxsj5wKqV+^K-E2$ycAFHZizRK9hB$eo`vETHq(=>j3eFhp8TV<$ojq z$Z_hwV*{0jG;CS-?4zLP_1Ak3TgKn#ajR3jPIWX6!eUoGzNTrbg*=2I3-#4Z^3V!JY&`JaGGjte zTt}6y#x!iDXS()?Pqa%F=N>-ah|(~EMJM@F0+D?~z9~=v8umx(-`YijSney{8=17A zL5(m_Ff?pLs+Q}xV;X`>E5>-pJWi>-8+_-G%p0uyzy0NhN85_EQEtY9D_CCOAMeCx zn>aW1ncvgqFQ--lk1-noXF@%g=mS%=oNbM{lAqotTk3`ATLJ@u7*S6+RmHd z<=i`ixsF>h7={q?7lk*ElTNZpRGcE6t_364kv2QOVe`O2`%NK4`c-LS_4aH)!WxCB zNMhXox!zXqX_f#D@Y>VlXc;*SI1V^CFLqp>HN~q>vuIc0d1_Ya4TveHmfCFS$ZQ-FnNPwYHNXl#~GZC5!;T!Pd?(UcolMNJ>te!p7*n?Iu zN@F2SXP%1_Khh93!Z?(&s6LjND@o?Mt5Ha~k(&mKh@k0T?eEr3BV4MC@-jIJ%b>01 zCH52)VxqumJO9c^diP|@R{tI*23YP;0oxP+spXdIl7O}5H68USU@eA%vF*7j`E7=~ zMt#}u|GGdq%&#b5;wVa??Vn$%c{nMqswup*eY`t9eM~8QTKj_L(t=K2G$TP$=7lkO z8A0vL0x@f4uIibvkii3WBN8pzyW5%8`p)7+)wKPFAc!)pD~01t=hoNpHd0c+&6X&dvFn0SR|5u%N+JhxMls9P=FIWs zwxV{8W3d>*P;NKb4+V`TZ!`@Rt2x9Nj;ec$Zad!g2sGnoW%H4v*S>-_Kh}q`%K52-}MdILZ04dvQkWLEfcigk)6V5a}>PyO2I}MQH)EA6H>X2+) zxJ^rt$uRNpkN^v2%q#2v=;076S5EdoT;aT9nPbq1r5LNi9+ zR043A-Uk$B3YHV1B)itVPR>w-CTe!|GEDT*#9MR)Yx%!% zo3=j)mxUnfuiM;zi2;ha_evg*w#6B^f~~0r`{+=aT&7S_kCBpt;$O0tXc1o0E+zhj zaekD)O(?h8VdW}I1vapaeI$pt0v541p+Q*JS2LDw;!2;hoqspkT33TPUL4JaLxRD# z1Vx8~qXyiinL-ikND$Wwl17B3G^v5B4fFcRg)>^eJuf`Tjo=dqT$uxW4g%sUQA>*m?n9L>UXuu{JeKRxBTd76Ys^ul#^dIgjwA-w z(FfDVRK)%I=9_*A*Nr#_z+0Yip3KY69BbT&NkgE~QLGO;k`9gY-H=%A55S8wIw4%G zvXoF%+3%!~%#>|gKLB=agNEMC6OFmfHx z&+AD1ulm@ckg*3a+$5rEj)+>pP2#sKj_L4zn;Z2|g)PaIq5H?B?~(H&4fj^Lyd{AyeNsDE9Z-1VV^aL3+O{R#%LPFGza+@Bymr@t>&d7==DSl^x7T z(5F1M&(pIk9J`%#f+TS@FEXMg(owfnEGLJVEes7s~*U_rE07zO8fK0)}0 zpbwrE2%V6Ubp}m+wQ(1D>yKgx;<(HRTUG3$GybD~wq1r7x*fe#l)Cu=EeTBKwS-`= z=ZgO)f-agSs$lCWOwev*cpnOi(i}xQ*wzweZ+C2;`Ma67q&CC7{Otb4b%GJyS!6>X zL*icYyA8CUgJ86j&%SRr-oN^$UI%@&FzY*(zqVF1J7a|DILE6TCllHkExyCQ>2-Ne z05ng3g4$)5JT!GHWZ_(R)ZSepuXEu&0^uy`9;W7#^tW#$uD1p)FE@Ig7^Y`WX?*j} zSYK3yvxVG1JizYTp2R3wla@z8s83>2+aiM-pwla4?Lz$wJ-jAm-fl1deTTm(MK;DAHrcP#hx z^tWdQ+XwzD#dTFM^R8SMqCIDarm1 zcl`zZjq|Ocl%)~RTz562P&NWIiB4LN{5!W@GG+mdb?G@_*$@7>xGCWIi3jNK^k>tInJOlDIfc@7M}FS5B;+c$`a~;vi!-GhPBno+}Q#Ia59BR?U}v;Sqz&yCQN;_7o4g{nsXz8CKv@D}slit+K+^lOM(Mt97-Big8Oafk z56KHEdW6LAIx_-I2Z-LcIIQgT^yX+}TKiA$5&i`1nQviV&b0NqKln{xFjCBSDqy{; zKLzfg;Z{j_UNPiXqm-e5mj^OsesJd{2Zlp?p61hDemCUy)b+w)=Z0ormWn>-bn9X; z)H;K!94!-vuwBp`MOn#CUCdhRhv>QFeQCs^n&_p?oqXIQ6btinu7aTNN57i zMQl7S=4k^v-f4tRGCTD-b#-bp&={M3|NOJpY4DfWDzmq}8zO2vC11Q#!^3s+^-l>+ zvFX3MON0q~Y_owhXO_i>_x)4Vt~3@LRD#Xnf#HF5?JJS5)S_)`q3VUoLplf*F?p<( zIBKP<@)zJ$963|s0J)qw`a)gdN|K#kqsV5PqGmwJS!azL6D4G!q?uQ{V-9{!V8B5k zwz3PUSzwPMw&um>OV(&qG(MV-l4!_40XHm=rcP;rh3&L*HxXBg;3IBfF_Vx(CtB#E z@}nDl9viu&Oj=GgG#Z%d@bCBfC|Z4WnjuwX`BS2%Ye56+^nX+8-JKsy$FBZ=Yt9G8 zOKxw%HuWNtr%E`{$_z z#s5lA0d<@Yk5%Na4RBAluy4IdIKD*zT*J#~`HI#XYLHU^@(Mu9FCs>pj#duOzMtUs zAy5AUKM?=?8TkD0QPAS;*y>4}s1|;5fpV6@KVIB_e})i~N`0H{9 zYUN*s#&7MVrh@Rhkr65+!Dn4et*lY6ODzG(=iItisLMafOrc&5{8 zvv&UmM~m4Dv;br=G62^<-Tr``o$W)(O(P#v=hl*i-&jbE@^?OvLh2% z*ecF~yt51;*<{#l=$n_j1s&ggRn&tLvq(IBFZCKxdw!91Vt3i}kmHrP0rDXLd;I6g z(n<+a!%-wdlWQ|OE;#KdwNvsCFM;W@$Gc;LH}esS?vtFE2<Js@h zU`e-Twip_HXWYMIPzg|luJG=e^ziV>0tTl3?3FHOVU84r(tJ`EW{xT36SJz43ahY| zWotp_G?l#3hQro+>$)!2hPjWNKaOvyx-p#Ao(QjKqs)l&PX-+3X%<~*6p=JN_>!eg z6z`QW1#f*LjRNy&&nPKeTW&uZL5hBzn=|9sOQZsZBW?44bF_KDWe!*n=&@GKt-n#i+Xp8?SGX$B{y`WSe6zUii3Rcb{jK{X(Ejs0cu3Lg03)&#gv;V@{I`%Zb`SiJztx!wcu^8Op>Id{QGu-R7#eY* zHUqfm4(e{*<-TR$2xnRqr+0u5ks-6-Gmo9GJ!uOHL?}>+;eTd0fl@*+EPH_*c)`R0 z7xPMC9tg5_Io-HCM+L$`nqVdWy}OT_R`PNb!1aCj+iM*u!Q~Vdh-*W!@bnQI(GmS= zfdF?#qNr4RDSylSS`IF&Q~0TV!dw2O4PxLSI%sVdX`WntAO+N2`zAOOo@8w)W-TAQy?jZpXzt|W#Cgj zs^6`pH{0_#RdRE3Hi^})*4fE-;$Uf5m_N*;8NZH`8~gemPEyY9KB-*202s6i@{;om zqeH%EHJC8AJU69u2a7ac#8KCJt>6d5rXm#<-ix6_-GbpT2tGbaXwuNs9NwQQW2}!0 zW%I3TsZu=2Q&s7l_!6F**9%lr>g}@P;t%Qkk$Xqk7rW!6Fs0l0{F*Pk|Az@E--vU5 z4Uz|+m{)rZ5{Nn$J@Vrnx3bq~$(ma~m2Jos&}^WfNF)}NFR!LPOXI{~L$=>>ezbR% z$;)e^J+%7)@EuGOGQGuG3P;ZL(C*;7C-Q(97xxWmfmZ+vO{Jx3rR~T!4mtHu76Z3S ziPUuJ|4rwr5A*A+rY(&uCwUxsGJpi!0*&fEO_Dc6XzShELxcrBX2`KXKbhUHARnSAC;J)R$#xRse z8*8ZABq74}rGy{#M_o@-H~U9$h>cFATa7V8U4?S?Z2|xnU=kaUUa2kZjhd*0oqeV%&fNut73#pmC;Hx z(%nto{&k@Vp`6g6^-pmY@8cCpB*a@zTy!*l>qDZC7ORCn-q3jaHo^Nk+$O&fOqwqA zRJ9)H_I%I*3CO;rXfOVaS9EsSd3!M?4MqCcX7;JR=Vl(NITYKu zj6dr=v)-b#RYj~?Gv=qZ^}yB6T4`dQoL!>OHO5*dL-l-0YH}L}QTo3U;nB9MrAvCQE&Di8-kQF7lihbK zE&lPOJo+)kKcvIEvj=A!yd_kgRg0!=Q6wzXu#WOCI}(3-dP1)FHIp*Otk=-j@tU#p zXoL#pjPQst#t;xM2soyS5Km?G+M3(v7eQ|H-_z0`Cc~M}<@``>fuF;W_M{=?V{@x>NN1lXsE1}<+We_94ZUxU81-raf#W*~uDlc<>wtu) z!2$=t#ZEo3FWr#c>Zk5BsBp2Jf1lYGZPGq7jsu&~?r1b$wxax4r9B&`+UBS?4!Rgo zbbpuA47BT3Jifro;t;ML8$B1{``kQkfLWH(OwP$q`A0pBZNsrgC|t*)TMp)dLg3ed z=B~`--~bmZLGJxU?Brxyqf|C&rLWa`pfm^k9PK1gL85LEU{SJBN_8Aity?$A+;cvW z5%l)-^yCWsUbQj&muRl-$YLaZu{`hjPE1vjFdd|NBGHIF1VP|fL2*$vpg{~{!w!nz z|7Hk|l6^ATboQrQ)AC>fJsKA0C;q>So}B-h2~LOgLb5wJyQ`(}c(MBLMC?lj#Qy3K zM+qMlm+0wr$AzMvZXO@dCY`z_dWauxpfdMdGvLAsX3=sZCN_It>crv5W0f&IXH3{{ zIPJpGa=_kaI`CMfOlh#4HM;=0iYKZN6jUY;>Dlgtl-c9<{^XvzG`~3`Zh|6e%9Tv^ zMlTOXeekB+U+-iKpGhiVC$ePf7Z<@g5k zp-9K=90Bzx5H|Qd8^5ex9SHqT*j*#KgpmD-#`a(y@K8pr-bOZ5Na@ z$t%xK8Ly?4Ui#4X{L+k9&x->Qy`x<3vAjGNZQmLE(l7S>WsDiYdLK@?VI*g}Lm>B` zp`?IAyP3o>OZIakO1auAYcNowjiLBGq%>1GzkgWlDHzw4KT#qGV#0d- z*^b5-X$Xy4GznSI6G{6LA4}uI&)6TC`3M#(eFO-kl^^i$^C)f-! z@GrYsX;pU3+BH7kLx6-QW3_>*j^DCvA=vXUC=q0i633RkpB^w;uLSPq+ZOkraRXClBz ze|&C9W#df!R$NbcCue#0_A@P)?odBfD*1=qZmQI-N+$=`61^J9E!+#JWvRbk4acW& zwrJ?)o@QK{WUXKuc65Eag!SHL6<3DO9?p$N;BOfpX~y)35=s55REO$|Mg_J8HzWgT=L#)2Ds~{4>UOinVl{+J~N(83MkEo(b{b?oV36JrwyS!_cT6J zr#a1j6y!Ue!-y3|8&#NVRF^DE9zU^9iP>W?NF8n^P#V(f86$cZSBoq52RG7OCy6Ut z#YLjZ(SHSP-;=(i^-wDW6GdJ|IesIVoO_N!znas|P%;iI8lO0u+pxPW4p~r}-M{%F zNf20jOZ#Ri3>vu{ZK%)}x60S5E&YL)wQDI?qS^_6<6AF_1qK(P?{-c&cHpN!CaM1Y z19j+79*D5t*4x)Zk>C%&c_V0eXe56J$I7a`A1YtUyKh_3Doq6I@U-D$B8j> zlyn$A8U~1)n)+zjs@OM1ocxO4GH1pB6bc50pemL(LO#%llQ8RET1Hxw+Bnr_64frY zI+KPrWdqkob*E1TW0~(9bv~gv%BAkQqaR;k3N*!*jbQDT-i))qRbz>ZY~|@{J#!+& z=Ojc)yIHBvJ^+WW!>PVgwBAXYknNErHBo+}`_Jr-%|Vp5+iZiw9pAUQi^n6j{&Oob z^Ic$5?tS2;UVCYF; z`haMM3npd!OPV+VIjBOUSSVIAjJ6R1B~1i;4mPCkGS%TBwuifukV9>$z2ch>r56=m zw+386T-CG3UAl5js`WEC zD1S7h{g!LZ{^JdPPdJgb7U$-*p@)vQs_vBV8+>24bSxe>aCg z;Kv*}{em>jbtk&`vfR7O9@wgCg=*5lHeweV_V4=%zlarVL7B~5+h|X2^X|Y?p_j9o zX9Tx$cViss<>S-e*V3n&nPO4)p2(A-%d;0D23L0%8vQuT&*MvF4)>$+YckF*0rEd(DC&wbl+6bdz@DK z`@Urd$ObzB5rrf09=+`sv?AnH#Vse7`jLz;ngES~NnpZJs~{()K+4Vz6P+(7sa5f5 zYuSB)WQ`ae)S+-uo(*3LK|vMMSX%3~Q# zZ0?R`zNRaKJD;~~ zZRaYPn{lJba$mcefmN@{y{hD&tWT38DzD%3R8WYx(Q2JXnT%}JiD5Rr=8UWR2-dF& z0US#`xruRcIaTg1?4X{K_&KXf0t%XSR$J1qOAg57^WEsl`Oq{H%il02#L-*bsD#D1 z4Li3hIPIIcF?;iK-|?l}{j6P88;3#dtY2mP(HNcT-B zA?73b?NyH}CA{Gzg0v#*L*OimlR_F;T03R44avl!`e%_E#XuDGvG;@C%{qp>VZyzL z(6@5RN*iZg56x#53Ka(aczZVgj;xlxVwE9@T?E}e`>velUNL^PlgAICkS8Do$DQ2o z_%J6e&5>j7w?&**ruPjj=M8Z$cF^uhRZXH+up8-09~q)eY_&&?MqnxWL>{eX)1KbZ z2{uHnd_V;PLg?U}V~?Qhc^$?yP`uE5;Yj5{B`jFGfYhgeYP$-Z3GYHlzr3oS!_HJ-GeOYQcSZNQ2}dU!hx%^QB)z^@<{r* zJ^wcb5z~25dZhe&PC~>32N?24LC*QR<*Z;yF8P6y?B>yRty%ai~AZk-}xUFgB^csCw`A3G&KelmQ1Vpb56g z$SA)YOo*|tuN>*_VX_J?i_1~uRj5eAtXGP$dTE0IwZ7*7`-h1UA8P2SE)y^raV7}d z4}{U;d!NYO2)&j+2_K$VxNDB;0tuW7N#~<@A zO?JaFlVPX!`ro|06(hn@MGSlzN$XM_OBU_Zt~nt1d-IAwDhdlfa6rk(BpY3QMHhm| z$2@cvF^&!$zuRI`5sw&aIA9cXzj4#3_|&_DIRM5EbrRmDpd$J$V;>tcUTK9J_j@v0 z8Uz6z%^sm4)p?d9M6T$TGkY~_JAtPcMnUCG1}Z&{(O(=WBL^uJ_Z`o%*Y_y545~|< zmxSJhU9|DyvAXLn+2hL%!v0T!GlsVM;h7#2+1}^Q2U+5q=#)=WeGF;KeLZU;6$30y zQ_^;mTOdIRUloz?JJF>^f(Zr_4@o$&C}zn|Z-*8=acw#(Vz6o`yKo(5>*j~e2nFwW z!==|l^JCxq{6;Ln&6pmn{+NN{7VnKKTJYEXE$~t}D3AYH=_)=+jZgr`t%|4}g zWrD%yv@%;FVySlDeni)GM)d8s4i#;MYo5S;7fD2~j{3p9o};D3Rj1Is9P}1lw*0uT zr3Z2sB<^rGJe^xrvt<|!Ayvx70x%L2^boN0c$oz0liL>2&^hWx# zgWY98Aee;A=-sfR0vSHPg??tDrBGHGNjQbytg-eIE`aj&^8dxJ$75r0?$ zXpsZ&ojOsi=->)h@5=%zLyBC$8NKlyJ-*VapD!rz$xp}NCCpj?5CMkvD?qp{7qDFE z{AqH#`qn6>)WU8;_L*Z;%dK{LIE3H$0DU4&}NO0Dyy;;Iq;Qh3l{`dg+)lrL!<;=p_eCO}CtbW*Mvya(v9-t#KcWU7{?PXgDM?9={H2?T zFK50*Je9p$SDA`Kgrrc4yzBE*Iwbs;$KV5c-;RoiJ)K( z=aI&OKDgw4K~^jBz*TpH)(b1`+T}#jnc2}zZ-Q}BA=4237PiIe<@WD{hbMP9w~D;W z2xH5i)T|UoCR71Q%&dks2t{UZW(SzI;m^1$LkSEVc8voL0v){lK}Iw_&_u|H{|*-R zh1)3MPrlf$RhV!Qz^+I?Unl9(6di(+MI|Ty;_Ljz-*m!NFhs;@7m?s^au55l3ow?U zp*+`a^F^fZVvcM$i5Q6=65B)8vJ0Kv7q*1m{95>8eqzyF?96Dey7KHUVt+u=(6+Mr z0OYk#5u;aQSwSJ1_iNg0_GPhMVv9r_cwpfs;woXwTPN z=RQCA_fKzPbweTA3S?NxkCu8L|FYs+makX}2nsdcJVwV~gF<4EZLZYTC=k$BF zz#F{aGcJE|uLflqhwMEx2ub1e8_EOCYI7_}Ypg;BsgK;zOdfZ-@$N zXwd&A`x;$IuUG$GcfCZP6brxWZ{bvrv(r=Wh*TzPV$QN3GmGAUl_1#}W{UlFcB|YM zSqVm*VgFViWYU#ozkgrQ-QfpURcWubXi$D+FxtVre~+K2^ZRVsz0K6~QRIO((i`<@ zp|Ts0a>SLf=+!gD7jM+C0G4lG!UhqE@LhL-g51AoqlrsR zXBe3zqE$K3U)t|w$S4{@rPl|MY^+%SEp7S1WBQ4T;R!A@@5RLBoL?^pjP$TB_vA81 zmOrWKm99ncDjOQYMYHRc`%FkRz?tMO;hK&{nO>UHfQpj+KrU+YhyACZZGE?TS( zSB|TTp#+IhUYB>>C4$_cvozmQA}4Lo8fm3&tEOUtdjw1mt? z{AB;&NYr+qLG;B&ZQR{5%@E+y4&03Vq})h7Ue+1*gZ>a2`q3z;Qeo^?H71cJHUUQj z`~gt~XwN&|24&h0QuP^GPKU^(;EQXa%E#iEW1i3MspDWA>NldOR`9 ze|Pj6+22kx6a8UZv9Rw3MsJv1$^^9oSYkPLjq$FJYstfS+^^Lu8MUIAobU<$k(}5! ze~g>fXw%-@%NP4I1YJ}NEtiIIJ5>(UXAv^Q1w*0>ZA*QdgKr#{2H^fV`Rb!RpP@eB zL66ZQU>$~#y|ie(uSLrK!{GxaRSw7|V6DwQhW}2!oVgxLPV|NJQIn2&jY zn?dn2F$-BvTplanoCT^q8Lwl44U1moPWZ-cX)5%-A)89Ua)Tmg5CX`8t`PS6D<0BSHwE?-2tcC${ zUTw^{7Dvg)dzIFpv!YUbc>9!9DG3|lmq#JKYc;=lFqT9)lxCE+an=F$Jv~nMhTDsm z?c0-;a?tjqs!N$1pYR;c^%ULb(;rDSzdo#Fv5APLanb9S^5%mVrfSE#!a2C`N1nI3 zt{uqCh4Okdf}NVOJ4_1f5lsW<59kGO?3w{*ozDnoa*oBDqkfw`M-Ewr-pks54Mxy7%Y1sR#9sDm1^opRa*Y(`5vzI(|poOIdn*fNSLzLS&H(awjZT;~ZCx_lUCvExwF z0>QO?pZ!$(9{076wLRh2bDW;sx4!X{hkZ_-B!jqBq2Ds0M}O8A%^S5f5u%YQV67S_ zLir?t3sur9akli0j=g?Z;)|q}JS)JY-ycN!xn&nzj7vNUmD7> z{7~Zh9yr(Xr^If}n5oQ;Y%5ZjBWJ?8)rQdg^W|4LD_kgw52t+uDbW$pY~Q{qqmYzs zcf4V;ZMPQvHky(TNUvVv3Uz5tQA;-6ym}M+e3u7CVMl4<*<)nUZmge+4?+T%DIC2H zR-%Q|7r#7-ZJ4w(*R>a!u^ww$iq_2Kl37@w^hG(H@8#pPJ*n!0PEs0gakt<1Cx_{V zk&g9VkWD0D)4nu1mc=8NFX!?2YswJ5^`@&=xIDt@<>3@tIXZ0wv76*%?{`vCk|?QZ zK(kbPcZA&uwK3k!7OwyAEINc|d&~-AZlor;qc1xgByY-Sxm3%MB&y!NHk$*^zXj++ z@XrekA0dLnQu2T92jTR=IYRCTXLWiTZg<{Y?XWO3{_gtG^~IcH8skx|ESk~^?><_6 z^jnDz`t-{hO(9$EXE_oP;s*>Be@4;yC;auIcr3xz_?sn-5~+srxdO$!9{-=Gg$;Kc9-m3Xv+u@wHLA1k zb}8tjr0_#SYly{2gaY^$yf1Uim+!_Zp3oHJncH$mJN)!A485Yp4tlQZ)GLKI?{Tjk1oxFgZ9I6Sd;xX4Txc{QjN%`*-IE2Ju$ehtw86 ziu>C72qkJFuv*cC%!d*|NaM4O)i!dmi8SXun9fk`e>%vVuMaJnw!bD(Qy1mCPx=*Rlu|zM9=zlWA>Vs`7_*2&~gH$FNUAKc?0R z#9OlgXD54u_D35+DF5AYl*bv}FGtZYh}L7=q-+e=n_%0xHkZ3I5)K|WI}vNHLj>q| z$ea4T@u(kR%@)l!(T~}J8PDYJ^l`wnYkd@4tFrJahC24;UoKk~*2A3R381IAeS%Q` ze>|OKRF+-WwH4{^?(UQ>1ujB5B$Vz(q+5{glI}(tq+1%Kq+7bX``g^lc)wr%aVUdx z*P82?bB)c3UiHyu9`!{7aDlrMnbueSY5HBEMEV1@_@Wk-vH_6OYqmuRftHLuN z5NXPlXBWp9jfW%4Tg#tesMZ~@H+i*(qKe^SZ516d!5r$>@W?$`(wi#<$%cl;e0rev zjUO-7#9BCz)%B_kTxxFZ?wjbQ6N!zX?wWag=CL9c*q{*>mhPaWfdBVphgrL*dLz4y zuI@WVt%jP~@QfbO_$nN#E5Bn=%7dp~_g$@vzjR}(Q^D-fDgLv2SM8JzJ>tW@9*@HI z`75!K7+{&Mxn!1e=e?9=uvxOCV*DVLu)oJImvKPOt09pP(H=!sVZWO1yzDWG{3TQ( z+`fi&O9efvK=NI}Dmc-dmjW$Q-)iu+RK&$Ip9V4w^-ofziVEWmm1>#lFar5SK(2EM z)bacD^xtBrP7Cv?aIGa5>u|EGq3+|XX5+8S)42n4$N}pS76sR#qGbU;&5CDv#e887 z2M^`@i>V8-jLnP#umE+0koo+6PETia3Vi7B{34oraq4q_Y}T%k!CgezU$}zA@EPC=}ps2i2@C4QxNnmk)tE#MlL-~ znQP?aXUK2{$?$WyYg#qN1enV`{bS|VaW=g<5s%72L|?!kwAeaj`|a2(8|XkDqb~v|93q0v*Gq+WNK%pSmS|H9e6}w4 zCMV%NuaX0XSi@fL6{Jw?XHAzcJh_)|lQyNkY@48f{Mp06OFbDG#rnbSZfX^F78AKU zl7f7>>s9Bz-{NSi&+QsYU_bcW%O4ycOW>~EOml=k6W%#DM92QG`_>g|@bo*7ixiA{!H8u`J1wyqTdtuiq_`Reb{^|<3}Bto3>b9mDEm4iNTaS=JotJ-edw0Ou6 znQS{fPc`^$BI8D$AKe6KpZ=V4Sr9k3E^$9lq(}68dz7es^;g(wyF{2t5%OA#)?y=I zH7K%C3hVjYnsJNGmJ{04g#SyUBO?>c*}0&45hrH<5SCW`NaPHXf?40h^gUCnyS3G8 zi0@w&X$9MRw^%j0GslmaXgK<1?UdD@C>UgpH6Gti&V+_3a@R7e>d&x#!dV~^Z9nxO z7R+IHEi(QzazXjk0g~bUsrztRTAJM2tdJgf+$GOfgXCH8fgp3eTw?1qxQy3VyW9;L z#RrR8E=S?>lqi{4Sh=|tP$>nuKcT>N^dVG1T|G-ic}lua@NOXhulLJd{I{u}RH0B* zlF)P2G-qLpsrX3=od5sKt7X=)l<*wY3;uVGK^!ag3$iIMMH|PphseMktZ66oJuWX8 zV}WFdw4-fbc+3&JHdL?XX5wvqg8pq9&DX`Ub6B9(6KzU!4D>WBvtSPNkma}<8&NUZ z@xPHorm^UTQImfV5ltffhIW+|hMAClOyPY)`kq-6n&dV?ub#dxs9M@T^lQ#cIfcd4 z_wWxjF^aGZ*hUonn`9zEl&N0zOU$4Ajb`6zud{Adi>D@YFIgHN{&Im~l;O*GMrvB> zzZgHHe8Z}cw-z9_W&DWo}fGBN_^+o@uoeZ&)1SA!rU zqN2dSl8#J9I1rV1Dfj$Lw zf0@@rrr3{l7RIX3CDNg#Ss)hmba-amPzU~}n7-W4Dh&3!v*6Qs-VjehHt97}GtQg4 zw~phHMGRn9VGbN}N}N5&!?#(EImU*Gc5ME=m2N`JuEPx@efO%=9er~Up{UV~#ixim zTcHud>QuR?tn+q~k#y{6yWn~8z5Jh74}REn?d%qCg^D>T9B;yy&)W+*Zy)x}bzM7` zpJ29k<i&NCe~yI84qT=eZSvoxB~C9g za2~)SMh6b0dy!qPy4#cL4ct4#NT<7(X)u%!k`LBHieu_Y5BELI3@7%BZWsD$} z0q6v=8Kl$#^Z0On?_Voh(|6xLo?J{&g1&O84pVHZ)q|{Jl))c-Bcoq>Y4`4LjCYdU zTO|#4qjjRd_;P;3#b?PVXHK)o-DAMGt-O@yaZd`ofmAnNadW}17<@Vz&A5eA-kp%K z5U*zgP>b=I-SAWEalv{$)0vA0t$zN3_pt)kKXZCLgYrM@aWa>XLMaycysFGVX4>- z=X;jmMAVn|zkE+C2{=D<(MUph9O++iuQbLGO+tBBFdxnmO))(k45jr5w*_fN-_bIq zUn^_Pwct;sDk>^O4jwH{9W3iCG4Y~MM*RH63>)5*^z+w2hV6&ceomAFB(Vl<_nJD+ zSZLlw^sHZ#V%DXRsPJ4rzYlI0?xGMk#OEEEBd4q_Oy-~h1FHA6 zVpxBTe{LUhSauh}B|lPJI3H75UW!m4?}(ce&2J`5zyQ;CND`y|e8nK&Y#oY^3(&4=ZL|G_}R8g@a_T1wgf|xEG5Y<*zl$^Xabq zMwcRRxzRYgAA|^OV%|O z7r(zc;)YI7&;+C70yJ`SvcG>I5o@U7#e#Bf+MkrE zzMLjSGdiC71RVdsxmV83BXDH1_*}HXKN0f^V5xd2rocB%{on5Wz=RdZnyV{e7F4Ps z&|H>1lc~GfJDjHQHy8<@ojLh6RUqfT7GKc*MP7A;p?Iw@bf^UW0UgeR1CfQ0PPBI%k0(eEi&rr2^=>Zu;83M&Yf-WmIYAv;s1#3Vrb1In zM?MvU=$E2HN&f>`m5GjY|EZr2k3l7SIYv}6k9_jfcLPk)ErZMo7-6M?ZsXTFo^ge7 z|3qJ#FP4`Y_pVR$4gSM!N>X-vr%QgadbM6@r5leTH;g&~a(n z+i1i@C90a56Q-SN-+IC#cIJVOxqCvZ=71}AD6^kPeRF8{*xk2}OqiEhmH(&OgtFOL ztGJBY+P=Cbm+062(|tsdzC72%`qELPkEEHyiWj>DW~tT$xAMUEAjxH~t$vIyk46#6 z1o6@6M7pnCD5xJk5VDRB4Z0V-FB}-+Viu>B56x~N4h=1pFO?*9lQ3E9p6Fz7CMk^5 z)pE$=CtR@=Z@->i_yP_g;LO}kb8rkqn@Oof@e9=A2NY!2rk{pxvB8t)4-6{D-f#rN zs&54ZS8pT6onBa~vwkWs`ibo1+EQwQfPZC$Sd9|c63W}vLyiUVNGBCO1X^$QXHp?* zfG;QVE9Whju`&Exe|rC2P5sWji2%d*|5If;m`n49A8)wmZG5I}gh@J&T%Xv2KO)EAqO;(e>n(?Q`)k?_qE34_%%D@9;!s9felpdoJMU;$CqNE8yhJX>KBrDSl%f_5B+|KNte?;@E4n(+DBzlxHT($N*1686({4vXa}vCpWklSdeqn zMIs;nz0T1P>3xpuU#FXUItk0277n^RNd%f!y)#L8e0={o9S^^Ud)SMXP{*K;y}0nJ z_}+$Ao3(4Opw;5h%*Y43I+8#@jgDVSJoeMmA8GUj92i~CaRqkxo}NG-Z;v()yNDwc zAnKphWb*%>!;_Ku6cutv0X{%ZF3i=@Wwljey;RQ?x}QG$fww61cP9?UVVzNm)yDeZ z(Fhq?2art`mo09T#Lbjan91`nTyI@|@o198DjP4VR&aIF8*YkN$WPJUhc7O6P1oI0jKk zvky|^;*TEv&%~t+E;e-@hvn}utHU*u6vtMn_X656GTq+164PRctSylN@a%^3>EXXB z1Hs_e;zVVR)FCMgc>l;aV!;xfqOq^xB4EFxT-*AybCS)cy5}=0=7Ebv%XfPe-n9E6?stuFhd5d%ksbb8 zFzD~uq((%z*iiI*`i<=z9c!p5@s_uA%FgGpJ%|T~X^U+u-IL5Yyr=BdB1yl=V>yL{ z$+RHaAv3w#M)0aEa?Glt_21_&%?NlOe=Sfjl{oa^L9%s7cQkZxjAz+jXdoNWTV{k1 zHIM5%_lO_gsNbt#F1nd5C?~N*7`4Jce4X|Wh((yuNl*Y>a=Q_iG3xCk;FOaaktrh+ z6Z3;w2DHq*9n&i#)Vt`K)B-lNAF<0i+EDMTR_R_-71J*TwX-m5dJX z^(cEG7lBU(K$vuUsn{P;CsYdV;R{c^w4hk=LQBcB{c}CVf4C954WTIRNnYV+_c;|} zb?!q}o)NCH{35ft1Bj<#9M_-y0y_Ld0FZ`KO0Z^o$9k21{H+{Ijz20i9nxzS^tExc zW33mQQT`XkfJDpzyLO8KjzxNmG=g0OMb?d=?#+GI=y_p*(f!4%y&VoP$}oTKdTCnLJn3>qI8w8+aVde5fq{cQbZmVZ znwEqPv$t*}r%hhm?B&b=hlaT+RhMid8un#=;R`j~+B3%je7E6p8Xt7&3=JKfkIRq7pU?$X zKtBf?dzSLdbtDA`3^-R`w2ioNZP-eA)qbDuF4vY&2Yv89VxCqOQC%uUc&3SYxnN?zSp)PNdcgG9$(@ctLKfqQWj`}9a4lf3w z*}EXvxoR@EzRy@Hsuf5OCL@|77{*?oZ<>;HY^kcWdbqB^T%btXC$TE|Y>v3o&@D-} z@fBd6Qc5^b#k)(4K)kl#mz{k_X@a}~&5KjDIBzvTP2Ve#`Qa-M#Rwj5I zsj|n%;=;XdXLIkC;0T+$d4K41@Ia?OQA)}gR-dWQ%>fTB#Gb)w^cb%;5eg3$2nMk1 zp)Wwj(fjtv#Qzhf%u|$aE&}ilR{4i)>Wh)_vyAF_!xxZ;9c&vYzRfUw>A`vbL6)Uq ziLjz|S}^B%Vd&wrBFD$M?n3Qe`w@eH&3X_TO@J$G8)7j5B~Q69Q&v;s(;iT31p&po z@FNazXEwclQLJ|1x=qa-n^~as|4fVAyjr4-CHMKB_t9va+dsNBtlWs{4*l|O00sJM z*2u){K23B=B==6A-H$y;9g*n%Gg+q?ISa{3E85#j50^&DF6OB`J4%_Gf{}OA5mPBJ zm7lWrehl9n{mC}%6mwLT5N*|=-mUdyE~v3~Qo%BS#F9IF;07A|>c#*oW}px$^VIT5 zMbmKPdO$mm+o!3!;rPRQzn_<>g6$|aS>#pAnE@~nuXw1{+Ae#zRA)OHLux%QVgeLJ zYfmOsuSj*ex#{@){V&H1tuFTp`~W%{HhXqfaGc$bSoqW!(7I8^{?iy#h7C7{bPNm%)8#mG^`pPbb*6E7*PCLu0^`TFMNhr~_|Mo? zOY}MoR5ZMluOZk#n2IXg-4_=-qlyYfSuUZIkqs;Gp6#tR5oWUGt>-6Vpmg>UJCu`V zpC^#xW;HV(5;fzt3L}`Dj0#k0=+30$ z-KLHRaPxVjhhPDgQ~(ZD^W@$M9E`n@Hs-Z7GVG?|%GZ=U)2<52F&sRN+UzdnnFd`K zCxIV#+%v%g%x1xwkGNM;&@`Ol$Ysv6t}vRqPI`_S{)aWXDTiHley6DxJ-PTyMDX*+ zlI|~62JCw&LMQLY1W1AWIs6}~D&*f_Mfdt+SDl%Q4*f?d1Ol?@Yc)HhM5Nw` zE)`YzF+(Y=19Lwb?RYgjXef=yE?@#OMal^jiYS@3lEc9+hgYGnsmyk+)1fh%z*E=LtvALUJvZ+;jkJ-_Owk44Bc=EXh%srfrjs!o9#7HaBxLism zuwc18dok742KG-b8{shydMvw**pBjnR|>!9?2zx9W!yvKvondOTSY(j!4h*h>rPMN+7`m zV-UJ5jyohUki1vUsvJAfzrKZrdhPq}mB_;w=JGFio%3>IAm(W$^NI%-M3_4O>R;W9KFw!i860p^| zS?03-*x3`$-6m*U`a6w*D1R!A*Gx?&acFG9{Ggx`wL^IC>>tSbXy4Pe358N-Ve;)as8xB$Y(1c&H;>9kQc-CLlm86<0bxh@r*8E$h&l9xm zbl(k_eA+Mr7F4c-SVSJ9OSfVS9rz9gD`KN4ysVk&uK+tCvgK?2CTx?R*VmjxW1Ux^ za#-DC0~z=Juq^tm?<;BwZ0%HMM&`}TXNHRV8U>zIzJB;N6ZYrh?F!6V4i#_0r(eB&`=yS{eTpMKsTJE#k=c57YsC99 zi>|Io`8SU-jRWWwFGpT~3`x}VQIx;6hL|}a$RS-|IKB)!+Y#`F)&7wvCWH`}|$;Aj&Sok}7VkJj{?oWF4vT zali z3eHi`N)AZWJ*zTT-XKn#j;3xn?S19@u4}*Zn3snI2vi%}GcX9?YG`zLbOl+|+I!Dw zoHSq&!z2#z(Hiv;u6asIe%mh(YZ*?dp`aCv(-4t1NEJyYlm{VnTccj~2pU=@GWmHjZHAh%W@S}w&FNn*+d`!(-VnjUE zQYFHcJ=|g5Dh*TSvDKveH2@GNZG+B<$BrsWJbT&KVr~S}c2U`~%9FYRgf^oh5@iW4 z4JoOM3v=hXZVkr)y15ENS%yz*tcRSTP;8N!10+*X`gHHuX#xgw9&Oqykq9xbyZC3X za53;xdk3C}>9{63XANq*=>@FT>L@^|c_05O&v5ddu+tz$LNcRWfe?Hz_ z!5~^Y_x569D=gJ1k7VpRD92=|yYdx1{7Dbqa_~};MZ^)|0yfNaDaP$O+2M_+lh_|{ ztnn<(ib339ULQ3|MbN)TCI3HhDm?({QNFw+Lqa)xT|*D~>Cnz&3%_ZpiXJh|r!8>C zO5%J^0EkvSl1Q@p#eMB!e1Ts`N~AVLmR0FK7AKo)J)+mc&cAdzqI!KkPN}v zeZs`bwE>p7WCjQCXvbvoVSHy3V#{a?w6a z?Y`(K^nd&q%!?z!2YvDUtow`Q3QNyWQV*;UmKpn1J`6HG2X=OE5b0so!M~V57Y_&p zIL}J;ynU5EBc%iee#_68Eq~*#P3-qmh0E@B8$|Y#wbXY61rIaa%S^hVZXdShB|j&x z?CRX#Ag3TI20+2FlXAUnzdBqizjI}8@xYA~$kQIutwCSkxe6gmlLgq;11Ki`keQO= z@N8lx@kf2%QfF=L0?}2BZCc22YE}HP=Z(L88In@dvr_%EATS+E{aNuptWg{jc{!}w({J$1`zgdRh44M6JbF*xEU{zAE zw2F|{#wphMZBPA|#OSm62)oUvZ?de)w>@lWtLQ>hKG4O@>3|Yt7tC4f1 z1gjRDK*PZ6zR7Hz#u0^#|8LtJ0v4@=!$$BA`*pvTJIm2v7h4zRP^qnlafQJ_Xy(^2 z?=gXa+xh4sHq9D74gyjC`xiOpG$vm_@u|4{?*@rW5wq6cFWPP!7%^Z;5VoHUKu?m>r){2m{Yb8S;;!P{RezG64mT`@yVl2NbTLS=J?+df%j~e?`Q>DNw%OrOc(}rU@RJ@h?DCm%wLH@GckX1jv`t<4IlJud{6}JM zp#t;~v7TG49SdtL-cRAeyS2Hf&4N)W8?7)m-F&@m&&&wLxzciEOB_T=6YAtCLjeu> z4}otdk{ZSg1uB6=)4Lj#9dzmy$w`=OeB_nx5P zy52gw!3nUM}tAH66^?H85d$VV0 zephs&$IHtqV$ago&#!HtBqfnf<+GKm+_5pHtQ&m}1Osx^h&A3|zW%Qh%*D5R=d>S4xfk~RaG4cuDoygr@f3p=U_K>V)k5i z#%|OH+x19pJXH0R|KZiv_S^92$05CL+Vw$jxdLBk4X}qcDb%|)29=6Y%SfREsXf@* zPTu-jqT{0U=@bcM!SbJD%F%*(Ts#d+lCQS}9633mh9gO0JoPM4{`1vweaVVkD69FB zU8Su4e4n=Ks{8C@Tfdr2hD<2xv0mWfkmhc}<&*S`(@xwp{40P1JY#VFd&U?|UWakv z5(s$9rVr>IE`EMR0*rgt{n^2IQKeYGIkO<;!JjTJHwQ=Nuy=x?;H@myv#qCGYrzDz zKk{q0)7JEblRH1BPSft+p1{V`xu1Ww8F7d=KB_-W)kqD@sEr4caMUo0`Ydda6L$eZ=OGlg2*PTU2d*%dTzPpEb>KyHH_JFoTTEibxO9W}myT9RJZZ;T<7jT>*OFEzTJ z4&we2Ax>@!89_@0M{S+`;i5#9(!n*Bmp`9K8Plw>1quB@Fd05=`>l)OsVqMk*$u>^ z0dZb7-~WG!JD(P6k(xqJTI>VxpPo(d=J5dycCxA<8NT!MyZbRFUC?XQTL+BHM85j+ zz3Cg^_Wz4$E-*?{Y2OoC`8p?S(vO^c@+SDX)0)^yonZNII>yx);iW$>a79}7 zBCkL5${pUJV?qoLklJZKA?L_q0;H0IqlkcO-sU@%$QRMIx-xi^dV!tXeO0c4TZ=ntXC( z?KJ2*U4EOmx6XZl*{l3mR&PbAgA)K8%Cio9zM*)CsYMhx^{jakf#~NE&s3_w_+4?bQwmW`{jLCdzsz}Z+Gias07Mo z`@44?mQ#wN1@)Fp>&{)#6iyhmilR$zKeUu6Q{$1zu17lt=!CE1m|`i?5DgTZTqZSL zrJ+XhsbDCc&a*s>o)f--okTbqAGc9VwX}o=yvt1|T2osRm{OZCefO>JO-~OlGw!-s zy<}6SNW*1~JR+hsHtu{w>jed(f=-v05Hv{h-`KuhI>?g-{QZ5ZRZ0xW^th4t20TV) zG9Kf>@{eOtaP7^{x2dw%ig+E~gGZ+0{}Pv^V)6u5TYW3nzJkZvd`IHa&*D<=JX~$o zhjrSl1qfg(KN%W|r-rf8S|f1zP_*45DZenoHdcM5Is($Oy<2m&=C-_kKQRGK<~IK1 z44D!HSAd{3eU(*ahtCN+@I*T{2RFFz&dvM)Lq1oMH~(erGfF&6Vg}%#pjV=IXKSo$ zw#GKhCF@*~$h)H^eugT1gCY7Hk}iE&0M%9Fxu8BtRA|p=h7h2_!)gpv107Bejp$im z;uE7G>X*!3H3Jz*4hJS_C7$1}-BL#FJZ}8zE2Fd$o z$L;LFI8#S+J!2<}z3xG#2!_d|!DV439bG|8j$brf)EVQlSthOgJ%w8xwO;V zsHQ%VLg7@FY-L(<(U ziZuLRCCsbzc%?ps8qjfjHpKBeG-cxf36sy!z+5@jgdg)E9!L zLeuT=xS8(+(K9CKtFanwn%z#uF181F3&<;2U3r72_qW`y*vvl%J(GKie(;kP!nZ9) z!&CR-KP%H$+YE^Is&qz=7q7CYUUhC5mu{K>HnSL{6&Rq*ViIUnBjtB@4Osb%B&pg_ zyn=^nqE^0ICY2`r+qhDdi5>#e@Jb}*7Os4`HpQ|qwZR}nt*s^I=GX+wk+15mg*p8J zcC>Y;yPV)Y+a=iszS!ic&A4g4-E8~aQW+-#}=XOym z`agsjdbnKGD*2AtMxjZGBgK1Q9B0=FoR- z!{xIZ1v*Kle`}H;s{a>Ek-0Xc70zRct%sT+Au}0ZtWeDB>(V&V@M>2pn?Cp@!9W+f z0&lEJO}(x}e~(~1JR;(7NL*8axUb6eW3%q@=t!@fOP0ZUe{@Ol;yr@NeOs30_=!01XwK22Hs>;h0 zqgEv!-=WWgwpX32kW;|&^+DB|BVo^H@jh})&)Vkio!{T{wf0fKzh%%}(D5%1)6nBC z)qJ|FAOs=X935J+?|ngNW$sBeqeM(}78VGJdv46sd;Ww{zp`KE(LP}tuzH=rNz(zm zAxOAI7<6^wymkj^8Q;B82@PWiC zahZN;Tj+~+o6u~~G{52(9;X%V4LNdD5xmAz+p^nN8E^0G6?5VSMSQ{_B5-L7nsDy z(I0?EXz`RS_LbJGuRasfP;56nPU;C!vl#;hC!6m*hZDdqtJ<2z1y=8w214b^N7#QClDhB8GE! z%z!y?cb8+8G7A7A4Xc6g5^dS9X`x=HpKZx>(ssPzFAxM6RH1r{&f*SMGqR-UfmxN%-kL&w^(>2~8;(ZBfbKUX?)nFUc?p zA!K+j#}xW7K|P70Ynb(u@7-5i)iw{Z&E{(YN>`Us0h*A8DDfP=&wTt!(uGxK zn0nqP6cpa1cVA$Si50e1UF;4Toki~8tC4?vViqA*v#i?Kaz3Xlu6nf_6JtVkR(t0E z+v8Y^fi1`nsz!5h?qs)dPTO_3$MfsaAAoKqVzO#$d53DsLiU_dT-mCopf5m&4O<8+7x&&X}%E05SP+4k8#`vLDkgS9t;i$`h?@a@6Z?9`h`nM zGD4s~pZ%^E3Taeo`oOnwyqIVnM&?N;t<)xmK*pEEfv^|6CKp9I$N7k@sSV|l*~ZdV z@7-MLF;x*`Q;*-}4li{8Q=a;SI94^Nw#N`)mI&IK@=l zcYkz7#?R?a>yb$J9Af+^?g>9~Q!a=bx<9Js&?~8J7(IKlK_E+d9))!NxzZTh*e}F= zyoRjxFJskn8=BF?(Y%Xze{%Gr+-#^BOvL9)J#R-6Qe%dS1f8zo6`}A63;0vu5C`pW zC1r{@>7~(R1>Q3Lt6O3LY^!BJV|EfKCzZBTkL^Phh`ePML=-4CC9q z7wsV}&HwF0+9nK<4*m1(LV3p-V~8PH{|uekB!6;|hiv7yN6}}eso_$0)tHn9ey+;H zIeC3K#*feL`5qdrmyw^v=IKkN+Fv)5^swnueGBrPjXVlV`{4?WDdRO)Hv3Ws9F&)gg6)SP=C};3(rydnf)5C+DW? zp+f76-Q+GE{gP-#popq+@KD-dMi)Xi(hoVO7V!u2m~iASQ*p8EJhioEuF{A7*;=(# zO4MW^_qrNI)s8N~8aKM()hSU--NC4d-XlYQTzxpVsOq;is{!*R6If6d##K^11S9%t z0Z#!803$lfK}ovJzB6fDjf$unKmRB<7>NoQ?dW_quFl^ka;)OW=*n2AoBnLy4v;hX}n(TGp#m?jG7Y&mp> z!EFNKPVAXs(Wdd)ztO^!?_S z^-y6{G!e24MEuhLDNdd451-*-L%dB{PLp}jdCerTo;O)@y)_|pbLDDfE7sV8UbR_L zE&JkNxY=mq(_g!R_6Jg6hOf+~_;R3m%`>p^2SJPbBXbMh(s3W+&eN;H^0KhfkI@Z< zTkj2vw`5jPKTJDi&XNx5cUtCe)!pvcpSBPk~5Q{e0rx99`?cWtVCz}hIE()X34|JiM;WzWLREHL=D;LAS6zpa1LE zNmw4<|&`wDCGY{8y z&q%Id5L9K#Id|oZtPg(<+Rs4e?{b2Yt6I`uHS`6d2B2`Z2Ivlrjro*6zUrzj%*)%} z!+SSj9WT9NO~}U{NcPx2(BaErW&?M*7KUglJZ*#(Py4qsZ`9Tr_${s_$;tpZ(>uGpw(jzTk&>EoM@EJjL8$wKJq8^9!1><_ z0-?#Y#w$i@gq7_c34@DzddpLx<`7=uiPKHyEjGnn;~Eepaa(SL#9ExH_N#ZT$o8hk z`{~DbMWYG{KAq-{qsZer_`kj3IzDJ`P;t+my`DTk=Q*4FjBJKlcd(upy=^40jq;PT zKe$#?3)Id5`{T(}?$Z6C- z_=X{pj;t@H8Ch?{FmLH|((RFt!+z9<(}Mv@Cc!Q*C)z?#bd$9LnZ9&ftA=ej{@)aUhYG*16POW^F^eqM!9W3YZhtaNueCiM`+`d^l{0-WT_2Tyt%^j}`hTiKH_@5n>p?$kJ344hI5 zShDF{y=?uPl9}ZPBtJaVK2cjJ+{~zVmIAmH^;TZ?CIt3Y6jF?93|gPxIWB(%*9WML zq?l(H3qsY~lT4@?Z6hFodf3mn3*}{tz{ybKZOOKg*e)1FF6o|wnil$%>n69XpEO`w z*D=;^n07#Yps_u9*(>|qWzRTK0p-!GBsot;rfVk6ryr*Ri}dTX_TD**xg-i-fe9wf z#r#d*wRh)j5RZR~&$Oc%MmNxT^p`_rUC+;rZHI`)cMEyqr!XF8$r^4mSB!SPXhcC? z;T;5Tel%6?eWkz|oKs?ZST&r>-V}+BoJB=$%kb`sKDb0Z_RFb~O0RB5rIB3_4JDEQ zuAiJ45*>cG(gFvu0uvs<8hx#SaZ6VxxZJyH(yRFmOX&0^)eu`Fw4Zv6Msg2BnydX+ zX5o^q?b=hXx0ARZr{-#h27B=8NgHkB6UWEjuABLU{6p4R>7)rub>#x^)k{RT;^U1| z`P>~kozJXf6z|Ib2afx$30JZomx%V@r%&V<_-`Z||2hmmDL^V_CfuH~aC7_5TwEM)Yo z3wh6Q`mJx`;9v^K%`d7%xc%C7|3O%L%AG8)(?j?46d&Y0NSt?Q40d0&lXUli#-*}J zYZGxTk^s2f|B8%9F>31r{7Ir1liAkMPO{SLQ!>e#J}2REU)A_LQ((zy(QOcIh#y#6 zNNcL`5UzL$Hv-QF&#;6Ov0FJ24@D5VB-APK)9Z_Qed0{I7DgP}!H1(3rT$)Z9O2}G zm2~<(p}ZX_1j^_fA21v8y#1!2$8IW&33|V|!pQ@=GN+^Yc>d=5rAVNC(onh{r|pFB z(n4@=+H%%(nY#Zsvd511y2Q09Y#O-a79z|$@T-fMN|ool_N2#XX(4>XpSx{I*z)W>6tf=-tzM%1Zrm~=iK5zr@6m*4R9Q^uI){t6lQflj_3IP~ znG9#kK+yk4xc11;aI^Ils}Hun{mG+*FbN>MnS?idRRj~a>m5IYm*Um!8}8 z`tF#g14dFt*2)WYY0_%;1>7nZm=1mWZ)-q^Zo3y_mm8^lSh)?f5U^D%#8 ze~(BMEYXDebL?@jYj9IQYeiOnjxz=(|C)>YN+)C5dl>&2j#^nEV2e_!?YZ<`%f-aR zaf55mEG9k?B;Y)s7$(3r^E0Le;iTvOc9Z@txROb3H5Fknt_kNCXM5nh0RN&XLIvl1 z6Pz1~Mq0p|nw`3_O%Ebu-?N`RJx6*RwWdZQLw(EKGEj>gS^lrnO^Uzz8owTQr3VB= z#_0MGc%Ks$l}ZdJb%H32!a2rEYBr(IGCZj#pVp;Wmi-SbR%DtsFdJNdIZDPH1_bZ` zR;)#ra8Ziaw$uW>kpO4v>qb-Gn?eNy&9dInr)qUMf4*eP{TU!&@ZkDUcWW*>v?Ia4Y#}F z2*P)7V)}QXgT(uGg@({}|KZ^|B%V)*%A0!kbhX?TM1a^@6%tTIe8+l4| zr^mZJ(XlyfL@yfYwuj-B{7Eg0jhE<_@EdBF?fC)!4xLE=s_{4GNUeKPhI86EnvMST zwz{nkd1Rh(Zs!}HqybQ3fvlF3qvq9vD(M>$v#=qSDi>*7*0NAx@#-&)%~!HAn8wD? z!6D=JeEMe_fsck01%$ZFN(B5W>sJe(BRjxggMM@rAbnr`s&LL5TZX@C8*^z!g!nd> zkZtIco5tKJNsyE%TVN9P(`I}CY4%0G;4QV08nmO+ki&3`7oAf-i1~4>SX!Vi&Hk<8 z1|$4x=Vm1S^6y)V8JQdAfVS!S7kr2E|4H)(2^roQBV*aZbAQY8D@JiZ){X$#`6|GtH)RAJo6oG|Njb5~i;h z=Vz6>PbWs5@#nyzt<-2?^+vfRm+KQ?13|acF%fC?S6>SVr~nJ+1>zFgb|L}(s-Xca zXx299FlOF|#UnB0;L()Ot*-$KUyNtvdT(4*!@4Ip_#Za@>9pFakO|m?LTPECYO|7P z@lbN_H_=l+nJ)iJZt%oM8JZP|w!lFYSQxA5uMD&{wcVTOU> z0bOJ>;?wQ^&ygUJ3y`-r35zRNoAyorkEyo|%d%^ubrk^tLAtxUySuv-q`SLYS~?{q zB?U?8?vn2AZt32W_gic4{Re-EhtGY_`CKu^IsAOokz)?x?oOHQHm>00(yUDeP`(dN zSp#o)UcWDTItE6jLlYVl3oAabG7HbTgdj`~jM{mgj3g=feNj3`+T=^eX0gLL$h}^? z_?wD4oXP(Qj!|H0hsZwBEVRW@SM7*DR%M*Z zUvicBU3tEDgN+)q*N3ijJN_uTuDx-E+@LR(S5&XSDwk^&w^h-@K8io<0s{xrBmk+H z!ZDnZwY?Kws%-)JQG@R6YIX(sbUf?cXOF8)lk{Jo-~u3vf;B%gsirX9VB-BNwp&haA!^H2IiBUCatRbL;Yr7~5!?P_H&g#M zm0X=NXctZVvZDY&D!HD;1k3LrGzn3PpD|7Yr+k>%<+&wWs^_h+J%kG+OCV(Y83)KA zz_UDajfr_LL{)BGeP)#`uF4s{b)&}=Li==T&=>QL5WA*a%#_NFwZG8HmO)P!b9_aG zZ4971U!w$$G(@fIG;qR?F+Rv;EUREB{ zH@5WE`m$MAA)A;*ki7;h_j+)UHtKNIvKt{!!{xvSJ^!&kV9b3Zw&JD(?&kE5PapeM z=>PINbH-0K&y`Vq9TErN4`FrvrFsmtyA?&Z@M8kR#6+wi0-ez1rgYQVKXs#*;*~9| z-(DYb9H7J$&_=k^cuamrXEx-W(%hOpPzF|9uWfrW=?X`ahsT-2#qNFPuHHwUmLNS!Xg=Jt*_ zWj`{SDecT`!}i;Ohmb+)!`1RwPVGVQUos(1p7Y>HJ=4qEPuLigI3afb0ohK}`Y~rrqOQ{c$aM93k3hg(c&+U9WS| zYUrQSGTq2<(AUm=LK@NC|LAE2SXRc>05ltoe|5rG75UI<+{0X8y0AxWN@(U2)pz5G>Z4UG(zXw42_u&&%%P&H>invVX*6q9 zk$b@|TJP~F{JaYNJ3+AY;@o|0o0fo*v;rh|Uc5h45kt0Zk~cXw6fHu?H;KkZ-P(+y zzx57L4_N+4Dq+rr$5T@y;$Atq#H`!8gmmy*7%ZT>!Y~;tjdkv!aORi+c(xC8X{yPg&kK0NdmO!BKC*O$B<} zb)cG01~*PImuA_Yo~`$Hew;{QEy{TcUNza++Nugm#s6)cnRn;=lcF<*LY%WAw7WHM zz+j=JIGOeE#jgq~46?DY903O{ungA;2*O`A{A$zvwy!8=%lzrJ)cdC#R=PLxo=Mfm zcEnobCDR&Nz|rzNp)Bv+v{QXl6dSig+DlUuqUr8Ht>-= z@`DCO$!YNs+RzKQ5*yq(Yg{Qww-Adfd*UC@KNaYHUT!}jQ|q4GXH$VWE%N>rwLN>* zHJapN>7O@d0EaFo?`}X(E?U;jC{{hh6PKmHBVr=2Mus=?XVxcJAK>~_%B+*YU;eHNvcUj#G}S91+2k?P${q7<6!O3K z{p2hFdiu`+_-dn1`_ofgeSl&_%=jlrAv3*mWVU{n-wy}YNdVT#NAN+l;PM#4n?G!E znYnU#GbeNIBhlI8MaD8sLS|l#;R!`cjL!p1#PJ(-_1

n(*6;;SjETEF!=j#`}s4mjQDC!u2w?8pNXQ;1R6OuXIXHWtp@c5)%%a8LN z+4&#sQ3?u%!ip{(K2_FMtYQaW?{|G^p@|k9UYON)%4)t=*q2N$MXxyOE~ihgm^-pz zmwI%x+#~LEyvH{%m&|wSvh!z;o=Bv9sJuf?GFDrK{rso;mI*T1I@E-!a(vvmfUSG= z`{%XkIzf;_3X>Vf65_zd#n2L(?$7YwhZw3yk1(1bnYaJ1g8Ybmr!jM&_gc-!1Pb1RWL4eY2WOY8wYLrH z?^3lJ=RrO#GmPv*C>Gq6tB5 zwlRMK)skO(#D6>c_h?m8a{Sj8cmNj&SESriXpytSnXiDca#Nof!{mkqMnPHoGsE|( ztt+$i>7ACW9}>yZ5Jr|yrj^CteHIH&OSe@WV=1$_M;@DHPf@&o@%LnHnyr|7??Uv! z{B48LHR7FUI&yirU^?}ijY0L(JXV(dnbr@=s{UDMPC6Lb)>6i15Xa4I{eoak>k)=1pbZe;vt-0iu2x31J?7Fxq6M2$39yoe%hjVk?$h0i2 z2LA?31%8t8Pa#0Qxai(nHBjs|YKV{XE5tj=C~P*&J-OMM!~h@75Cp76Cv7C)SWphU zT4G6b&URpX^ErlJ1y(}ouSr>YSTB`B--#7-v-hR{A_)+P7Zf= zCzi~ZBQ5A%3^P$ThR)%T&}eS16z1S<#t7$P{CQcUS37058qgJlvOvv1zBw;7vB(3y z`mdHHo>U=-F^S-dNpDvkF?V%GTW-ir{`8RT2ABGG5W zq;vJ^DCM~Tutak=aUCP z*2>|6F%MDmi6tQwE_P=8Rc zPX;1xv~z+Q1;_G#y`7&<*QS=Rt$+!N-l zdHPH^ZC7oV>uKKhWv?_FXw)i6jei0CIeH5t_Ltgi$O}bZnemK%^ls;`MDp$*Jwzdl zyDt*~29lSA;nSP7I^YJbw1`hso?2q`ce!qMK-0_FCiD56k z8@z9=LIfDf3QDi!<>ehV;owYU0I}sCI#p%j+RqH5JM85Uv(I@$-6k%2&P6n>k0@Z- z(~+`QsBZ70)~M^m^%c+;$S6F7B~uP$U!s;|K7L#J1(N>$lU?*YcCK{&!R70~4KEVf zg)dbnJqzaVy?#J@`vU$=9rpsySzX`fB3;Ep4(z8#UXzErFf2YHPkA~q`oz8s&5@Qi z%h7ragS#ikhIbYgP`nE?(Ko;U@F_jxU_p!xmap!?9=X*y*Y>vBiT(IX4FJ#(X;|)RcN9KLC^&x0_E}OYa{m@Y z@VyC+DwJGbpKt{I!6ujcIs#Zvp}HR(>$`|Y7)BBi`a_mcBuj~bPKhnx_#rPd{{hRzxFw;W5{9y}~4CCyXay)nE{ zvGZ5R*g+uW6F_psoSm;yP#-uKVVi{=t5Aw2=b=MruLS_*`B^as+Z>p6+`t<-g1pd# z71Lc$&(n{e{@Uc`)|CW%*y@5h32Pr8@6-5lV=}8n#QxA>O)~=KOT{s{hE6q5=2*>{ ztCf@@Bpr-GP4SveB^Aep1ooYf;=>aPOWQ3C#3!L9(#qo#m+Tn@cqbzDKku?}8cg8T zi$>_=a{knR=2s#c7SO8+@yZvnufW!}F}oQ{g*CXlKXZzsc_!wu!X2dNEb+ zWg9j$*tr#qq5DR8lXCdM6hGXiWcOFrpoy?sUfBu zjn-R~Wwp7q7@ogX)m^x%WN+{*6q1j@Re!_l@k}e)Mgm24)iVFn4JtahwCR8|x@&12~fB!PvJk&~Y`A9+PT|C_LMKDf~SxHA48^QaYMCo+en{YGg%=wYR= zeyoep-Dd>azjOVzP$u{WOB3O3ZbtHR)d(D1{R6mVFi2?o!9^J#wzgI(XGRv+nvxMP z@Tz7aR{h2yPVI~D*|3)K$Hcw)TjaAfG1#qS$2$Hk*|Ho>k_U=?$YZT?&`Oj~8%QG$ zY(A$*qT#dMYe zm*4Ul!sBf_RnO_DkEhtws@h+xDw_x%kKq%k6iIsfkx*8eYp;|uh-qk8R_rA}w1}e$ zbg}(A2HNtu;iO{E@D7Us3tAo_SSxq-{Q$ChCJBj}G&42SRa*grEYxT*62|hQJ2Y@B zI5dI8!xX)7VUaQ+{gIxJuVwP+`oa6KZtcxs>ytO%?KY`s1WtR%Thi<8?C83u$GiGH zK;j1MuXC8;pH82)@rEi>O63^Q&%)~yNG!#T5pDir3d&jM@wdHdYDqQ`f$xfXjDWO9 z5n>q_KGbQE8xIrIkx;S>#3^I6aAAf%dcV+3t-5lM4Kt1?{w9ZJn}c z^t(5TI%TC7k)uEBb^e{7|DNO%8-M?4??Xw^(8p-}Y1c!T1(H})h|o8nYx=Vnco?pq2n3WG( zOB-PQmfr{P{Jx|qJjWk@&1m|^Ssc7z`;K|w!og9^7%fGimdH{5)!8sVTyzNWei#U) z!B;ym5k?mlPS|!zR%wmt4`Wu&w=6d=6KaPB%x_ta!c&W8i3c^+MSlAZ7-EXA9L)^O z4NrzdSx~-Sd^#K@Hl#^+fZywDJ#Dc@?}M*+KS9t+ydH$h$b>h-zvQ5P`1>tK2`(7dKFy%EtipR7Mg9Iu8iEa_4r0a_(?bPwgN$GvM$7+OzvN4~uGz4w}pi~GP8 zIY}kZRlmk~7C*7=?(MnV?&Q6w+e-5g7Z*3Zr}^-~xACY2|65*~J5nihj=~B9bgiId z^h;5VEqSl%z=gfiT7qjVT%bWHEaVWY@Bf?xUZ;m8=ZEX57@X8U)McW6sp=haG;k{38@0j_r3f2RtqB0xLJZQed8|c=0 zHxKewQ_u8G?k~H8Nvw-9|Af`vk)^1UCr<>CRYD*9s~4Vpq12`Oa}jDX%uK1;bfMs> zou6Ms*9G5zP;^oaLJq5FP!sC;K6u*2Ke~5hd z45P?<4)>UwZuVf`*w~o1WZN7{hOVC7oNXCa&TzP$k`a3z3ldj-0Zmo+=>}+OCzsP7 zL}CBL*Zy$&#KBz!d3{k9>GP4x3G4Zh=Bwod*N_eWY`3~toBAyE2o@P-Bb@ohr*mo3 zM|3f|VC7TVcfAnAq2^J-;b2=btuV9s+@_Rk(_U<5d>Yi`( znlHcx!lHCFIKG;Lk3c*##^#X$d~Iks$5?K2{?7E~;{*Cu~+hCPC@F(!_0vhF}<#?vPG zk9BkP5&SF}A`Oa0Hw(EvZ0 z7wfcz4m7i5xJ(td_~$R>v(<3x{(dfEVLEIuO=Bnd^XFl_BZoTw6RdsD?w&{Y?9oKQ zrEaa5&yeMFm+SkCs<5&@-&8=bebC& zi`XsKbZ?HuUyD7KrBXn5XpurcAq72oM95FrZ-03XdnkAQJ-;3JsH^)F#eMDsnhoc9 zvN+3bF9rOcDP8h)o5}6tkRnO2_OLbYkTPii_ zfaRBpb9J|ZL}sj4>A&&j%R=vGpO7B{S5Tfibk3OizlUns191Dn?c^&Vn5Fh@)dwlg<0=m+}Z_Piz z`z1n2*^J;@qMZciNiF$V-bb9`$Ts^9{6=&`Kr~%OPN}= zV_Xg&)w6c~Vj+r5bSc^&r4?J(|Nb6)9g~>Or2Qy4r%cv0*h*mxv;0H z>DW@oovU-)p*QwBE%s5wSBz2g-^Y#(SL_C~o7{&abv%C0oF42q{-SQ*)M}3|N*9b> zmU#Nj6Hv~q(dZ4UR{k>0t@~OFy0TluScCf#JE4h3T*A!Vib;Rk?!vykMS$OXH9%kP zg=o6>L3Pk|lLH0MJ%i=qe6>R%zx~6-@$H^WX=!5=MD2h)X#@|SrcR5&90PFqZd`YA z!3mPO1Yf&oo&tSA*MI=RwLIo#i8-D;uXm}}o<1U)TQst#sgwllTZ+pO6KpkucJ(#O zb2t%PrSZ_}VdIf;|4*u}?rxF+Cd2Ls{hhzL9I2wObaZrxJTCVUZ_}o1x6Hv+&~j-r zhm@3*1Z&WPBGV7j{&bJ3_B-hRqv|cgvihQKZv_#hK|&ftx;rGLq(Qp7TUtuGLAtxU zyQI5Qy1To17yh5~ob!GGxh_BKd*6GnHP@VD{6=pY8J)FGBtfH&Px{n5j~ZxcRDNa| z`7G0toV}#e2h$zusHGZ^*xN`4kNdT&76Zv9^s5?54rojL)6T4FWuceijG``XC1;qrFq$N|SjyVVpd? zhkM*L#9FuMg5m$=c%$8+qIJGi6Pc$9PLF?J(2H8}B-9Z#0&^ib%kr zpyc$+P7*sD`Q_1sh_x(*20|7dwIw-1k>MyP@RCzNLF3NDHHTE9wW&C@}geQyBZ6+{%qc)8gInBgNYh z&lwG`eo;1;*_-)AoiA|Ql<{bk1T@2J7_Qv9X;fUz=l8r5X}3gapW!9TakY9vbDn4H z$jEn>E@?F_;QZlY&NVW9te2*y#W+liSIeC$XeN8vFhjpxqN^@XFd%g|plwh6me&EmVKn}>b$W*$& z{9d=qB8^IwAcO@I_}wR{adnG0n7=J`BR5Cr(?d9#<5P9~T~rhcR}tjeW{w0475WDa zS^xU(}tTTt~P$!ll1PM9hH{BGf#ZV!5v0Me1+cOaH46M`64K>*dzI|@$kdk-4FI5(* z&N10guk}D}N%ys4=~`}IIJj3a69Zt|mgFI8S2BJFi=2(~`Jamx`$am%>8b1$gb@HW zniOXZeZ91=J&%}?PdOxtDJj{SE&Z1GnCXn1Upagw45_J(Ayw0A z`w%!X3ZMH%Xx(I%&)8UjazNZTA1w^pRvnCq{Bovz#jU$482FhQGqjtsOXs2^K2^H6 zqWuPOP&zucPp4rC8s@TOOO*g4df+44bfL%upW-?#bgtHT}5EevBQQl^+|#Mw+D))X9^L=obS}!c)vL46$tp=ziKzA zM8?Hk+;z8aY?hrD`S$JAO5q=zhPOEI#(dGy(dKTfC-IrI-~B=LKm^h*(We;gi&Bjz zTxJh_h4ldP!VePA{_+YsFLu+9Zx3zz2jgBB#$Ge(&i@IOk6LkEH~~lNy;9wp7_a43 z-le66?K53dTaa%Es?x}aHDVGWQWgcn2S*;zMSW4Yv9n)aW#HjW<5qtL9nasxxX;0Ee=Vh6Ee)-;cVU~yl(+2JsRg+3nE z+j;frEwd9RcSmOY>|%jrro_oL9-CQC4+i5mGaI!QUKqE}Tl8bs??s*#%@nsTM{Jb@ zji~~ikB>h~qgMRuph?)N_CBuB8&G``CgB#J7D|aTZk!Gz3ofV*OoOZAL ze82o?(Q^c=(kSre4mG#Z!4%IM)aO$NbDKGJbq%G7pl9&L6Nz814v`>+M!kPLTg=(z z%j0%hgpFoEN%+LUgoq4ciR#96?1+nd&ar14}FL zw2)YT0}Igw4vNuW+1l7cDpg3)H@ z`}aXmKx_XwjHkVhyC72@ zfUm#2G@8!_PUQrk2^jAL`JxIF{t~BIQE`TN9WgA}Qa|P^ zIbKPl4u1?y@J&kfvpsvW8phRr*$_I91MgVhUYjU|D{I|Zqt=&>oUgX&ocfbWi5Or0 z*-o`}avm~i>1s=-#88=JWPiZl%>cJ=4qfzvY=EhL57tcZ^vp~+faN~UOcbeOt681) z@SuOqNppU`aDF%k1v-)kF18$-F_qz1NZU3abh|I?UP2~#kpf?w^SQSNl_Rg%wv%i; zms%gr242rLI#_1fiQ91EAv#|lK_ygdKtb>=g9*Cv(}|o43~k}eIXqFHg5h_SIo3l{ zcnQPDxYM%>NEWmS;FNfd@p;< zsC#vr$po? z3#pE*g2~*hH1)*cQ4x#`l3~H&5k>=}14pQlqQ7x+(Q$${y-QoBgez>x4715wXrL<_sg~shZ|2Zn;MGX68ETYDdQ_;l|iYr&Yp!ki;pvdu5?I*j~(eW3` zrX?-ooX(fGcNEfz`amyX0&Uq;o@<~R-U_67n;93lXOT4^oxG*za)QkyJ1Mq=O6@qD z`rA8FTa^^@VtWCNI({(u8YM@-Vf!<0*$V$B7?aVHJCVg4Yiw+6a&odve;@{Zd9lff zk(rqp4wJ!~5_t9%=O{txB)Ot3IzfOEo$tbn3o|h*@!7R7?u~$buIyI9XINTE7gTdm zhO-XSdh`6wM*eL^wR|nc^UPCqSL?)P+jcmdkX`p5IX-LnG!^3qxM!m>&Xuu@l&8mH4{d(vZGAb&8 znai}1CAWKXx64A!)$`jpHtSE7h9d}f3ntY+2B>Rao%9lgNz2Ji-YCn+AWPMQm>3CNgSSe=qA3f*k^8oxk0$Iq__dLx=!^5Dh(52&PjFN>;~CqqnhGF4>6yY?aNmH9 zMY}hu4=$b_N;WDve06i<+j-sRKF1z<-O9@HSyjdqvVvs5IEADJRmq;7_QRO+P=1i$ zb-d)npUI7DJX{r@AOK*qa3YeTCk~BkwGI(?)DI7--wm+Z{D@@hYTby5gcH7rd37D? z+0^RBFHz@-7zb1R<=@SteCPbA=}Wd)HYRj@K8{k=JKJq<#Dpd;FD8$38Y(m*2T;4R zTzauXT3PpW-&U|~UZee0m9c)~M92DU4(<_9Fn&u`UNk{J2U?uc=II8~{rDXTLP1WbIX=1}6v+pRSGRo1TzN55rUN zmK@dJcX{Tg3rJ~Z4hy)4ReSKJNx`e7&Yw&3U_)Fh0I&7QPx$%rSLNj#K0Z@iSV2IR zDrrm(h+Rit65eJC&tq$1VE7F`%2^TsR|iQ(rnyq_R*QwN)~ind8pG%9=Vt>>Gjz^Z zW;(jM>_0EaQeDp8Ym~+sPvn%l-2MPPcK2F}7a<_YbgAY@e>7!0rxSy47~Up$dO$ld z-Vg7me-FNUlT;UoUK@?zHOQZ*W)3{$`BD+_jMJDPygpM+StCp>uD?T!fl_Zpqnq-` zHG*63YxCTaGtW?g3I$kg0s=d|;V{eM68ir65v|IW+Kta|X{d+RS#$ApdXZ*piVwxh z@KSS%3xe5CU;oG&yv;uT&TNbxE%Gv?&tV`B>F=}g$3h+`^A5tKr$KO9%SL_Fa@9?2 z!D9`xLFqo9s=E!*an?@9>>{j;hq^hmzj*g0C8~bq9r`@vJvlD{Q89D5E8s@trm|4+ zHmvo{B|^!D;rZ~2{wl#Pg~An>DBIdZ)=(YBeRw^EF>Lk7_B0DjhUbmc`V63eoKkdl zx;KY)`@C14rkg?cVA8)v)BWR~mZO-Urlzidd~#3wmp6VufvIY0{p*jdT%^#ZuJ9-v zff|15Uj(hkU83kS=N>d(hNR#ru$%s-BOaa9L=j!|c?!iPg%xK`-^4a!0g6``a zn-#msaQTSP9N|vmRIJLGkyuOpM_vTo&DDfitZ6?_+Sg_rd#IGgDXjikYIUZy1m-Cs zgUJBkmN*J1!XsrTh}wnZ?$oHDobyiO*tJsIvkKIAMBaac!aq~)%oewAU9K}@W@$l4 z{Iix-Yn^&=GUp*9RPzOk(&91V;o4WLcE4`X*TEzc(YfPzSM(n8KD`M?jpjq^Q?=jV z;Ajd7_fOk52_zty?c4j*$8^g`#nSFGKX{i8tA5O{w`h#@)8~P!*(qa}I{8EKJUmJ2 zje|fkv9Rsz&$LV;`eDmzjOSP|-Fd=}m6)qPYE1$)BtcANwZcBOTEDof$%1R^XGp1# z<`mO<7Ce)D=8rQRlMOPkZ?rEhdK0zivZ!!Lxch@-6W&gh<#pSBkS4tlXI(pqE zwh_&4sd*)(8aief>O~|Sm?z~d$|`$Mr3SPM9ZbzoH?MjI5^Y}eV3L8^Ik@h zNc!K=uA8n8JGb)z=4$TODMo&7RrA)Ytw z=20X$5lEk26vrPqjj%R0lspgAnIv>N-|^&1ikKtR03*c+w`tem+uyHn8*y9ClYhEh zH(uTMZ|ysu@F6B_Av02c_0IZ?-PHvW>zd`Q9}+D&ET}WdfNE!Is$0`K80b3F9FQn}Wv2CVp!yw`YGS0ytoj z4=xwsiLqCDhDHvh&i&Pry;>T-;X_PhSTqSQBBZkiGh>H%?~oN;CpzayF&bG zGU1AD>f?}naM3N!=orxf&L!fuk~v&vyA;ytIuj=*X4}#clT%%-po9M2b+yz9Z(8ex zImn@A+-_bD7sXSRIKL?^Jvx}yZPnsqJ8re?wwS^EqHtXPm#CRpESnXKN~4}oOg*2% z{Ht5GSN%fZu3trDW$t&I@%ix^K0mDp`2NDU$It`;0-`sMzQn=HrI08f>}S5TZ9@1$ zu827bb?>@P&8m<1N=UU?yTev8>0Ju*oHG7Z5mmhTJXKcC)dQTbH2;OUC*upBjLXN$ z_$6kNk7ye-5<7`^;vD@<=g{U~XTa20{dm>}zgDbx+oRD@p#XmJJQM#i$*^HNH2cOc z)yqSyyWrM+MH6mCS#!Je3I$Mr{urDPz=EocxYZNC8Gt>_X;SI<#Sq)=AjW4NhW`b z;zhH??Js-g*jt`h0);nl_yB@@NL*IPWi8qyE+-~rC1V51ee&&4I!O&cU$%8s=;IwV zO>_ui+=_^vX;-rZ6ctd=n<`AWMi;O+mCqj{;gzuJ(PHZ~e&z$B^4P*n`=5Kv2JR8TCkhA_ z%Plk~7Ka&50l;L~T-x-0Jg$5-`MA=f#US(4j_~6GHT2=(H9GClQ~rdq@{deAi9ZgD zz>&0xea^OLPd8qIQfVZasC;v%-2H|-k$qym=K79T=l^9zs z+5t8Tu*0Gyt-75MfaboPX~R)Qqb@MTt_ctksYR^(@$guc!8@@+ypZw0gdZDAZf%tm zHQ^$83z=aFydeN+xI+%)2p?_VwSgN6zz{*S_AYIc_!^<%*iem{55LP9d+d$X`Pyv| zxkin#LVPfFb%{=&t|4(;IAgDMCmcEU@a*qO+s~%9rPaN%u+NL+ae9q7G2Jk*d!9;! z1HGy#R*Y11WhVdldA#;2FirICMX$lMEjlU8F@d``<~Z|%a{Q3{(e2C=FO%oOoMjuU zpLI)z-8yMx@WV$&0l~kO&GS=&5>wKsD!9B~Cpa#ifFFe5y87Ld>)y}qq?=b#?WhGB zM=o%tG|^ISmsNxnnla)JpxlE^7djkbbkknxkbU*4mqJ8hgzehGr56Ec?_yFV^-L6x$t%sYyUzcy5mrfzVk?LxoH1smB2YJTgv??3#D=x9= zKS899^v1PrVQGeu2qXm@g;sY8@Qc3%t{`@+w0o0xK3MAYt@bZQ=bViE`|InZON(0}-2jKeRJ^+k&+1*N?KK!q^gT=s`iwl?LlZMR1LLMpIc{3f!9mgP*Y~kO;E$DUo>F|I)(Tgo zQ$I*?5~7}QJ(K2lg)eH#|C9Ii>XpNSp5ESVgyVv~zPd)(1UaK&=+H^*!D}?4m1qqO z1SzhPNMP#i_d{cIiYU)MrgMu6%8o~24vJlC)WUi4C57cd(HMM#$1at;HxDf-@1u@C zH)@wx>;o2i2}rb{!WRSK7aXuc^G$f-RX}KDFDF}mY9WjLa3{@#DxTm=svTGsz5DjA z`qd19(f%d{@H=KOTu%{viA9(gmIR@%HyLXD3p5Ktw?kt2y?vJD$qB)OEX&twJh1cF zx12hfZLG{PQK1bGkv$!xq4{P`Hs2b1cqf8`uY6!T;<@`q{MWb~2eru>d_iGttV8jo z<&wbW!1BDXxDxV+t0Umqr&t>-L&jOSfNVJ``Nfb~-}U7#WNyc6;4uIEzP*Exc?!uDBL1XU|1C7b ze9%ibVfZM_%*D=_ffmvX-AJZvxUjXb z!P+i;IGI!Marj>>h_OzAj8#?fVbxVj4q@vR1$U#@{sQ~PLt|2&C-sBdY3#$yZRuM? zUuH4B8K(6c7iN1rev%NwDQDJ|_d$BKOlW^gPcL^0{THrbFj{R{ot)5tWD7Ld*!Ds@ zRqCJ@EuaNg%b7WdrM6_hI$tglI>EF$n-TgwwgYp9K z9Ot7`u*njMFg-!?OF!>x>XS%RoX58I9?ToM&^c8M14J>Ky_weE;)g9(q>tjSnpZDZ z(yJ~82gqOmO7t=qx3JP^>`%(;mjXN88-z~5ad`VV9}{w(-ywoEd2m=bJb#;VxI^R0 zI(GU4nVSBoaZ|38{=)^Kl4*hyYwcIXz-i-x?!EvUw$%_Iz5a2u*ynYeyW)OtF5RBj z>?$HFR6M=mg;!~TwskmvI+Q$L9lVT}rfrsX={njyEFy)NTQ(}LlM!}spu!|?T2YLg zgf{eeMoIA*I1_fQvG-h6S2!=Qvtc>Zc_n3;S> zQM11U&@N18zrGZ_*!_m6g{4XRgu>qPX0UtX!^7Ql)wyGHMPa9ACkF)l_M&zfrQ&_6rLfl z1vD$X{a$ts%pOQ$g7zm1CO>j~E} z*Q}}-S4O*`Uu=%~&!g6QL0Cxq(5$g;Su*R}`8_nH zK$ubeOqRAU^CteG)7FVNsLHu0zTM?xiYHH`Bw%>u)oD-HWO03vzqJTKOCJRC{u)m| z=ccitg881Aztb=G#ZxREZY#rYfrp+)L`bljuA4dJ*yw`>AZ9H$B|^FUYxm~flNi6h zn#r3*abboaXA}u9+%Hscm>EEIg8qs`{Fh9or*IUipyB1-DDwPBjHl=HvZa_AqS6UG z(|p-DIDzS2dFF_8b_rHBsA>61foOqw`1<+`1D}`HF#10yrzfA}xIBH)V(TxjRuvJ6!z7;Bt#b zxZESkrTv68IDdYsk>bBGc0wY#no!U3pT~6gS%)$A3jb4qmRRHVSFNkwU5zu3gm+?$ z#MU(MC=lh+3JOD9*LBJOI53*d(Ll3$y$`ly?GAeTqUQO7thb(A(P_lsIsW}y%W$D? zT5x!YR|cTEy@K)~QBfz$+*=bL?-#*z(1P{6z7-h*gHJTDS;G3(HbM0S4Lt!m$~-Pt zFruL|hMGE77WKuFj-I1ii~YL_-tum9(uIzB0eE!wYLR+4GO+Oc>GhN3G)^i6VvMX5f28Ypnek_5l{sIwoKAuvdSSt&Vf>MZ2uq5~_pJ>P6(w)LS9$IZ-c78zd?RGwyuukhH)v}K z=)Qoj!ig8qDX{ztOAVK?JFa;&>G_Tp=w4Yuao)Gcwccd-M3NF0DacfQ1?D9g(iD>a_C@5ge~0#NaMS*>CA`lh3O{~O$u8OgW?Q5FCCW;kHd zY^0l5C7(vmgUB`4Ry|dZGbbCeSmI#T4DSV%P8BnoWcr&_Barj-d*FC7S4*?>62@Xz z5JXUY+KkVO_ zm|^Wt@Acj~0e*b@xs4Ooh~I6Jwj5H(8#xh#g4VkVp`G^Z@v%YpD^^oylzaOc`Qf& zL;M=81D==(eoY9mEim>cRTNsP$pe>Hfu$)M#=br_dadXwY(3i=t`SXiTq}^Z7HNu|8Dn)+OIF|V|X&}k=UMItaJ$0r4> z+<-Xz?x@+Xt_?X)SS^X?@T<$WxUt(GGlp#4w&H(l^@|0E7X$MT*p^N|(B)HrIdd^L zup~^&p_zBPh%O?OPl8%O%G-=$>z*W)>fzniNU%3{CCk^R5xpg z4~h%uz^XZi`rHV4ezuH!yR;wj)u3{Vl?#U@k1aJct_N;eHE#5j=rrcSTtOqg14uSh zHJzaIaOvY6HR&l3LVY!PLG68iB?`Rl=_t@La^FQz5ejBY2G_UNzIe@Djq)>CHtQ3z z{~Z`&#s1{oF*f=1^obV)GaNXbGUhy-v=h+l^In_7L+9SoQ?zK~$idWR;yqZs55 zxQr!K9{i?AqWxVyw6)BqpBy$XJhRM+B492NgJ~y|WLRII4-ckzVz$Qd16ac;fJT6p znztfO+XThHVSf8YOP{wVfgsC>cKSv2eQm)Qm;pqgm&xd{_hPBbm`w0OVKuBRG&J_t zca{g`dI5MOsCU)ia6wMN5E-|#fBpB^Bfy{lCLjQadg#@`;q0-qlUGs_zF>|=H~Y&w zAIA^gEMSiWE!*!xFBK)1FNo{`uLgaljT$>f&uA!52>I-DJDvvU%y<|&yaB$MXPb#Zq6U0nYij#72HG#LZ?tR z0YC4oO|Ed?&keWxtb*KcQZBBhF^itW+b*lwAjwgpKTjtfq3FM_z@H*1+7B$TVl450~D9&e7RVBKf$=Mnx*!J6XeEpV(?`r|1 zMZx%%Kpm7>w?G{G@hRgm+g}T)Rzi+bSkt(qAhi#Ecr@)1X2=@KL>+ym9_sEu96%jZ z@9-|*iaUYiU?~W=c735cm(2W@Olprz@#{jdXVvO3H2T>m)J+@^&l zJrd)gAkIv8{+R_mFsSfv^}rB-EBXhdj}41<2ENoS+#p95Aeb@13)D;Yj_;0aNStd; z=VDwCRAitWNM~?1-Bz&jwRa$yW`ZA=9Wvu~MBa96c?+i~T}qtP51H!G!KV;2cy%b` zYu`OY3Us)D=-r{Raad2yFwzJKm~mT4IO3^ze}XWf5Tk2px@yn(=t*)kX3k<-nDfzA#Ms&f%{immi96;=~%I^OSwyQZa;+&c4YMGnBm zo|4n$hu~iS3S`+uEVRNgm)%7a>ND6uNGz=bbn$b5%O>>5~vc6#R?kIj&kSU+5;$!FE2<2A_-;>OWj5}8wZW?(3bTv_ZG8&gEOJZklx zU4nTepMLWgcD>}4`oshwAMGC+Lq==KH4PL8f2#}6F^>}78XL3VAmGX$wz|5hf_hR5 z^=y)yvhZks>jL|0x~AC6!N*EVudcR>H%WOM?JMEZoAi)>6D_K!$@|C{RFsSi?rbyPtu`JfU<(4s=Lssnz<&QOfZUb> z^af5>%9Pr8(NV{KHk!UN?z}R=vUEJlUzGr}Uu8tCW=*(#?RpJ56pxvnYN`J!@*K3K z+n06SI#V-`K0Tgf4i=59>)#{Z^ts^Pd&=!?=bWwup`(b^d}pHw!GHP#20Ox2QywV&51M7QZk>R&K)kuoy1}^u*fY zdd2(8nfaT8N)qVCdBA~>-`$--^aL|N;KP=vKJ{y6jPHlWAq|y<+pP9?GHZF@Ua)xI zsNQoJ^YVJs?(r}5GXidv-Q>_hE;T8QBq?#%z)(=Z&2X5Gf7HIxbz3bUGX>3#ut&Xi z+bg!`E^hrTY6BgA!-P;lI%$Q-x(j+H9+TKWy#qeI|=C% zL0#h_U<>tV%zGJ+qs>~ccZWWo^fX88;z{c;5A~KfblQ)wjId09HJCH+Wy*5(q;eQ0 zh%wObD^fMgZqaxtF?@U;Tb~bUUFY}o?TVh}Zzl;qg!Ct>@mFnZ{oKT*5vc&(l!yCe zW;PsOzefHs(1(gQ|MCe0+p;8Xj@b^jI%}cXR1GEZlM|6a+PWw?x^1Yd*&oQm2xp&G z+GxUJsmZDrr|v&~Ubz2niX?mvcdcr9c`_;6-8ZXVKCQtwLM*nD9h>mx8UNwWVkzSy zR5ECEn--X;WqMybJ?HXtCjJA@f)l=Hqt+U2w{;?e3z69CF~Uw9YeR298APg$jvt9&+EnT z+?e#KpBXm24g{DAd?038R^kGuG(HJ{3h?8tu??sa@=e*>DeOu?g(Hr!4Ez^qy=Y0Yp)NUOtRxo?DoWp4VvrlJ)Ca#HwS{pp%!j# z74bZ-XVet_2JdqH=ThCLo3?7^=zJ_80nzet5GH;$7T#! z+s`dnh|dcfrd9Xs^N%GBOsGszvs(9=8MdUSKJx&jw>edKM8u=1)MFd{gbJp65)NGn z15hB)(UK~n*)p|pQQRT?FZa#6O*b$r8UO68+h#3d!s82-E=AUpNWk>3Sx=YjgbezY zNN^vqP;26{#OjLgWN0vV_n6DM%5K37c0+mFnm(0o?hd|#rD(7E@EXPgA`byt8~a(* zc8@A!d>aKE092>vwt|w4nQ>LiQqzr@o=E;l?t~O#7H*VRQq!EJQRCt*I@ZJEm}eGt zDwlD+a6*-`eP+RM2MFY1KDUVY-VuQQAPz$Ef?5z;2}BzKFqVVw;3W`m{sV>2EX_OM zN(CXYWOoRLq1rFk`)=+(3<=$=RXrVsJA6Z^OV#W*;e9~{2F{0viFr&0@=!8&_R!qt zUrr0e&2zqZf-*0&#Dct6e~zuR$QQhpErgd+U=yal8d=DF!k*mfnce}JZZ~v~;ace} zsT46D2BklFw>LYfs>u6#5le}AmXUO8Eo;jRLI$JAk;RjYNa^V_jF;aHCxEjfJ3Di8 zgmwwp@1%pxtS`Y)sIqd-!w?ZuV@uqkP2X}+%a3+;jYqqKd)C7YEa3kS=z zI!Z6aqdIt$UOHdBWY0pT*LIem4^(AZ(zRFE5hhTjGI;74p!k}LmhT?vprve|tvl5(K{(TPrc+Nmk za;#sX#0RBF&l! zDPxL2gbAapnemVioKV7KWqmwNNjf-maC`Ku6qaR{t1eX~1fL35x6}V!NqzUQKQglG zBI?W2ccJ@Vo8RmA-MXd?+cp1QnEPVx;mILw+L32aUYjp2>r8)#+qbprE@0n`qNoXYsi0vLQZBcT{ONqN6= z^%P+yG|mp{!2lP(sB49YXkyl*81Rq+(U^GZ5fK#}py4y$g}~mi4lyptqY<`TA*I(? zGQ%&`uOjz%kF3_8hP}wqW+Yy=e0z3BBp2?EKa1OuY>s7N*e^0(Pq(0dxFszlpl{aR zuyjNHTyph3(DNzTXEN@ft~@e#aJwW`-ml8N7F=)M353SO`C)JTAT2@*KW$)4@>v6 zBoZWM#_$Ee~9Jxk%?55bG>N43cubV>Q>6n1d z05BUOMRe|L@mXURL`irSk~ zfU>HEJ*`fRXDvN+oyYjpG(m3DW<;6E)4v(Tlfd+h&i(WU`#U5Ac-*ZxK9KzSYc^QJ zm}o~LzO()oV3Iu2mOuRqD*tF^gcW#>Y?kWodDh$Es^MQrLiFKW5#L5LSD z#y3s#EJeC~kJ{fRBH!hPa;TGdnjF-LkS(>h_7ta?J>Y=86t1OL#)?RM5T3Sh?L0P= zo1n+O>|hf*eVC&&lxmifx9~vn+3N5xOXqp4CitO!3UhiY5yN4w9PB@M<>6QG6$t5C z@gLk~D|@IqXDmJu69ZXQ!j(B6-$aZ0KV<_va!c)R=FVAQ7nadUnZ{E?w$(j4SJS4PjXRq1WZ?Du!3b;Yh z$=-Dw{kv>st$Ri=kz4!XqUF>YF{8>``#nY`B#M>Jj31qWnP1CXVmS#0~wDJVVlnYs2{gYJyoUGUxO$8OZ4Lp(GA4p&Ag=0$4N3*e^ z+rO5%Ka<8urW-`av(6=7Nq7r`1)9@;TNVKiCN>yOO3_V!;POhA$8xOJE(8#9mYhf6 z{#@*G(+8zPCXr8%kGKDAo?p08iC8Hp40bInpwsrmeWmUfM03XIU@^aK>5vi$)Tm*c zI{y0%SYy^8PU1#JKGTBVo$DH!Aw$zNgGV#<4)W79knQ@jw#EC0)@WBJj5MY3j*9%p z$AM#5LlKsdWO}tJ@FDgigw7Y<2eOAyvd_GVs2P?|P-kb*cMbB?CsYF)?(UCR&vs9R z567jNriy0AWzAyFRJ{C?j0(he&>Fd3mBK=#GK{7jXl`$eXe3-`%w z@JME+>Kq%?3oXVM+pI`qkqdJNxNif477u1ux6apox;>r$lwngGr3DIQF!CofHzx&) z2k3QQApgJGsvWRERh~b$Xm>k|?6SPBo@YCQ8e@Hia9t)dHU*HbaF5EnA$WlJ*MX$IN$_dl@%_z?d?O>ZOk4Ah}wmhd3A1XpWN$t1@ewonRe z-oYxtSJREIiv{Ra*RS&akBvaBWuI0cdyoNUG9|?L5;KL3va^?akkIf25CS{HZ)6lw=Sl+-MV{y>-eU{o2Lztzcf~k@uenGPPDrO2FCwf#QE^zm=94j($4j>&gIaf`LMt4W zP^P5Si1=aKYd#`sAUV!iYW5XX{UW)(cYFq!Ol6Y6nKBJY)($U+1 zAoFk!dy>MFBf}8k!p-LR>Q(XNlmq-e0RYvk&&GyrUTJDk&_Wj@sK578hjOtDRn#+k z|HhLB(1JM6gV9Pcnl$L*6PBdJD$8|z#03Q>s9Qeon*ZDaYQg7om(PGQ#Dr!RzID3h z{;;@YAn387S9)TN;Z0Ru4zT(7t@t3MvzCLGc*oWIzWAj8y`%hZMAqh;gM6gMKRL$l z&2#4bmBsvJs}b`@N0wHTtiqI2j-u-{^-vabB+k%b$)${ z7{YL~WeYy)!`I8ce3E&-mAs?4Mp$6>6y4C^d&|S|umXMgE1VC=HryWz2S?N0sL;#) zf}E=Eo7R`os78ebU7%iJK~A!AxrGm{LAHn_Hv zG6AH1-!<;#`roAg$4u1vecEONomkP0t>H%jt}Thm-g@nDF^N+lRAKLv5Op`kiTyEj z{Lw42z}51WYsM#6XS@Q6(-|U0%y_nx{w$|%hOgw@rVyAdI#<86(lU%!PMMUu#N*f2 zTkhdr-_Myg18@<*7s27e;Ja>Yt+eg2Kv@7Al^iWg;^~~%SI4@g%=Q?hp*QKFy=I8G zc&?NE+o_3;7c!=rtb#As=_v^~3ZUxxsHb*1Aa=@Z`^+u=@~`_kK|@{;`6ICIzOGB| z5ZoOsS+C0^>cZp9VE^LCIXP~1?+}#7U!f=OjCJ|dwB`VYSw{(7Qt#efCSXCB8*L#s z8%IJZ3is%I)p~ya2DfYV7c$Yqw+L-_(0Zf>Cr}-oH?+-qn`Z;Aot+=AsLRXEVHZ5g zMwHaLJRmLH?o|;ZNp9;O?ZZVVz~hkO1>LsI_!d}>1H94`v0v($A5AqQHLuNY)R4;@dQ0mX6B~FV=$R& z;2tGJx_F)Nmf!bJwBp@I4pcd`6qoV90b&5Ws#`<>!O{0M)E@B!_&GdZZRgB%Sc*1V z?m0I$lm8wG%HK<{&L3OV8!5`kC9?lcc7u~!m7Fd4|>Sh71B1W#U_Ok0Am zi|#l4h;HtYi`^+)2Hn8{My}c~(k@e*G=742f)J2m%*;ZkGOr{Ub(W6({NLgFWgZ?w z8+gK1&(K%UVWc*bKaE8FZTUY)2>P$HEOv|m0W3gJ0w78DLcvCV4gasNN>vTxWrVQ6 zw$3;flFZfNCroFPlRTDrsHfit7T8STT353-Ts@$`X?mJ~V}N%Iu$*PQSz@MC~Xge$2wY-YmeV2GXbQkp$JOmsMaw3oy=grb}1j zAD7oyr?k^`-5>!xA7zKHfLwqlb#Q-Kr+221mh;N_D0;6_PN~mh~I&0 zJF2vSH;&S%TszHsCIJJqwKCFHbM1lSTfBa}Nc~K-+;^3!KI_c34yb~;H6T8hcC?D5 z?Fk%Mfk$faD735fA8AhAZ%!qkSd}_`srd@q?fOf6L`05o#l#^a#Jxt09l!#DI7eG` ztNN8ihoM&o3&teG*^gN01r!yl^SZ|xqn9~+^X`uW?E|!`Seme=kxRmQKtc;D;@1Bv zVx$XqRG)_Ud;!xQ@HbVB`1UoEgW)2>g9YnG~!la`)eg9$xEbi1! z5Yvo4SD(W?6rlW9%xu71WxE|V#O$U`)EQDRlJtY^Vcn?^ z?e6YU_e}eoz{@HJ!6zJUt3ET*6bHgP^8V2(CuW8|qIPx*L9G0czqA&6b7+0Tg|VJ< zUAdN-i|k+B8rqUNAa;I3=Z3(8+YnL^7K-H4uc|gg?5DXhpbN7twWCQPLqLf}z{Qoc zpe$4667t=H8sa;UJ2R$HWQ+ycAloH-XkfEf+vjvU?Mmj` z&IFQ~Si|(SI%s*>-jb#iN(p?eloSD=4UnuAmJc~^ZX9u%%3k${_Xyp919$M|)5F8| zV(qXWe#~tLzFw0CZl&^C=od~Z)#-6DO?l%g*l{LcT?77>p_tM71BT=cJxf?xH+dhC z$OAr|^VNQWV2MI_@O0*sjac~$R^}}5#eeg#AwDiXCrL~#zRjD65oNWY~C(bm(*&p#yw$GUT zmTfNWA{%^u{l>cNfp!Wi919<%r*UL4`F7qs7z@p;W{JBqVQ=p}9hk#`bI}lyM}~ww ze?Nan1+dWmK@*rfOCwi@=;*XpCwqm=3pQbX<+_g`P-Hzj2rpY_9EXLNYi?!;?E=Z; z+~81Uy=jbz$g6?W6!!uR^ID`XCzs(DUpeA zA6oqn55jY_7>ykxbG*H0LFd#>r71@2);|@!l+Vs*>-9L3sJC*tR;hMlG+6+LB3B}qh-d1%N$2z=Mi01LeJQPycV$JBPIOLc2B;Z({skWts}H;I?P3>8V@LQdDbGz2w$ErF`qCQ zPjoZhVzY1gsJRWXtJ$v0Wvu%$QRC=Hl@y~%pjCwxd=(XqY_76EKbwQXakMkVF#ck?z}W_W|IneJihzc5U+K6=ja1P4Ln0>9oiRQ zF7Z@QOj+F4*GQ-6uqgAW)yXPEg-Oy^04KFK_V(r)QZ+6dUoLr=U8h|;Y_$P}$uGn8RlkN>k&`Ko&E{Yrb)Y z`+x}-`hLjxCtkJ4NM+uiUuXyBJiAp#I6Gz`omVW`OPV%m9iu8n^WaS!9QBh@koT*_o+w~-B$A7v6 zMNSyACXCP4BHs=w$1XZ;B;Pqiw^1Z7P`wDoaT43!wQ*`#jgs6?kXnV}GrnC2u+BHj zD3m5T6tO8J^C)(BMg#UDz2)YoL|YGb=?_nNghBz^`ztnoCaHw%ynJG5zku{7)O35s zF{O`wE+74=JjZpN0>ZmB&TinJa!r8iJ~{d9I%mvn)Hk{2rYbnv@FW~TtAnfRORs+n z`qJL|l152v+zTAz77)b*!hC#@>n|yiJdT=r{Mwq#4%8^f=RoQb25wpiy(x7H&*ZR}5_0w|?O!I+gFTI3pF5kr03J9ZM?TBKb%=b>*BW-l_s zK%D{2hV%&m^8T`5l5ve=+;{FS6vLhfdjFWpl`&kIZ|Lp@9IEb z;f{TtySu)-L-4W!$f*CiD~Bj#u+@g<#4(|LZj~tng69ASCOWeQz%GY6*Emx%DinO< zW))>yN<4aH#uqv_-)5Hyft~ixIAiX;v*I?pzv5d5if&+P9BAkf&=QWXzW@_KhvBiH zaO=k_0JF--M}mD}YAJ=t;@g=iD14W_SKiJdt6}dnoT&X8EP8>^8nq{d*hp%Z_iG}9#d^e6`j6uq!ec|jcIQ7T+JKsa z5riKsH4S~`;R5~;t@j62(Bh+lS+szvhaWlz!J;oxqH6AD}eF2YUn z-z|yw0f1UYh_>D_JNvK#-j{YYbp7*f#L`4#qx0=i=3N!61m1;^Qok;JH4<%a&)Xg` z<;;TKP})7LH%SY0H}1z@ZWmOim}d}mYl^7Wz0Ni@09cRl=7nPZjT{!CHiF2QpT~w! z4z&zQQ8o{A^X*}^9eP35 z(x(&Z-8SMs)B-G_Z$60mKo#m@iRx=f=tNn6t~Y4%lDNpAo@YaF&~8h?weR0STo;CB z_x$&0x){I2eKn`$5BJdZo@8r&V0bFYaAEg&-(nCsn$l;KJa=6tBt^e~@+(>MW|~iY zl+S9;nuEYk^3xG=i;=)}&# z2a~26iQRuO@G_1C_K-#<%+_L$b8ZRS{@0UvX6UW`J`Q-lg;AnI=s^VEITRCP%VzoW z`cyIqSVaMon>mGnR!?g-t0JS`SA=cE`ugXhC+xO5adBx=);rEz2JF+SK%R1ZI?!D) z>Qw&+nV3S>HxJkAAnC)JGdo?G*)fQ7Y`qfHUl-l;!Om5MM17XA_LS4hcmRfsfFh;+ z-)x7#Q#9vW-R4AD7mtAJG;$PHd`6l*a2Oh1r>N}aS*s=BT{Y?_>oi* ze)%gG=E`!xP8t|sTn=IZz5=#& z17MW%I~@0VH?F>S0g5A#G{YJF2z+hR0xyc8>gWHG*Ak3LCNOrRJpcHRW*zp|S;)$& z{1yLCamklY9*wemj1|_YiwPI#sl{R>rI`QLn&ki8Fpwsl!agSe=C-n1`$==Ry;?W5 z2Df7{rQuky!X+$de{;^7K74e~V!7(8ZGitBm_9#CKSGL^{UsLx#KdhK>#--ZyR_lh zIdGlYK5V{;#cdAp4J@9cVpv&Gd>gKkqD`pY`DA&mVJ8 zS1W2QR{knpvi{m4_PzV?fQ@CS*K(z$sZX+@m1w$@wR9bwpVsB;D(mD+k*ALM%j$o~ z)~o9NfyY;c0s@qx?Mm)*Jst_SxUH3CLG$rFzP?R2jYgin;6ORjU;u2wNZ3HuzYHgf z${Eh3=WCl$+!crY26l6)|3e?#7hmMKsyJF(FQ9L!dTC~&!GrY0wSJqx(ogIOxKg#0 zzEz|ox7JzEjY!be>auTyR%6dR-mfqjS4D;`FN%IxZC~cOU81z!?V3C`+_K$sk|gT9f9c_#YgJfx#68N_Ujdd;H_v#{u0Efg?@Y<7v&f zZuNJ}CTXs#7gEew!khns0^DFf&p6!=h9JSg2L5x{%VdW*zI$Kv8>;*87D{ZmHb-O*jYk9!oD$bq>`cl%b3zD`Iw&atGxWx=}IQ|Xt3nN z@WT+UL_&5Kuq;BxQ#+5ArFJH-O|W)^n=j~|RS3(6UfHKlzU34(J5f*8JrvtHc|ZMv z!p;r@u0-_7+IN6qX4UrX`&*C&Qldh7#{T~It2*eR)4J{3HP1hAkl=%S2e*}dTjA5= zj^h#UCu|@$z4>2r9l;+r>VzaR2JD14qa-b3Vp%tAySi`e8j^I9rH-dm4<8)oFYx|n zW+H>OyaF=tOk@^T{z;xN2q7R18Hf(<%^%a2%i#3~tY=)I+8yJRzpz!W>JPbeN4<8% z*}ZOBQ9XKgV&-ax#?3=tzWDHmi~4{4?^z-a79v*=pmF`sNa~?Pe_rH!pPurwDB$Qy zkXaX%S6OxR(B65O^7jR)fdo14;_r+2kL^76y#{QO*RW2M-!o6*e~=Frc=@vvn%(W& zni}1?h$f6GLHfM1QYqXpY+A%VeIj5R{MrKCv#Un%U@29Kho#BU86ya42hIxatc=%9 zAgHAPs|1D{^6626(xS%ew?&ddLhWmaymUI9^Q*vN^?d=vs{d`oIWHcr)cQx%af@`T2xRFBl1t+WWowukCTydxb*a1J2|zl z&`{gEn7;b*(f%eE3^9x3my{SyyZh93-aLG=xYtmLld>-LX8P$X13g5${l?`DG2^#7Fr3jhUy_r-+H%NOYM zs>c?Ri>7%?Um2lQ!GH)6;v@d(|B;37XWnTx>7%r;yiRY>!51FO{2a%@TkdzYU}*h` zu%xrFVyICV#RC&ku3Jx|CQnnLWaJ`GC)1)ehm%BBNlt48hjFFJ%aIc3x-k^ zRbACL zg@su*9BPbgNI#mkww;}36#ggzy`IyHq%IX86$Y8lK6+Lx_BrW6m>{~yS@pY}2vTjl z>mjE_c7m=Z4Lr61@WKPdN7H{zAfhkeLvBs(qRJrav;6DvB-*yt?=UF?0`u&yS`Jlb z!U-)~KAQg5;YG(7!h(=HQ|c4gHy$YK9Lb42Ih6!_OLjj#_prml&GmlAOMU%;1(lN@ z9SkHi^Q!WMK{1kEMDQAS9kF*(Xd~1uypnkTK6D1~)Dudfb=^1tL&md~px8z)HT`Bp zZlI0|Kb33edZI#Y_c5JL{DO$cdr`v7jQD;V&HjcHuOCsM*z>tRA&3IwJZeT%P}qkH zXaW(-C|jE%%IsD}8^4~hgU}aX8GT-$J@X{g{@2p3ek(8<@V%Y*&wRbg#YTF43js~Z z;i^12>pgoQdR=NR9U_R^=tyoEU#N-wHkusizy|l-?sL>nqtr|x;Qw;C=p$%xFP*XK zEaLxtVTmQdh^+%t_Q&s{e`hS`e`l=k8#2Qc>B0Q#`>fT)Ph@f^HVz7J!pBaeG(V!b zEat*^G-i{Ts?TU5Xm~u1F2^COp14b|+&Xsh(AOLDq=zP~Tme;`dey(4W4&wu9>>E1 z3tQOWIrWdttGpR}&-;<&#lX$|)SQmr-?MBD7oDDj8utCa6j*LBiX^K3guVc~ImoW% zg@>QIyR0L6|NcvCbqa2Chxvp(s9@#Q)Sen8I$=DKZ@@Zh;D6D~tZ2nqaw24^l`mt( zc_={$0m$@tjVYu!XnjC{s+=P86xfl#l)EwbjN~^vQmAv&u=`OWK0^E_kj*@#s*5WK z#$W?l^gMHlj=JL@D* zjZscKbKs(~pPDIh>s2l*t*blF$QTMgKFw4}FUKcez%U;H-@frg-uxS1-FG2u$7Q5&5Fz=up0@<_p^9_7JgDTApJC$2Knz1% zmNeyY{8(G|$9?k$9ybwP_FU=bHJI<;JMKHzuf4FzPPf<5u~jiMLHu!n&QIXxN20BF zqK^)2yg+MGJ5^d*eBWANM*;sAQQ|IGLXUSk* z0&x;xylr&1;#_p z*r40^)A=-H9}P5Qn@s2&BYHU9UpndY?02T_dzefzUgIy=F}BbEcg)v1<*C>1hkwpS ziW@+73UFoU?5a8ch7Ql7ObW~d?0JJ{p|xvTx#`!Ep2Gj-EnJ^O?9Ekl2m*xZ=7Pz{ z=rzb(8&>PQa#Wfs|3byU-W)$udhnR#{!3J7g3RmQ0=-x@Fs^(F|C06j)oyWI8HE%~ zbRS3CkZ~#!=1qoP%dhzwCRskSlmRb(fOKAH2R8troIy9x=>(;64_VQ>+|U;M+VdIV z{^aPm0P73R<=F~nz!QShLpWf?$9cr#UaZ3Qv=hHw1UB)3hpCO9Mq&TSnhH42e0{4v zu(7>{i7zgS(0sp54+bhtM;P?LmYa8|;u$^8O`lC!>8Hc75 z+;wW)=^$n2gVUkZ3|3KXj73~3^w&nzPcp=pel6}x0`E(osz}s8p{-F8%nH5O9IusW zW0kEh!FBE8pA3=w&oXP&XtcJ;E?cac55?CT&WPVp-fo$rli1>HbS`pgR z0kS6Dh6JSTf(fY)(QEC^CbCYw50}gsv+T}I;YH5Y-sf;xx_g>`{=A1l`WU=Xs!da6 z5a^#n#$YiMF#Tz8?)8tFs3_{FsL;KtQX#Dr83BQrVKZfa;Ca(q8Qw!$Q$OqiC+&xd zZ&+(n2h_3Tq#b@mY^XQpc!P-s29FPMoFU-gFzDI!^dfqx@lRLtPX<-XD@XCl5gT~7 zfMx3&o@w?SB(yl(Is7KRZs~PAB25Z8`1G=Z(3GSW_8|D+72Y3xSv{t2b102yNJy=3 z(AS2l?r`Xe0O1@`F88*xdJC2q8SsJZ40K*$Tf^QN6Y76jq|Y2^$h#J{6BiTbV88vz zLJO2pj_m}~$125<42~a?3*D^%3_jx`5&l3*NsiPoFh<6!XWo1&OOgm+;n*1{gnFMjE^T<@~1x5ab9n5c;vbVCgwlc7d9kYuknG+>FX~2&r@XdhhhIre@VX@hSCaAP%+U+3IFR ztutgW0F`MgW!l$MhV5W0YS28ebEiBS3HpMA+CdBWgZ z;4=fa7XaG?MoZj~0b~AxP!K@iov6dV3`|q9^?oy_(7sHa6vVKA4a^tgkqBl8wAysN zyO~X0s$D+Bq7Z3DatpcCr~A3I6io!Bh$y%^K+`wK1Xh7pQM}D%vKwwX9rdrpfzNt` zDCAv*A&r0bxLO}Z;(JupBoNp0j86KL!{LpT$1tAbqU(F=COmxHf-w6juZz=ICoq8wtEn1-=?f> zEF5-h7Uu?#jTNsG<$6$)W(KtLub`Fy2M0kSvLv)d{|-n!nYcpBMhb?U&P#zFm^94? zurNR@9ky`v?!xbQgr=i9XBEqphvwpiTDtAGNyb0CVL3XR!oX}JAl`;^?55dXK1)Xx zi!k+Ib0f;m58F!qe0Dv(q4P)b5=dpFjM$x(P``&D&P!L(t}N`}4b+F{#~V~m=EL6HKM zPG@dXI^Url3r{~Q^$mT&S|B3=@N>ll!5HTk+^(GpLQIO%RjV3@cX-ZkY{Fby!wTM?`yfPwad_L z4ch*MhfzO;qRm(Oi9VdPtdYjh(wYeF^V7wK+Zr#=!eQI6ST+o;Dd? z)(muh%PVGvs;bo8WnKXsorHo3Sy`o#G^Cqt(!e_}vqvwpLoGCC);zh9li=V{SHHkz zYvPm82-BY_v^CaNz|`3bmCzBH(BpnP`%710kHL17tVI)#{2YCehUiedSFcaotc1vVd2y0&*;j`m0DlJ;$w+>!#G1LIs9PK zU(u#?OBjSV=UqiF=_0&AHMn-T=0$t@ppj#7xKGoD!fCiiEbCQRojyg&YlU$}CncD_ zA1L^<@j22!lxV1}Sw}z-*H1J;OV4w8^(u4B@mFZfFja5Al`6 z_f{>iR1-0IvM#$e-XYOs7kf3j?ky0f_{Hbvq;2`Ml7I>;>>)(LN%@k|WD~-%e7^=6w z(?uRmt*%DK#=##d{mnu%ke@W9jQ zGD&jYn!v@%LHt2B{II+QT(lCzKm7clPC0h#s0ByUU||{(aiYUYRnwH<16Le}J%JhurF`(paaXoN{feG{bMF{hXt#sc^qQ71N zyUuv3Ig{#x%24PITaEL!^!)CAw#X8NX<40e)yssWkZJ$)?WcDEd1Aeuq>K=p8PA{F54WCpOr5&xjo>%3JZqD`zB$2Npf<}Q)v#PG9i=p$O2p^M z+PED^JlOQ`&fiz*QZFBy<&S;FamTS(WL7PbPG8<-F0YEZIaf)x%QkeSjYT2IyfjJ4 z8q61?WE`6g#%@=6AC4@U{hX6p1>Xp6bLX@Y{$|>h^Si2Fu}N;g3QweGJP9vV#?yg6i|*g}+-p)ZiMr!_bro zeJVE`U(EP%#8nmHon_#{WL%TjBEWnPH0n!CFHUf>n7roqR#E7wjVcnnl6&R1&Tf0S zWbd6+##ns#C!+aoxNYQ2q)jhk;Vm>ojP0fnA>2gzMsZi_vYDDj&Q?X8wnBb24E% zj|mTvOrLKF4q}RFSk!2+N!#={;{U1+RvMWvYuCjnFLGMOw=t+s zYND{TI&H6xg?Xc`*at*jk}|4H#N1rGO#AjFiH>1aWTL_#@b3j)Y&>emw9hkTl1oqM zHH&3}E=1#VM*txwVmjYaA#sFV?^bb9LfJs(ZBo^6rPF#CANHF#v-=x`p;XPLRH@!P z=|FEO7?@o_beC$5b6Xpp^Fa$&YU?3|t;f5D(^CqE?+|yb%A5Q;yvsWe zj_f36irL5e?)11_7w=LDCs#!AQGxK{^x!>V5iM_QxOq4VsoMsk5Z__!e!XGvf z*tfwcABT;yOElThuN1yXqbNDjcJ$+$x?)r+;lAS1+xvyRkb68lNz>9AGt8eo2E7}V z7enkuv9~_EyEiSb_0`)~un&x7CQM1i9;rqqkFfT`sy*Fz^q^ByP}YmNbeEl|cWwM% zkFT1J`gd=wvVy*>1Y~Cha^oRmAHw*Q2YFftP-ETwQpi+uBDBl%Fxv?}`TAE~h-7N!Z$(j4&GfPPIhXI7=U!T%Afskw6#&}x(T95l zKm*&MtCF~OVN2)xD_%Ubo0(zTQzR#`+q5-$GwR;5*^F(nt`vVgW54+_OQz09e;vjF z9?!PKRuhx7rq#T7-7+4^LhhG=BC2SKb8kW%$_8D0@V5s}Cu!T!{0}l~QSwt>%k_lU zTDMH)!>-%Jv_bo*n+`>FQ= zv-Avx1M3?&=}UrNLd}=>RSN2DBgp!aSw*@yuWO3PzvY>CRC1|Ecj&qDj3=?8ai-R) zl$Ew@FIJp)LJX74T{^@YxITy@1!)klYiuy)QR_?H_tmSfke^37b%fPmVosFs^lr8A zXqVmb%IkXTlvcUWPA>as3RMGz(bA1mS9D|3zJP0sD8#45$wJd*c?USlePm%n*=atz zYkYjjlMf55sjMon?AyY#9M>C&|x^KDvIP>7=I1IHUlPiB`^Ug7Ea z>d4_iCyJ5Q)Ma_dV!-bQibeFo31wA@s9>BH@|C|-pexX#NHw&$yRtu+CwJuuh}%`L zy38|GtQ(8+)tmc)p}eL+=}1p0XEdsdd!;Iy1CdMERNQT-NGf|O_|IYsLyHNdH+^~| z6O3)g_T(aNHa~8f_6S6D>!}x6qP~fWQgC`zl$Et9P%t{PZ<+rBT}BRi7=*{iBcIAe zPRY-&0cC0*x0y@D_+8h zm(OD<<%OyhR*Iu9i&E)>U3C%mSJ!829l;hXoqkyCVIDzocwvSXz zRBqYwt>9MJcGmqZYFE!f(#K3K$@p&bby1;ch*(S^!S$eU&1r1Eb!q{#J28(?e=UtB zyeGe2@Gu9dJOUcr?cJ@Rc}IW(IlEsjj^KgMYfP)yIHHHGg;|YVF9=mFG)NSjmb~}X ziW?gWWjX=1mW7-%T+UKI4aF;!)znn38@0S#{ZG#fE;ix=&ccYF7(GH?o9aOd{9~5YJo~b;3eQ-iNhkOEaeL!Xlggka&4sq z_phLu>S*k?qF#te;<8{-FFu0_3-?zV!?IG_9D4=%ueVcbBo@`qe;7$^dMpSTCXDx^ z;ci?S?~QCP+Lh0y-bGokP%2EylTv(Is(pR6I^tfRR6E8X_1^n*7#!I2N)P#^EGD|nplQ>!8%#qznI}DU8K6hQ-L#8BJP~7< zl*H}Q#%4u5)g5L8dZ$9&wlB(!N{_qeF<5;EXv-8Ix~Id~<1EJBGw5-{tR~2>g}(_z zhIR{yJli!?m*_9h#&&(5V1bA*5Y@WPry*1$H~@U_EYo$jCN2BU4o17U@SC`xwiMmp zi%0^|%L?`-b?*5TY)OW@LJVTlbTX0FCC|6!AT&6eDIeQs$owt>5-b8$GE{YrDynUM zA-bko{XGTl#SsoPx3$Cv&mewQ1mP^~&Ne3no=2GAZ@(1OKk)g8+9W?Mu}Jq~nG zzQ`|8=V~Xb@-uB(Iqm&#Gs`4R+b+6r#(kdkT;3(K?IdWnV_}ICaU1g0Tc zpRl-#}&Xja!4@IkdY2fq)>=$n4;jDAi5i z6zNf*ORIyCvtRc_?3T1Gcd%}kKd>!_CvRZDA=bp${P!hyveqjm&ql=&{v#!O`%hL2 zMSbU8eDaYA7I8gX_TG293)6PpevXz7q@WMybofICuL;BI@5ezWFF996VlUXno?u}r zHONkY`t&7u!TX9KKkr#i-;`J8u{2UL_7cxj{6d}o9iHzzrgDqy?Mp)9iO$pfNfq}P zW4cjN=$!PS35!v%Y~Av%;zDf}!zEIY%`Cn01!>vx(Y>12WhT-5|H^<5GGvwrS=hHm zFrOp^0kUN3Xc3Q97+4EN8+dD^ZSEaxsx(UmPg$y-302Z^0!SN2$I>~vG*U@d{Nt8W zo2Yq3t15-lv<#g>eiPhEcbT0OGQEzCoWq=%;k1T?G0k(8TJYws zw~u02PEY&&V8rm^dPsS13KU7jM4{i(Dh$?HzkJFP4GWGqmrH`5h?#~kS6inF?M>sR ztUZT;NkVz<0`qCY?&Dkg63y)BxaOiu!lg(edDJ{AZNC1@whxOXL%YQ|gzOf>{J`Na zxdPk}%FnlCpRJUoa@|>@DSGx8rKh30StCwKrNNr->ddAz$S|d~2q7`FlCem28x?rD zMU6M@NiyDdsahj^bXHed5aYHIiu}1iUJL#G*{`Yg5?N398Y;d%02{QF4jp)j%!cp+ z(Fn?G>~n<*3roe(3;Q%{B%(t7;=#XXFfi{U0Msz*n2=ZN#F0IpJ~Dn2&lmdlhk0NB z=}wW8i@8=0GX0PP4q^*P}JXep+eOUVqb-&g(&YN&7D4RGG;qH z?6^-l-y!y~>@+N)DBI-5q#jKAwlf=|%1pEh;8OD#eb?dL_#B2mQ?5LfS@W#_^2)KH zM*LZaoK%M3Hy=pda?x!GQiPaB%Y5dicV9VQ$!)Y{hb_>h+6Cy=65gSz$-T4(>GTZQD|YS8YD!PpB~UJcgTI z*?yklV}xTMod+f#lRq%%r4toyQ4;=FOOB)kaowK_qvCZYlEC=neS3OpfA{Inw+~jf z%w6=BJkgQ_NnF9J1zsdpJHenvh&pAw_WPa(g)Ta+S(X>Gh{(ufvXQyG$w@BiiR>1^ z9!G7879>+~mV0gy0j9ZVy_0f~(fIV*P)@=FDaA(GrOaHUM2XMmrtUKilcGeRV5LpO z2J*3wj z?Z_?zOlqHMh>%|noJV-a6qT3LjtdFECa?_^=BFXoM!Q`bVQD2V*viwjs`Ee7rkEr}0Vs@=RY)hh=I$hjnwYgnBrIAU zDfzV)Z?=a?j&|kO+xr((A@)iyS~8(FLd_ANd{TEx2be0ad(Kw6%Wg$a%9JllVaed= zf=$m0Xr25i8}H)C*&s8fxz@w!faqH(tc*%tF8@o|Oj!G8AKz{@<~WK>{Rq1nkOf-8W5`nUNO<}o~b4|PHQ?{&WN5FB^615 z2r#7W%LPvfal~3HT$WyjI_|57AwYsG)?f9*OXFw#x#^=wy*XDDf`@0EZ_~Zm(_JU? z_pSbdpLl-0t)9USZg(W91;Z;%xp$yZtFf>|#ha`*fK7Tm5yQkx15$!w>$wSPZ!U`G zKLEfqf}eh38j?F-o~cx<;!65a0S3mL*|O<|(cs-pZ2YaV)?i>o_s^6?jVL80rPphb z?=(Cv+6eJ(Iwr8>j(?n-K6>OuGwgP2h4}D!zCO1YIdV)VidDou9r&61ReRnh@Znaa zgls1#`n9qS(c;4}w`UR)IhTfj@U2G`PuwNyTavP>Fs)Y4Bxb$B)8)@{8X6)>b!Vo* zcn+ohZ-^Y5{B)U_v?QdeYuswUKIjEe$IMo1lLbHBpXB;TsWUBYBEhds=SSP5CF60{sdfc22m`v}b_5ee?GN`C%4i+=ryRm^hWpafNIq%aK#QtdWxF^BE)0 zi~F7I8t6HO+eQurt7qd`{jy}HGsaX`cTsm%!PumzD6-1g(Xv%Xq34Fb{lGG>v4&(bSemN?{F8ds zdEjDNKa4=&&DlFZjku5wqDg&jGFa zC23r}1!~&cScJS;XV1%J^Zj<)MO4k7n$={JH=`|Y5z=y0t&lXw@@9!ZjzhO>_>^)T zukJ-cB(ZFc5#Y4aiQR4GCk+qmoaDKWT;}%<>6ytJ!mX|nYlPb$4%>zA>)I{=Z2FlR z(tKZlP%5R^TJ87*%*Dr*epU~#PM!Qpr}%z|C6~|hxkgQYCirmjTFDeqT(Z_oW@kUl zDg<8^k@%@~mpAH8*PJT&Qc7c~8{gz-z9jl|zVDT}*UT(PSl0mtDZ4JklvZ^~t_fa7 z5{rw5?EI$FdB5~>`MGOM!LQ8=*4ocfmKtRw?`f(tb}DEscZZU){-k&S_*RKeR8miU zd~=A=p2N~=nLu&RQweOZJOMeYGrqovD6hen&=UY{!VfN3^OzwL6WvF7V&4 z&7^-&g%Tw(cHn*+tD&`K=M74(#N*9I@W>`RQ2eBT?^^9J72aaKRt?9rQ#q#iFUs5g}tO6sbMlZb8M$rgKxE z-;IpMqU)(%w(vQ}ThAAhb%|4}L~)@a)5}<@w|5bZ0Q7uZ!LJU^mY}qiOUE6GhYV*K zMy#u|Uf)q|CKE=mGfr0*V=d84~sKD!D8Sd(KonB3{(Yr?mDkmxN5c_-%dlMBHMU zBj)Fqfm&4Q1UaW;yBo)R<6%ehiM+Qh=L#trb)|EgL9klj;)Xzb36mjmf@3`q#hKpM zI`X{n7TlW|$ux2F%(;)!JEv7`is)AHx{SNlHWSdj5Hk4u z2U+$<8Dh@inVMwc4G0VYX`QBo^u@pyb4=1Me?5%Vam&R_TX)}4ya%7z2$4{JYTPG$ zdKefVV|uo6SkR4Cq_So$VA$BKj6u+%EI)HuWB|}R#+04;X(L3{DBNhnRWM=jo@C=} z3UeNmk!Qy?Z5k6wMIe)ml2Qi{J!lUA=auJ0P8Gb29@lk?k7|9mcz^m;3AZ*7?s-%P ziLw$L!>va^X=8sr0IuZu>4XrD0Hy{914D-nFn1WGs_Qah>gt?S60<2;;y88-39`V+ zcRcc1clTxSJODT3dZ#E<<0}Dmn_n^VX)OG-(w#%8w?(1Mo{-14$1DMXy**b?mzR$X zpEAW4+2O;R&D6Vf-D;?|h$rcb>%h?ZIK^UhaY(3aQ>8&mGh62c@I+Liluu=DFfgy2 zo*s8W-bloYsd|r7){gfqQ31@(md!6v#3$?RP9ljU{N6gGY67eVVrbS7U^?hjgEJ~3 z?aqcx)zzl$g}aMKIhrOd5?iMp=P0{lHx@0asbaKHpi-r)GTu9|ksxs# z-Yu_0b})-U8Ypyni@LEDZ+3mEV6~$2W+#)iAdtx3d^7`YC}n4Ixg|hCGPf&aM;RRk zChKV{g_%msYlhy58ZF)Qx{uhP=^D>UO*{iFNX2iGfv7kJ7h$8^CNl|F=wEZ&8N&W1 z3icuzk&ayLHbZQVCn6j^oXC8Jq2ZJbRCnXl)lJn?k?s=gb(S( zw3?_|UAMAPNo<^H$Wj6nCz^FW&!2s+WcB!(Ra*aEAgbC-Q8;k=i-Mx|6aO6?jDjm# zo+=~g8Y!usR|j~8 zrG%MfRp5;Ri+q0GpkV%P0va^T({W(H zL$nj&?YIkKr=7a6v6GlKj$fu_d%bUPgui8F`LKx}{(-75x1K{RC-57kFpwg^IB^OZ zH8Jz6b~ie4xwgNQ*jIDmm{Us3b6l|6;JTRfv2KDi>p;y)mHo%u-er>1SLRcl^bbr~ zwdKOaLa_-^|=1BGaDoEkSiuuIw8R!ZiWH zeie>rfrgo>6@eqz_CHsdUZVUm-7DN%%fW-XvshoQGC?19M zsui{8mXVvg-gYlT04a%&x6!-DAB{GYh_Eb?Id#6WYZO49c#OYucP5aQpTQuq|GQNA z*Ik6y38MG_{1-tJ(Dh8LPrHC*0anFDaSYCD6_H1GN8 z>dY6^%-KW)tx3PaUViva%Y}w%@5(1oERL%;) z737f1J29>&wM>QU-GFH>AW!GHEh4+a9JdR1Y7Nzg))s^?XIk8coJG(AA#7HbxB-sS z>JOq;6qr<*(6MM)E@d^-?GOfi^AgN8XGzcu040u{UG3}FInD?BZcq>Yd55jdZu1eM z!h&8z_YDt4CMylw%=yVlIM2HZAx6fi9s^UTHPABYZSUm!)e*ZnKfC1wkDK^uXX(kT zE*F=4tW+`b_h&7As`>&C`?!wcUQX5;C>Xv_MIYhAN8xbZ{~-?mOvyMUWfYCHReoB@ z`6{u-x;wp=y|zzQCNdFU-&LHai(q&@m`;*(Ou_}7;80;OPul))t`MhA zr;t1CfWhREIhJ|5LSqd}P8YCnF@{P_-P77GvBjzknsqCO6UjD*5tE~MlNkc^sdl1S zV1r6xqnn*J98CDya_p;^XI5+=rin>0y+2~TpkP_zIL!IXYEi8Sbc2d2(?L*McIh1e z_!}++SZV?QB#!p9n6lri3m_aNcb>YQ6&iI5d|#)1GCzHyreUuBYB#mzGdgEArgM!B z^9kVE2r#Q0Q_6GJk7sSMIE2V7eG*VPnlM-dU+=G=Sy58Ke&RYn^Ox!Bmo}QfNY6>_ z0glb!*c>VMZ_C3MVkNtf>UG?kwa!-Rov+4*FJ5((u6V?2S)4lFZ#M1LcxpRjTqsUB zF1?K3zR{MYHk(mpGHF?)l^`ot?Kd{Mt~QNSUGItCbGN}ixY|io$d{3D{OT091zS^g zB?D=0a_T6ha2hWWOYW!({Lo#Q!)l>#p;hPVpuW+betQ@)3@;E8oI}X1Z@AE22J{>? z?se795FtV?xF_VDrWEmk2)TwIsV0U|S`(Bte^0)Y5H3v=mG4E&Clds{e?lrVKL+l1dO5C;Uj`NKdD(P;}S|_0Ga@u~yn9-k4Cov+)9lhBC`#l&p5SYHaZQ9Ao3;TNQsReF{JN9A`hD%_%6oT<|?NY7YZEF zs~Dy=FG?-TYU~HAio@p8xbw?5x1c4^HANpAl<(j@p>x3^NXBA&m`NDRo4y$G2#U&eku&|I@gEr2!JJpBYJ$Gn4YFaI{%O(Cxzmt?{sC<4_SF{8 zTc7!w=qF0uZr#IeJM)X~1yG%xZ}D@-Chf+Lm=p*F`jocRUS<_hn4cP^^Qkq8nQgSg z4&Z)+*SOFViT2VBd=quB(&mhxunRg_*)qA?%XSr!%vI0+nAHa>P*rKv6qQUT!h#wu z1E|*kf2EsmdohRrlR^Hp4Bv$Uq^sJ(J(AC3&GUecHvHTcZSP4@#Wq-$@b(E&XjlS} z)KgPldg`gML?`qlA_PZN<6#K*)XspGcGJmlc}l{_fvy zVzC&v(g{qaz=%;|ZeG_(D|BtsNzVU=y{~?Ys{P)@L`B3xl++gxB?akLq)WO%K$@Y4 z4iyCz0VSoSn~@f9Ktx19I%NoH7&-=|&)WEYzSsGlbN+yHUFYxvq7E~AKl@pAulrt) z&)>9oO0DS9C3I&&C;_GLy85+%BoI^@2Fa>#pMH@vyyKg@TCB!`;bWkA`Ks@znRUAd z3NUJu;;fgFU7Q|8%5H*EI8XvPQMX_M_E47rxXfjDS z6uO<;PT-QB>&AcH81VJkb<7?pRm+#usGF=3A*S%vbQqmJ=Gx_RFNcGn%C9E*1xe`c z+7G~p{mGiT3sc#mn>9^LmbdZ59`_GqRqs7jS5;kmG~1gm74$xpi0Jtx#37EF#}aaE zM=C{&7+vf?7aGm=MO!Zp=J?hgn;y>Ropa_f?=gtP=1UlRf7}1ftGLzKN$%F0z0JMn z%6O$9v|T)~HVVYIV~Eu#0^g3!Fu)R&_;1=372DoH7(v zZu9j~#rVI!0JUl*I)F8o`6mj;tNqkxe~W!GBUt%h#*hp&nKBx$*0dyI!gk&DONBPVLScI-`Pcr6L~R-FIZm zh-lGPT}##Efq}gj5fLRNvOX77DBZo{Vt+RF%8Cu^`44RP0qan?W<{SB$LzBb zx)(n^5ISn05l{JRlPfkUqa+k%*&HRyL-9KD3hS+|KP#dOgF4QB?fH7*HoXyzWg5S# zn+jr%1O}VQE>%;pbd^l1EuY{#t9R@q_s_K#bqERB(KMUaPI&cbQ4h}VMQ>(S+mXb7 zIW3iFk{@@TVWhd3B99O`D8#lI!D>8sl|Ls!X^Vm0xnP6gg%!C?^Hj!kwcweHJ19a| zbY;J9=I~~=ZMoC3_)GiM%m2v~P9_>8Z?=pwbLz6l);GOsjF{zR(Yqmh-d$VS+oh0N zEtBsj-(@Mtpr*d(l&C|{Sx+yo+V!19jjN(IGiRs>-7h?i0*(sy6zeA*9c~skP*t-r zbge>)9N`%%3N7>=uxz10p|>^cT!msYq}JP7awrE6ZuMvR%+_AO*jU=e0t$uGyi(0% zdEIXFogd>B@*dj*Go6MF7H&pK-LjvDxmS+H@FluCP^XDRDBEp(|psq9HR}`P@vDp7+4#ioDhB8xp(LJ#vBv-ZiSK&mwV3dMdU9z1Rju=#C)APA5rUiCd<|GZX%VOI8#8&rR=yiLm z$HJoxwc(3^tfdc^g#MUT`tNPfq|+`?3#yWp`Kl&GCFHSBlfAY1?y_fND2}yL?)rt@ zgu-i>wN)2!PUE4?>njbl8>D`E=b21@h*#+8thy~_6ipFV1*Axkc%3rAb5Opp=xs-<-R5 z$xdS>N7;;BkAacl*7uKQaruw4ne*whj#}ri{8W<9ZLjvxi0luzkjGuV@Ec|4wrpc% z^@lqAp+yJ>qkCeNi{VG}YadnP}VkjFuono>fu{~ow3+2UQyT8bamTUoWP(HH#aBd^We3XPDa zwonaS-50*+O}SLy2g((f8rSSn$P#cndppOQt&vFDjG6O4Xn>9VYkflUI(S8q+BJX zoah5j#$y_w7DUm25Lvj*&{{En(KSTECc?bZ>_BMIuy_wezuInz7Xz$6ZFioSADCDL1JiT^Lsn}1 zY3%hG16Q3FuV0%)#8bD2F|OY`d7o8&yN+&bVw1SeRhF5Bq)hzui=kl0iwaA_VRb4R zUaqYI`&lH=D8hF#9tvp;u@||m)nAN_qw2q9txk*BYCk)9PC-3M^fc_($Y#kUS0W-M z^~-s6=ZM5zR?QXPxs5SQ)_h`Q{<Mk^w zcUtV@w{au!a!Tja4W}LY@qHXfV|IU2Y&IoG{nybv;G)*ob6O7xei9SXr-K>g4lY1- zfn=mVWC$I+kv&EmI4pX=N6EjrC_{Ey5wZETdCSW=RS2JFXaTit>+?>KOh&YT*aaFT zTbIl2m=iHRm;4yDHo{-~ZJ)k2DY{j)**;9Br4cY6rNGmt&vLmPvWVSNSWG*UdavR`X4l{aw{F{4ZU)ir)llF@cm@RPZ;d=|#gdfr+! zc1ueVi}zil%9N9P#%5xRYj5+N0uYX;ZsTB2`AonQ{SNGbTMl} zxka)Z4T@Wr#AW{xW;>oXQ{TBnu3I-1%})D`@&?mY>r5vub}ZsDsI}g6Zl-T* zVTXve2XNSQ16_UU%DA8eM}-twdue^5Lh^KPLx& zKB$K*05!*X-)n)Pl;?Gish*vGWSnjkw_TdVifrx2JwhLrOYt@nx{{s1t}0}csY@mz z8KN5c+Iclj<5%uvp*8D6{XHzjnX}3hxL2<$0?d=Mf0io7r5)_|Wv9!VMnda6FK>W+ zAS?faI3@p`!qru_@;~c8=tapd%TO4_Uk_#Kzn|f?`9w26XUnasj_-21OmQ%Np zJF+4m>gj(E=PIM%-y;OzTtHf4iuUlQgNVdeb)7iNod;FarYc7a+A*0 zNbfBv*|fjKai=$T(nLls*p-*8NO!sTbadfo_M}k9sxFs%q(TF!1*CZD^tRE~=SH~W zhRTmUP>*ImUAg@Afe0Z&&1*BKh;TWiK!W)8&70cN7FWxPio6A9(~gr;zt_H2Cf^B3 z2oLiR@WQs70$Ex9M9Kj^{T0!h5m^o@HV$|?9BIkNCp+@d_#A2Zw2(9tH)+(goA?nc zfJCXy7Jr|P8v2&CDWmeZ2J8qr1!PQ{?1>b#dsqD-WGYjh4tnCL&Ps zWo$7SEp1dpPwpVt3sG1aqHyD=IatkFc%0+BDe8GA^yWN&XCy>;XfAp#*Zv;!hSmiE zUrXzm^YCD8?EQxBT(!8-qHJ%mUW4_Q-y4*C?ECKr-~(&k;;G2f19t?UHbT zE0>tIyDN(G#lJixWE8%7Ro0t#yC;A&9YAuH<};dQZu9Ry)a>_Ui(mibSG_gmgn-;% z8KA!>-qndQs_{heJ^pbXyA6Yo3#t|?=SocKU(*lUcce%PZcT)TdU+E)3D8Jta(zIo z{EpFW722JL=smtmnbfDcwbyU|O0Kp}f99t>Pq+cv=e;w?wwk75swTHOgXqf#*mYcREN-xy^^T&6uUvOVQ?Yo*YgyO1y~u7#7p@{rvPIcDhATx|{m)kDwzUcehlkE(p8Bp}WbU5`JDEAah#&B2{T zGp`-pXTT)e)ZDCwF~nLA(&jiMLGtOl>`(XL(Q|^@p@Z3+p&EN$$Sh1r0xXa0ineml zmu_T+yk*J=9(?L!y=Jvos8OjG<+@ItJoJ>IlyBqKRWYu08o)2~UUMSe zutJx=F|}i%@9Ms-V#CXTO%>C;A*J!{=3=Q_3k2O zy}lA<;SY9n91ph=xoB=Nt4&V|SSPuQdw3K|>t$-FE|lsU{Oanyx#uL1sU(tNf2|XI zoScYAf$aLPrGCzPeMU)Hi$j;72D;l>cke3sVFd`qlM$V7zs{CuSzc;E+nZD^uRBO%-LZy~Q&V!P;RS|Z*JzR#{gCcxd5L|%7{$6NfN}5m?lO?8 zyL3>5s6|%NOJDjPeT%8VOJ8Fe!ZLGfV>EQICy(YqUqlOPKHpDUj_6=E^%o<(`~43l zV@=g3tTZr>#11=Y29ZzmCJWV923b#t?&%j;Bz6yQc7;sq*}sDpsRQf0e<`% zw8|6TFYfZ|_K=My9psJFQgD+6R$~r!r+@Fb4}NloZuSR2n)!b?JyR&2jn4)qO9}F1 z7&$nU4KZ3PD=Tu!%3}C3dn_SJPF}vJ45gRgv+;}auK7>noyuci{T8vRy1F05R^Ov* z)G!Cl9nNxn`7bu9*GwzI6|qBXYM_QKVP=F`N2PMr1+_X+@msYgv=cmnA_?31*2V5m zk7AWN3+$WL>s;m0jv4YnH|HZ~MOW8AF<_w--_&##Qsc~3Rr#grxz78T{0ACY`h{{j z;VjM0(<*c%VXX4kT>ou|JRZ7vn@gYdn zKOv-&kKYzc))rQ?XPxkgL- zDEEOk??DDwyTJui9i0q4M!n4+72Yu>uQ!{h=6cDOMAAS$bQ|(Xf~QP#5n=A@&U)80 zdsnFtZ69?X8#A|H4u1yL^=#91TMQG3y-SDgcK6=u9awDW2)OkVxTdf`*=6<|BKwB> zmSK=O^B3x~YxQuMvSn`VtfU=PhEUD(Gjw`qCBiGWufh*&&>18FQ z;>~Ma$WV;S7{+?pw12pVA1KXb04*xPbAM}^&>>CNc;_s3`724~M3_9K<2n)1?}wpR z$?)tV$xA)5Ok~zfKFhV77}41k8G}moE17d~_GuFnch0sJtuMQ%*;g;B>}MKWHr*l5 zbV4~KrqNiGw$>IM7M4alQvG0>csN`-e^R|-BZj7@Ugg$!LDl1-%^&al`9h_u&lx<9 z&;#n;+#m&h-seE5uvRh|4u_a(2@f+7*4^d|PPpJ9DXBW$s(Sq)dMG_wPCi=74kW!q z4bQ%a$N>Vb;XL(IU}}f-8rK6%^)}wvz8s|&ZRA_wI^UnHXOGpW*(YE^ZM=|J5yqp z&u{-Ks#LMhNO>z?P98?-XiyiX%glAmI{B6;q@OD<6H?ZUBUH5H6k(I6W6fm!iJ4~T zggCkm>5d&wzHX7O>RS%P4)`woylb$%zmv0=8DMOKE4wsOetk7|KwrYew0hJsEKL7( zkn;o2t1s`bJA__jkCvB}m2KD^>DVsBXcyiWa-9d*l9JDE&@psrA{;)E7sVi}S8gY= z*Z^F9CUdQ)=|RFI8hH!`55sZ|PV}A@G5naWu>6y!nd`BKwP+%mnk)&ZY$=k4L&XQi zr2Q4@TaL4ph0}UXwwsCjo=x@$Jr;5xD40Y4{9#<9m|IBJ8CVq7Igw2tr_n#G?OpX> ztfBjAOkV$pFo-94k3|9oLSc>z5LQrx?Wgcf%9H3+sBHL6tIjl8W52-)=V`gHlVr4c zv?8AI?WXlmp@;4I9-Iy(AtItq>ZMWGW4Wo8dX%K(&P}z0zR_>@Ez9*N1-mhTEqj*j zN#Gq9jzTkN63QD$_&}%@s{6{2qSnESy9-^xl7KX8URc=dB3}}4!?DGb&oRCl} zIfzY_*#`#`EwLA)&f7pQv2t>nk+RGyx%yWegT=6k$7|L@!iK0Pqo={3-R-I0Od8T} z^3Tzv0coqLaRvW*4ez!*T$BbG24jgcKL3TUK;~bPXv=%wHzUUD(C43xSXe`kwAEM^ zE<8q5#DhlVhaowT8cye;GagNY5>16foBm9#%gTA)ySf(>eESjcP}gtotALiHN^p^iI0s`zZr7N)N^_ zK=p|24dr1ievGeayfndcaf0lsr)fVOQgSJakmtoJ%L#hEwMU}d3ob3O94%gh>w8vF zNA1evJ%U0peTorWilsA68^>r7ZJ`Nc_7HK9b*be2$M64gcos?!4o^H%fpAkDU*ykw zC=^pt!p+FQK<$X*8+Mmy6Fd0qx;Usa?uqHkg|Wg?n9r-P8D^vO?A~?F+P*&mLDm!Z zQP4Zton1X3hzLR>|#m$$q(p{39RxD?NS!YZ%q(l z5fIQJCnw+Dp2L{Y?2`PcoGa)G<{R$+Fb=y&dNVLY`IeeMY_@_T>*u?yp)p{kWOwDe zm%ds=T*qwp8(D3>m368L9{2nVHW1}|KDVnfwAVv&jhupMK|?PXPG@)9m2(?3)(lt( zoFli_LG%%(zhxLX^wRuFVm|Z<4yBSb)9A*kcmaM*r_~f&&n!ce{nU9$G&xCHt=u}2 z+wx(WbO*Qh9y-Qz(^ot+QZZ`882`rXh)z`KYy8b;ec)iY`GEVaWdC_30QOP2-4OTV zA8%9b{Ay27%w)vb0aP7NUw3DHGTI0~hpEvFJVz4|6O)a2YfyCWP#I4^fRxeXC}zf4 zyy-ofZ+PXqoSP2lP>)=LZ{vQdPT;`t*hN>|wnP>2W%+SSZp-ProBBGZkv+ERE z)H9@Po`P8HQs4^?o%znTe6x@>p8lHqEWtM_$6H%VbAHUxccL0~; z_1r;1J4&(G{M3le#!`>@%F#Vu5rgvS;}oyZ{AtkQfEhVpHg;;@R3nQ#-Ay^zH*MMRFBtDpl=X`kGk}~ z6e;OviHO8WT$HG)+?Ha_43bu%rM&& z)XYqFs^r_1e-yF7ZyM;yU-;>QRF8->JK&_eLT)MtL6dYZtQ*}+TKdhz{TcAWjMz&-oC1w@3 zI!Su+!zX;i{u5bK&wOpPKzgw+qdBEHO?ggN+%QZq09nJ}M*QSJcOe z7n3D5aAlDQ$3?b0>XsS7gnVnj^7rfLlFWlhr$UO@gHDR&_hK%1p_0{JXgQmMSdi(cS;}2EPty39`@*n ztIW4vwm*VTdt&+k80tjr_kC)rWdK9qdJMhx?Xv##=B6u_vnGDpEJKPqh)T|zGegxi zFCz1UV>l|5NqctjkiNa{GDqz4bR~J;b})~De2xq!H5YMYp$DL#@4-R#-G#|=Fh)(w zV6yX<1#x$>KU>`?!zEXoob0Rl{t$9vd$<5yb_9iaawP|)T;4>^B)i(2%#M;P1)&K@ z?!H#O&5D`VyjSi#aaMafk8s`qEiwI3vxBY?9uwuA>nf>I_00=W&_v)!YHN>~{)RW& zTj~p~+*Nk-^34?&FG2w{Mr>?#{7_`UQjY75<>4H_;vUZRmLWsaNU56s5&3M&1x)5v zet&;HxE?kQ+cc)ZJ~*HJdgB;zS|ke%phm|NT*C5Q7mfnU016Sat1C`|C=k&( zS$C;xlktA=y^q~6@?cal#M}Tzr|hd_77VMsCI$}NVAH!YfA3&4u-2c?&Mi&)1YFSf zLk_Jt2`|hjvc?*}`bl<>xj%cXq@rQwq!+u}YdxS+uDYK!sF}R5piG0%=qx`?JIhj^=H)^E~-LW%a0M4j@45 zp*mh@*~a@GCIh$7(jl(o-1^KF4x_$+3BENx?)5bAD*6{459KMSX zbK8==(b^x@4KlggGf<;!U*6iz!&ic8Ph8B^@*>P;rUUgs0gz1)QS@N^7GN;R$IAlj zt(xZMC-TK&;S9lS4HmuAr{B>wuIK@imXu1a)H*Wy0|+A=Kw}nMW(V#|JndQ;jo|DB z%WH=%@C_-?t8DlGw}ND9s|=0JtgUlx4g(z1sS35gvfk(#D<@YpxpEZ}LtaZEisqbO zNkc{Izf7xcm%V#6RpH8i*PNfwAojhn=qxD>9vadum?jYhz&t$GOkkRU$}h_4c7c9% z?r#0ueP8=GoBXlWQJ;(?Chm+laLdZF*VhaDBXah^4MgZdbX}H|woG0l$kbCfK#bOdz1?U{}uk9USa zeyJ9Tj@Ccl|7jB7_o*zdSFa8nUaGGrJ)i}fuw+JBf<*0E07Ex5p5Bnh>@NkF=yb*l zIBsv-NEBN%l)nF1EZ|g?-mPBaEecG!{nRq#ydYnLnreI{j9xbidYw~%D@vc*qpWOc zihj1MTaO5R^#iB~2C&k)-$1CJg!7JX4{s!PM8euMbPf?y4T z_0<4|&YBEFKM|Sli@#{y+?lETOgORK#`?#ddH+$n9yCm}P}jEnQFJyYBVRJ8skyHcBF&#hNNJ$WI-RKJ z2;Hn_N2(sA3PTr-eRoR_xqcUX3H=>id=a4u8U;~Fd80$3SfM^_Jv#+q7o4? z0h(+fZkUQ0DqLiA?BsDen_pZ&QjFLAbmtS&h}0{SnNEyzkRksJROS7XaTI;}<6YyS zLM#oUcJaz|-sf{!FnKR4KVr9cdWzDf6Ph7K^#cKHnS-Ih(q zm0d`be)^Dc2eeWm2j2R@cf4U_3L5_y;ZlP=>AQDvqZAYH;btdxo>-V=w;C?h1;C87 zE$elXr6Ik6ieiPiKKTS8dC{cq%F^{rF##T@H2K-t(U|g{J!m4;e>;wA_%u{T>yc(X z-;n_i;>!_<#>OLT29&uZ9C_{Az@0r;hI&r;0KEWlHA#6y3`VWFR1h`hM4F@)23oyorI=3T?}KM-w*l^U$t0 z6SD@+*KxvpOctzMZ;o&|YPM6}-)CT{8kafQEYH$+A&a)3Hru4K;E~%GqT2#GfQt`{ z0*+a|KY*wSjN{5xm%Y5Vtuo&kKAvxb})>+|C@gwx^)7nTt?6>bW_jZQyY4p47FFdxpmR;lLIqXe~Mm2a0JR3zQ~h+aBAK0q&`#Cw|8r()u+V$Jl9Zf*5{N#R^% zYaPOOu~yfFcnvWd9{2kWW-soQ%(pS~hDBV^zMlDvL;cocI^Z7f@1X$duipCJ?%XC2 z8FP)}_AVyd>ZDiw<|0iyxEf=ThwI&HJZ)cYv5}6L@}ZMAxS+}L^XHk0p;}2BkUrkN zeSsF)1@w1pab@%(r#^5VinZs1*YD^)pP1+kOG`-!I~97oBLs%%b%#ykayfJ==lC>& zqSy`fbME<5`cd<2i|a*!gzw*(dn{ukUBq-%(CSg-+j0Tkn44phWekW*B0N3gqqHfq zv}FY~lB}Xri>s-^lKBFMGLbPnF*-M(u|raD?2%6G3nvMY_Q10%b6<|o+u9sgr&z2W zi(*7ng|Kr6Zq~gmL$RPb7amiZ6lfe&T)F)6BTZO}MNPoe|I&Rev;-iU2tQdFr!YjI z(hIxM7$VcpPIECN78yPV3P8<9##!Bcrf6F|;PjjK12g?Jb6uRZOkOR9}>*QN<^TDktE(g_gd- z%t~kgCc|6;;2gpgKsG??e7$~LVAUj#KyLlCi~8$^Wt@#=<$tE#kS|)^T1R@SUpTW_ zY!A%Up2ua-Dez3U4q<|+dvBM>yva|)y&AyWE5VvzXO5l#denQW9H zlT^LaZ}8b2xTHrT`&trd8t&(`sNX74QbIJ`t6OK&Gq&gQ?u)&9D}48^A&Vxz%kL*8 zwlNZW+l=_t=J6OL)#ktX*XHd;Y>Ofm+f)j}xI1e;)UphPGVXeB8emMw3bfTV%`Ly5 z%^8fV`pXRI6vQ>Yp`prCqT^#XjN_GUj?!p}PHmwImENAX6bQPt?=9`s`2tQ?4gCO}eCiXRsI3Mi6|51Nr~@+FjmKO80xH?bDJZdVhMdvVkm)0c&Y(PhX0)uv`4CrjF#L?i3~!ade-=otFI zY5M-~R_TyRiYWdgK62r2m7R^!h+JgSrnQaj{4r`qsax`}^>MkrJzK#V=bUG3``0)f zo$5=J$70K1ZRgh78Dva@a7+dG>L=T; zf}ueIvQQDFs#`jGJ;?MU_?~GH!K$^vy>$>r-=Gl#90P&HhD7fAw_P&fbNThF>FIOr z>)d~vuZNtcDvY_f9NMY*x2yb!j~4W1(qQvi$KOt{GUA=J$uzIWPuX;A|;9}QRLZeA19g?*yIPcU!<#@r1qMN zff1Z@af(r%guCDrd1 z(I8Br3mGo~vGY1ID1%5mRi1S>t+i<*zHcu!m71JI_S(i#pTd3KmS$A`pLr|Ld6_e- z$+uQ1)A?T2|J^kDks$v2LU57u`sYp_)gYt?q8gTJXt3D9H&QQuCSX2SD>}O*q6zU% zM5KW*_5o;p4+y~eWcQBUk_ZHlPnKCT zm%Y=?bGsyUOSay#FCm$HZWkGL(i|Oa4a0{SnJ$&_F-4)*QSiS1sQ?tEAmhALHgelW zw!jYOkqNW?_EK}s`&M(ITemcrthQ;CCa-E7*(2!PWHDAOK(uKL7mE1QV0arX^HtM?cn{8b-$ zinC?HW61Fv-d5XL|L(IDct*#CbfA-m)xD zwPQmUB(HGxwZDIF&mWt{5Ir_V{f_oz%K5{D-EvhyEz-D(p<+nGxGD|Eu6kTu5dmbF zhbk&>!orVv&gH`pyNJE4{2&fd?;fu#W?yi@V{rB71r9wnQEUWA+Yq(dKv^VcrPpUe zY5RKG3{#SP_p%bbJF^>TNdoZ6qDzn{B+&uvqG@Qzx;KKn0cWA~$l;Eo?3-wW1H%H9 zi&*Q0_bC{2)cNL=Jr%+U(KYrCO z?yoteXKH1YbZ4E#b#*eI0_q;oc}I1`T8S(>zvorTC#D$9GI8!69cb2Z#`y0_Pe;+y~F$)`9Pwte`^cm$0v8LBW7^;b^Yw$-$ed$ z>e!*jKK%Fp|MLH*R^}|OY(a+XsHH*~DmUey^Rvb!ryL#6$-<0&v9I*^N=yrqIXOq# zwISDI1%GhmU$p)b6%}-44l$qqdFLRk`oCY#55eQVKO2i9$nN2n_|?N8bolf6lYea( z`OE)*x%gG2!%dVTU*o%nFCBV&Lt-7Di|PFY^uL0x*W@fA?lqD@S7xC>FS@vLqY`1x z^k6rKy}qG*SAvXgv9RQ};%sri{ad5kgQ=J>{wa=8)@OUYBh+`Des4KYEW-GzG2PwR z%wQ@$n3OQw3GZ3rv1Y!2D^~_efX~iGPnJsR`Z(QzwxgpXdU&&_nO*JPz1ja ztYS$yUAQIaeAeF?dQ6h%>y-mmtYuK;+Vk=PJ-6}K;}!Za2av4g2@0oMY#toNZjhsq zt2v9b?5wP^b<6GYyOe|!O&dZq%+1XcYNkUrbP6N_&u#zqC!@5UvCQ}nvqXAuDjCjI z0uH;{-1h3K6C4nzw>I6@SBAnt?=y3MZ)Xl!5Wt6iJ(Q5TTVmR9j+9RHvmtK(H?dfI ziB%Uf$C}4kanpYsh|giz1m?%%;cbD>l()t^b?v^P4?#l_=qF%a&eN^< z&h#K&`{BIlBtOHgtt}{g4hquJ(qzakDGo~0`J_?VeM(+++FTrp3=2zn_UtHdeTb1Y zDsdRS-x4pNrj%LS+Q2{l<}Uto@Kzwb)krngb7Nj-8r9g?SXxlbDlc}h)mCcV!z@63 zjxgILy|cO0hdgM6Kzc>#!z8ET+Dkua-Kcb+A<2ZDJV&iP&Ff8jton z{$$`Pkefi_XV>xd1qqMC?=MXPK~c?Rs8ah8!#)GI1gTJ3gYoOFRZG>mUW*mdbA6aT zd%qn$k-hbfCFJSpq^hyt=L}gQYOH<7={5uI&`K%Y`^eqT{|?p3C%|Ps#LtT z?Z?Q3Kg8U%kaAD6#Q)nf_T6<4rsR=>&5ZfH03Gnd*SHOPNVf^Ey;-c@SrnujkFiKp zf&Mb3&5xHCDGXfRWhf^ZE-e%n7bEM1p6gZQsQ#0pBsj|;+X>tzmj)WQnR*H%b!+P! z_Nw`!07|adcM}s6^!r!=w?%!$7%oY8`Y>sker_ z{`Z0)-zcCkbiWto(k8Omo%Q4zzr!Q5Kg+vtxLr!hKmV9M=<29&wqVmKdQh`F$zhYg z>9|r)0UGe7Xokt@X`7{C?7OS~qdyn`BS$%lvYF++z0SidYd9y=nJ?x6yRF+m6IbtT=pheo#Ah=>x70d4TuD&Y%E}6P$=skX zEKJxl@+W9QCR#9o^3J0tQ5;4Er8a%m{U41<`8~Pah+(Stt{d33^oJkV><9} z4}p`w?Y{iT%-me{=?U3Rux<9FHm1z3?7MBk#jU85q?Bo7V!P1l%eR^6xG~UeQ9~GX zZiB}3L*E*s1VMCX#dKosJ9=r_vT32~Cn&Df%oS9@Jj1l-&yN#;TAnHutU6NdV}qjF z7Us2V{~$=0tCp#R@6C@xxNC5MIntrDqyjG7&i|4qfN?!1{N&QtX-=YGXp)Ji@<(;; z40}u`P)0jDI}_%M+wkCHa|#`9oG$|ZxzJyjy1FW~^f?u|A^5b;?rb$14JN;}7QQf- zZ(@U<>odu~$h2vWVk6};e-QeDghK8NJHu67?{fB_D{MKA0!&PYhL-3)b~?dte~VO5 zirXjIM-eWBOfQCdz@pIT>#H*h!HffXHjH zJ;~vh?YBElcU+rouy8*5KJIA4IKt_fj}tNe`dqi13~bW$`x_+A^ninijEuDURb=Lg z&(1{HKtt~1!Jgy6eBJ3#ozM!#ehi@z!f)X0`(98OX4wr@-sa>~(JQm<08@6uZVcGO zig=Zon3|%&2dNJSwwa!aCTG!9zcNC-xTGi=dgKuDrqrKVua1a_pidlj13T@lT!cN^ z18IoMTz)woZm@UB@4(Bzd!;^-q%qm7YIn66y)_x#_o={bX*ibKDr}oDmkIQ|+rZnU z^V=;1YMy>Yu$d0*p#8FBwW-`BS2Fc-zXRVPR~!n$MhCK2jX) z8@D170qO!s;e-Z*bo-h;O}{^NblgCy`%cLl`!p9*UD=BUnr&AdnOGhylGXP&*N}xN zz;5Uw-v44!!+FtU{6?)mG2OCIV*P-s|fH2Y{1H4dxRrf{b#6uMr!hu9-3Y{q&rWixWsNq5W6)M$8*%J zi<=Pyg_D8Unzre1mx;td%WX>Qf-P^+J-k*;r$v%aMnuHry-_khev?NJqc!t&XG4S* z+c|t!NZ5?3^>;QFgiIpoQgHunos_h+2Q`1{Io6SV2)2YF7o}0Ga$P|3GLiLm38R2h< zCJM&Xe<#?L>vg`vaXq&qK?O}^-XlF&l)A5&lv;Hik{gvow_-YBS+wK?3v2kcgil@{ggwOlzJ1n*J$mkw@)C&$nD}E{ z8JI}wkz*&HTRnei4#`Wm*AkXVR`6hV&1R6-W#%CxBO|a(t!tm1C|wlt+xPas8bX{? znvQo?N_|72ID({(EpdFxuU@_Kgg5-!Ie>>$ErJ13-a!9XZ2Bf9DeRwqAC>Jyc!Ij+ zNF>{a{m(G_+%Gf5>=p+{-?vwnN+Gug?;u-j(WV*AZV{BsM4d?RzW?Ruq3HKw<3m_wPvhX_J+ldTkpvEgW%2 zW2U5T z!xR-BcFnN+IH_zceuJKE>?acOTRxI0-X^+!7TI(x1)uJN?yNOlKsulQJ&#QkEW^#) z?vzGOPDRLbg_O9th*h=|)LxlTZq(E^giO_ruc&J#F)=V?d2KE_2_|fV1BZRaE{o(_ z1W1{6All@k4A8O^t%gl@IhuSWY__Jr`JeEyF}Xbk5Yz7ywHmV0XAK41j3v7{b@pP*F*K|NiO_q-ERn9KIdD zM~Gtsb&Accw%2EiP;dr}iwbz1QmD`&Di9Wj^!yHXMtTYis*qYypYZlBBje;t@;EZ# zg7U0ZC5I1xg?ePJi8H`FAa%La|}<_5A(i$dE%FDN@W+p9|dHSYW~Q>HVtO`%Y!w zJ<%9WMcBEw_R)LG2}#gE+G7tg#tULe5J|*MQ*Ft_{ZAzf_vP#Hf!<;w3uoj|d!lkS zBMymxkZwvC`EI2{<%W=XV`Fn5q{jBrX5A1KHH4HYw70+@7rfMc#E(K!fAP{K9&ici z>FKk9pfyzJ%3Irqfa?iq6akJ~lRwzstReJh8Oes7JbU#6-NB!RZNNNSzR6uHq3+q) zr64EI&dQqkhzsbAJ#~%8I)Y&q@Qe-+tK&MiE6*ubKD>uO*& zIUhcV1B!x&ax{RHDkEuc-U8o|D(xRa)1oXV_xjMt4XQK|u?YlE=A^bvUev%$N)WrM zlvDs07uSRXzx7Z#04T9{EkckObAsf`4AkK&`ugz!aE31Oh9C?J`U0nsU3cLn07=@p z`>y*R;gcT<5qa?6FY&7miNgQ>O!R*v2=^cv3U(Wa<@i2K64vW z@bt|tiK58gNodOO1Wr#r&oZ~AzrStQxyTYK!y5HLE#PJxc~ft5j{wQ&2r;k zWEOrFuLH`oI&6)N1zctjd!-B_TYY+r7*5gRvtFHOd`F9n@jg%f_p+{-K-_F2Ee`T_Cb2VQRyf%dKPDz7>{-4U7&*-=V`Pa` z4rS{^FIAOAx6;6=QB~-(L!PV1$yqA4KLUFVGNE3O?y>xjX#-Nli^%3G9%U=1re6Wr@37rHjy7aF`3bf=9t!B!L@FfPo$ktgN72o&FtvQ-OEK z14nl}7HtJCeP<|8Lc~3g3ta2k2cB94u}7zKfE7MCR>7e$I&(Gj=k)&6TbJp8V$itN>5pdAj4FVQKrK^B+P>S@TC=fb?(91>$y-1hPte}XL&;+D+0z_Jn&{UM( zJA@)qLm)^Ay__rT=h^Rh*IDm}^Wm)X<$o_-5J>KOu50F+`OR-;c&DSKLQBm=O+i6H z3sHTfM?rCJoc#Z<^WZ0v;u<#KigoDN#a7>5fLW$*K!bL0!W4C~^#og+XkIuqW&xb4n(UH?;| zq)__H^v5jjj0x_nRcol*P7V{wD*8T;6@Q+yNjUAIl)RM<=~|8KdHAL*S97f1a`@+C z+@~0Ms?no7~XFVcB$KBfH6FK$x*H4daZx!#^W?fai^DKejb zW&O|h&w2jm?fIIb3FdX6Hxq*5&Zva1pYTfZNsrXD~0#0n|@$p>yi|L>&Y)m z%xl>CcHJ5dG2~aL&YWL%AI*xCC;xmY^SzMtxCn@HJsn@3n3JO#Q$y8MkSX(hXPv3~ zz(KTSLt}k?VIiMpn!NeBbLaNvlil>q%mn(y1`A>Qa5x;F9iyd}CLie4#+%n7)@ia} z;nn-t+oLj@h%=#-TPjtf(;scZT((_1iwC&lv z^yLf%#jnqr$@eucTodRa4O<3}yx7mxO!gXt89IPxiCe0xsz&wW2gWL$Ds4NN1dTo` zYAYO8SRn8@fk6#%{DzKO%cD&9oky$&XV;#Ae_Q@ENg?6kG_2kOx{m$1nnmhhnTi}r zzvw6^o`1Pa{l;sha@Y~vT1`!@4`yhd6V0Jg=uH?Bp;3CFs5lj{@j?D*#~Q5r@OjBb zvwIjbvEhKC{uSFx(c$&jq2s zqtR12Y=OG(GByzY+P!8%dipiJ*CA;b_4%`ooc~tQ23AXsq@S2uQ0X+hq;R~e{c7MM zxJ9}j2N{HXy@i^5R)(V@UcH>X;8fmLFzl+4?flwwd)#RttJekhhJ0Ci+L^Tkd{ZG z+^Nqp&tGIKTAOKhnrZs5FS{Me9@H~+v?W1WowAfeZ1#-Wr4{cJYqU+PTqjnyy^)?Ym@FW$Si+ zzo!mu^tNbl!6696Rh!KUN4j9A^;akBypMJl2w;;VopBNSv`)YnbR?A9z;^$N;<|IE z5QZ|~6BLBOV1pKRDKaTtN?2lNvIGj6rxgmD8Z@*lKHhIQ?#H;`HV-zs33~*zLJ{FT zhL-vM;t~oyIabv!7 z{h2Hfa_ozHmWAIOLm-d~0aQx1YIDE2I6hupU2vQ4)1QIeWG|!zTUZ9|=2!&n&IKOH zOayFnCW+cbu+W9-L7{USyA?LAR|JjA9;F5C6%ZSakLp}CWUQNLCfu7@sn4E9-d@#t zD#>C}hp03_TNIN|HdxRgJ}<4lxtcxrptPihh)wd8V~Y$63)@_87e=M0D`u%gPA&xQ zgOk1leqBga4~0T2fhEZ8&c^Tw2n?_v?=%Od2HzysZCj8{%tMkz4Fb`H!*l9)=b0yh zj}J|%J#yHd{dytSMfK)kTW9CsCn-Q}d?-H&GeRQ}Q>@->iH>t3Xz9wjr4V;cSTciqbIarH;wV%>x zyYH{5+FDwAnB8hKa?}$X@qIZ-BJeOI61mxUQDG6B^9T!Lq+mrrn-QB||MwmK2+Gbk- zHl$rO;gby1NtUth_-Nk*#|NG%!AHBuY~M*g6|x6mTaepdE*H1j zhbNflcFXT;kiGBsHy6A&IwhQdL*4uJ>LMNLKG4q(x))?M{Z=N2g@)i@NVFf(F2y_k z#KeKlljH-jV7EMbhW*xlUMIZeh|ux#t4@9P`<+rDp?V<|dVF-ay=w;?F{O7(x59C4 z(7~DtS^RFf?N57KE2g5ixy8j{2^NR~wtznmAbn(ic<$A=I*Ul$$`J6WXyDv*k+D%x z=^09)OJ(gsF`RV=>+Rq$A%I`Ue&2P%qg~K(s=khgnlukp>M3SV9TZ!2xeI2om(?Be%%WLeb0* zY{6!p!Xbo;ii-NpLldl50kHSS6TlI+b#)CrKXqnv#5$6-XW5-sWXpCSUl*AT!t7zX zZJXi7{^1zbn;?Ju`eDW^Y**DJLLKRa&q)}PdT8_O>kIPnc6To|C^9M?w(e3mK1k~E z@vVt;sNU>T-p2B-pVa*S?*%Gy9*5Rg3uR5K~v25Os$YPmPba$A3coU*mW#f4dXA- zdGh2pTk|LPCdU2or`w7Z4*kj;DiPxZIEYJ86$^*bWUt}9KiqKSjb5bq62wVf%6Nx(w@m!^LXbho6Z1$>%yNrp+9Up8gjg-y= zp*N};4vSO$iBg9n&}Jg^JA~(EXBR>E9G@Wo6%4Q+{h>UZz8Dtq*K+CRxfK`ihLpH-Xk40|+8h%j|W-Cr#7R%q&20LEpfDNFubh zw)!9L5tGx2s~@pVgQ_*(X9CUZ{Wfe}fOPXtrWohwt5gFZ>SMb%a>lA$wh5!d+a-ju ziG|Ho!og6n>1tI;U;#lsZmHf9<<#ERHn!lsx++gL`Geah+I^MJ|4go@_bzynH1KBL zL&kRaK6T;2gWZkFfL#wVUXmt$nc4C`N`LUm>-RhEC4k@tlrG9;+ku0bz7(0eMCS|v zVO6U$d@VN>d76+tK5k|X!0#R~m&(7tz04o*{nON@o~Yq zMy)QaJ#&J04Uu<%_s_3)|<`E&H2|Y z=cNVpf#|~Z*tX7)Fo;UvEXdDSwG1Q;J_u~sTEX$l$(bV^E%Zl|foBc?aPeqoX6~uv zmS4w_5K6e2J-9ZzMfM1Le^pRe814DW42bnZ;e-)m!7OQtZ&&Wlzc8wF96aT{t(7KU zH$QV`#TC5;4v;2Ys1g~zP+z!k5!+;6kg9nMaE0SsTim`Z20`CzlwVXd0OEMnaQo42 zcd#0=ufN}^b8&STofaXxt_tb<@s6J1ud`dbay|`#Ay)PvUY>ZZx*?4%$Eo1sI%;a_ zErhuRx+*t*A=O_i9=_t<0TzoeV$NkNJUZMTmNiHPjeh}JYkvZEdPb0Nr*>UpNbTw~9O_PIW}?QxET_8f592;}qvh?84bSeRrD z&Osi4! z$dT6Edl0qesnBn-C7ef0>B0*3uhkSjQX_| ziksQ|H5?oqXf6J+L`EXeyreVmz60cl3_vFY9HCr*v~=me*6%H$94D}(Q|6KFb9yjX z-1^2wTw0niL_`z%?%g|pu8X~w0rV`{Uu`&!TB@54VUA5pv*f3kOdzWc;IlpXNc?Dd z9ve`~nUY&lQpU%7!wp`Iv=WPC2n6t59>^c~0ZN#D`en$rY;fXt>D{Nl6piC^KvX5; zHZpJykhkpINx#gYy!iXQ@Z?M_R9g-fDZBobtc$?ixdbc-T5$kH%+A{E9v+#Pub!c# zEAn>5VO+%FZC623ss@5$Wzg~d6hDw4Lq|0(F0QSkW8mXG>&@+k<3P0d_F}J+b#uhv zNU1excOi|Rn_C5Fw@g4CXG*@%zjP%Azv`F#^abj4#Mb?JI+~>+9)d{(YAR zA|A~CmK-X%Q@oHzKpF>tUH6XmS7G}4*{m`?JV0WXu?pR7;)J+O%caA4i3X`zgpAi> zI{8BYkTzUgeAX}}+%VP9Z5_1x^6Lx9-)}j{_T)$$uLco1o*Wf_|9&FHLI-kEEpx0_ zFOZ<{)2C0b>WTJbl&mGcYg0!WG9~8}05K0#IvJWj{dSJ&-jhcu3$!efI;-{jB^H4s zSRjZudqCY4*3EQWTwDd73tdaSS)pCB8y!j2do?luC!GY`wIB3*AeL5wx4~^~m&gey z8L+Vj?O3IWAFo9Q>n8}AlaCE~tpHi+08PcEq!gn{uza>Nug!!K$mpzYcRra6cQ+5W zr}%Hs6#8!y$sYP7=}U4diO&A$HBF`%{@n0UT5&!Hwwhvu8;9{Gr?em?L;QL{xwZR} zT<`dOQS^lNzp14GIFDorw|HUC7d#o1R`Rve_LpcEug$N~}<~Nqw(-2F%Ioa7i z3Lk-Yu-yKq%3!YuZV*AHABxSY^>9^g2~(?vj*f)@X-LvCiaY}Lk_xDZC+2s+hv-h7 zm<;&|6uMt&{y!~K7=lU(Q<4jg`g~)l&>0fvt#7=L!b0kwU#^IW7YPnf4lyiUaJoQx zQ~74^``E)kE0+u*p#-H6s~=bzu?J^~_C7DaeO6ODIQguoC=9tHp*&EE(P1|-%ohfq zzdm&Bzn{lu=lMHYM4iff7fohYPOeA)_mwJ=d7P6=@#+bCbn^YBb7#pe>g4+0-u^4h z8|Z?3DMGDr7{CE|GioMT-4LPS7=lw&{(A@AOMe*^76}-_b1bKy@(j(1U7!mE-ir-T z1nn#Lt~x_vIG=FT15f3DCCnU~7MfToEhp4-KUEPp363Xs z|3B{MzuN#}>A#ytap_!%(e?j`mF{O!W)p1@dJ_G_O z6}l*C??nbxX1rj(F_P~4)oP?U^Wqd7KVE!_Z7+ zV!uBByR-Ip2}6gRkhV5Q!G!k8VQT;^gdrw1TY2YE7v7%#uN|ac_TL&kd$?5vK@h87 z8zp!s2FRyzwh~A~ej1LBvt_{Li>YcVR{X1h53z6vx*;|F^;vx7@D&^5(h~dQ(=VQL z^4`iIUjJ*{b-T-&`5WzNpA#08yzf7HVzlop`ZlQdq0q#@+P3;H6Me1Rq567H7H4CW z#uA~;l}mT)00il>E>!ZX!Z}AJJ-3(IQMpI{Fi1Z0M@p4If_b*mkzq((xZ3;Mxd&2o znU9C=X0Oc%9v+lua728D-=MT?M4_>pL#9;H3!l=D_J*-af9wm`u0!QaY~6g8|E$Q~ zubd=+!%p`f_jOZQPcNHI?jfI$&tfd}AteLG&{Hz|zRR+bv;<4M1)^233O8ix#+83d zIoEfwM;BQEZ?`401#IP3je9B0Y{tjuPU${6VU~cHmpDRhX{I_m^xsi(!Hv-#9kS9D zST;n>cl&}s5v8ZMbnNeg?}L#O=d-5)dsVF^Ih`#RvAf=$gUlvQ_zwg>_zz?xFZ$l> zQ`MC*@qiHvmvKpTW(g+8{`nr|J{EyUZsWlH)J(sPqdZ2@+?C5;(56)efG|RGrufZ| zk}NM>dK@16A2*bAukr2Kqfim#ypA~n&j48GbLTw80{3ubD=io30Kgpl;_l1CLPrP} z?HVX;_Hp=<`J5;HgklCFD83?RG~$i}_HuiRjcx5UmVhrU0^k|2h>m3bX!%*TYt2fR zQ34f<*nh2wf|htOcqc~MS6&%_tuliWvkY-313=Z75IRJ=haO)yzZ2O^Pq^~p)xVD6 z=AFGwJW4)ruL(mIJyI>;(SlMO4}donw>pQb5M^&#mqR4?3=Kh;J7J&I7!>@#od=RrFws@C4TnL?o~<8 z=eO~GE<^~ucdtVCz%EyJeurwWd;J?V$K(?J$d4JihAUBazXR3S@2jeZYWK09rxc%d zHI45^!hSRreytB5^C*v(mp078jI;b_#pFN_tW0!%qqTDR!l+hWxQ;4}dpqVhqO?Y+ zsz`Om)p)&D!H~)ruV!+bqU9qH)hiEG!TiBD##)&KjwyJJZZ$JJ#d>4JA$Crgg$A6e z+G=!fDlmufDLrw@fPB`B}{*^`oFPqeguF ztzXjU7N4!_20Xd_Tu>1ze)*Hik`=^mLRv2N{uVZA@F3pEBFo@6_5E zzf5U5f(I_WYK|!aM~hs9>wit<2NDzhC+1f!F`NX&oA(7!cl3RO|D+yNTXXiu0{wY_ z7t22$G5+LAa*d1{b|Pebj|vKmfJW8_Cj{*rb}|J*6;p4WiSr9Lq*AXp7^LEEEq#{p z{ekJN>WYFn_dN&GB!pA+wHt?C&Zbx#N;A=(&=h*i70Sn8aab$nD3$`CQ~Cp1W}nm$ zS{d~G2EepGJ~Q1!oFLvy%qK_Yisdr{5gNavd&b{>>v7d>W!jvxd974t)+*h*quQ{) z?7+nZ5gLYLw~FtHXey-^KxaqR%UMi=3_csOSJxkFS&8b#S+%aJ4LT329zNYzX-iod zHeT=>n4np1$hG}imW^X0=8MI(#a9ff={|2IV?Raxlkj%a=j8*&dcD!yg6vSX{KN(e zIhs4Sj56f+G#)hOa59c*?jLC@87mPNYCX#th{Y4;%6XZEcSfki5Qg*d=sYem7;#nK zyR~*UC!1-nHan(|?|qzef@4kZ!^Xz`xHxCj(ullAY#bz>E0}m=*SG67w>26!1{F5E z@L1aIA*-}nVq&Qf6-XoQG-E5(K5i?(ND4~RbgTfi_7wG!efRT^YYP#&twj&xx&(Tb zw(NL#@?O$a38)}3*fDz-w5NEZq;_f#ou+TNzEz)}qf5MfdqHEYJN}YXTiex^uF=6J zEt!4!-TONO{oBzjVYTUN{o&fy=2rkIV3rZ3ckJ`3qq;n9uZlTahi8c4R3{TFFe!?+ zg8i{`nu0521dwX%+75eqAcPkf6t!7CY?x(q%lN8~@ z@{zSczF}yQ4UG$fOTE39roE2fYPV~(iBO>U5o_J)$klPI0c((lPTzOANSu8tS;mhj zlvwwb6p%_GL3y4ZW}d{#dv*xT;#E0~IW6={Dz;Hx-a@APW+Iw%^XE75ztgV?@)^3i zru*Dg9SQmxz#Jg$)0{xP5+l_T&)~v8mciP|?=Guf3}9 zvau*`7v#Uv0(_X_&GdoZ;r36WP~NJDc<23JUD~QTyE_o-Ey)LSGu(iVr!;?Q-LIT@ z><5bwM_t@Aqp18x8((@n#{|m)Bo|4EysZGs&rsAg#B#qT|` zl8U|ORxU6_D^i!czCMolO;yFmp99sRau}-!lPk&ElRr=K=m8IBR-qb(|A8{3^_KbL z&&}_E$ZI|I4K6A#gF=6#qD-ppO=!$luYkk5l}YS=C~5qByGx zz1Dg@MAwX#%?f=&eIDlbeGrtj`d9F5z1pFlPIYcLO8>WdcYAd}qHLsWcE$8)sgR)S zv${TqiT8u1?`_mQ__7W7`VxXa-fl;(ZOmRFe} ztMsDEwq+)~R&m;E49J0zI789%3{-q=X;~3IooS%nrh(i9b@-vZJ&+FGm{EK2>YpS= z3~X1$-!GsUQM23XkqW6gb}^W_@&O|1p^HZaH0KJ*VM-UA0u5+e7hT(eXlx3rb4QGg zqrRDM*7ro?vKUzqyvCLsv)FN)F)2|uA!W2mLg(i6bX1Cu(?k$QYVRVo<2-*Fu4|-Z zR$Nwk5^#Yjijk2k)<-{tuY@^gMKH2=crUJNP@@`-e|Z7P*{(-;yvt{B0iqWYCf+D- zh-=pb^=SB5MS*OS#A%A2kDzKB7au=#P>}!DxsR3ljbmV4S(ykq<7{Ri0B#zzC8R~l zJu2nyj~#dAy%8SZY8)cqv`YA~nIw(%sMf$C;UAZzX10>rJv`4aiSzX=4k!HUB6_#D z_-|WQ2%NKNb5g@``rY|p_&XV`uHY73>giGK>7-jsfEfMpn|-iAy1(P{_8d8osCj67hF?eGF zSBsE4=C@&1rvIWu*VlzJm30h18auQ;+i-7Lh_N`@yy4P!*~DPd*mM3%(oB8CNa*tP4MB<{98qVj zFK#`u{_!o2j4ki#WaE)~=Kk38vyy`aF~uDkrgi?IFr8n01hk?3&uy4VX{LsH{Eju5 zyHgxLY4mxkG#_!>yHDFgRa(u-%i>tGvt;eszFiXK{ljdH0zQ$liol=SBujmo9na=` z8-ol02z}1|fy1e{mN-<5jXB>=9iGx>twm4d` zAg_w5!Li&ly?)<$T{;xED!YKCGWPI4zHK+{44bEM3F3eUeG^OWat;RI!ssMDy-Amo zG630fP2<+|4~-TXX(T#5aU(RwNa)(_Efh{zp3h&XFl8$F{7fh18oQz+%NLh$wfWlX z_^8lq+hZ(%Ute$ivnwhVXukce1VLWTyd#!?2l0_VSZikIs>Pi@s>E>DI0c$nFW6=_ zZMmog5~+ZpN1B&@cp$3vF?g@dw`F0y7T_!$W->8jf32`4m>HU|vt>A?Tdl`Ay6&jr z*>z^^LOd74HS8>DtgYMEfjHjMeC}M0ONmnwbv6B*S%Ve^C%C=8dcTB{g6T&aM+o6d zd5!(g%L{Cq)#@s;`F(7!Dgg+P(+8Ask0hDad430t-S?es$xagb)f6R@l&hZ@#n*s@ zB}S?J3VLo(S0^yUH6YU;TUP#ReV1l#_H0}XeNkm=4rk!ACiAlELAQcm8Y_ zmfD8O28bf{0^jQDQ=Lh3WH2<;j1(jKs87i6Ca_TR-ugAHKchTBsI^w1POE#$>Fqp!nf|EVXUy5YINOB9wi)@M&FYNvoj5uha}sf- z7i?Rl8~f1jp9cqH!tHu`$Nh0nZJeY6HRCHdkPu>G3K;j@02~*DEz%H>^wnlUkh2Y>c7wY&^Z|h%6r3&dli+eI zlH0q%E;r9VHtJW=>gisZ>L=t*SH%hq7CV05!+tg0Y8!Rn(gkH~3x3DrU;%@RCK;b3 z`Ufu7g)F|^_0*4&G&>V24NuA#VXzGS`Tp>=F=e9|-0Y8x6!m&Cym|dcvnf7+G=$&N z56Nyz4V)9^DH1){xQVMhrv1ro%3Rrti8^^DvWmKgcH>cRS4v@yW?f_mjg_fT+!BGRj=#)N|b~ z7Od^@T!+)G&ZNQHozUQvo(!X-m*0&N7{q~~h|@VHQ~o2jLT7S$=W@cKWd~(k;ArL2 zci(cRq+q$$cz2eB(J?XM=emQix#6WHakcR&-@V?fiVA~ugy~(a^Y@xn8O3D6V;#nx z@$-Q)4$A$b>}WBE<){4VX}n|AAwOeAlrzNC++~&y#?vXJYZUVEP}>k+F?uhp_#5`2 znA|f%&@{-W9&+35509xKU%NBnc)B8hQsH6lyqUU4Rf*yIZ+5LbV|*Me$iZ#>m5;DX zb9~7{sZ~0bMyC0~rDmoWm-i#ZL5v~pEvIBS;5wEkb+@E&5aWwUc zIDGrmyu;V;wJ8%tnDECJ<`@;Uh!>{}Z`$SGw-mpFtl19`5xwZLp?EW1K;7ivMT4zc z(XG~sfU=GXqj;Dwow##%yC)$ev?d?+)MfU9Yt?rL!OEFpM%^Mhis$BZ+%)HVp54;} zfkBM7(pH*%&{#y1b$ctt#LcUSibE+eQSG1`<#Di6cW_YwEpPsPuYTrfrDXm4fVz-2 zzV+61<5Dcu*9W4S_}S=Um}9m&l8?S0&Nd;BdHnM-swGb=a-ziNTV)|pv;v;L{=1!N zRmUHg^A9dEPu4S=ST@_yp`%De-G1wM>vw_u`!Pzwhx6^u~r@hJ9-AF z3#D1J8GxKGj1G9_nW zX2DqpRTGy9)MUQw2bq?6en;5NvCwu*X)fxjm|0=Im%TqM>_82v{(vSx`&d|_j2)eztm4crgjPSS*}zHEi}Y& z4P5;95NMgpE^Xxeoeu+9Qx|*R@n3W7?}%YQkfbUXXXU0i3Ksv4_3Kk{n`J_}rM!#Erw6esjc1 zQzQdZ;H&S&CJ>AuP7Kb8t#ml@hzqJR`I%sbqAz|!eIr*Iy>HZ<>RwUHI@TK4El0Uo zC+9~Wci$#THimm}qxkI2$84T2CeOqnI(j`^rwj;Xg_srb#diO=Wc3j;TeC+VR9ij1 zn~u*fq%O$*!A=m-(H0SfazP$HmU&`EmBch;Fk@@n7j=tmLLY(NW9T&4cPg)($-P&@ z)Ger94-H0Pn6Ei0?Z?Dnp4oO*=hTIwCic#WtWZP3I)dXf*l}qk6bTm(GQMPsmrLY2!*Vaa3;Qt8A>OIIY@iIMtLJCjdA=2SH3}+YCJ0Ace5=vS zOgAnO6#MI+%B?pf ztQ=j6)y-7&(JKB^j9Bitu8`~0eoZM-eyPN}BoPnm%Z2X|gB2D-x9nQtm6&l`u?xZM zEugkV1q!T1b*H>UG)KQZr|%d+_IF<#m2!=>It8zsm&^}rBkW(?=OfxL#1GfW*SU=j~Y>{YDWK)}2mgJIRkO}L(d z<`?&Jgm%N5u9F4xoGiF@;BtLpZfp#FY_}cgq%`tXwliK2SkL%wfu>2*&ft)Nw6^Mb zAhECOb%$BsSG4vT{49>>jd7^rp8d?!4QX6%JGJd;VX|$7DFH7QsNy>`Q zn0i#t2JK9r7hvo4`27aJ!VSauC>H6p@AOa1E^jr9J+=coLGdJnjOl+}2StdJq&TK& zRs5NRCa;W4{&CfkJgxYAzGKf#7)b`E{8bOo>xnBOgZ_Jhe7j4`Zz5Mq+S1hvA{C1I zVmxeii%f>ABhA>|GoPuyn@n4O7giPf1A7%bgTg(6{E)wW5hez!|&M zJqz(?iI;H5jhrZj`8OOhujTrJUG3r(jjNYu_lU)ORv9FjfHfPhzVMqXUOOS8c zbM~L9CB@pc$ZDtv4Ojg^CMPgQFSHf*7$d`pi{GC(eXh*YrgeZ##W=n;#nfT{qMq_7 z;tjmLn6En6s9^X*$r5qT01k6a@kvs7e|?{D+;qzRlYn~ikdb5mATvP?Jm&Mo6ZUiY z4Y(&DB@D;v7x{NRn+F2Z`*|Tr65Rz>jj~B%`0F!PV0FtZevz&@gDYB4#dkW5OqG??pE^-u;@AeX*Mr@mUZ(5E!%E?w@7Iemt*H5kWAJ?@@&y1L4~_4EFq=Nv&z zO>AKL_qRP~XP%*|+}_VcDd<;5@v>01*oEFu1{xWg;saxJRV_3HJI2TJ)L|h1tGuP~ zDW)^(xwh5Hiw_Ue9~qm>F6UX^GstaHIJ!0A1ua6oWot*yZa^%AyDfp+*E>rbdF7A< z+Hwt35=`TB82AlTk%+D3>S1fF7d|sKHnz^f_D0k6bt($QPk$C7qJszQN%u8V?#gDP zubrz5tT7dqWr)A3V{p^bu^hMujW}l+5%x*3LBfRptT=a@SdNc zh~K;s0+6{su|Cn`pw<{O9VKd(Lt~9{6=<*&jt}pDe(J$@J~66X-b1g}6=|7c1JWwA zM21Z@+#BM~!Ow4u%-CP8s)VZpcOqpoD12KUAYoWYGLwqFrVwtuae7;w&e|g2k8l*biAu!4)s4s&0 zY^y;_So$i!x|TjB*g3qHs^n$5YgDOGFfhQ?(A!(57yIY1N>5V2ALrxZ;S<$+TPaw2 z-CA(3Ez6?rVbcBL+e35BXPr>^0zW&I@Sp8td(8^j`>Ru=T-dT%3~D=I4`c+J2cy zuRGkrA+tTZr1H9iK;%oJZ$}=PUg~4m>X%lY!f*a*mR3e>CKTq05nkUb{9+rs9DWUi zsvjy(hTiUk33waHLW6vh#)MO{J{{pIiv@I<5wy|e9eHi)Lc@SSwfS(A9I+TL)P3$% z^p# zh_q1!B*O1r-!_)O3-3lPb^?$9qiXooRjy|8(z_fI3#OKSd{r}sf=66!NJ|I;)k%`J`!+SWdOEco1pDy6#@%%${T5h9F~wlyZRunH;R~1+ zF(*&!fJp`N^d|}5uhJNLF^_`{q#Z`_`bLX-c_o<1J{VSnz*;P%nGl?%?MdI=|20D^ z(N^_})xPkD8`0UG^2}(fEdkKlpy@SHoa{!&<2yiC&7PW>oF|_bpCMQn%bWL5gkSyY zmTe1wi>D<%Om3VDPf62GHqdplIn!gbTfe7!{H!#NnA-8AMBSPSm(${@*PVJx@JKBG zauZF?$Q*EmPKQOUSmT&De$k)BTgI*_917j=e_Vs)-xwFCu?h!d_C}YCHl4}@{k!>& zL?~gyxZD;`9{nQE1&|xZol?LDK;a$mb!11hl2e898X&2OYI5xf9JY$VlbqjTB|zyR zz+ESDq+CDKD+QH^xcMyEME*XcpnOXA`#f!-hY@usiwHx{!R!9Y0ZDbk_zs<$cE?$M zf93a#e1mL3L#2apf#pVjs?UMec1< z6%@AV_-vJEruhk-p-5k|>epxa3%v0=1<*>+h74v+$z9~2qd!0?;UYz62>kJULsR<>^4aJjx?Vg1$EbPcysBNm zGjxbki0z`8Tsm$uF{>d6j*fCLET)3*q+&sIM8)BJEou=KUQO*fDmFQ6e6U|FW;{rSCdX^~pw{=r^FBsz)$kS#g zPY_aiyMpP#BQU%K8s!+INdr(4x%pi?8jK}>XaEI0J8rz0b?%r&V2RiE#J%E$lA7#; z0Q~q!!b{1y4M+^P5n}H#H00KVE&^48YJsYTupq+*)I!>GuG1eEz6|n3Wj{)iSnWB@ z+itfa9r@^jdr4m+r>GgPX>ZgJ$2_!?^3!s=V5lD3z*T9jJTHC&{HO094_54&kdG={K=q^a%ZYQ%J?|--| zmD0zRpwHSjQ^mW!n{6GbsY^O;a;v?UEfBTZ_ z-x6T_dwu_qJT3j}+pCLsX#{DB3jzjNL0_l2So;|Yqj=6I$^zV#|PVPWWf3VUB#>Wy?K z%w(RRDb3tM%~HUK@lc6E=Zj(f6dx1ScklWN@DwiiqA0)OAV7&YE|kax9&m2Vbd|+Q`2RvFG}J{XG>H`^__H_D~IaW z7aNG2$%V=xN8jt`=5*p%L=J+u8a9{Z`y~O5k#mum6X52`dRK&|%d&d}OBq}p$!hTT z*RSTnsw+Mz@j3G`JFK^fsU!9p+cj{=Y8N$cjpJ}`3l%0uv}XlOOFA-L4!$k2Qb!&%m!oYZ0n>Vlgh&R889Wn z?qd!}C;@eBrE`%haXZ=qACOnV>hc522~rm^r+7>2rc0QaUvm*-8Eh#5Wj1a4I<0&$ z<R1 zU|X$|92IWF!qqPD&JfxSv1COt3o*?8gjmjl#+0PwyJmR4UK-lr%dA(#T*p%tE)r|H zi+Q2re0(DM7OwWqbPij~SefZ$CbyY@Gax38P@eW(9+p|H<-lPEOUz}!$opy(dLhv+ zHJX#vv*VsLm{-Vzu~B?2bChnYisRzr<_>DA`k~Hh{~BO#QA!?78GWuimNFPzX3p<` z-Ep)sMwXsfFwy(JlGQq=Pe?cfU^c%xOwiPll8f0vom$?4%6Hi`^qp+&mhNG0&x0jP zS<@*7xc&ZnPY$K{Wac#OvLbV|^^U;YT(vj;>q^qyZ^hM~9NX{*4>qVCS-WhDkAEck z;^HS4eex`7h-b_{|F#vhs9j)F13D!QWcj=DV!TlqD(o&S!a_gPtc^j@Moa}L5)2`b z!0erBm{%3E@&s!P7{V^VEV!4^yTvS z>Y(tI>^vOeIA*ra$9+FQuPydnQeMAz0x^yg4u9jl*^9w?QAreDzs_U=fOI3J6mzEx z8$ckgG&sz*GcSb?`L9?A)$crE49NgP_J*v|Uilj%RP=Wia}q3&RyQ1nOH#o2QAS&v z8hK6=%-e!-bSxMK@t%t_y#GsZ1PX(xa&h_ljHEmKO^Fyt_+n-%pVk*FVP=Ikj99_J zMC26KC%xLovMR?xiIR9QO6D|zp~R94J_@eF3mHK_=dgQkf+P2JuYVx0^fQqgT8?V3 zAv|%$(un>%JswWnih-m(L1uex?Ah;|DSg5`+bZnJLp!c7{7GdcNB(`BRjGmBhnlDR z=d@L!Xf2$+bf8bCStulCe6Q#$S^`6-Z=0b1Pq9SySF>`hYvF6_dtavgFl~36i5oC`$W)^4!_O!4ya9UlIq zHutZT6+R%h4*0*0%eP#^lmzi|@k8I0>1RBOa~tjZH5I)5yma0=O`Fj!m2V-0Wa7k9 zP`Q-e|9xXt$H>Yp>AQ-zL93}K7rN?>O$i-QK%Lxq^ZN-t?8A)rtKC>VJ!hDO$1dBg zz^1I2S)mq%{N^9R4VD5c^_W7p?J_vs1biwBwOP@}Dq|DEKdYaAM`J3bSoIg%?nu-v z(;Q_i7Vgpyg6q$Nty?~H^L|cl!dHyq2XfTQ`1oiha{RqZY#l>FoJ_W5;-anE7eqlz ze2{JO@Ha!7g4vyK(rOAknmHyDTVgqZ(d>k>%-fT}cQV(WfCT6)F<+QGK=apl^8KL1 zhk@@e>d}=?Gw~r@l~P91gmRj~ z)S}u;kT&X6t}xO{6+!l0$~cpvSux6TXZs7g_};r1$CtyQ=)=qhG7|(Ew4ge^@jP$r zVsF)jHt+Dm4@iAudb-fD%7h6%=+O%)rn}p8TvboO3dEcYvN>vU30oZ=AC7+wQ~UML z381pxAKo+xLn*nShf7F@Pv#Pw2oW;lh&4vjw8DmnUcQ_b;n45?a#eb+j8v|P87&w5 z7=|Zq9v|1}7@)S0K9gK)eXbwQSD_b*X_>QqR<;6zx>MO)Mm`g`*s26b@`E5;{xvvy zIdaT`Ap2lAK`wtOp~=Tg!sJEi%oDT0>Gun1@9f7xRp`PCnWYQlaV~os0d>B=Xmx~- zxgG0Va-8{Z$~db?kNbwK_^5^T1y^|Z*psJb_P6h;tHBve48 zMY=<}rEBP+Q@XoLB_(C(mWCO+8xf_uhVHJRJI==Y_kYfF&YSaU{8;Q+d#!z4*SB`i z8&heh(&v_t{U(HB;}GZrj9cpLh7sui>xhr8Xgd3IY@U_AwS zLFnY>3F2zL(MKcm8k)eC>peB6svQ=P~G@8l1$F_ zlCzDYWJ*txvOi3q&r)q4w-EwnIrK=vnoM8m_jJcTr#4MZ;CvGTh^SNdUHi?g&oiX= zQIGu2u;!)Du{>c}ZCB02x(*FPdsN^Xtm#Ud0ykZ+c-ex1$HN4iSh~IWnq(7z%$qsi zSDd+CeP(-OR#WTWB&q1pMfou>`~iW3}Qn3_UBsJV(^F(i*#u`3hi@=JRNsP(D)lqZ*9 zJsU=*rhllvcF#4?-K6W*bfOx9tqwEh>;C8(Mhx>W_VjzgW%I+QwfjciM@Wo_YwxZ; zRsl-Vd9jV7Vg&`}oXYD{naP~!$`@PrN%?Veze{?0C#Y*C- zTy#r!oul5bC)bFoWJmSBh)Iv51S_V!oVC(9i|vQ9(-9{qFDH6$xQN!8nK(Pup zg>wj1v1MAJ!!Pmm)y4emyP|Y%uj%rewTy?N>JvRSEQ2CsbF9z@qKIcBrRi&Dl9R!3 zYlLfY{|g!qHL&TpPez&zFtno&r0=SDHe^+@(+NNPA~hdKHkC0o4W{Nfm{is-Igk;y z>H_VxAR~zgJVs)?U%2vdV$v&iC_JxaFd~>4Kjzu5x2tYWXaBJ5RdZ)E0%3E_&bQ?i z^Vf|nPz^TkUJoTUn0UYdwr=Dt_dUqXDa_;@6r$6fo zOFrcv8p@bv6Ns_41F+qEGf{e+-0lC6{#XTQ7YmUn)s}+A4+xDQCq4IMVxh%S{7ko~ z+zMfX;^ORhueGME#+nsU(ET3w^+|8jX)nVIt7MfTKw?R0**(4P$WOiDu#Z@T0~Hc@ z4EG2cHP85IY3^1!e11d3n3I5LV}Xz6nF7Y&V?kyHdI*<&>7BvQAb@hXJ2`!mRj7@J zyt%3`5**A1_{&cL-zshC-m8MK7VrSFqWQn2@oYh_>5U`TA?F3#QNnad!F;jn^h`0j zFJdssZ28$WJV!kq$AGj9eebmnJO3u&*Hv=R((aV3IauwakUj)(g3O!`SmF8CNs?uF zrMAlPeIm>7sS=&{%QH+Y<%I7hdn}e}4JJ_aNnI|)as1JB8jCA!Dg`v^wd^1FJJ9F+ zrt$2(Kmd#mNZO1ji5ITk(YCH>PlL(h=_FcU8@r5)7$kXQaYSAsnRjzqs)@If*!gog z;~_LV85cw2QYeV1SvIy1F%as|b+!oT^@sXw0=&!G&zBeUe?z^Oz zaK-^gO!zv?-tP3m()cPlv@@h8=+UJMsA?iy2`s)npBveG^?$m%-5M~7&lTDRt%Ht9 zM1c42r+Gqx;Qz4Y^XJp+ClY41dl-ALj>{&rTa8D~fOqpLr&oWeXXC^J?7@_$EhN3i z0$6eOu)4kmyAps0l&d7}(Oy0HfH?jwi6h^sQVa)IRm>Xys@c)Ovrn7@n*uUkr^QSB z{d%+N$@?95KDKh{*)%PyI~c~Dbzg&1Q=V$wpb9{bb3S|wc|^2la6$@)B6JAXBtko0 z*VN!4xN$KLlqM(FdhGCU>s_w5KSh$r;op4i?Q@2e4?oHPBqPzs1#oHP9dB1{YBzlxRRnAQ!dCa1;|B* zhgh1m#zr#ko0emgS@_M>`F(_dr7B#7VQ(+OhLmnJ^2al#ZBlAFrN;@SR7?1LK7vr6 zVL{SU=%;IKB>ak`(Gz!*pz$%~>C*?H_!H4zA#bLQ=<=+ZRKWS;OKzz7LNo@^pXm9o zxV5?ckid+=3^aVE*^x8~|ONF;79@hw10uAN&pybS<5jw$iLV@~wE=VLp;C|>g zKrizQHN&np6K779&^|Q5?<^Gggilr;0TVg+h99*vIX9hy`z)pa244G1^gdz49^y3eCMTpp=1d5eti0 zW|gGu6PKP55nuaB#FP39eEss02Ppw>`c;Dvx1pUC^g@%C?)z;ZNU_X!5tObC2W;O9qk!Pkkoe4QxBq2!H{FmUHOB9Zv)GtKvdd zfNiT&n`1z*No}V|c=9RtanPS)-xUsCe@b_CzVZ#!`Srvi6f-F`8@Qnx{YSeHIp}#k zLOWlRuvCj)J@}twosPJc(|j<4#o`bd03LI=0<3dpgQwTXY-6;hCUEmijBU^v=8?CSas-wS~GA}(9 zSz{{Ef+J@ zKIL)oZbIZ=_({{0q~-w|^Ts6++BAQ2fejd5&}CwH5A9pGN3S-~;!}whPfk1+{tGAQ zcaZYU0(?SWI{Pp);M~iV4pG&Xh+q8l!tm|jZGkJlhsOWWb^V1Uj{ow#?uGrU_11plqNGl|d zM0;d19HtZ!1)=0`XVOq-nC|I;7)b||JF2(Tdj4;O5)1(=V?Fgb3(kEDQu7$v2 z4$st>Uhj{lf*b5=xQaE)BIW#l_|I$GrnkwTU-X?8*xNQGx9K%)S@C zf(it1ge9;fs#W!cRh*pU_kFZ%hM-|W@4SKdOSVUst_THK(0iWm0U0%#UmskMMh{4_ zp(|x@hN*pxN}cLQ-39>F#2gU_$q^KsLw0xZWG`>41UH)Cft!Fp?MmC#-NzOGR-a3y zq_w%zZrNwYoQ(blq++*RB9p<^!!5loB%k9CAk&|ziG7rVOl4~Cj=*PnIPz+xlG$6R z=Npk$Iw4ekdhU86U1VgFu5d8$XA3QP-QLb0{H28KQv`q$&bF>>d)+7wqsBj!Lq&R@ z|0t2Mh;T#j`PYejCGW68c6_jPFU(yM12Bb#v_&6^u7pgm*9^kMZJ&Ab+7)8d{an4r zzsF$b7TZ!1abPuZ_s;b6fLX?S-=qvyn&NQJZB8dx52_ub6NBtKbl2>Kw?sAc^f_Bk zv0@V`eK`0>x@3OWYT1rd3LBZ`p09RY*H}calwu zPL~tcm840k^*{a=t2SaN3q}4f2kc9yg*m*zdZNzB=1Qw_f97kwrPT?HtWUXGLftWF zro^C-vPocc(`**KAiwwIcUzp04P2*8Ft$@lsBQB=nw6yosL=we2N8i0H-W=R^3o(<6C2=0aNuDMO$u0g5WBn%6yVo?B{n6jh1BklbO^4f4!@1JJs@S7qpciQ<+6S z2Jp;xFIkOUev+JmQ;n7f8P>_XCrBy0|4ItOnA%dB4KJ77kJnfXN9*|RK~u^4wif=C zHoVo1zW$zV-5N`&WhRl0pWL(?k$J`Nx(Nsg?${lE%#l54EUPCw;o2%2F1^QN(IS7S z;imPF=LU#XJ=Nu zzzs>Hp8#MNZ-g-{`2I=BkGdK$#$)^Y)nrtZN21%N!fdQO$u@?ZnDd) zr~-g{V`fHqcn(;%H_5PNz)ynsT-1(M)?*%OQu0S7vEr?JKAFiqyoE{I!!F zS_ah#nHH1FyO@WOgIc=XGWUM<8`$8aGLvj|7W{{AwBNLWhh0kLfOrpj1vUDU8kQm%NE_|rv)}&ypV}u2}sTVy8tQDmkpSg^VzA34wh6d z%-6mB=Q}wxq|kqnG90LA!=vi}6jLH>H#~_aJRTA22m~+iP)S6UNW@@W0MH|rd;GPU zWhxMAv5!9lsi}}YXmB`j52}@p0=vs}TSh5RWk~BF>*v072hC*Q2EqFeUFzNMW@ZeBDb+ z>4OGifNAL@)+NKVo9bYC4>)VL8`cf#zC^qShKqGAvq>p|K`+;?y@J$qivuNIf=|!f z;?Idow_C^{)w?CDEG=>G%i!vtzJ@EfBUw;;w05!Vw>EfbY3=tZ2qi1CBYnAi^l$>1 z2*6hd*cAG7E*(HuPc^F!%qhq68M&UBJk{-XIb{mhv7@kBX(Js;+Cm4f;M*KYsnR7w zm6)9`{x`KLTE|ge^1k4y?EX^Z(`SgQI!KDCn`x-mt5qY|2ORJ-4Yb;L}+@z^KtbGC)<>qvFMwR!AhK z`g<&p_K5#+F5iAVex!c5^W{2AF^6=a5b~a)pBOTB?)!C7L&-R8&RTU*-U5?UfUCtw zOQirG0S{lyfC8F*=>q=q-re}?3v4=a^5cv9b89rDpIK~sfCE8%Z%@P>e~p3FrEqe{ z89EQ)of)?FdpQZxtHggE9Zdg&q?E&E^HP&5 zJEa7=2Ee0ayz0d(D@P?0W5f~+$YAfs(4_O}hW^~F-7g9LH>|5VrvoxMlDn0bMw=UB zl~j2kse@wGno+KmM1R^&4v#-tki}V}{LPTj&7@;AY+^7va%ZSZ55EtR62Yfm)&A)a zPph|I9>{|V#Zip7mxK$=F-@B8B?3h6ElsYs2_2)@_sY{j{sgD{ZXD$EsK?7K`{z-x znq}JOXfew@x#KpU2;5hpG)b^2ad#OfAQS${GL%}FOG6f`+^l!-?KWllAc4x4hdX!i za?{HA@;NFTf16@x5L2T?zs8!z^W#8@aHIsx5x(y;LVmo0V&v`exS2f4L#78pjJyy% z^!q}ZLu9V@#d4pBrH6Wl=gUsP+Unt&iIoQVbm`t%QkjKq$n0m|uNgL@LEOrE%{-F; zX!Pa!-_Cb-M-p?otD9ryC(qhA`4RKJEhhVo)XN$W9XOQ*9nUKMf9-Jrbu~B05`e%E z-odc(5z(?bvJ%~g7SLyAL@kq$uk*fmXOH-IQyE2pn4e{BZd*rPI4OS!EiGC<$hAxk zB@D&nvuIt((rRi- z1!V9^XleCSFaz4eag@i>n!={I@JEj*Q#-*#Yr=oO-EKssmPX6XsWPJft!%&S$cA4> z^>k)F;7*ff(k@(?AzCAIHZM5={E~b?uYH z+Q!H8p8{4~2Iqg#K1m-9>O^D zagJ!k)B4z?4v?t>w&}@h-f=Z?zFAC}+FBdBXjfjxfXwgzZ;^=jQj}T9uNKSIM7r_B z{Ki_Sm`m4Cs%czepMjBu6pvPFBv%T2M>q0v?|Q}v|GTG}gty*RSh3{d#NNr@AxV#f zAr;H$_T#3pwHI;p`>+N_virtLK3cszfU;!YTamm=JNvZgxO0CZ6}j^_YU5{?A1T)v z8Fx6oT#I*CW7y@Wnm=504@i^4M|K~_e++OLj`&}}gf^eD02L8eK{jETRqeCM*2Qc_ zf&woCyIsDvs)8_KL$V-EQT2@>2yv%WEXPa9awo`cz^DJ)jjq!25LheVimb%S$Q{XQ z9}bVa@?dI4GJvW9iapr{=!Vo2CiMI@KT1e}88w=yoCyas$;1^^9~@N;jBe@{Cx_0E zk-nfvh4814@B!RiBfgSB%HNq8URpTsm65F z7y?f4l5E7RM*aJUsAb2lSS0!GTe!fz0a(yq0Et1pG)K#rfme4iirrIBG zo5f#Pz1D`;bT?ALf9wmYv9X4ds(p=+^uWrd5yeD4s8W<%Orf9zluEc*Ncca;1~C4f z1wF=Yy)sGx8g!SgcP(z)K<?V#V0Hri%=~so&yTqvjiT43S;Hmr3#kLqZ zav7Cx-#F6`j&dsk_aV4*mFg#pxwwiu;PH@ynBnBnq*~1X9jIN`0waQHjpx zhD?=+Iet3ps98iQah$2|bnkAF&b3dYg5meS zG>VD8+u9G}Ur94u4DB&$J$&D=4cEZdTxOj5AY+y=Yq+MyQzVfSiAVMRIlXU>ysgfC z`smxC2v@qoj?Re$g*xG)7sYaM`8a5G(T-rWGM7F#P{Zd>x>2!LREsN@yT2Coz#*hN z;|NV#c|Q8dym6I7r;$&YACJTOy$aXfC*|LwIIC5R6j)|0dmY5b-34#|r^6mu>p2K6 zdX2UhB}a(Jc!u^Fu+Ia;GHfVfjB_*2v4R;5>5Ez9|34P2%f??Gx5P5w2SFeLGoE+69^8%0)T} ze;d;RK5LCyw&>01+tE`=JR;$PjzCEP#Njb;Ygq1|;WXZRYToM>wtE2=Q&*)%S#YsS zP;GIfE3fkAiA+nB;_%JnHgFGXpN zla$eirtz%7bXz?qnF%2jmwy6G?V8>!K;R{KO{;fsv=k*b31}eD<$9H5V)tAwyz)qW zbyL>gmA;L7W4k4oI}!vK4mhY>>T{;EI$A7qyr29Fq;%lf1?+WfI&EL`%xiwgwb$=E zlx^tf<>uVDCE$_`Y4KMo02eV!%RdLxO28`AnXk+x7ZZ?GtXn@JNa2KSyEbrlW`+zF zM?L=7$A5bwlV2=JRLk926V&+?z`}=@qpn3C6X!%IRA;=CwA~QdqYE9zda^B{a1f1L ztqnZ->g5Um2!8<145e!ydkfck6Yw9%p}nouAWQt`*V*d-7yx3nu`d?YncUe)iwFJp z*CROr59Uw0N9qR2LcI7xCNPude(6waI(un~2jrlssQtakk6l=p|EwpP6X$E>)AC#? z6DVb}vXy72V|J0m$+){tPM2o?rfW5%+Uo4r0cz)}!Y`Cs({Hx09th*kNRdK}s z5k>(Ie#hBuzw(sc{ZJxDzmRL6(L@8jb+=jV%0G0Ac4goHdTs-*f&bq5^F{Jk<%drT zIEs{8{ljQ{^o{{L&)@A#Fi;`};eRy$Ie}18^RuUo#>Vp_F&+Q8JF(FkOQ}IlyAS$U*501k5y#R^ z#a-p6+wL-)M*6BM^Qd!$DDHiuospvw8YX{CPzLfZ)8ZlVMdA`~rIKT^duw2;UNM(G zP){H2e{_ew{pzB84P7bIAGH5H1_3$kIR4|jhqMxJy4`v+C!5KqJQg-MTzNc5ulzEe zUN3c@!evcs-dNA5C5f-b(H+_Qn3{gPB1HRaH!G&E%X)%dDt3D+I^Oi7fANc1s-9|w z8e3zZA@k|GzvTw4-o^ujMTN9xdE{7{t(W?3fU#%zUl`;ca)2WOWOVAg{tCma-U&W# zm3)?w#OQrfo)OOTGt`MQoY%a-3B5QOqU*cYvaQzAm{p`7(>ZsU7Zb!z2IAoz$Nkb3G=!*|I=7(M!t|iofzezlqdMidb_(> zGZBaz+4&c$DuOYNN2!xQnW+dUa;(I(8iRQ^XbpJz8sin8a1KTx0!DB*>WP9)x)aEY zBDok?e0_47NsjV;`ri5;?%`j%-FvxeaZ^mL6GJ$ybCtRauYBhDq~?O!K_J8esVjn1 zn8i->{});SRLRHCf=4mY<9;@rNTpfuy|4pfOF(H`ll?-mrs-Vr%j38;igY711Rd3P z`TX(Kr+O`O%WlB95VZD#$x=*|Mr)y8b3VdLb^b+K>g@BT-yqfX4u73pxh@~hoC6I_ z2PK7f3k@T#wTMz{jh^kfnjrNMEF)8{mJo+IT6)N2nR_?u2mh{)aH4$pc=UYb`hPW^ zy``BD4G@d2{+Aa!AamA@3z%-DXuNSTQW`0ElxG3g7_3C>ROiOvcxwIFR&hiX?pFk} zmx;4{Mwv`_yS=z}p;y+F>1wUtYEXbNq*OZnTx=WAt@Hh6lB=w}UbC%Zc)DrQL4Qz74U=w;Ogq^K-g$PmasB6O= zi)mmTeS575Pi_MlH9SpY9`E5ayogY+bC@BhC$b8q`2_$h?sidxz(7OBHRnmr){ipQ zmhp4-X~=KLjAej)AAS|zNI4)(+ZiU;dZ@oL2l{TrSyHLqi&>&?L-+*Cs}AD#=YKDa z>Nj-cc(b&CDpA>SrG3JL@Bw@)bpPFKksh(ii88B|Tsm#72WgMtk{^pkx!neXyP*IvIAqapNY*f-{F90U4 z^&fFRe`=d&5~hld{A85t?UVaqKw2_VL9bD%@7F-u`T{G|Qa0ZbaXS@tbz)Xfn!mvl z!k|Z$vPxX4py&DF@wxinrO^syzDe{~J}Dx%^b030X+3354quG-Ts4*DrxycrM~p&W zBF1kJO^?Pl85>G%GGHmLJC=S@E81NSn1EDw7KLfWj0hmamGQS*9h`~juIfqvJ0>@DlroSxnX`P>pH|>Euy4H@pY_EKR%?6I)E{$DchPc>_ax>$$^^F>g;~Fx)6X&S} zn0||w>i9*@Z8`1}<26lg%@;-k!lRJao_xDwXlp9*ze)HCJ&ul_!I<f zah=cxA|%zX5&jn#U*)R?quh{l^yK>r9v#@-<1&-qlKQ3X&sL0U04UQ8el4|gHpnz{ zeD};&=g2o8c>l<1`f{7y&CjOL(zP)f@TZUps&F`&Ko*in)wd(-VD-M--~})5angFB zzHy@XO?qJGWG!F&6w$E9&Q;=ixM~mhrvCid8_f#>9Lf^wH(aO!?m)*M3}ny#-yJ_7 zMZ><)(Qq+6&;dNFPE1<4hGjwkfYfBv)?iBKJDlv~+mgK@r=xNEiksi4bJck=#h&Sm z*BE|RwdF4X`W##{M02(k^Pz55{k`E9tgLtK460B1i$aRp@~GewDu!x72I1q32YJ+= z%X%H&r?_Ls(SiM>!oI;0BwEGo-PCxC9hqFb(OiU$OwNS4_DcG!gCa zQKWva7q4DI4|}YBKqN86CdY{ zZMVAxY77MAcD=Dxhb-&F@2*!pZH*9weNB0fSrCAG0T^litLIbLz~QnLfVL&n@BylN zn+8OK6hTW9418f6H*%r@q)=n_SLQZ2>j6i>_Xk;6zmnvMX^JC$ZC6tV<}A_5JXOdC z(%)_}JG}dEJrnUK<)-c*rkhSK3ww8uRx|l$sbYI5pS+2GiYG4eB>q)aD8H<HoOQ`t9oB?u+Az6K0h(FNHK~XD_a&fdQIRaW!uRC#;a{H9i&GiN*irYT@893Q zqkc*G<41D8ywgHiVsNs&S%yqTLtn!tuhgH6-=aj^3l^K-X>4Lh!(NF#A2F8xrT3gX zkOxn%OIzi4J0T6l4%ceol+mO; zkdU=;Z(O}JwhZtiw_Z~&F$ca9O$&pr^bAtZ7gglIY11S*dtYEzB*e?+dt+zqmfNKV z8H^9Dw>Dm3KyQAKso#e=`+dZo{dPrZw)n+&`I|ypREvYqcU~OPW8K#{+2aqDMT*LT zpFfz6p`*BW2ZfRrd8sj*V-o#h@lWrJFpjQpE0M?-jf-iMI=woUv(OhgpLZXqq?dcV z9^^L;_@d9r6>^x{zWCj6vERZp9CfsZus$Y|VT`-r&!<3t2U=TQk?mtA9pxaIVH^~B zqr3LJnd84$_B~Kc4;R?x>q;mw-EB3AVq*H{6uFy+AzMKhrB6aIi+(SI0vtKB7 zxTq;1tQh@C0+_V#w!COo_X~^PM^om7;jLxi7%NMFI#krdj8rRZ=0}U<-6x7vGGYSe z^#&3XLBA^2EQ_1mhGB;?Sh}p=tE8|t!av1|@p!zB9LJ?u-_BuUU9OnfzKE6SXXJ4# zi3yEc>diFnTDsb_#TBwE-v)i(k_=Dhx7L~S+ol5EegQH~ro4Q-*MS*N=Yn2|hGG@o zXbIiNjmI8br28toziYTkhNb;=lS?T*=0BMyRvGM!#1y7(HX}mllr1^$2KlgVpru1I zi=l^Crv`^DPwbC?&p-Na%f`NQQ{en9Ssm!!I}Iv~k-+{@UlJJZcPA(xjExk#Y-}-L z=AssCl}a_%f+o$V*ONtZQ#4&icCq(O8e57Z2kOv)sZY-U60q|Q%w#6*?Y7tZ4H=h+ zAx(LIcu_H%%KX|}039o&eWvE^#!wv_Q&;~tRLI%CZvy%6n?xyr3GE)9NcspQG5w^y zWNZIgHpOMhEYt9{arXT8Rpi6l`S7t9)?NL}DznTSa`plVJgh&Yh*Rse zO~5L49+Qc{Y7cGFcO9{cvbhP|$(|th6q+c?#*!}32R;3%4_Y(c)KqhEb#w?F8DC~99AEDg271_zNn zOa(akD2Gm1EjiK6IRqrWe7I(~FWncWQDWW4NAC7rKGJO=R>2|9dnz9?PVtrSdaa+i?K zXyT`1tY)(#-Xn7$@eMYR{vEhGLf>RJ`_a{km_m{#iL2x+13%llabF6(FIf~5OP5D; z(4_Zm~nC@T^siB?(c4FR5T$;n41X2HV4fRP|I`QtnW(T4ekJhp^{>+N0_r|zz{ zL=eq)-3M7KtR~MZQy6hRaQI)5zklKme5}Y9(&y$5J0N_0CN4fh`+W=LcwU|?qtC%3 zyL|63lcGrfI`C{ckBD4jHGOH_OqW1J7(vb!Ks;cQj>CW+j4)CA2O~8_OiRqn-zWZ| znr4pG+p#-qJ8ci&go@JpL|Ia=aVIFKE1f472@$dV=dq}}mKV+zxxTfp33rr*r+!~` zsAvi8Y?rsS=6}*kCP*DH+*Pmg!SMPKhkL2|fY$KEH)6XfkpQns;pSr_mSfP#Ra;pp zwcp4$yG0kycm0#Dv~(4~4X)QMH;bg&`+D#Vnfu|^oFw>(hVJX3LI$rYNKdXd%AIJl znU3+>W}pI)^GP8e03YHs>BSBy>ZsvWRyO;%s!4Q>UfysUv2Ofo`<=0U;36s+j9sTg zPSHWrlIxu`I?7jjaHv!}1~2V;xUuK+EY1$2q^^Qwx7{@EA5@eNPfiu9f!nt^2p6s0 zYVqF}&(;>HuD(k(T8FpQI$f6kt}s4yxfPoex&-MH@rQ&nvnL77>)$-wZ3Ot($+AuVjSKm@9Z8L+8sGaz^QH;QVW^22V(ZUi>`*ON{6^khV;kS zmb*mS)eNF-&w5FH9oJX>Uc9lHFh}~kIVg~`shm!~PQW`gKM`lX<^rX&Rs4~O*x0`S z-@E!fxnCuB7e-IL_J3(Ed+F~kA#r9iyOCX3D705bm8~c%dqd{kXG_n}P4QhM;jFIJ z`he?+fnLa{%2X|r68K;}v1D%^R_;<1f9y2O5yWQflUqQw=~nXP!z->x|67XD9AE>yhT(Rw zMvMu|haPmS9w~#t_}fOItiX#kkbYKHQvarSU68$7p^@3x;@o$?hBK8(_q2@+sl#Mt zIn!t0%HKB(q23m1#j(U+KqiS0s;{an>SK9+GbM33{c_V-M?-YJ21kk8R(!ttH7@GV zlw)M1m`>`2(YzU|_cL*xznbvn>2SZU{FsX@OLUm}MEcRD0o>(9ZJnxvop0j_>&}SN z>4K%+8yoz21D;wPe{ZeL)Ve}8cbnk^Dbk9g+Y{UPF1B(_TwGKiA(S?Q_TWLu(%djg zuT*F#0~2|c{TNHm6(aAdHMgZpwK3m$>-Tr!j}YmNcd#C6MY{asFkQ*Ff({$@9DlOc zdHgoDJWU7@Ro_P<%mwlAYF?8>Z#7#a>wLJTq?)eK9w_kt`HF;+;PJ3DMwFr@s41pd zV0#CYOBbaIhBT55At4jATw+qUvV~YLrpgVp-VxtBa06>{NfIR@HbI(pH)p%WSL;ee z+Z6>l9Q_PbD6#z@7A6u7{4KtqAg=uNq$Zn%*_WGR=37YD7=oEV-_W?mIhzeNY~0l6 z0Fg8F%@%!0c{-~If{iQAb(pfD)S zahP5|bY*t^rMO{rFcc6A>HKJ==3^{2EpdYBPx6Z&|yYAE}h@>SiNI0+(%ZWgS{`Pr(cd(F9;AJ zZsA?$ie5m3&!4{pdoy_5@4|v&_o4<%0_PZQQWsG$a7DU)cL=)!Wscf$hLTaIZfT&~ zrr+;v#lXKke6Cu-hd%XvnKrTgZx>08RY}${P+P8!)+d{@O@dDU6#% z-KA{{D-K-lAW7T7;GarTQ~tHgI?RC@+w+SRw>UT|H6Jq%lO#I(Ggn8LvNP{R4(ApZ z8g%yW?u&-o{oiPg4KsC47VQE72myDd37&>vZZ@Pc&WsMSJyFp2D6^L%>~(HwoXLHW z1CZr~Nb$b8HzQK)a}xE^!H=s|-q&3|w%KsiTzz7NE)czZ5m3q?aHfV%O$iv*L*41kg zu;iOqtteTK`;Gih6kFU*ukwwO>z$q0R`%Y7eRCgQ*L!Ot49?GeI@=)y8}H#ggXySnsY z-3Xb790 zhxIlIzh5)y)#~Vzftb{o2E+X| zGh`W9x(~%^3WqvsUe1Bm9;pk&?UAykdEfP#3HE$KAyOU=}n}sOBy~M zuWwWPSex&=vE&1zpeuvDom=y0iW?TVbwpy|imUl8GyWQCv{IdXW2mbUpHou(X2xHk z2R4Wk&99v3V3X%X$@n?1o&y@vNs)3ra1-N{{$>5AoqSH>6B?ktYg!?@bAqYtHqyuG zjyM)8pK45{?el(Vdywe&7eBTMd`^@2l8_L0XD0=Dr-WpY!`@3<<#YS`w;Amq4TGAe zT=R7F8GAO*PD?-kQmpbQ81L)OMk~~=iJHNKU9FN3C7Jh2D5qQ-XC^=)KD$pDsZq$x zaB=%D36>Xrx5x0l#;$z{^l|gw|Mjtf@lerwy%64Tbf|;VTRfg&q{A!Z2ipZ3vo&e& zKq*2YFxkG@T{nS8#Y)Gwo*dP42{K@Ii-E8gyk=<2XuL&+s+Z(=oxwahqflbM58W7i z8vJ{s=`<8lZ$1~2y}NXgGd?-G%hGqqpI-hM)k3>qp`g{9Ox<7%XMEnxJaN)~#8vY` zQsBXLG$=AJdf@q={Te-W3 z+n%vKr)Y#qAVq)7XsN9HXTWXwCVH{3yRjTH|C-oxR+O!-mzw4MT>vNX8P%x9go4#i zI&FH!>Iz^ow=O$lH&<{O4Ck^W$3?E}-mU9XV?{guvPQ??oK`(8K zwTyw)n$6nxWR(+q$Af+FKpZ79-BMgUnTfb8&0lp%|C8EA;EFlN&sX=&xvH6XbTpT@ z&LY*OPFyE9H{v<|i~4X^qM&_&N>&6d5_!+8_m_#Ynu}SG|eV{y^uLwe&CIp!%F+q#>GKE<3%A@9L1|Y zJCATMWb!5ZyN|`82FBen>wntu>po;Ldz(v5Y;(P}s+%d@xAVkcu?5?;``2)5NK|v{ zQ@(6jhg8>78dS>rBkp%+XX8ejmQvv23_d>U5Svgk4T1t%dCR zZD$O6Dkh7z`G|!8n!MIO^&LjJxv6I|TL;Lllq96XaCh=oP;~iOBkyXcuZN3?9jd=M zzdJpp2bL=A+;mGRXCNFW+dOtZ!6N+WV;z$r0FIOqSkq!PKXng-aE-?GN5HJz$xkR~ zJU zIP)}ae%zS9;OtPLzqH*E6a1{hz^4FjFWNCNxpZj4V{Yn~+Ie~6X}LK;DNyy^Ox8yN zc&YMH1o8G#^9eBkKk@Icx{^$mR4us>7VB9*dC$-n-j~PmY__WM_i1uuwxPGwQ-5=B z_xkC50%_FEa@95@Fy<|mX(>8+U?@kA1HNFCNxi#0q~(=_3kgX)aC;RBzUI>buaDO= zE^pxl(&(FIsgwg9jc@!6 z{67Xtp)?a1i`Kt4d0a(AaJ_xoV03 zyL0(bg+E9`=Z@SX_x4Bpy2KdrwAPTIIR#DE!iQCcq$h1AJ=;~k#9dyvKTFuQ(RnH2b9}P9p@vB01wG_1;bkpbx7M}Sx7}V-mS}wUfJD!%O?(VZTF!Sz@@OUlu>q{zw{mEfY61|uE zWR4~yD9yJWm;y>C4owLgQs0)jSqX%2m*xTx*<_Qf#8|~Tb%s2|G*WWkGG8|V+cJP3 zu?D;R)Lf=7v%a7`r#1Z(dhGd%MBNkW*Fa;FYV7%qgc)&N(RG1PoJk7b=4MRaQTB|y z2=PkAe*r~@o2O2{%9Lu%L05F+%JZL*EH5cV&V4vcQ5EV!Tnk5<_lxWAw9)RZM!I=l zOsc4Ftegz#k)Yqp8n%!`*?0M1(KKS2YeiRzTv2s+`TuRhX^ln@;XJ|+($OkF+4%A0 zabaGmPKeA~fvhoz@7o^myH18?FZ0|m%eJ+vrUgDSkhYkyR%P+$e=|vUbM!jWK znh%bAv2Q^pz-WchVueH(Fv^PE8i-xMC;}TtN&cCRu>*j^Hz5IcHy}nmtH{=OS4mS88)8XCRJ9%-BU$LYFXE_o;DP)1h3cA*(Rdp?$^!1$yNh@q83(@60YBNnc*Jp z8Dp+(%;cPZ2nZF*k(?$FnrkmqKA$8T?ycp0dx!WLG#-`KUHM55Uv2Dyj8dWO8FKq( zH3}kI!zvEs8@99jI6F_78ox-q_2G`Kn~QEVWpcejjcDY@c{uvfL>8p%ZeDv;WpDsb z{#gb<5S6F#kZpzcV}g>xpGQDoHexIrGMi8Q=B(}*zNsn6sJJEE&b9+qR&h_+u}Vc@ zalEuZk5-xc*xu$oj!kD*AId5ww~qWR2qWGt|I#Qs!CHOyhelKWu)+2fPC5~<{$yx;Us$!1BB%xvGxzPzKQ#?kd*lftSmx5jJ!cuf=Wu_fSWLEWv(pwkw=xd#d! zxtk7s)|e0UyuM?iC*ff=DLwJ=tUmQ9u`h1@rdsF!{>87W7znH3hW9T!rO(9R6n*$k z2@Pdocrm?r>#}llL8DOCiFAI}7Oekpry+luv{gKcUzdh!V{hw!sq!FUvdy3c+i-+` z)v6E}5PzC}t|e@EVRl+C2l zp%)l#QV(>2&y#

KLoru@>(9!}VBJJqBV7-L<)<5m@Mi_l0tRFwa zB09$mZM`5i?adbovK*%3kNBxo{>df%gZ(T}CG0TzJs;G{8C)wGt|9av{g?sx~_ zgDDDCJ7>4t-=9{B&MRzblX)cfNCR$?KcCkBJBTa8tN;DrezrUb2vU@<6X*2?fRAP= zJM>O@fXTN-=3I1biw`)5j(nKsdu%Z&RzK4BZHo<{mS1_I!v;SNP0{L;DXJ$V5`3Iv zd;Jj8FfsZd&sJd!OMEHyx5{o#Hx6j=eLbUC#I@a`FA-Te2n z67KTWrq^wsJFSzH8O;PP29Vw#)D2~gPd@XLGW+P)_VwG>#TXH>NHqSlcVDt;i5FTE zRi%`?nf1m-f)(GF7_p!qz6dB!EZKE<&y^Gj+x?MD5Z#9=u3DCMW*Um^?E$d^D?iE1k9je*x!n^7fbR^cNh=cD|zb5h2;_4Of zBXA@(fhqYpKG2c?YySoc)X;@aoXp(Zgh-|I!PW2a(BA%Uzhpf8{A`}iO32lso?H!} z!4F~M<__@sii9{r1<*zpe(_(giwm~s`cSC1c}_HGcvceY7ZDz<_A<@(+{56MiEQ%B zsAQfNLR5p*JL+FH^}Mr}Dc670_R87_TOvup@r~cmcpFWLq~z*U6AeVpjyWwZ7KUCs zqf`G~`r*X2lbQJ0|J>5So0akHH%^h;Fw{09L+FT-jk-?~3O>o3v^O@ws1rp_4rUAfX1`(L0%cI`~IQ zp%rOcTdfW8KLrFC66pe>yS!JI6smW;_--!PT+2H>QA?8na;_I23WIdIRDOl4S-0Ew za5v+Ir*Da|o#dtZ@=)L}ge=@_EjL8-l;x&!6YPk*bKH?&x{rUw*un;+Q~f5W9ma@s zSg2@t;r!Q-BY)DZ8OY%l8jXWO(|$j};3dI( znTukBB?%qH$5#V`A0}SJ6|hTZH1l`D>`@{jSsn;*g+J)SRpmYY#=&?@~ zZ7_Sslw3vqcQhsK*s3{yIk~WNvOpV)!ev3X{d;ZNcK6D@DIrX-RhGbTgwMG}FEZEk zw@_h!tcQCq)L4e9b%$E1+b46OG4VfrcywW{M2@@bEXEuGfj}LLsH=MbZmk#UeoBE8OSJ@!}wN zKVI4ktbAS^NxhD6$8mlQ#n4p5EwT9afX7z#{%xHD=U%Let;exU7>x(FnLx1mI?J*L z?!=K+{3(~<@(dG7SH$;-)$SAlnp-B;Pu^V|v|^eq-@{;2l&}$r!^`V02#gv?$Y}c0 zGaFTc=NIwyhvlGDpCw`P*lZF8cG*8m2A_Oye6HpH$XK>v_au-uNUbay<+_22uwQK} zejpcWQ72Q&WFtq@S68W(aFk|k&NtDKiPbq?t!gW&f4Cwp*_Kt(P;e}agrk&X)!Z$DtW8tAC$nQP=Ze` zhE3GJ>a6@%RPvGd%-VLTe*@D73gRA#)c}e4CfYJyK$-y6FQ|4-#m9t?nvo?e=R-Vi zU_qg{<;Od~W+y8zUw@Z}SY{y<_W&`9VmZMB-311lZ}kE?ecsD)xCR*lSts>MVL7a!8uhhr^S+#)iHQf&XI%`});vv6#EqOAIHOUpH*xv|Nz6)D0J z&JsrorM_h%I$F|@R7(hMadQ(DIM`AvTKlc5q*U)&m@+Jp&T|33XL5_o?Mj%v|Lc1H zpHPaCs)o)sSG|oUN5cuvNQ<3x&h7QPz z6O{uFhlPQn<#6lw@OEz^2Tm+BH#NeMP|kFfc7p*?(>}jY-i8}l{ApRfmK$eRy5JsX zuW^g=<9?@UV8x+U&y3DII&kK6@Kbq4t)4vNGEHE)hIO|2toyEsP|JTZiAs--4mJs; zYqPU_F8{HAl>GPdtIbUZ>Mo5LJ&~=65N8JC7JWoD!sEW(pN9pmAzL1tEQvKjOo9FF z(#}gp*kI$YV=PBu33-2V=ttOme_(vnF4ByyoiyQS<55sUU;+P!*0In}`Y)b1xq`@e z7)CNpMODkKMV;ro?%nnRJ0pQmJe=aUjPui50RwH)>tDY1Ry8$g1;x>|I7@2hhsqk@ zRkYtoG;hwPcMZ|OI|n9}e*#*=PxBJOQ?+jumPvHeWmCcEd!=`u#$3Sz`1#b_hm$>r z97&_*J}HW31#Gq_Rs_OAWHg1(WvF7(V$&2KwH!jxas@=b?b4!#4CsT##$=NKDu(*L zBiuVM!-Ll4+-HZ8ZX)rhet6vR_i)XI13@TCV^PuCAd@t8koVNF(O)ilt@&<;oBTX{ zR~u}@-3BR|mbO9dI=Vw{bJjS*Bv&2$;dCbDU#TPy4VQg$P4)NF86kMDYva)6@>>=d zwBWH*nBZly+qM-V3p)J+xf&8rEx=57(!scyI(PRF%PtWU$3Blt1Qa0M*Z}G7N$A=s zA4#qs5VvOQxZulE@MMWd-w%0MMZ1_0G8}?$gVz$1mOahV?eHgs4Hti4jIjF}h@<3N zOwW{<3n~`F&X-Ks*p%*q*S_0w%O_g>D93`f^26IUiSpls#1|wREz5~@XEU(fn?2Eb zZYV&#<9ac6(yA?Q#wzqUVNy!8l4L((>V;`AW}i<>??UOlnM$PS;7~mImFhK0liIe| zV;#+`=U1U;Kvc=3`wzl_{_)~-BkJYlD%T4gpXbZ83Z!NM+Xx=zb0O1ZzB{~)%NJ~i zmXoyedBCud2}^-RQitnLx(dQhcP#cdYl7NdG16Z@D_=MKeys0wj5=x_IE!7p`M`Xx`Ws4=!NiCG9Cc9x zb%HX(x@olZroEA4X@s|5BmM&gP?J;1d~|rOWT>_neyxb#U0F}+U6{$M^g!f=o5mc! zaz=LLh3_nHGp5a*<~KzD!0PZCSn=6;eQb8wKIfxx7K^ff993(F21>OMgK-z)`DUiS zCe7Zz_zi3Z+uT_jnpf^V(&W?}lZE}+mJFgZ2Eqii!z#GsxKV%LlN7~uDQFfYa>>yf!C5L%Ky-CDV~R&ojTN>joZ4Y5DVDMOHOZ} z0D%JwzAyZGQ5#}F(!ux->ysHm?}d|To=;2EQ1_iw^PW@ehyk=w2~B8?q+5u~Yb;w| z@u)PPO*n=zY7HI<_lJ~e^;Za6EgroWIBnz=kslcl~< z_w*}a3swrbJ&I0lc(3)BH_IL&XCXw2#$2JLBA-DeqM}`pl?xXciJ;MI9qW})9NZbngWf} zYFG?DHxmgVzWs#tuSZ9CE%LGEUX3;Rr%4)UWCtbP0bSz#o(GyC>``xuI87ojf8jzL z(>5(b8Az-AYi8Z{nPA#G3T9q$rL}1d0cwc}5ACu}(g)p~W}>Z;nurAa(R{g6dJUt^ z`?t!RS0kIv1}K9qbsLMdVF0yx_BqxqfG367l~qyc_4L1wXTEgk3VPRde*2Cy-)vBs zxnh}zMV7*LcHo~BHmnW#?-7@#d(95z*2CLCT?3wi|wlM$t=`+rA277VI zbNvc-k5LQG?3Zxf!}7*^^C0Y-z%vorGajAz?QcLQs3Eo8$9gk_5gi>7{hli+A?hq% zAr%JC$i?aWi3imnSK8id%%N+r#1D~hPwMqy9V(O?G?U4l~Qf z7R#iDim;}_&Wl|VIBkQ?JRwH~W#zt7Ek;x#o6~6xMjG!A>GadC+pv4{Xao*h9e)4= zbg-f`xa8baQDX=Fv&~k2$cfg|(^nTa{7y>4-m9lxdUX9y_-6qKGdD~8%>74eY6zdD zz{~?QeShGzk2-RfkpOmk%Up%&uVv}qw4tbU18L7lV~W#1nGs@HX}gMi(#JRZxt_ zy39CxL5iRZku~9)fX=q*SfAFb4mzO8E5(BkYzauhAq1P|^cv5+gTMClI1Z&Q zDf)>j?N%flK0Y{4v^f$h7niR>;EjHOpy_~vijvEP93ULN**z=J5%K|@WuFd}jgBD& zXv23Gw0p8s^!8J6#J^u!G!c%10w;_}F26*H+wPOzFoC3g z?OmfIP8f+VWSPzWf|{X~Dq&J_uXgJYk=rzsKA#b9j<|1LRWL?4skqFPgNXL@u zGj6yfQAwdyI34!mN;gGe)=?~(F1-7RULoUkiVK7S2-keDtM)XjP~8%8jW#K1D8R3M ze@K7YSYKTqq<4opLXL|fB3}&G^>{Blwa()I^Cb56u*Sz<U(L1t-pFnFa(eGi+fk}4Z36!@KxgaK^fppDv%V_BVEi~FGxHc6+`=UIAblPaq9Kb> zeIYbs&%Dq#zt%0@+*lB*sc9p_OqbOGe08~3^apW{Df8E#J}#0l=4Pcp zo{o&69l6aWU#F1o6s!vqQvuHXDi~yUyd3H|E0Vl2<$`E<5u|^FCS-iLe~P6PLS|_5 zj#4^nYk=@(4{d*L()k?|`D0|}R~zyLf*_7^}tC7 zw~Vt2m|FeUW`uiCHjZ3UQ=7Z6@9@ye@4YH{r9JJHECWN^@@LnYv2U7-IRoe~pt#8` z|I^#(7~2coZFH2ro7n1rFts5Y+=$7$ZBGOGR?3Ki?zg^ZPjPuTU9=b1Yy6B^D~?C{ z%V=#*pfOv-XPtssyB*UdHD|6Sxm1UkB7Ohivm!|RcKqlgNWOyuYUedS^W%pbea$Tm zX_h$yh0eE|^dncK>%-R?HgvQ&NcZDx;muh^)TJZ(;yuFIxdbKz{Ey8jUEke~Y@NB^ zZ$9b8;UyYwr+#d4^bp!sqL{9RrDl?bCoj*D0#I&GE~Z8mfynbJ{AN!=qs4eBO600Q z&qwz#(jvH8GJodd8v>78VtVGSGv{rxda$0W1o8`+#;prrje`cfChYsU>w`)_GXz|x zfVT>Hy>iM%lw@5qX6K5pU55u}l1*uRw}fy9-ozAka=1Fx9uZ6X8M7tf4YTOHlYkvc z+ypY!Qs#%9M`)U_ADnD-`@_Xy-LU&rLIDez;7KwZJnAQ}gb=`qUbhLY42Ebl86`1w zh}eFuS^`I;fSq=|=D;o~`4c(v|H`-9rZK!qU6ghqlxI@o{FG8B zXDb+_A~7nbH*!>`4+OnM)_Rh%Jl_;EbcBS&!lUW4 zx)}b}*6j}ucB62fYo5_Th_F@ov2oYjcbzV*(4>MZs`TBKovFceXKSzx|8a!Pd+S6`!y%HslgD#fn1$lGgPoX?yHrBQq*#m&$f;#4}T8>DBwc zw2O05vMID`YTk)mb8}-_P0BwG-z^^ao&zgHHR8rWpKSmr4U6ph%nR~V&h?B=HdCPs z#P#3t=sKKU^8lt0P<~V#!qVd2l6^f~%bW?iXMb}ouN-G;aPSlY!ntG+YZoj;Kl>b3 zXfkOBVAd4PS#d?h!o7OMa84~LA!BmCc;M&0<%|CA{{LGfPf|whP|#G_`QdRA!G7P? z-&t`9Rsf_bl@Vo)M!#~uP2o z#dxdD^Oo3$*Ap3KgvaM!Gmi2g8>wtmC&G=(E{^Z!&1d#DWAaUnRrfOpqb!vXc6mX} zW44hg0VEiXQCxzXtc7}qtKhh%M@W_)-!#kT7WI*v%`Npc2e<)^5~eavx)#EwGnl6YYfoV7O!-A zMvB-!|NP=?07Q%&^nrt$uQAQ)ItUF-a3iBtJ{gDN0cX#y^f8oE%ozBBtupG+>M6|DQuCQYg!> zn}d!eGC6*_G{dTQsJH5V_0{9=2*Fw_4mPuB-{|PvbQ^O+X_*>Lf%(DopBl`wuPu&p z3V(5P!0$H^b}%zz!S*npq)deCCka{H8uFyLu(5&w&krs#w!#VPscNh+p1Y`G;??-7 zw&+4@yBbh>Ycn-hRECLp98Y|g$hBrmJDTP;{=5q1h-qZW&(9Ct zaq&f$P9zoMO@ZU!Km?VPgoJu*6$p@+@TZbi^@y1kB*@z$(=)1NO0ZHREwFcUuR=HDYU9PY;1*yK4m*a_M8I+mVC~rWO$zyBcow*G1T&E2Mllt1fybAsco2;3hI+jCbF;@}bIqv;1lu}>(P|$~Lbu)Z9seu^)nJHi9j38X3 zX!ep}w7+PeM!Y{+5c{Jf`) zODPL0bic%wO2k@PD8cL*UksvbMBPro4PPlsr-tkDCp0ilYkWCBSzy~YD17_vQ*F}_ z!&q!KIiGS7&v+O5(yxE-8=(BB-wkTctW9xk*d}1q4}l4j*8DTmaW<1_zc+PCGIi46 zmTR^9npaZ#>Qd7_lZwGG#&yz_P1?>}5CCRQR<7jiETUiWpr9iv#bX>_2S}Lf>%5?t zXXmuoKM>b5GXn=u*v6%iepei>bg!aH@ERnGTGmuBII$jU&+8%hJ;NT}K&i;Y*TRe< zgcjW^+Z2X~>XIJf0f&_fqtyzJ2}OV^M1I1y=C&szuy_hdiTTO=EfdDAFc5br>$K$s zfgt~dl3x*HE#~K8^xwXBTT+D3@2LVI{sbXLNrFUNu|lF>|8T$ch}govSKf9vjFz)| z+t#D@CflQb_llt+anAE3eK%wf)mJlqUrsuOps(`7mn=<=2nGclTgVbn_?%^Bb%6|YVv782=YWIxGXR6B}RcB%G_VI>2jH2{VobN>ThL2wJ!<%iekT5baC65qQ*;S z$CRuswKgm|U+c-s-)B?qVPV6YwbVI&Y}54)z1(L2=T1)g>d*_)oE+dym^8N-h0x z0Q%YX3_G4{MGVRj9ifVK$cE+O@NJtaJ+qONgE5;}*J2PyBPw_k1@C3w&Mvxi2h_4H z`WTWjHU9SQgHfhCSlHg1bb33hdOu%LGvuns14aAv9V~1d06na|`xn4@#(jFbAAY2u zDozqOS^k3`b?NSnhjWb0-{lvrrIOkFP&+JVm|X4{MGb5fOHV(^WvGB-?I(~*=vk_p z`IU?ekU6#H+1_d*`y$7AAC!eKVjo=X^3%Uj#<3y<2&G(82`FM}39|EoyRRc3uV0{Z z3*7#(g{|o^mrF4#ifA@LIeJcISfj!O)fi%Tz|NTAzpEGEY$=H9qb>aWm6cAzpiwMx zPmyNycSc=7;>`M4y`H?TMl4t*Mn>+FS1AZawWCS6za>ccIC=Z`<71|LcE{jYOn81*g)s&>+LaHZ+i;%tJBjzP0rhAOg;_Gt9?hCu=EcQrS@*CKnIZSyc@Zo^RWuBc-na1>lO zV|XznRY3Aa+sxC3=_(O1Y<{Fy7Hj=dAMBkc!D25idyR)|>^sKAZdRZww#(x;R1CYy zPYR(V$R&7s?71G+gmILamu6Do&=}Fl8fkuecD;G`ArjX=AOH)5Nrr(uZFF zBk#W%UwGEVl#v~)oq3eqJ2cU62n_inS7MjFnkBUe7@-Zk-`@Qo3nob)EyZZ9GRI*v zst2d+s@(_6lJQw~UV>fT`>Q%xWwWqQDLTBqBw&cCsSWx`bQor-sYy#J3B|Lf zO+sc)6BCCs_()g1;bVHY#XYxdi-WzofVL4fmQ*xs&E_7xnN2Y~$c7Us*P8gGF1T+$ zQiZIeGP> zQ(tC*0?b`bNXSS`FZXt`i@P9f)!b@P8Lx9h?TzOc^D0PXuARPrd|0ZIGtLgLd4c=u zMGjl$&5JwnoXU5KgjNtM?#KJ~L9shV-f??6Wm5uV;=T4`v_%r$$uCw%{R_945IykG z3UgAV2^qhRa;Kx=+&-Sd$u45qPp|K_$4b}w|K5(Ll5}%(xqw1C-PNv&N`8PEt(u;>eK#aYRz4vHo^&FNF`OaM;k97&)?6`L} zyeLmKko?y*!j%&ii}*C><-jmqH|N31viy9*vCJLqVb0??21!F$wk6?Rm$b790#@>q zaRHF0%*vaLA-5x1 z_x+L;+DkS~M&EgL0!gZTS_4DZF?QgaTW@$b2Fa8b{G=rd+}EPJNux0WB_T$ffj+G3 zHKv<_*Rcnd*M=S#-rec}b>HT5!l6faN$XP+d6;T8UFaJ6A>-y8rsL71Bxdoodd|q7 zvXx#ReAxUtO4*7H`?K1Su!}$QhT9vDX0-uAHceC$94RYIX1aZ-n87%61lx8h3h>zq zWt4DR(TM@PZv@_L?1)cpSmNZ$gz9%Azylml8~n;*KOb-DqO8jXJmTZYp;RAm4MgPoWA$X&#OVF^0j_ z`fI$@*ogWlEnG7^4k3-!b;BKJ2N^=|VWU+iI*@A)YCIU5-ctTatNsi)IW*2X0cfyn zaDzJcKZ{yjje2T?m0HXoR=n62GaM04b@c`jVGZ1)>*_MNLBr5ZwnAkG_9V z*X0nzVuHuoX3(ezM14HZJqzj(YU`9^%d*%}{Lq~L{6Vi@D#Eo`A@Nv9XM1a3wBbOk z9HRc43$-kFHn}frsAuEV%O!YZW|>6uwOPU86!VQ9+$0P%3(naFw#KdOr|JS^qdGzQ z!52M~aLf^}{6K|%0oO!!evF=03qFqS7td@Hm&M|2^+9#RH0tF38B)GlRoIudJ0x~# zy;}!hvpRYM-x_C_>vw+zn{8%FxDco9N&2gzsnwh~bt8DM4V(1pq1mpYdQVM;#N1UI zyhR5E3**Kj+Q}jMRe#);{+XNetao@5a$>aX%gx8(ORTdb^f?ZVJhdjR-fpL9<#$@D zr*;(9Q5L0?OiYz?#g?!O;rtgCaiJe(8s(sQ69`JVjw-=_iCXrOXxv8{;#sbf?MJz1 zQ8Va5#}ah;*fml%OLO_j@+#D9sx4NOVtU6hg6wW>Q?BtnABywj`o8?lc?j;TeOzj5 zyNhWyJ?b91njScFyigt9{VA8_9xtWK3j07zxA5lmH(K7AnbP%qp+KTziDJ)`pD%q9 z31FL+OvYB5TKag2u|Fr94r~k!Me_jp{q&Usd$AfRlFz`~{eS{bC4q*R?#uD0} zA=SAmg!_S8+h`Wl?0SER4X>h&ubN7VQsd7@C$us=;Mf{(r8;ZWHHkN^jGkT7*K(Bz z8=X5b0QarJR?>kp;~;9!;I}oYS<{v$!c)%&*4`8Tzy6^5(3~m*j(A|<@J`iN<%#EC z2W&EVe*D-Ymf~4z@@oA5wjST!j0^JwPP|glT&yC;dSna^ENpB<$=KOH)mOy($*;8FgL4XO?lS;{v>azQ5=9rrV1N-pRH%!!2O$q(VNCfmh1ZGtY#*W`1d}qZCR{r33=p( zhIq3GRoj)Egj;Bq$=@z=DxWSrW-HBAj_I(3u0x*{1MkDPVZ;ic$RWJDqB)q;4>CDi zlMTE)br!R{r2M{tvK#irNC|ezbVFprs&$LLb=?9-<6L})(8Ftz3{7AmbIX&PZOKuZ zs>A{X)ZXK@I9x{kPI)BAAh+5Ywl8JmCR;s4fo4=ImX(?L&FP5WQMUHP)+ZV=ec~vL zVQh)$?gt+(tCnTJHT`DvE|w?zt_*tjVJ7K?13YSc=GHq2ZVsVdv%{~}dKo2JeVXXA z55GC{jp^vCZ6~Civ;`p_N|~3pYz-M3OF{kR`LObM9+_yyZ1OAZKX`248gu9PVAt-? zs?jU1WpGoj<&mIABtXJ>xz|9#CpuIn^?K}oecoD}Y|9ck-7nM1 zvYheaT4yUR$_eM6*$b)V&fhCl;Ers2>lKM72&Oin4k6yqrg}jK{W95!vo4O0k8M0| zRHtTb9)506eh1|%BktrhErWzNf^Ft1ETKQyA4zhKC5duA9oL4=+e`0b%ek+;n?JJ2 zVdCiiVA8mBP$`~E&SYeKFtyd#Dn-xC`$wiaz;yT=2`fF#w0Iqg{kOtS>pp?>WbcWo zo|R9&Z-;2q&Yc?t@Pp8LU;P7Eyws`&4Jev0;PP{P0a-<0_HBH(W^hdWQ^?1g(C_=0H`U z;dfYZwn?~1umus%IF^mjokd%5D}V`I{7FK;*pvS> zd=n_PyU_RLhkURP!MLPKN+r*FU>WX^=tZKEyI}boGKnGMjQa9ctw(se(jI8~=0JMj z?Kao1P3;~%Ym6DQqVgn1WEfOoz4@}*z@XLQzI2c^WXLm zcf~~w-;2C*Kk-gb%H@|*=NK%c6!Qp8w=t@%6H!|0)h>%nMuseITzDN(A|yEHIkW3W1qOhl_hY61h7 zHafFGb?o<_%>s~1U_dDxDm?ey{Pp$5NLumKCa$c~J;Cjv^Lpop8X@mT`!9MRB}^qy zTLQDM%bD4emsJP{STrLxJWfKkFhL37txtlEnb;uM{W& z@?I^IwApOibMu%hu)qsBRyh=KP(s8SQ3*NOOWrrE`L+AH=CS?KDltXm;nAKBP3Ur* zu2bVPl2K()1OrkVeUNOU@fDR^`KrF@S+1r#SOyAAT`HrRB<>n>8~7d&vI{96DeYBGxT!>9s!-a$a0}we+g8@G13* zTyv=Zt1?_HVQ?UZ0cOS5mm!HP74PTu^_D+3>jmQ0HHoki3Nj4iXX`hksvjaBsW+DI zIC>ZRc`G+P~}}8IQ6b{?GP-{kdnm6#cwI>CP1yrVAnq{KO^G1gTn~H5A{p)in6vgo<-FcVT`^5IN#}i0-u`0n=YJw&*!Rgk+cTIdT zjQRWJdiwmwYQ3-h!_c_Hnec2!GMu<>_)aqwoyVI^_gZc1YE7njYggxS!lwqh+Q{Fa z+XPs3SUNekAWRTQnt8Qy?0+39*!F|g%-eS~tUQaUF?-|Eq&%Fp@_oAQbw}cf8sRp$ zTOy1Mg2Sx)Jqr#78TARSfL#8#)?Dh2}zvg>*MfEn^%efVF=SuG|pvd zNgq$>edr40Cc1Y4I94Q{vrFs7!WAeAN;^vn?|D2|r=kenAieD__=jhIoeh)@cMxzN z{1qIucXJ|)E9_5jF9F1IPY(ev{KkMJ>o9W=sRFa)I4w*NTlaZGYgXwXljV{9vltd3 zgT+~o{^s1jY*_k+JU)N^(hYWB9c6Xb$7Id*#VLBo_L{O{Vd0Cxg{;$Volj{33l6Ov zu{a-Aeh&IO?C~gJYx8^)aK7~fu=@Gw-3oL$(g}JWh?~=>|EtDzVv-D-fX=vtyFhIp z*XNAe?XPYt9y^c41|B-Q(JU(32 zwbk5Kk%arNJU&3AQuz}G8Jj`|nc9+%J&xT#9=bGm#TR{P0X%4J&pCoCQ7amnUvByg z`n1aSAWffI5qX%Sebh*2Q~n5m0z#i-po(qkfGtl~Vx`U{+CRTc#pT8tRXO3Td`kJe zgUj=?W54;+L^D(7^Vu#+5A9AkG{AE*8Lg-Bi zwqx3Yr%c*^dZS^c>#Da_YS9b~6Takp)O6q)_8KiQtVNqz785hfujQdnINICK3*osx-+`fjY(j&&RMX%s&NkNI zuHbFzk0kFP3h2i?VPe|nL2{V<@ZX&b3 zxj8ELWXwuo8}4V^HUT3V=QfFk8%#5FDkEdz{tZ{)PJuHued`q%-~dn(H`g|5tQgy;0y9nq+&1Hks2%V~)OUvz`N%F4+tY>h%*T0$Q*CMN3gKoc-m ztcwR%)?)PP?#A1l(ieT*08~_Y4wq9ZRk|HNoP=7-%YTiJ%a2b?+$BaB31V5l~M7oJr3g3Yys$}i^UeY>qbo^ z$#Mac<7M@M!QDvRy9g*j+#c}r2MlkGP!DEy*wPOnoPg6OwKzLVHxwjP>p?sNHRH33 zecXprQT5>r#DTg)APe!ax3!z+TI&d{+=Qh7;jf6Ukhe-`zJ*U#4F83W^ReGs;U5Wy z(o2-nW&WodqxX(qV{$uo#+<^4*&#&iXXh9tU<|Ym4AZMpkGEDixMr9{V+OtpzRp?l!^~KCAPm^%t*N zv~KA$f~-aFDW`VSK&n9LFCBxB#D=LUzFY+pOX`@Ila%9GLKU%MbtT-hHK#gci0p6) z7;WRSO>DnmDdK&&pfzq&0Uw-rsLb`p-7Rn5`{Av1v!3aB=T~PcKps)h^oLEE2|{6f zcit4NF@7}a@61Co$VQ))4^&mQ|r#&+N-fc_UU^|<$D#S1toc2 zgCC)ZTSK;NPQ_?R3^ttyqK2@p0P@62f*JmT%Yev^h&=sEaq9i>HcZ^+F9XGj+v|;= z2!XO9LttLwH6crwvfLqfd0detq*2rjxtJO~eiV8&6YRcC9`C*P68Y;0PpaDCE$t?Q zZ!zQOvd=;4TD*?e@*E7`qx;hZ0v}K-hq++9q8K#P;kdzt1d`=i0qCYA7LQ(! zOkvfgz>_{> zHk-^>PTMc88hIxmkm3W6b_V{{=BQ!Y&wl5lgE@fcp2m*Y_PLkZm*jeW#rB~I} zhu)SBYri7-125Sjl}6H+D{X{RfOa}faYJN#xjy}hMB8on$AqgLO26D7sqPx)P4OK1 z=!M0XIu!oESp%lza7$=W^HFj)Wl^Zbs6_46sG)?!XhOb+e98rE2)<4ByNh8NzNc&m z&G(9fuz-+bMMHx(<)O_iGgAFju2L7pe<8V~r~a)%d5>@Cx;TV*c(j@dw{03^R;n3Y zK4|sTmc9hb)bfx3%oswxiSfN6A5DuF(UQ{>D44cUnIt7)&Az;Ilg9@W5(s^LJCI1= zHhOPn>&F&d!0I)GEkw^yR5i(}pY0q;p+qM8Bg@Y?!qhhp=0(GTV_jx+zvHR4w2Lj09<~)H!X* zqTAiLNpzMH-f7Y2s9J7L3tb?}&b@{CaM)xfo1*3R>Ck}_c3Fud-j-A~)tYm{DD>u@ z2a)YexGh8{K!%5e`C>NZ;!c<0kr)bBM&$85X5T%6L~RxpCPC@ZC8o9SSOH;C=JqNy zf=C^S@cgkSdgDq5I23xSO>NObpC)9B+GlU2F(X!o2SpRUe z3_>3Bvi45~=!U-tU>l7T8}G`yJVH|)*FFT4rh_TgT5slZTwkvx5>O=4dH{Z)j)G%R zr0C%^+{@-^V{6=_1qX>OH_^dLTUy)0W!XLS*b9Dj1Wbk57J78u7?nz74{ULRoc$&X zw;5!ptG;a(x|)RI(W=c$5?71DI=96Yi+zb^BuHbnM9 z_Ee%blyW<;eEmbm1Y1o`gVlJs1lYo8Bf;p1b5sj*iWYO$rLKrMK`Wx@n6X*Dzm5C4 zU4BudZksXXwq)FYY_irxH`||o{(`pqOQxtYl949v?AG!8^HOtU5KB~pldywjF^LBj ziD&(;lR2phj|_SyR0iVedLgG;@xtlgyPsdXhovPQ=wg1xPTJs>+=2pfxCOF2ND-&` z@p!qVV$K2?pY^Bf`Bp?)8e02!jwFxEiSEYePG4|`TFEqL+KdqrJ((rK(Wx&wab6+0 zhc#W_<`%5ke0?Il>INcdN+oazmDRt=y{L* zgtzgv*yiPu;B4u>x2~JK{3^ND49tgvGeh%C&Ui~!vH6!#WuJL#j%3J(wBWpRJ0Kox=R{n~t6E$lt3*QQc9f zv?j#CV}aucoRp^fQ?oPoD7^YYTNtKTXXRVD$8vMKZ?qWc;cZ3WQCTJHI2l68>h`8$ zABFvPXCjC9gM<-VycE!a6jKPm6yG`uU?%x5+4d3BYt)7W1tD@;%(g??9zC8-Zcr(b zgy#*XIX1y?VFkBf0|lug1`_bCfZTR-&=f9R5ZltIQCfv#Jk9?^?Q^EeJ4 zVVV+@#5R53NmkkDTOb$|GF8`YE0H0>Rnq4l%L$hb+B+5L474}DcOiVd8d=+!O=H=X zquBD&K@)h%)PfaW3eU(FPI4$bv#;@TiXEl4`N)_(iFvJ0hGBwweKilVdXOoI435v6 zZB!}B>w9|;E}VL|s-uni>XoH68SmceZz3Q#+cT5-V=bY?WE^jg&mB$&yru$r260f( z0VpjWAL=@Zoj)fuq*80%bq_LDoo~ibf@Fw-I>FtxcgN^pg?_nBMqnc^SCw%cRBiM( z!iCD-6jCXvim+kM_=cd)m`gK7rm%b@anY3fEj;4b2LOxn4q0&8@8-n40ROQxuH|EX z&s*nO4=JYO?A)TYL>%nG zTUk-c|A?FO{Ih~4vixLXyr6e?P&%ZZ~L4|hr@6yK2%5Yy3JG5NJkdM*h zS-^AKv`;dyE-7L6hC}4lOy5!TjGC9J$uu0(02UHNSVzf)I-OISQsdwmBhO!e{1_Vu zX|rL_6K-67BRu8E3sgcYda2EI75PEUn@a{$NNc4!z%&bfpM7Y(yPd;t>RC(Y)+Gv3cfq}?;$MO1m z=Tse~VPhNs;POX81|&Sd7lH@c-JI{6Q1SjaIn_^q99@SC=O2Fw`Fw-X;kKRm=Pz<{ z94(gi%p%k@v{4hM9Zol(5aGJefLgzTLkirxObuY@X9#cLvywY8zEe>i$Fo2~w1S5m zhqr(KnE#)|m$*!>2X28wiri)qk0=JF0Nu?w>AhS-8pg+fBOu7Ehq#~hQ$0)exS9)v zXgSRpKC@VAteHyVaoCa7ABL>z`=Y1VulJjRA2fHXKSTh9b3H9PM;6M#wQ{gnG^RH? zV+`ww^|f>-W0hIgKt6S~mb+yM{2*DVR7nf72{kVwyJ zpu3<6tMmV%>aU}^`o3s?*aD=1f)y4L8ZH-Te?BIyF1@B&&JR9 zckg}vVho34pl6@6_u6aC`I`5q?jL-vIX)$7^z~JIg4TNjbo^jexqj~3h0^QDUQF$C z6IMOI9|lSu>&B8zPutA*iUfQMn3a`G6~)}zXnXG*@k7IC!A#)Vv)so%&NzSb!_Ht!KcSlt9wJsB;Ljc%z`v3YRz#6$!FBi>1MR{{q1yR6nG4_z(=`L zKCR=^%(%j5y-?SE*Aqn;HEF(CHNpqhZ;5+%`|%Od`q~z}6%I>o+fGBe0Xr}KDDoQK zJu5sr3IqrJtU`Kcg||Ucx4Jp&tt)0DB)=Uo%`lx07r6Z#}gS^l|S;q zwx?&(jm~`f1+ML_sXTbFsn&24Bq}M&$G!cPL3W)aD2_4|R{J<$f`-*$TxiFX96v!& zNIbjLHdmdey+!{g>*le%MVq*e=p4-|u)*--(6(?UpKcWtSJ0d#@Pbk#cEWCAecK5a z$kMk7yNkpN8P%QJEp4h`}_1UL)UUyfU z^UIHHFC4Z8^_E+_B9`aN^gnX zrl-^GRRtx0UVXfvpve;J0@;Z4>PbRr0?MnmmdsBIx%S~pA1jtd(qVkO=Q1q_w2F!p zuiKGQDu>?@91v6+h@ygw2tMi{Lq)_?EEy6U9N2?3lE;Q!p_baGiuIfj5moaRekHW5 zE{M5BBU@NQ_1p&VHQB8OyaR(a;#==WL{QV%Dp<6=ke_UOC^To#6)^0ciT5i)PLpLQmYMf!SXVA3+X2|y zpLtk;dTEb(zbJ05*Q1iToTy(&N=jbrPa{>$4r1zfj?G-KFf+$uYP+sxZ{;B(A}%=3 zTgAo4>#?QQpZtL@C@QijUi9w4cVY0jI-v97r#N%DCRgM)@S-S_!O@q7Jb6`(p%($$oE)P`i&L7O)>&(sV} zmc}5#W6psFx6psYD+Iiqw)K}q=vRjh)z@j4oo>}e1Bz7Q*^!>Jg}=XREFQxY$62sgddFNn zj+d?uQMpOb9QOU-*9r>EZU^Pk_qK8pW$EfGefW7vX84@U@xb(jiOKUh-C-k^EyKHk zYKPAvA@y?qbC?Ii{~h+U zwg)XNEUf3_&Gx}uHGI)z|D>wUkfI!K7sv($4y4x?dy`>C0||Cd4-kiTD9n>tlT5pV z8Ah=vf}yppFj4|b%wH6yhlU!;ub(tqnlipLY8}ie4_MW@0SA*U2N8E8{!qfV9b!NA zy=D(w%FuRXRr=ej%UbU8(WcrzYh7#rj#`B+7Ik%bJ(5hy8Zb}T9DY49A%V2{yMJK* zNo}&AQeTvp@PPI7#;AT`rA?Fv`sC6Y(P#{1@H`_pB&BB&%=y8@0Ope-Hx%$od?Bz5 z%Jr%$WHXu$G~jV_v$I^X?A{N!ZxB~kbs>jL^9Bw~UL<9t3~_z*&PHr`d2MD}uTYb{Esmmjb)qT}v@kGM>yt9*M-q!0cHUHCfc5O4Ho@ z{OjGTpJ~8nCmkjk3hry6Y%=};w$8%x6)`Maj2Rj1x z-&=^joi&sy#{FOJC?1uHxwIZ$ouSZ+a($r_HAeR7VR6D_hH!ypUpaonq0o>mF6LSg zMTwcJ!IYo>)~hd9jmb(wx9bx_M{^UNSft}`*TK=B-XG+SJOl6eA73&Xv+zP<$V>D4 z9HY7p6LxU^dHLv$pCzssy}!dQD8B{sF&`EFtgDLzg9F#7DV8a1>oQ%UkKFS#G?I}6 zcYOkTy8*8z#%av`5C64$5hP_4x#D);`L=q^3E-0Us8RkNTxIaG%laEc>e>B*VBVFK zMvTWdBN+_vU-h{oF@HgdlN;zg0m?Fk=tV%%%FWI$RcycdCrhNYsNzm%FponTKV@#x zx0g^U1mTN%pUM>gWj6rR5|6u^s!Dx?lOm(2)ZTWObCE(=S-IWXnkY&cprOc?rTFIY zp<;>qp|)pZ$l0vx+CMQUj~uG}DrEnf+g@X3JUFCp-0X4Z;R*16`S}@E^IB-=P;_j$ zIf6n$18D=T4<&SDn})C2FLN7ifGH73bR_;mh!Be~Kig#7J4KwAw0fVKlDd3c^3M6` zWi25i>`31>|4mC1Xf@4+Rd87oCRLP9^6ClYH5HI|fBvSTMNAtOXlr}MW9`q3z@!?o zu~05>e`>csKE&H|BKUv+Fj=AOHwu%AGf0Q)Z87>{h_zr9wXl{#zUH%aR)!NpKD9ehWt+ zWWx=|UN`7@2Vg6Gp<6#tKdpJ)n$d2jt&1!C@bU2pf;i-TR!|s-A*ZXK0WGD||5vIj z3Xn;A*p4!J;92bzhmcLE+LvxC;>atE-85Jt4gXfew4c6gtGv^0M!><5)d>{aQof+3 z&r=i(#@OUziO^$msI@=BCIL#I|^8M3kbsBLL* z=Zp&8-H3VztCE(UxHy4snl~-o`V2=(};WAHD7`4r7R0Tl?d7;{SEVvPiD9_eHh%7C9{x$;; ztg%Go3ql3$qx(%AZ)1~|{#nm1p)*hkvrh3m-iGr3?XXfV&+cRq1|&hEoRTtkqaC2J4-KufboKUYFI$p z858&iZ1`qc3-+SfS!cePjjm&M*JEC0Qt`QZ!{GQi6YcJ11H#LZ`)CWXTT0J`w}y}{ z*|rv2!R#P!^PcfbW%Saz;lb7iMbHjvos`*ndnotvlcX=Olm#MRQ_mXkDl%YQtnX1& zC=m$F{|dVyoJTK3d#V zp4OXXqG@zVb-gvijp8TZ^&PpAlJp(4!??#lkA?k+frDGXwhig%k1v6tF>sn^HGG>i zWT8V4ZXC$>>n|BlrwtHbV1-`PfDVGZj!73g}MCC58ponBhpgD4fi90GDK z`LS6Gglr`7^0k}<4lRz5s32`@e_#>-ngLNGr%Ak$kmi+yp;;%a`2V^af>alcvDE45qH1K@N#c^zcwD{ua)!mnF_wgn~~dc zFESy{+L|0$V}#V%PE#?Z-!|3a#elOm7`{FFGdF+j0n(Vv%YBtXV4k{rq8M@Trkdi)Me4I2vP6W-rHfwJj+Z zyGXCjePj-O)$EQ9hz)v(H9>R1q3Ar`BN^6&mO*XCduIc@v`2T_{8=>fboP-C%4Q8xJY&9r~LiCCxqVe36P3oDs&8T~m=bgtlpNq^cg&d^I89U^WJ%^)g z{TmCsRE77utF^!re4U?%3HO7hS%a1a)iS@%_9v|xAJ1L^EHz^O zS3h{}Om7HgotE!yfteX_uH^{$#PQq1uyRPWb#>A|_3F@hMGg*L=bOKp*80DxcM*_9 zr$pRV!pNAx#I%7Rm|HR1ZzQ<|<_6_#YB2SU(0Mg^TXsXVn9gBag&?A->G~J2s%tUc zLH;_q-WbsU!;Ln*<)ZmkY2!j?7wZ@4>l0yz!2|!{Zz`pXN*;vx@jvIb6oEM_2n>|G zPyBc4UW_JeVP^Ung>e;ej|hUTkvH}q#4Gqc4Q~oAZl6AJnQ&s)Vk&a z(GmT_437l} zI$txgQOsm0g_3Sy#WBP2d`>VkR)p1?D1;hgnCr%dN<_TNJojR^sa4wm@A${smK59B zTx<2tLsRWIdn@*x4}EM%_lHEUyW5*X8!OjlUv4yVd6n+jmM(b4zT_>#Ls6e`bYV{lj*>9g{49ivRrCv`ViqRFOs%@&IBHDVF>1oLmMf_Z|tJ>VY!A^KGxUqH0x6j$U9}=u>w@kb9w>) zIKigg7GvhDXD2yNpQZiM6DM%obgQUCKaa`21&*n%h`+oayr9qCvV}y{?Kf&3vl5AT zT*xTiq@R29t)XDVMB$=GiR*3lQ)PI`~QZ}lH(jt zJKGx2{kQ4ypLB|3E=h-`KZVG5b601_BG)L=ax&TZ3NgwLK=-4^^oms z-OF9qLF!2zQ4S$WA(GDy`(SK1wPE-Uk3p{*2blcKnr3n>+>0;|8j2LM4uDObgm-ay z%elPB6i3V5jOX$a4s5_pPu_>v?0%66hY7)WUxM2G*Ue1j%jXgK?#pWwdl=i-i9m1~ z0IP=7{6BCWKoNP~M1-HI)!Hnyqa0|js%M|d@62N`=vVqEuYAagOb3YU~@h$sl!%yBeiW!lE|DKTO_KKil zC-Y*uY#l@!=~=`?!GD@&SN`SO^wr-PwRiSi=+1ll=pQls2k6cn#%0pyGkfm;Th;%O z3lAqWtj6v=T@2Rc(bKh5>}FCs(Z;2g)V8^;r~rOOwj`&!H7`2R&9^h5H1Y|bA_QwIjV&*o#S!s2MyWKmYJh}e01n&3+< zr(OY`t+p=0D0NZ%zwXB`iMdF~bIhQ^N_U@~#QT9F!%JF&>|%j*u^%-o`0}#bv@Qdvwkj9_ve+$AIXygHTSZfF$WI{8x%G&2{fTUX@Ek-6288e2%>T^(L z-ffXo|MIOse_wDppyb?%Z+tgZs*2$O5K_#T@Z*0w-=DF%FOeT~j*zszmXL(-sGMy+ zMv9YckMLjetx1av)D+zW#602u{tglf)Y*1+dl4!B)FjrV(T}C=J_hm6;CQ?Q5ZhS< zK+KEx9%E{K-b5v0|Nja`ATaZEePw4iI;v|6Ib^k*!2*Q)+DmCcfGpzO49P3q-B^lS z`1R;<-h+uT$6>QuhNW1M0y^SkReeo={`fp965g_7kgZ?dhB{@~StlD?SE1=a@4I*S-Tk|$XSoj1?Nl7h{-CM~bPMzoe7r2kiAe{SmJUslDo&Edo4t}8*Uf5HYk3=Hx)5c{b1#Wv1WikLn zIyEA{kO_-np9^3?On9f!X{b`^$CG=Uj_!1ho#H-?#|^FHZT1V`kU(S*gFzrS**P;# zt>!O}@Ac$!Bw!ByziXx)POVSRn+91Y){jT$Z(SaD-Hq`)iVru(&G*}{bUD$1!F;&E z?3Enn7VDIc&7-S~e{1u>HZFP*h?Zz{i*~8=D;|;)vATKl0tl=gy{B;wc6Mfhh4cK- zB3;vV+!dSefVIfJ2j3dNrIPGa5i_qcMV=TjD*^djqBS7)%@Z9Jl`l@!7|O}3a(eA= z1#9mUcpKXc|75O+j5#qROQdheCQit>rkAR`$v^46k?P7UL42Z&}hf_y-0IvhXsVan{cv zaPD}0w#Q3k9)jQI5}NYr495vyTxXrVCcvr*eXW6VBo)zm@A{eON%Dg0RL*yWdRZ6eq9oMi6cuU{~J)Pd?x%>4xN_-X8iGcs4NkZp|7y->wZKl@D zN6EM$XaL)$ike2U;U@JuHiiM8H+0oepNdBG)Rob_fU;pY&m_udrM*@j5c0Qrw{^rX z7m$BWqFx0RJ(W02BAP2f&vXBW>(ZzLpF@?2xa!d5@L$&fXj$t0&1O?MN?+*=P#o&v z1>?_@T;OuMg?7v~5s;g)4(a{(l42i`X#IC~nfjORra@NC@#;VsOJ;z6dyUJU$Y zuJr<>dFON7ia_qdphFZLc0BrY2OIgi8>-R9SK$Wl__`d-paWn1SW)$`8*Zn4W0JoH zXQ{Xn+tmUr+kHaUxn;Tc7j6 zE8JzTw9DK0aG$(OP<)BGZy3MIYvcA3kq2Ul9wn7rs|k(bncwWS58KwxL7xjHVsex|WD ze$ep?#Wcqf&xG3S9udqlY}Rs7X%Yk|T(vs0BpQXqwVg_hLxo2U!ap-cUX%N=Suw5i zt=^7aPP=5bQ-+`j58*M`|>*JR$_*ZZRO zjHmHpfPwB{I0Z9vh6%T2oh zD%<1R;D!;%`ciWQkOzpk&y2|_3z~6xGF!3%Qs)ck4247kGIB-b-zg0+-o8|&n4$JO zJ-ow9t6WD77^#AT_{Zh|kN+=Iw$Jf6@Pn5kkRE~=0o+;A#SqpUN6jy$S7CBnLl$!* zqCyN+51ohM%%YqAkM(3U%ATYAm?l#DKJ))+8zz6+GYv6Uh@$?3G5;*|EyM4tR8^Ko zd)>-^Qmwkf^;kzYE) z2=Vx$Z!=Gv;8_{l>>)gSt#O7+&~vp0pC34^a>p@It9mlsItO-#lgnwi_;{I3^Ut3V zYOG5l3ch-zYTV^q>f$dM?{YOWi~p!IZ)0dX6g#~GurK#6J&tr1=~jP`lW_n~Kyh@_ zwQ}w|6lk+T1j0uwrjJ`K_Y~7K8~o^*@;WyHzFQTN70k=cmA?eB4g5^e1YLg;VATZlA_^;$-%`y( zAQNvVC2~JFvN|gE|G9|#c}yO|3J%gk(db54OE0DQS%Cg*XlMm3t4ncLjoyy&;HI^4jk7%*W?hljIECYdSdZqf2^%n zRs>P`InO9-`Fv=HeP}!MRr1-DimP$>o98IM+Qm%XP|i3g^x@ zMZZ;0#>rjw1<$l8F%sd;d=$(={4EzkDk5m#{@9;D=K&YXk)Y2yQLDDU_aPwTX}akg zP52_J&Uig`CuK>Egi6KyG%{bU{cZqqk)(TUTeGSyZ6fp_m-hXqp34kKil1 zn0xVZ{>I>}knPVYuJ|Cyu+qt#_&?DFzzDKHlT4RX*)CUz-}Gz=-em+`Nqz~Q^&enqz$due?sLUcE{wCn?|OehFQ27HF8{O` znu-aB3pP2E-uE!T-HeO`S3O-`p@60UpEWVz+Hy$?1IDJ&1X4|6tVHLY`nR|enbw?YE#4L|(I6a=9}kzkVAq ztdAXBSSC#DYmtsg9*jBnZg!Mla@ZbBcNl4gIPh(s)3(VXqVUm8IiCjwMOC_?B3eugg`Y zxa+{=2r)MPq8?EwWoU?XBp}N8OTR^3;j5y(!C$YW(U<83Ew!^hbwrh|@WekD*$uZ* zKW^1UKBc&Shpic@m(!5cNJ&Je;jx@k>X3RMSil_8pJ9dosom$!g>Nw7xuU8bS;%>) za$9&8g8pMAQ@P7`o};5LQUaSE&^`Nv$D9abO4o5?zBN6>)1kjG5d8N@m*6wMkDb)RrO1d~R7Z>hanSxBVo=7M+lS^g1OpmRGso;?kXgkrC3NeZM_CCs!OEBkba`LH zcXP{~Bv+mKZ|zy>$P{z8s*|j(8E+}P6}*O05>Sf@;ZoVzWe@}u8!>4M^UBKu)6!Pt zmU!-MtvY35ev5n1w2>HX`Uw!dfBVP({Q}f0!B!HR_@&jZGFlr}SO*im0Ucr4$e@>> z9>dCDzO=y($iK_c@`Ws%=c`w;Ae3Ny^UuUn0W#KtB5u5bvJS;X&cE_wN4tn^&BX4P;@>8ZycRj9p?E`b?#Kwlb{Wd{Ufq}+7 z-_fzp%eL6)kPMFCx#b0+2liZjt|K@Om2Suw0Zw;B5BuTgtzF#mYXtK4ZGRgtn)_e! z6YtlOLug80oFp3j9l8H_a(+T7VpOu<3?`I-M$MtiUn%NBGX`Pi`+R0;-x> zGfuGP=ild7Ey{WFxSCR@cwFFGEuMNqE^~jQds^HxUbVUp|zzq`LH zsYJA>rZBKa3iM?PMh+E0~=M z{ZH3PJuYRzUyq}@!T`%-_uul|Vi4ECzwt}zIp%V+ITF^oo0+`74!fJvzBk7?s}b^) z&5QOaE~Jd&6+7#DjbOYVtr-KqHAqQ+e}uq zp2S$uyL?S&nwC>kGpuC4F8$mYci6M{6c*_&%oi}T#T(j>$4}#d3SIr}7zgi@%5P?IWG)Mz>^k z?p!j@EXevbgikI}KvVmjpAmxU<>@IyXM%6JjK93V%I6T7tY<(vIJNZ7%gaq&dkL_y z2Tj{HnWE!1)+beI^QnQ3KBr+WfBf)LYGP8*I9E>_R=E+0kj)(7>uH_7sG;_2GaNJw zjr`IC+eS03ms3mq0TTE~Z@@nG9_QN%-TSxtDR)P)l5({UV`?V&64;O0vzJx$c!yZk^BI{ZP)-hp?)H7lr7 z1gGp18SJ33ux%zw-@y6EfaiTh2t~&C#)DMeL!B&f|6f=|E@YA>kfYuv=+9`qgO+X9 z?3D-1%&970Z|+uN$O%-+Fix4k0*x-e_iGd&3Rd45iQ2B{F{Gv@qqaa}ORmIT;qIDF zG>oniGC#jhNz*E1v&u5=`)tXrBP=W^)Dsqv4G(=8VoDNBgcg9m{TL3tI0$+%&>!nI z+pjAdEB>}W@#Kx$c5-XV9?TGUC3)27bVU}au!X(~eTClI;?MtK^DMxN$EW%U?vALw zOGZn?-uSPS9G=L7Oslc%n3bLm0pU0crlZcH*ibR2QYyl!hAI3+@$P3P<^bixYe; z`Dy0SFdMFb@D=~85Nk~fAFJ1gHN zR#_hv|CJz4A|8A{EYd?n@gv{Aj!5KK-?4Q|AFOU4ZJv&%CPH#;M7eKnm^5oOdV5WG z9M^2x{ak_nRjp;qaSxA2P3CemBzq?(PRhi9|4J`v$!8A=@qm{xh6`w;aX?*&Ar!O)PwSooTZ#I>%UrTHnp|3yf^DcT>YU@YQG9A#$?WwIl+NC zT$$dj@8?=}H^@wOa`WA@1*0t1ys%NLB#VrbGsPZOyVx|>)!e3$SHDG5^d+QHEBBL4 zI`X_=H!2#;-pLqTKtIm{2SLtrE@vMD4+-rI>8;5v0`d13CYVMzm-#Ie`nA45%Xvp?^ zX8yUpZj`OKpH;dY zm$yM4mg95HKXAm>zS2*rmc-nQXE`0{LMxLod|Q{6xWze##Z>#q65jl^aHve|XtI@P z=Q>@v*{OSDv#;segz(8(CNK02ij4C8nIC%+W0tQ~*?gm;z8L%>@767MyS>)zR51yt zIZnvQv$$b?Az^*JZ2q!xzKYL?;^2nOg1U5h?J9flFqo8n@Mb6nhqDj)I)H!=K{1a@ zt&i8RDkQ?tVK%`iI}hSLuY*5j+qj!PvjoqA_-K2jv9*^<`MvUHGumkJ7VhlK(D^{V zx8INa%VgS4&qpn+k>T_b{3FchUxd5y9gD4p&D=!_c5KGF$IHjo4!veLJXdP5q&|Hp za;e8$?}N$)pulFukleN(08e)koxXV0RH-Y-Lr!k|_wQUoY-*K$z#urzu04O-2|>&k z{<5HK4X;HYp)miQ5RSaZNU`Rn5jA7O^g&|52iC}eR4>u?rCICxqy+LsP& zuM5`VuPu#-86EcVKaavS2Bbp4uVJ$f1IVSb0#cZys{Efm^fxptJisRt4?qIYJm3B>ig0wlp!0(1KRT|)N6s>tLGunB3S&hfD zW4(G+O?dY`s@7+UrUERa3m=nSZ6;OQVqeo_40#}_&a@f(IPZ611}a#w$cxo;L8;Iv ztNFPMRV8#Oslnb#S-T2sWh);|phj~$;;greq|5J8Mh`GZG-Q(J?-HxzJPff|rJiQt zxRXOVNgScyPID@Hy;ns=<(w<)^gZV9dGX1Y#s#ZRXNH!Zhr9WPdQ$w!$#eh3O}`Wz zSk)>hg2Fi#Z!(Jco12jct-C?#b-M#KhEznt%vsCe1Nx?wcTy9o*{g&GLu|=DN+YDc z)NC;kFi=QvxP8|5Uz)Q)(0LRrD!6Ma5furkG$aP#Q2uwygntE|(} zzh-(a56RR@F*>d16f)TT$~q0a_k;ID!*EV#Us#ru!ue_(DSkEiQ_?Pt?{jG2-}8s5 zez+pDa)tqEPd{m^_#pNn)n84md8fyS2J}DnCfP|;l#sq9(rJIXRZVqWX8oT-?SfG3nR8m67YGvc2-)OiMh#c%^%TWtj)<_5=aT1-QU+*AD4bPBH&&$2=K|< zjMaW*>LT4{YTZe&Zl2ooJ6%t`+7>6Q2c^#XZ1a5huQo6YprkbA{@G#_);PAy=WIDL zPe4nzap8!Ylk>qaJd6N|_AY-&tH(#jMt}D+lB~(b_9z7ASB?$rEdf}lZ*btMcZ)A% z8)fD0$e3eBHrRr*{6kQUkGDbg~m?Xq7vTP(!D8jBn zinhH)80aP*^c{oc@)oBO2zx)xW%Ajj+zP@%>*$Gei{fSVAu7TI|uFUCW zpWt>xr=x}_dvd{$Iss~IP|pBs%Tuh#JN%gMWFcc&UV~|~ZAE1oNvuV_n*&)@^xjTt z2G={KFyT#2HKI)8<1q3XaALn-clP*`?Q-DBE0O6V-l8a5N!e(Wx4oxt5B7eUm9+Ll zkc%(VE}2-8!8n|LMW~?JOwQw)RK-x;WV&>Z?Pk6mrBtJ*txk)MRAxjWY5FTILTQqV`vTyK0m@hq*tK3gZJxx?-j3Z0 z3jk&SsSE3)B`v3KkdoE#8{;qxT0u!U;yQQJ3Bmx8PD=(olD2X^KIdbMKz|8RoZAE< zp118^-cyTYhYJwxKoIU9g+9XYwQFdJEdI(wR=t2bzgiHoE`>pZ8i`;21G%(QG9$Wn zbgarzaK(IkZ)!e0P@5_a*Qx*8-)HyX@nKTP66yVR*Y?lkweK$oQ8qL5w7z_4i=b%&} zYx*^oyBut}MGiB87oM^*Nkf4b)r-~!9CloKdtI!9Rv0G6wG+{4#Z|5qK}dZ0A-fj5 z&wJ9FK-=fH{Ld=EyyJZHk3xhDSH6Z~A~PI{tLl#=rURN0XMZyD9qJ3J5mw*_ZlrO% zLT@=8^u_W~-iVoa6&bb*hf~f9xoKd;PA|`G)|{P%2m8)eWlg)$ynXlReR%_zP8R!5 z^7W8z!b^|xmjL*f@YJlReNd$hbgcWO>p=|rAOj}t#+)y=5C$&92K z%^tKSV8!-QrNtJt)B{1dj^z@bJB+bUl)@+rY3$lrcar6OURhrVp$y#yr1G3&yJN`HO##E;$=L!|u`4UexdrKs*C&=s za5$6vpTqfwPZlLhwoJRyA#@e?e3cv<6vI#UrR zv+$2@$vAFAq@nCCyN=T=u4j@ogg%yQ;Ga2Fj4Z48l7k}SlZ-4~e@4mRyhB(W=P|K& zyRZU6V);<99lS+-5>j2?!;5`-cZLNS1nS2%FN5xD3E3%t7W6Otv(!v$gBKg?1P)BS z3IQR%XhZ^YMs|8R>yIzybQI9Q1x7%b+<4ehcb*Nt^2khKXFBsGV&KYS2Vr1Y`P$fP zd?kg$*Y}CQc5pyUB`ID@4Scev>nKsYQ#D9VN+(YLt54aAJ)o2tshMv7ep;Nb*;tm{QhYR@F=vuomrLcPon>#cR73lxl;v(BIY^aK9ajuH_IBAx^+} zyPLwwq^|y~Aer0cd;j*$D?v-rH!h$>U{g`j67{XVDnHYm>iLM`qfM`K@*yL(_)v4t z`ofiI`vuXyQ@E^4C5vjP)`0q3WOlg2*hGq|!@V8}^Xn9cLjIpTwD4WCZcn2uqb#sR z)}64yxQv4EamG-J%GCzSlB47Ui5_bA1LK`PUvhnL%=K&zIUWp2A6VYVT(n#V!)Ct^-bZ7gtI|K*H7UH zj?e`yB#SAmSadH=;=8_b%i&bMz^I_1{VK>a<|0raIg>t%vRf*G(ZG|8d>5EXEXIQ{ zJ_ehtiNL^PcGu1f`@UYe#1X2Rrm>N zOODuKEUh~j&_^@}&U(|qLJGi7C}c#=a~UV??93y_OYX22ce-6zI4UYE3jg4C|J>Y9 zovB|358Cg=iO$8W%A(Bucob^Hf!RmsNSW@=1c|=*C2{Hw9Lke#v1Z%X=>; zsc7-xtZ?l3v!|iV3s}R#Ih(8K+;)oq?Of%SLG9y!3G#PFXZ+TCXHK#dJiG_iORG#r z)e8e@oDX+m(xZH@F%20F2LUS*l%tr#ur3b25;Tt^)>qUM$G$?bJ3kHyExC_O6}g4m zBG{!jo1BL~av#Ut?CWfHGm*ZA`SSqrNYN^*&)~zhNs)VV;Zgyc@@6y*59tn~>af>3xu&`(iun*8%HD zTl`-S`^2No_Zboi1Z!vOdK{6)rERKsFB5xhS|WEl?LOY|iFiBVf~vo5!+AaV^zdXp z@D{7}(`jzM$IYsuDk*z-eQI{{L`Jn7@+^o_pJ-__9{VV~Xz;GOMl)mdP4<*vsHpI{uOAXU zzWg*RcdH7h<49N4IV3F7{9n&g(4UBQXyAt+h|eTQpg&H99hMLs*IhYQIbY}*m%M*? z7|bMGz6=9RXQIG=EzKQFuypN_TpyYtCZ?t@936|$WgFc}Mn8G_4U(eso4ZGsk}Bf~ zdq1!`rXsrC(L4xA1b(1M_Y=E{r%2v&$L8$o+ik_D1Xa3si?sfnYoN4*(Mc~EbQCX$ z^|B#lWg${-jApml!<2=97hP#FZeXORr9Cms`gkfL{!Ikk1n|Q9&OAl_LdlB_yr9x$ z`k5-tB3+*?%D63WPwhqLPZ7SVEWXvf^X_YwxXep<3GYA1u`x0F+ekj& zZw{DI-Q1?$EuSBT2VG~Dm9EGhb#2GymrY}{P+lDFhc1Q6_`dZW>p$Bh(00qo6i;U}uX|=l?_L#P)Ie9^?X`2e7$DBhDdVyK}N>zx5LB|-M}-9d3wz;{d{G#-hT5o<8yvhK)BiE zMy}7=Nz>IY&S0PuW05g;@uT5g?EVHD`SrF7(n>f2oS-w+1B0s_pIedB66x7L1cAPa zm6puJ@|aS@Q>jnF>A|}56oUzbmxNr7==}xFze&L@)KFsWKE*C@h4qcXeSFr;&+%Ngs9TV3P-lzsqe)xHB zclQ~M?AzBpi&`_U*Ow(FXsJHjLr9gtw>HzfX1)y^e zRq&JD2U$*N#tChyk-a~ofMbe?WVeApfU->BJ@>@4M?qmBtPArSViGE|7cb~k?-=n@ zphKcch>u1_Uduz)Ge1{(imor;WA@dc4@A4Ph8@`w)h|XwfiaJ{y}j_0;2%&_FVwR^ zbMLtpyK))GWD-lR;Cm4O?`-aB)KlAM4;<05j$(F}7Fn3R3jG`cBslw~5L6HTeP&f_ zol)iGJ+>ikEyDAzmxyM!mW2{TzSI}&@Yt+uTu1LQ!66Q@W{!E|554<*;h((87d%#N z-cWL9Bkfik(4zoaDZytR2@I@hFdn&Q?< z`wLPUchKo*R&Z27OaJ>f;n)qb$Rx){Xy{I!C3t4*DsG(8 z83(5K_1T?6!N~1CnJs))&kba|isaucKtnv40o?3E9{7CHxD|_XKOTg}R~8%&L66uV zfovC#d#ZVz?eA^E50@E&rp)W*P5-`ddb{`Wq8=U2hcw{NNl{QN)k?NXGb!IYqW+&t z^s9!Xzbw!>asq_~Vzt~H^?Ckb{7>o1`#o0~sKOiD1Hh59O5DRc$Z?J5+B`vfiw)Yp zgPA^oN}3jiKd(J?D}GQ*-bYy>`^Yu>2k{N+$JD^&=Caq@8yFH^?g;Vv@!u(S5PTTW zY%_LXW5+v851v&8_`tLsf${Jold5*N?VA~J@OCWTpW@QdHIWq9;LahEoI=Yx6i`Y= zGpb)rIY-1jnWx}UdsTcNFu8b4qV^UyIJwU~%$Sjvn9E7GscpiWl4BFOP3$xD?z19B zzSLNEajwPaU_t!*_n=NIu#P-yRd6+R`QohgNpqk#I(oYH-cu!;iR#>Qtw8jZd9cBD z>pP~K(3*!*W@7pGo?3JULWRsERtuk%C1k8n7V=~-Kg*9!l@LVaQ{Qj=|EN04sH~!{ zU8{&lH%Lo&cS}o)bSvGRQX<_Y-QBHpNK2PUKEy+Jcb$dr`%J#-uXt_F78u!{A-(bLCZM2Wt=}b*#8xYL64D>_epmb3;;G1m7sa7_d}qUTnnoG{ zSDgQr_P0oI6ungmevb!k6qRN=vGmd$fw?X}6zbD|W)CNB&Y!5oMRT&7I6ye3uIwJx z_dwYeYV*^8&z^AIM^C&&AVftOrYRD|O?jkX<=e5FkXzIcbm>Hxz!Pb{Jw*9d*cxlz z(3->&Z)| z$AjxMg|;GF0{nIH&>0lFYovgPH?YXuu|!zaL~r*e66W`1tl-|Ty(3SRr*McRBrbpk zw(-_UMcL@vd9R^2Dp|o5C1T0QELbgQ%$K^ieG}4{vGZ<!LN82-n~7=9x;on5B}T~Fj6jYd@sR{`75p}cwILOrJm zEP7yz31=5DYYi6gE>M^6)jT4AVuXS8KgEa{gOIcJi^V^u9lH{)&3FRFFTg!^`|M|3 z%haF$un=JNW|?=l9#Ibk2~pcXNXUh0>JdXXg}aMGYH2l-;L?%}?HXAU6TyL;BpdZ6 zdEXlf9mm8tHX3lgxsjc-Ei6j)O5GNZ2IkmY}k^nXLbE_8p4DKp+tVXk3_N!W-;7UzEyucZ+2Y#B-8B~oO&wLDtegi~Kf zIb(5ZTt3?_kp8vO<)y^yOTI<*fHKjPYldI9AMjgRq2`QnrnS(nk%HJmZm1LN?GL{H z0bR1(kBhw|kl$x|fuwU#YJAWR%Xd@ME^L16R8r+_w4u*z#As}Bzywr7Y6UH2PDaqd zr1Te8#P~MfaGJ&N0*l^FN511oIgyhuBC#o<{V8%=Ft0xRd|3Z_vX}n_b;2IEPU=MT zR)h>*q65$=(yGTsMuE&~l9MdfOnEs%zE%iDH04ntFH97u(@kbK$|vw1`hAM}!tv6T zk%G50@I%+R;v=Wlmsw{b^XH`k;YIU<}7eSwI}^;TNG2c_O-U)Miy z#p*KiPo9utlk1w*p;LS`8k9WN4!4$xrpWkE&$YQnF&FPq{Pf`-JUUB!t9g@-?LV_k zoNi3egWxL#YK`*VB%_}@dvjB_uSXRxEsB`zTcpTRUe!%q#;~~JfMsXSub0_~LmaQs zbG^;QWy#*S=u8qN%oIkd11>a(|Gm(72SxXhv%1&d_U~F#(Z36^#kd|tG52hHl=NBd z#x_#vEgbqUUND?g{1%=y$H~n#QM3ro!dm_Zr=-cl-S^JA?HJPF z%q^b#!Pp|RWBKJWsv;xuA$yatmvs zuLojs%fsKQI^f>wiXorcn_EYb5gFgJVv+eo5Y;>SIcJuRbT=WP)cTe}KBcXdK?p#eN-<40t%3KGNWuEpX zQAE?34EG4#=9Wd0X$0x8TZ&rTxgA5CLvUL=@Ry`p&jtI;$@G7Ecc<$)^T?)^CTW?d z>Qr`rV=h@%jd7LvBlFPx{r`GdF1EOVl9^mul67}Hm!H{W-xPF;^eX*l%Ro7HNFDLA zgPAQYllin8Gm!kc<+P>c+Qd3Bv8}a{0t6RgZIA%cA`jek?+TsDc)dTpmw$l044_GZX6vBMO?DYW<6GC1JymwC%iG2mP|~k zC^=dBemt%_TSjF6;!IO>Eg2|Z0DTB6iyVL5u@>6JI?#;rudV0>6a%3r;@mEKZ3M}4Z&fC zQ&U0L zzn}A>=O)oUlGy)j*l7eW&qbD_vXK{VDXZht&%h(hvv4oPN9qOn*R%<1STz;xXpSed zD>gEj*)&IB311&K+J3xQst;l`)P5UGB^v*@KmhQUf;%@tF!j*_J!VBSV{j>?5;;1kq+Vci)QH!m)Eam-9`t&0U%{TK zbXq>Ub@5za_}p{&1Ba25oQk1g<$WrJrs@+F#oiNXt3X9gq}qa?86jZwEKzsE_)LSo zIcS9PKZ;|(i38^40w!Ku>l6OQz_4QT^{KBPS2}u|)~cT#G`#Q&YK#Hko?7eFfbj4@ z9PY1;37$r&cySw&vh7%u#pz>;0Irp!I{C}E!sv--VC7yK;&Z}UR2=9=@U#5^x$xnH zj=XJA>iV}WOI15s9i1G>w=%C= zPAi3b10gdIL*B1kTYK>@39rH4>ZhZP)SqCbvkDCHsacLXLYoQP*-dhIs=9njM5ROU zG+C=V*fVS8^vSpRJle09bUdf`8S17_Ck9=Y+Z<@aa6O9dv{utt5xSHLKBELZs~<91phi95v01?;k!7t_Fv2HxgNw?${w3-a++XR*ZC# z06wzD)mQ28t92x{MX#^^FIy#qn)g?Nf_-l6Tf|~{)wrVrOk2CAk~boWG+Co37fDkj zMSJV3JXndv~i_&+(sX*#w6Dhc=$L#@&e8&lRQF7L#>VhofN4 z2bHRgSl(R=U)mUTo~t|Gq?iqPb5Li>lc}o2eyxYTZ%8FK3o_eNj{!!Ph#EFba;X~{ zx}EmTGpH-a1e3Loz`l8)M_$^&-MNI8Vp2U-?A(IB*<$^d=EuQ77iRLL#arU~tSyw{hHy0DiC zC6bT(fYsV1ItopD!wVn|P-?P1zld^Hea5JU{K|08YZdwGz%@0YnL%$4UNfWlUnPV0 z1V4}&Kj{K?S7=mG)pb*%Fs8|otXGOrwOeBlFcdyy$edc*(+C@0lRf12R=?;6)#Qf_ zXeQ@ruwpd7K0ZMp|MfuP!zA^gp~u;0xr$Jn_PCLuE}57b``wkMAj zz^sV!Zb@}0kvbhcJ6x{ef$pw$_$E2i5Z$&1olE%M{!hq08NTQk-c$cEnI$<~Dv^GH z5dk%dy3+XQZdM@S&Tgy@?|BzHP;DO`e#~j;=ass}zBhC9>B+oZ(#&vGztWv~FvE|M z0_D-XwFuB;Ocr?HR(p9h8UTN=AHtPV`6`)bybr`{pp?v@$kTtq>anZ46t@!ge8VBn zH)#^m734Q3F2W3Ez2&Ao6$6KQ+~AwY;fd!$_v(1#QQ7bUs6Oel86(=Z5|VkzPn!VD zKU#U_(^=zIr~!iuXEGjB=5i9pcissTJwA8rOCjF02C0)61=Wu2$r%OpqyDe7YrF^9 zB_*4(hGHGdM%0`7!ciUlq;+QI_{WMue?{#srKvdjXV9DayQ?xi=V{)SmIy{pjjJGU zj*o&8R{CI;|S2Cs28D2A>sBv>+dKzGtuLu9J>a__vABhSvQSEv_)fXmvokQ zZM5sGfPoUR2}MF;!#fW45VuQJm5jaCm%ifl@a;>!=YP=wk2-6mK{RC2s$I?YZ48X= zW?Su@EQ&6?DGPTV9r4wIH0oXf#m%3;THOw6L{iAO0|3PHBE*nSFA=f zXzJ*+!@)!BY)ELk@}`v7-{R%BrDWcZ4Q~t!w)?*3if6uud;In(1dSiUiTtApr=8DS zVZ$Sla6@_5O(0RBugMsZQ#Rq_PjdoJ-bTSM1QNa-$oiOvr6zV_65_h=rAlfA-&AxI zLBl`hnzL9yVD8qBoJKV3wHnfLzISwC;IZ9fU<6SGmXY9MPgU7wHZS$|=joPI#q9Ow zfQ@lL922azijUl%3SYsKfP2AGW~9~BkM`iE{c)WweJa zxc-)6Z^iC{$>(0GF6i)w=L14AmE2g*wcv{+f!W?T#Q_y{*)2XS+#uVWor>n00#ros z`RS8ARl;bPEy9P-%c6t^5=qo^TN_im26(JCsp8IWDz7cNu{@KC688QiL&xP!Ff0e~ z+#yH_8#3sWi%jsHkPT`LeEsl4eNo`xmIw$d-cV9(1`{(2@wT$hm&3cIBU6Qznh z7{YvUPUPJB=E%AdReYRHbl8U=@yzUr^sbuywuv8Z1db-WBu+#?fM&R9n9lVl7LQ^4 zE_fDTLee%B8GL?^@sn^SYK=2=D#e)@H%Z85uP>zp_B_mTbhe_T>M)b!)xIEEG9~sP zPjz-Q_^T80Ju8}(ImV~zr3lSp^Aa5!3f!S{$sO;*mDlKGbT4C2~H=@PECGH>)erAN{ zb%Z9sTOZiGz3-4Cx?Wp&`*ufsvSIaP|IYqBN};vbF(rzD%Du>ltfQUFw*j1``opN3`JRvx!Y(Drv#z@!o1^Y7K4X&1g01vd3K`+Y1ZeWBYfa@?Br{U zQ=J(rj`ll+GexFxk2B9Wke^s|P-|}7PG^-=eQ};d__`>L1wStIG8`XbFmd#$%iYL` z<7nKK_#Lq;`bk4r)p{j-zc#Z5+Gx=qU!9+84j6HmWK?Z*-<{U1qUzfAN7sFRwZu~B ztU+9o_?bNdLNJMdaN_>0uB5a1Fr~N@_}oKUuVQ0iQCH-Mx<~Ve@}`rP8akTf>exV(cD*lvfvn3SMU_+1C9YLN`OX%U&}@O zMkn_qey3bRn6#LD_P!Qo@U**VE6f{ z-=`j_vV(KakP|-?%{Tvie&_a0G;i3U;I%bVB}5_p)wv~j#Tn>>M2;zUl; z5HLBT_$+i}QD0~pYI<0~{p}3i0MmWg!u$63Yq}OcyO?g~sESZt(n8)+^+AEdl%Ss* zSjbW?>4i(+EZqHw7IW2D8uP{{1 zbAPeeJH=t*nWoTMCgnvwcYL|;afs|H`=ZdD>2VB;ep+ucFRwd%wD9zx+2o*IpRmv? zpui$;kJc>wqVXLBl0Qile(d=--eiNTl<~t6vu!z#6gu|A} zNkz(FEV8Q!ehc`sH-jUQrh6K2peI2-$XA0jt$&!EmnSKw0uQ#4*Z*X)U<;u5wHO!T z6JRWhL8-RwKTZn|>_+keh*5)KtEpS~(cIYmT!v|KslY*c^yIhU^Z6824HAzR`?+Fy z>WAIg>F<;%$};!iCKKIqD;pMl04#ZdZGv9hW%Cl%KH z&-Fw9;$lONh+IYMUS9%sK9q$!VRu0V%7LHXc{|Ms&1kMXKU_Nt*8Y(H^BV?FsijfdW@Dr0!NuyhcOfsZ zphG>VYufgy^Kmme56n>~M;7VQ`qt}~fd-<5q$3LVX}lupx@ih_3aP=DL;2+>p4Kwk zE=$2KDVO^Z1i6FTivo#D+x}t97trJPKuvnQRy69d|x_1|@!w{iABt9+u#=EB?BEA9cr%-8mXBM9}zcnKd zMWKW&m~ZYn@riJ@+TVU{O$cO}7tt{cu_@J*KChgnVJI`lnAY7~S@h@$Xnf)op9r{@ z--;xaK5Y=PE6zLe^nP%P3&8wa+fZY|Uf-;4_vM%kzgO?wd6Z9})W>KF_^3Zo``(Y8u5|dHp4eq5Jd>f{`#G%hZpCW&WQ-Yr5X~WMJew(UkBgxe{SXtn3jnWQG z)_h3w-KUnf9Efeb_~muCKIT-Xpgrh^+8gM{#jLo2YFe4^U4p)i#)Z{WBz2UM9$}>1 z|5hz-a6H|^L+5KFJ-B?W5BjODne34*d2{>8L3RnM-<^skoNnL=OT~VGU=KT9b6XXy z7o-Y=C7&{g_jb8gArnxUUd;h{6eLWEAv?y6X^S6! zJLeC6!6ITac*&FA8}HX|l!obY$i?juh!wAJ`QFNrMg2?ue>J$0B(!b%6ve7K_0ztD z`V`DnHX1=6;>X%ePZWD5R|n?fV?OT1t{o_9y{#Up!B-Eupe@k6Aq{SIABYfzhhh3ih^8rKNKwJ`C zr2S2waG&GjPTPH!2-QC&Z+e?4W7bQD>3!y>b@_V-CL`u!x1&h8?3%0Gtaf#ZWrq&g zRgz^FVo@>4zHSMzf!T`+JmB<^wE=?BujiOtsR|?8&DW7N$$qP~SN&~E-^f6bf`#2^ zPp5?_GR0hUOOpD?1g_fvN(HUJ-%Y(y87-lhZQ>X_J=h!dSJx33jg4OXTxWIqjXHtv zx7)`v*e8ch;VQBK|6bJDR2sdK+f}Gip-F!Fo19HeSFE0nkZ-r+VuB`>M}BQ<}YV-i^tFPBHKZbO_b~TKHLtWb)wTL4+6uq#+1dRU#ugFn45% zreT+hpL+2&xNYY-t;YPEY_g2jO1St_;guc!f%9KG0>Rf;FXeP~ykjC%?=j@)tbg!3_YBPT-jU5Ib-?zENjH6{gwtxVfjiK$O zxOA_GN#3vKlfTwa9M*!Xi>9pp@_yl9d)aQbTKnCK%KY%S%>mv}hTqjI$gi!X&D?fj zXXF+a>z#|s<)X6cN^aEhglzL=lileEKX8%6y=ndI$8R7c7G%J9)bl(-$q?r7LvgW- z%2e=IKDVk(!*Dc-W<`%aJpdCG;i|Ep&q$7JvKt8`jrFrLZ#L!D2NY(1mIU4asehpC z|9y|>xXS57h(4lx?k|e7pF<2J6yIkZwEKtvm=H(@9UohQ0)Nn^X+1iGP0wwb zVAR()K-!((BMsY~<=I}tF5|J|Yc&1o>OvjdoB3=`O4rU~!^m!d@WB}lrDT@L^aKj) zdO2W?!`Ptnrj!bcdRk|4!u%3^5&$)0cdJ6}UtRe_8^V1)SX_1UAfUFH+ku zir&xB&7j*viGbw;hmNabd9sl|#d;tBCS7y5{#Iv^d&}ZrUxQ^D24Q4&XR*ItXhJAG% zKa}ubI9FuRvo^{=T_rv5Gz~&rkASeeDQufUo6`27^CwHXBiG z1cYLUL(?UWJrN1v-Ly&&sx0W8rm6J(GRp5M`SlR^zbbZ4@snW`6^yn__K+u&QkX-o zCVDq55<6GIm`*D*p2rn{4s_^1`PAQ~K_9QL)k~u(W>mZ=joVi4u7Aq`Px11&lyODt z-@u+S!=5l)OjG;tnCam?R|Eccpc^TlYN5688YP+&Cxt8aJKtA4&eSWlmCDA>JDlT$ zFA24QpFM{)30F6f6_rnHV5W6VtyY&FE7k)E1SqIFN4>W;aK#XdlwPszUrFLH^F`O@ARa)9{1pl47sEySb;0d+9J{k{CT{k*lj zy=6MKTzJB27W2_z7;8QOE#%x>JY;`Ng{B@zCGO--0TRNp{k;i%;q|MP2N#ye_K?H# ziQ9-7lyLyAhvS!4&8Eq}P_^PRy)2$#+9De6vwq~9`j6F&*XP?%5^I}FSSb*-ecy8Y zD~Mhj5X!T&mDvh4#;&YOFg{#lekVcjFl13u1tN6k@cSv7S9U3x$T!@U!}VFq8Jhb18;V!0q`Q(<4*$f2I&qDBR;zi;~Cej3Sb#eI=gF}H)_6gIc0 z*EbTrer@?)wi3}iW_Xhrby2s1^)kOU)?=oB-3S}vBk7O(l0Y>8YQU~mimr|oam&j+ z-DO$HDG%Dnhzf;^l3$Mzk5PqY)Pkd&wGfrcsVT{5B@1|Yd5QIWS_3x>Txeb{Vg{*# zom(lWGp|WEjc1|NPh=7dc}_naIb}1CB|h(5BCz#uhRt3H%pDwCV%SqllQVs}>LKLW za5*1rtQDm?tj-+q=6P~5P!^S_rF1Ty?pI51pSmP(gYB_kYfMy5BUZJG@pzDk;E8BB z)4LeYQ6=w@ZSz>{L~#75^Vp8&4ww7W{A^sa_z5WMII%X|D41e^(pSn)PrQ-g~N zN1DKJOy=TcMEDZ;U`NkF3%1;`NlG3YNM2u3kex6tKSP@B5 z`Q|KBv3_xXv!7I@$F#d=VwK4Oj6U+KTzA~@8L5d-JdW>C=ZML+bjv{@sf`v^yu!&B zc$0m^tC0ll8-GlLp48W9uZ+I9X|~EMt^R!9z$jMlL|xu&nGt zed48zOlW$sGLfmlpO@w4g1$`_s`FE_`{iUG0xjAC`CRW;L*<%Ec%>GBOHPh5HIsInuC3I`s^R|ALcoN4}de#cTh`f8G4M6qP8yu0ykT2cPaGBx0Q*V6r3m3iyd-9GR~7J+~@;lY+7weW%GZE!ix*Oih#KMIOaxPuxW&7OdlGH|Ic`E$g$gY#w z!sW>h3VY8-TuI5`tB?4gm+TB>7%7DW!7}%~-w2J#Je>-0V``fj%od|k+qpdI+Svp* ziI&ZbAQfdlYVx?0v;`EdlI(1MV_e~cJC;+LPvo;^_3K=r@({e*6kMsYl2|bN4U>}- z$WU+r9e&P>KJ8jg*>B@w4Q#PIDf+LNh4f4xAAT=RxAKyJTYjxqvr;!tO2GKL{=qo+ z6KTB153O?!)Ux=*1tI+;&j@6xfy-OYT!4_sj4PGt5mifn>M z{$GFSyRl3&mqN^bQKcW*JlHOJP2WeMOa`0zvILNcx*+1OJ1ME76udl#Of$7E~^d|%pW9iZR4EsFX z3B(V~{u~^x(6xDrkC^75El6K_z<(V9wLjqSvPTjN4Fj3tN1*VDqU5UX1a|CYrx8pQ^bT5>5BQ&;^``87ch zP{jc35G&%Zfy4GmFY)c)wKe|Lrk>*PixYX*=b_7d@}1K%<79j|(H@i_H_~45-u8Mm zOZ#epD@GWl2{z&l#@zFNC|uo;@*!7BFR!1%YU^2QQeV2%oUpCIWC8vY9m^1?C2We) zG#r_C3vPwvkETH@22t-sq?ML$g;_6~%#wv8KLbz6Q;NgGbsLV)QY|%K*cVB@Tq%M_ z`Scx$ga|29)E!e|dOAe!RZ;);C@$fQ=`(0_qzYCK4b7Gvuzwe@OOra&G*l}~lj-LN zaqn1mzXn6lR;IT9fH`zW)85Ato5F}M3Z3`;@Yr8?=(>(b8)GAP`w07eJ}z|QHfKuJ ztG>KR``eUd@)n5%CD!PSS9$_ZsKxX!9Z2t|8;eq}BZwiTiG3WPjd^$A$~J{;-y%l^ zucE}oOP{CY{`B~^@Soa6Pa-sh*1`e}!g+EsVT5oZoTh@>9ZJct0#2rPw8W_HFd#9n zR@`l$h!VqrnaF>QpWUsuih>`oV1W$1fzO>W#LKv_{m=&>8wH&G+zsyfENYa_xESfh zT$mZvDeX#<-YwyjL4@IcxZ|z0NjI4}*RS#Jil5H{duK*Fai` z|0N?Lx@n|o=43xLs`dJDP&p|r2A&PDx9-g<4`++n=z0IlFulTtv-9YEvV)*044b4^8;Z>i%oOskHVjU&SMy(2>pZx0p{SYB z7Z*jl?Nw)73jTxa>cbxC5Ej0avKD*nmJ7NT-qvFyg@%5sP1g`rT>(KiU_@T5M^YD# z9#t5k9+ED)+kYH+zn@&f;(;Dk{~<?Y+7WKZSr{mMbH+4?Mi-AcA5>2M(Szn zl}5u;5SQ_cL3@LW+jD$^l$x?9vcesIHD$=;jetgB5shc#eafpRKi3j}(n|#;=@*>& zQZH;qePPbtTU{dl7+#Xnv2>OP;y)7GF94sXL zXn%Ktjp&@wFo(Gz`FcFEJp(wR%F(vMu}< z=K)XeHF`)?#fDGh=o%cHI_u^9)WVmb?%xFLZvZi88QG|F>epS>Oyw6*&|!Vh+(5hU z45*)}Terk_hi9Wa%c;zlQN|rlEeo&}tLs~vcE2V;DRrT`M^URyuWLI#BIZe4}CGW`9Dcy0X_%37pSq%dY|;eK{99uuqq6cVoNUB1nX($gT}KUL;CT|>EFBaCXdmTQQO!!M;C zVpB%3cLu?5>p?}7MU10e6cQ8x^_fHQG|m-78!w8+;U!MwJz8?8wGEFwF+jQ$FmFkKT!Sooe(`*&~0}JUvlzF zV_PuAT`4Y>1T|?#(wmm$1uYduCaY=v7&+U~kOv`9LPW)4WK(uyfS8Wg*x-+U#zz{S zI1!tY64BUSyK*dS!>aL8nRvgd4KVW(+JvPD}mlLqd@_N#m01e>2W z6&yd*40yZFVE$z@hj*2u3Da>SVXc zVZ-Yb+aSzrXZ()~N_R8)Ha!^R4Apt%&N&mc-Ra=L7j1pTW+tK3C60kT%#pXUZLM6I zTl|4xL=3CT2bumyB6EY3s2-zOFvLr4ZuD?zN+Xj%Nry{S0^^f!_HC> z+1OM)YBG&mRsL%}-w`zWeD`x5`wjqM zz%XHV6Tk=v00}E9r#`8kpIaY7RqwoXrn5md@ZRikk;UjB7X1IP$N#nqu%=b4z2ofJoq$I zHHNcA$R@htys3jx1Oe+BMeK*}vn6ZmqL7sj;Uk%v5D>_BeQmo%W}I@9=JwM3SGYjk`f{Q5f*E z&6LP3nQYU+Rn;c!^z#e(uhYK21kleje4>LmY7h5)PDC4Sp!QqMVz@mYHOs!Pu7D&A z_Rb^B>q?B{R%4~SYIf1Y_er2gU+EG%1rc=fo9x7Kv3%Z7Zk7HxqPzkZA1g&!c4A6t zqqzFTO>*GL8tHD@eoII}*>SYe)|(j?Hk?<$_lA1}JuWT?v>teXEkUGROnji5i|nH$ z8r_$<`hU4l_6hq~mP?sETVX_=HyNq2t+wd4CAkaSgc6nc=lh1&6;Vo(^~3IwG#nAJ zhmRTPl-h2lzjbUt?_y3XrQx<`_J+KJxVEMSI$K+4uDKVCE)frl$pUS&NofI~A9Xkx8&2vV;E-7XKbj-S3K}rb;M1pV(YYgaX;cLi=y&Xqm7S!u? z^(IPNZ4=H!yG-{qyH^YdPRtD?*LL5V^Gk0;;F0!LlqzYhMoW7CfIQ?OK> z#*J5AxNw2h+>ciWZOxAdK?i8zj!>{*v2g3diIZ76`Vts>c_mfR?Y)(PgTJHuBY=Dg zQ26@3^}iyr)t^Sn19oT22$`Ng3~ADAAUSZIyx<4=yjLuqu^Y8(Ir`U@9idkv867>% znT3+Xzw`UJj~BJ68;?Xu%+2-cY$60N4e};Dg@rG5WZ`Vw8{t#sQD-mh&)yxCl136C zg3dY|u)s!#?LQL>{0b5&Vc1MrJudIBJiS3NV1X(4QA-P4?+?EAxV#>6e#21R+CDi| z@~sVR-cOZ=gSu~WH#pe&y0u<~KkmB?ziAv8yU@w}?x$WdruC0{XucrdoFXJbZ=3Pq z{=NgwtG1mVbN;zx__M;vH}mNVtr0WCuR-gE%NE7fDD-g#<(yMNY97?5mX63^%Nj{f zsOZDDXT{+F4&Lit?iNOG(=^LZ|1b@ws!t+kQa9jxU;a;L2JN+IxIPPLaj1c8Im441 zZCW}u@gUzGX64gV?IS8=33ccZigeDw-*xm>sw+SD(rUq**AvvY_A-Ulmhs;UjaiNS zMb*?c$ML=`Pw;W&HfF7Co{q|sUJD7~B@DYy_8lEpxr;y!sy@4T3c*WH0GYr^;^A)Q zpXVm70r$cG`_`JrfFzUx_0wJ-h(F*J{uk50sE2FT@#lc-N6a!BQg%}z1Ar;~;Zbmy zkRp#JQVplm1!D41(?_@0!oE!;EauRldwtoB2EL8t66qY4qfsxT}$ITH@L$V!`{tF_f4W)Jy^7wCU~&+ z`2NZH;P~=-w~7o+_TgxUuh6u|jqkbTv9J0*5F1t8AF?pu50Dr0(M*=fuRWV07gKD| z%_Rfy=zWhub?zhnUXMHw>`&|4(i#CFS`%a8aCPf>ywjn_pKO+%W_~k;OBlFcyPRq3 zO-unTb|nQCzvmH-DJhbWsvmc$b*4Z=;32DTa(Zu1>@W#HV++@ zkl@^#-$ZdwlcSi#H1*)2rTa!5R3VWfl&aZ$P*{f}BP&+_MQ-xb86wCO>YC&=h3w$W zKi+#eZyn+&+a@GKApw;;POF^1cBbSpk4`sw;)FV6w&S#q|B;5lvkPz8Y%_v33}3u~ z&EXtoLA*Q7{M!rN0U1U;6}Yc&X#a)qf`^N7M1K@xAhElA@J{KS8U;QD9?=mpi7#Ll zwFH(P(Yui)&9-T{a(@m&R%5=J+VD?VGX4?c=IMz&Za|Ltw$|lBN4-|8aLAu~v{ZCUHv;q-97OLU$Uh+P(h#D3{*kh`p7*pPFZ&-axzoN#Sd25?B zEvfX^qGD3?2tqeS_+k09aDrHuv$({N-TGs0fKkNZU%^+?f5A!Th7{iz2#{BQ$;ctj zTg317sUJ7(;c_ry`dJeSHa1324;39frIBXeYRt?@1a{hD4P%bFf+T%kq-tE+9?ZK0 z=a0(H-gm2C!06-SF#SK|gYw^63OdN6ehXY>@z^51yoZ;bc5dA*gnwBr=GB^5Qu5Fo z&i)r(684L4mf(%-QcbyLz=@rZP`_xoHA}`lNgX;VCo-_8XzDl%C$Ia6vvu4m`^>(f z2YjPz1#+RXlqw~cbqTttBAkDTzBxXKg6Z3T6$As)C{g-dtC)FHWoL$&3fQU*3_sL0 z+I<%2=>b7)El)S{bHp$20h92z9EXh!e=e9R2sMZ)x0U_l$33$Y|D3Jw32NM-TA?q% zCkJW)Jn0vy$l!OXc6aRSQ)9VFD8W$c;7K_?wSP183C zUeovQP7W2594Ev?zv`@U!0>h7%?wKnOV@n|?u=Zu$^`d4)>T^}lBD6@y!}e=^_7Zd z@s`ZY59j60hY7QdwcA=b*BZy=wmqlgz>>ciNwB#ZuWq4L_7Z!#Zv~VPfm0R-Hz6-X zxT~G+v7XukAjRW_Jo!VlRP@p33Bf;qMaB5JVM1S&5?$J_FM1Afd{u-(T{Fd$ZAIfB4~F7B8bVgON#K!Pouy0J`Ls2zZjj+Bn7ly2Rmw`@}kLFY8Rt zM{wLGFqqS){lICxjh&d-k*pR5SWEzJ*)uR5P!NoVl}vEvkS7z;1Gj{oLRr@LW3&p? zd7y-%XJ>WDV=haEh>mRwLePJM@V+|hTDw8Ub0braFW3?1Bm4km67=z^8voZ|21=&q zNl18wn2n89NE7%O`R=q#T_Zu~o6GhJ4>XF5Rtcfgh`Du)YzLu7apCm{Z zhurr2KaZc*5|6?U?rmle6AXh+Oa4@V`TlyR8nZ+2Y!yf3xN*L{`4300mtHU`CdS)r z!^?C@kuJd30F#zRf2$x<#t!qvPrJ{aheC?N)YN^L-zg7?V!V?@i4d}sgG6tPJCx2j zz;wO250gzEBti?{n@h|wf>1A|*|k`{{HR6+Iceb5-2kaF30Hj&EN0*xS1y`bfg;_gFUQd{8s#G-4yx&CxUegZW-1rJy5$QNE{4Dq`pQmhxZU zUc{lMb(i{*v&%ouud z-P=DY^imW6n$Y9p`X^Jjc^RNOs)ijuVJ#v4)K}DhRO@hX@0XSBhClhLx_+nfO z871s59)`gp(j%--z+5${HPzEY)0!2OjNWg+fDr#EcjHZtM*R8OGLGc@#y%ZlY? z7BYba*zvE3GKizZwX_BaPvQp+Kj`kl5`|PrOS3rSp=OS{A-R@?XSrU%a-yZm==V1CQn1=4w-W@iu<4TmuSWF$c!SV6HB05t+6pl6{C9+pE00q}qvRg}jMoOhhXnYXV5G|#DvTNu z*lOwaEzpmFd`EgkGA}D|PPk$-FoIr*yyD zhLLOY`^18dyIGTr>n((m_n)GRL)R1$Jt)`O9!KwWsy^v-BfOB7hH2O&zFK-bXERlB zVxs@6!boG#{CMkg5J%6mEej$JY?5#I9_fx?v*RJT{CEf1L!Yd@PZxDXV^$vi-zbB= z`3US6#p>wrcn2K?`e~^19VF-+2L4e{Xx$~oaBVxMyup$X_o%?+=?rL1F+KnCt4HfL zbTM2$9evP?9wY`1;vmAI%9y3Z>}N(lGfmIujwDS^X1wj+A9SjC+?`VSoQA1rOS?9r z3U9rW7R+!|0q?wI!A$l@KT@~z$17!0_vIOvJVPk`Ex|LJkQR>fZc-5@UF3G%3zrlbL#!8sK z_gx*5;f@B+XXW0jYjs1e(8;Xb%-gkFigQtCL_++joSY0!r(F%2{69@`ERC*iC z=>N~ugmS46{M{p{k~)J9}PHzQsJH@o0*P@g@l02yO9yf_)Gii zaUa%#hunhpe8rxHheuWfQ;qa6;dWTX>~29dnd%j02I6jJ_V9k8B|#_6*BANIOOHX{GTk);q`#(KOns;A&687#!K z`ZeEfYs|5@ph{AgRIBm!&%Xr^;Ull|8qc}m>U-)6Bty*@Y?^(1CeQVd7QRVw{%>>e z89pMB%bE!`IQN564}uM6obhIM6p#NKnry#uot_T*y#0@NR$^i8nr#B%)a12&uBf3C z9@A$%>Zmryr>ck;WG5z)lbfbO018Cw<}%c;DJZD5BInLxns_`sg!PSc9OzuyXjA5 z+QItz548DmHFB5tsu5FYz>jt=16tcZ%w0ZyB>c^Bjt8MbtQPD9VR&K=H6ux^LVDhf z`=JTweR7nBc#DnZ7*w;mp-~yr;Rh znJlp#Qsvi&ame8x;DV5K6W~v>kRpc-^StZOrDkC09(nM#p{M-4OlPVC*E3{V)7q;8 z-xX^`I3DZ>_m9s*(kOz08tc}$fO3uV-5M9`r7^qpd&PRz&)@vc&VJ1omwfm*p|Zso zos?w9<6m3*FSE37(wkpfD){ct15{Yn^^K&AnaY?Zr=mM^E@74~;#o?34CO{c)09j;=S2Z&|!=wau8$ z@P#i0>D8PVv+4`jS*^hVoI}PQo40!2nJ2x-)F&k2TUM5UF4+|byO3rR^PlE0qr^o4 zYvuORtA8o<*7d7So!o6J)_0n*PE-m=B7WrG(aFQTU;^XrI}t&wIheU~hCAZlAJ+0XGO z{pXd0exoMGj4Qbqh^IpnCj+%SsHgDw|0-yuq#v53{vJTkIola!80JLaDgSdw`uSpN zzv8R=nNl+N$6`w2`|x@B%k7pEnQ8Z**#$LbBz?j+X(c&cE8y&Z?-JHZeZe({2!*y zGN8(C?beDYAsx~pUDDkGQqt1h-3?L#(%s!kH_|2DB^`_I?v68g-*4}IeyG1deOS+& zcZ_ijFDw05Z}Z#yk;SMWodm&Ah_V%5~s;G2K6hQX2eEu-#86^K$ z{G@LvX#0M*&(O~80Du@C90zcSlveSUjw@~Tb&9?z6(55d+F#vi?)T_D=Ai7;%Z8!I4Cj^^fd~r*&wI$vc24b;vXvHo~KJ~oQj7DQOG@K0E ziUb!$3i~t|TJo~8`pplOfY?WzD^_`*a1&VVcq{ zTN{0=TEZU!U;YD|c#+@N_seXY4R{_pAQ;{sO#X3eak!$HnUPxAKnCVCmFzL z(SAqxh}_3S=-#Z8tY*0U?$Z3tucbfwA?;<|*w~o&)-P>8U2XWV4Pg?2A zT*WNQ!mAcvs20^`*B(td=2I2|+Z-Aw$l7|N_}ux{D!3bKo52CLLNC$)3i3ww+{adD zC+0a#=L)Z{pW?#|mtMans2!)TBjC^pJR4=30xGW_Y3})0i#NM@&!A&@M_bEmO0_cV z?P0U;#_3UvNe+cYh~8Jzm;;HC?x8$ZZB+GCS~k{KPJ&pHsU{rqSx=k_uLR^8rbk{w zasYW%`#yV(IJ-o(;rE_xHvO|uk+sN@`<{kGBq0YMm97vip%;Eb3)?pq z%3#|jn&8Fk?|WCROXp2Ar3`!_OS6kfD%%c!%X$!>_{=5>oD1@-HvID~hUjvsx%ytaLyvr_CQvVlRiY0aJJyTo&PL1mbn1440E{ZX~|LSq1 zK4Ph(orm6>t%1=Us5br~jRSDFpSbmDhBGddli$UB%dbKN9CmmI0@9$hyH=B^izonU zSk3ToSBMG?13yRZD_SaJKSM+Sask09U7ximuJ0!C;)@bDJzk-6X)^@pSp!(c;L8Z?^R>~>dcGPM-sf2MoJX!G}H_}kRW*iSuhQobOB zQeK;0w|W#+iyX5*5^7*INfnc%y=p-3w4`kghJ`#xTi1tc-`j0!E~57 zI2T^f50G`AXY}M_ENec~2l3@N1|V$3k< zwjiNK4m{cqj~dcTT-P&VGTVyIj(TT|wwivpv*1i&y!?-nbaj7G6cldfeF3 zqgxrs3vhFqg7r3kj&2xionK77R6;OO)1lkhywe@V*XO5%A57KXoV>PplT?_0z1fr*a`2(kNx(oKgWgJQ z12`gkUQ4?PW=6^Ago<8Vh^X)G{c`Hb5yKk)_O)1keEHfoXn?LNz{5{q0&RytXq4!2 z57x^fcG4{HfINl~N#kiLuYTnXGEhb37qjRYO%*eSqYHcAZMeBqJ8>1Qy9u+Sz-D9r z7mSx`+#(3I|z%$_2(M%E@{U+12ocT~)(vZEe?gvoX zb|Jo#+H47z^n5N%c?CF80$j@HX5!}gQ0{5ofYuXq>!8Dg=GpnX_&CNQX4g+CO-A1R zQTIIbWA=(WcA+9)p;_@4IShgb(dWH$LX5+IQP?^8l$S>W?*V~0h{9lZFKn;)Cn>K^ zf)xu;?@v28|5DLLDQ&p`P6I%9TRX$i?`9@BG;(?%hwn9la5|SemnF6NdLX<<0MhX9 zxwdAj7G}k-Dkd}ZbYPVV;MD#{9|p>sXcH#NqUY44u8n98C&^Xtthk+(04jPYSE~A6 zuc8xRzoVg}p~=xv<(8ROcb136wW@>7TfgmxP9P~Fte?&)yV(7)yg%?K0LbhY!rmpd zn0CTuIO^6k811V#$=q}E`d6s|9Ih)CU*2t2->7SEm^g3LAY-&vJ%G6oJ{PGYO>K4a zl>&y|<{L=HG~q!}R72xm!BOt#uBDRfy2#!0G{%MJJ%dOv0w%_Hu*5Nk#V>XOb71t0|F9(eSz*9G+zQX%z|(FWG%o#|t7NhI070CX z!WG_@Nj2eePRKLVE#en;RZ|*F9eC~Y82Aj9^3F`br=K33c+44o^EH*>D>#}}f$rY$ z*AK6U_$QGO`Y#)s-=1l#I6Nv8d|DKYav%}4ZeZvRFByMbLPseWLxW7@N$) z*uYzLxD5T>qfB~i?=^U9>{aInF9YT4WM$fjVq>9QfX?hiefz1M5U4;?^XP7ysXasm)r4aE(783~%fC_PmDnv;4v)t&NFy zZo$I>aR;Ww-eESdah+az#w|-~d70NG1C4>t_kW)X-u*)pD+h)452}l7C(XDD|0lt* ze;8Din#;*=faj&KF!NC|w(=Dw_&`6p;}soF;ALFZwyFX-pbdx4*033o-6e)_79idv zdoWOZ?7JUsN*$Q#J4$oDq&%x`B_a2K%E^c2>8#H0D?hk6K5Wu)cMgUE(l+LAzaxZ0 zc7?tEV3!#WTY$JPMw7_0j!7}P1fp}0YjkC~ABv?+u)2Wy4pe!SfQinxZ#svUEu^x>6$6HWZsaj1*!knl+|%EKq4*z6dAHK>u3gwH64OrBi0H!e z8C+rKRvrGjghDq!{p1uy#%8trhX71)A$_%3wCs61{;kHMV5L{aKB-%Mp{M`d2y4np z2Xe|VYWpl5%4h!nl02jU>|bdi?4Ul6VNF;li-!(#tHqMhQD8z#+Uh?eX{ZqlBp6Vu zdOcR5lD#^{RX#-w28Qyc;W&_yF`Z_A^C()&V3q1Srxq9y@NfqqR{mXUl04>|3cs6+V>`~MwW7iExA5+9-OSO)7R7Xbo;f61=WF4e? z#&dx7y;aNXcpc&2am(0vHrK#sB`FI_mrtWF31<)oi@VrDhvq`h7r^4J8iC^8`ph)8 zSlb}v=7`He+jKK=5caAN9-V?Ka^p|sMq>(11^{SVs$Z48enn7)g#UeKoZvbHLQZ~r zecbWKZs~QDs3^{1@*9elzm&9o1PV35t#}wuMW; zzAiNDM7-|0RJ@Ph+5g<$qu|7x;RS?WptR;ViSzHsLMOB~poaJPp3U<9tsq!Ey?%7x z%u6pjs+rNMTqcs1GU31DMcWqB3C?vXTg)yjcdJdh{pNCKX`eHLRPIzF`K=-C-W?|) zJxLD9}|EOETC$d$zWIbr-w6f1R4Lrp*cNI zL)6I9JxjixTb-#Vz6oxseRz1+-}6TQH`olHjOSRam)NC&*%sj+^`roWN%G2%Snb(h zdMX^_)b73v$d86SUJ~UIuW8giRhl&5%0IaEas-}=J}3cT61%@)GaFuD?l&YG62>LbLk#`1TZh`Z6P4DfKcapxhFT_*A}yS0&;)MCe@pjkkx-q7ApE@#-6kzPUz=T@sT1)JtDzK z?9HduA$|Uh@gqS87x|k#AfwX|@>!V4soc2KpF|wK3qc}P_5_RgTuED-Q_`>)q@IY5 z`mKMn0SkFe68?xrDA})tMaKKr@r5w5Al6u&N0(R|P-3QbO|M6e05N*w2q7C=`)RUI zVD=vn$l#Jg#6GSFZ0PtHH76q^LP!@cljEhUB!`qQ3s_@-{ zGtTH_DWGCQ(BKI0R;>c4f*|ULXNH4F9@kBq1i!vZa8;Nu4eoJ>EC9F8Sa1RTknD^Y zTL5Q-sO7+HxdYxF#X{R(>!#tS@WxkC%vR~_*5MY@Eg!y7e*CfOOnjDk^_H>C=t!%9 zcl32KJ^mL3@a(M&TCGQ`Zpqx`)|4iOf*V&k z4e*SMRom2E0e|iIaz1dc3R_4{=hB^7JrOK`xX^4(dR;>If;_v2*xkgw{H;(^f7JTH z`xd(5+201PQUdVPvA$g8JXqOHmfA0v^m2sUw=K$kX8Q*qh>|DpgrSbcno=?|kmXlUS zMLfN{k^X=-`l$JT1A%O>;YG>G+A`!1b#Sduwqm)V>|8|PJrfQbr(M}~pD_rrRwXBGEtT{n<7hDEuy zrRxChAt?b^Iyf|%MsXvG9G*uK9h8Od58c7*MSyb`{(2D~O@w%B38Qszc)&;8|4sm^*%E5HrDD`90m3EiK8B<{>hvm=0=bPxi z=|m>9qDl`j@GK%86-enc+#f}7wloa5vezV_J&rw^ zayIScfWG=sI(pFP$=Tmlb4z}py zA*!C`YgDqhSby9`d2+Tp>C#HS)x_)&b%uC9_?>}v%onCZdz)1@b@(Oa7l$U*YPP+f19<@;Gboss3m>@TRYs;t zAoRI&sADcA7n8cQnQNM(ol^WIIonkN09Tdji4Gez1Jr7sSKLVy8L_H{%_*U`3D1xl z9-2c~=kZ(2Y?Hzd3P6Sc*k3+w7U;1dR8smnQy+to$(SOk>53q2NTnd1*E?ig=DOeQ zoi&A#t^A}1k3rvtaUP+lkVv->U+r?oXSNh@{7eqm^$mq-^wa@FO6^04s*D%=g4E8t zws&PvL}>IA`fw6<@NlWw!O*zW;h7CAAnYZ~3^#DxIoSISo*UDrL)fk|jk`X=6{GxL zf$Y?t&}>-)O{W8Eo9+4cV2{L@2?ZFy2RNf#zE@{D{y2hIC*_Ub2yA3ckKe9dr^<$$ z^BRIvi0?YnJgTJe;Oc1L-o0M#SPevs_&lqEV+(!rxs|%K%a+*aM9dFodDw>b!{mXMwee1 z9laZF|6sf5>Li`P7SGhv)3Mm>QEN>yi-Z1FC3=M1o0?jDxjl;lcP+6Yn45Y&FiZSHQRMtob`Jzc%FZmthbE>+=OVK0 zp7cW8Quil#q6_x=VwJJ#4uD($Ot$Lk?m7T>Y8OyGmeEN z|40`3*dsc%ZLw%Yu~umIPLl#GdUB4Eu60^Vra9Am$omI$PuFwFRsaL6#sW@@M@ac| zhu=4r9Med~tY~^XkyRU%Q7Ms)MW*2lTOz(tGPexNr^L=65^gWKAE^DFlQAao;p7~A z@7W@#79snqXf=yU*wKTNQGM^6n3@@#7aNKgGBq?5S)rXZVZ`Aj6_7Tsftw8|8zsq) zzdf{0s`fR5-Uul1d#o+ET}L%YpU&mc`})3x%=jPvevkI90$X9aeG^m7S zRbF1Kg>$tx7e3orj_!lcDy7pv$-Ty|opG{77ok*SlDOQaZ)w57%hPXqM-p7Gb%7^9 zO#DPnVdBO^@eHo7G#w8-O8`wH(GoSN6Xh8j1!p=PuK9*S8XDUx0WTnE@R8MpbAI(a zx0^fGzP=_**!;3k_xp`-6mCY9Z4t5}rgXc`=~e4MqU7?K_jrLb^>c$@G5@ZKSj%S= zm@}`Gg=QF1PP^Ia0|%FB6{4^=5Sz#; z7;LVFcxX7OF1IISdX3#T73`G*ENC$NT;KstopHMuCthf6RRW}wZ^D*az#>)O9 zw0a*gkvAsM+;-F-TaZ(noi$&E{1ZD1m0#a_+~fY5+_<1M@$io704vLKF;_Ma zMTU>_dl(+j`HPwrM#NB%0XYY&w8kNja;jXz8_J0YT$_3>78f#g&e69-4u7uO`TkiW zbvTTDDkfzQb*lrGA{Oatst7Sp@}$z$ev5`ve`p2l*>CIo?N5af{tTJo=aUfzGghMC zpO`kQc1@~hXITr}`31ku5(dXymLP@{n7cy>be?r#`J*c+l2ul5JM-UZ<`hy#MWME| zo3v$KpVW3he(>c{EGhpEKFDg{`2oBV|7cXE!;i$Wz%BvL+5rH50{#S}n&ART8!1ji z+sE6)SOa(etqkX9ooh8AEy+nvyEM>QhXECUtn7=Rpze{!3j1|2LcWZZUStJ}CkZpY z$r$6aS~+BJU?WOl`n}W-+uRxg>KFr6>*53`v=0B9>-{P-JA1!tbVP7p0UzZd2oint z8EL&19#|b1;hlE0&;!9AcbE10dWvDKk;fTNAIDh;UcY+tqh1#^G`H<7y$Yv;m>z`7 zd;&uq3F`op`W;w01pPNi?sJHn015|H-#eC7h7`w^YhoLAv){&b$kI-1i-T$TvLFLg zo)yCwV}ukI7tXL1zVie^s9ML6zN%;cd13~31MMy^oeBSt*~o-8+o%D3$EHam=i8~p z@P<7ahab#a3hZ{#anH8(i&}q>QBa;`dfa@}1rTQb<1!*0zJhj@(sFX+H_9637xee2 zhFF^G8y(0)6X`f?FbJbJ_h-vo+a&eY)mj4e-A>3T zRP0dQ=lK7hu?DKVm(d!KrrQF6ID2u|t08~1@eYPB$*pxI^4$7-0ytQ0*#O@AhXiFX zrK`}vt++sLYtR8GZb#I?2Cmr+LWDYxOo((}@0n-d*|M-oRa@`Nj^OfWYq?;4h%MvBBlJA!M7D8%Gdv6|bjvpIJLrPju0A$ox)6emV}Y zsm-+izusp!fG|0UrBA}W36%`pqJsCYX|oTLM@I?5y-5nneB&oM9gyewEQkaS1qJPl zXI_Cb3X(IhV{k0!}~5(F=eB{Dn_covYli%v{nU-`lEL&H zBI=&aNMF>=vhOxc?EC)W3!T5;6lE!Ura}J20a38mWvIkels<2+PwH8A+_Cb!eK1U114tA#MV757yx7qlXPKt z-)PqWqh>BR{+y`?_T=E`y*xZ{#dBkpmdu~&oX115*HPxYZ9^szv3T0k?tu7g_q6`i z15H?IeRp>k)*XjeQydi4KS6SA{I~T~dat{)gbu($ZxDu1OqZ9?>B`M$D<9 zRtt08fz7btN|g9QCD5T0^d-;_i2wR-KQPH*JQ_V=!iaBJUus_r&|Li1)}GpQ{=ZT1 zb4CcdpRRsdpEAd67g=XkMTkVAyYQ8Tw_1J3=L^_O{S()6s~ME$SvaB(AXo`gnM3V< zn9xgB!{U%x&g9%g7DIn5KYKg$J>+eWg| zrb_Rox;S_18N7S9RRUlJNGd&%%h})l7GuI|`qgDP01^~%dKRMny~2OUg~c-*9N)QC zzd@EW7_T4vG*TI3VNvE!*L_xV3Pk*$HGvpS*c&~>{$}I4mZO40Ik107HuXz_UfKsc zkd+ga_H_GODpfMU1h+qslse7$6&fOW((TQezSC(z;~DI~q~Gd>WX0$0&NH?*uY&2< zujf#LLni55&a|#xFv@$jLh(HOjss8NxKX!RE9eyrly$-qnb&q?r+!2q@Ny)I#V4CJ zd6}85!_E0uHH({IN?(OnY?P4e9u_+(_wd~2OA7mSw)v6+p>rJs4Mh6^cJ;gHXm|Xg zVB@Lc-qZ= zfXo4?jLtF1EA2qF`f@AWX#09B^~;FWNv+L<5$f~vIsX6#vJXg6AoVlQy=8`EAt}Q1 z^U^NGx$U*H=);$X$peJDW!Cc}x=eBk_D$vm05{NbA8SYU9BoE0@^ZQZK7S<|m5(B} zHG8FJpDo8!q3*H+cP9aK^nN zBeN0--Co>+WgUz5B2Z%aH~%0lQ6a8SY96--MbQr=sqVrmD2iJwY5<4`kVk^o0rR_g zS&4C1a7~XsDUfcrc=^iZH0>`E+za-4M`l=eHnK{Eb}3~{Jg;*B6ig1Xub(7&ypsp? zQ4lh;TP2d@?mx543?9FcBlAT!J4G|HNIAJnhKK_ti3_dah~a_e@;`=5pFnc7i!K$J zbJ?XC^h5F=e%@~@v3XA1-_WI^PdTYXi`pIDQUvm!GoB!qSUEI^uD78;vkaju4D?I# zoJTH{tQFq-5n`c8OyM8a*ol|_@1ziWGsE}GjP!ZlZ(wUbdV`KB&W#X zG+4Jj?U=|?V7~Pfi28WN`kq9}0;YrD{qTg!LP%E?YXAVvEpPCnGG`wi{F zTOZk#BlTKHZUu7$K3L7qFq@n^YSwsNM4vg=HK5G<%iezC5HC$ zZ`9tWqxJz(Dea>pbwk5EkXkNnS@K-8dB2)`Ntm;-@%iV>;?j=AhVs9P{lP(_BH`rb z%=)SaP-Xh~;9|Vq9A@?0(pI%S{n>fE!iR>gJD!{T?g(qxoc5{k-P$|0%7yichTUx5 zfX2x}d9C;NBiK>XC&~V~W|ZPm)6jV_^sD&c$7IILnX4TPY|L!_icGlxz1A(3c-W)uT)eZpqDa&xLm8M?VWL3eU?+T0&Z;@sld z;%p_{>*m3W3>W)T_i0Fzv@vb>no&$T4E(N%tCUNZAQQ5|62)3Jf;L6lc{$v9!rFPE z26H9jHTQ5tW}QiS(RFwkcz}4tY%GlloW7eacZGATMC6^9fAn|$ZlXJw;TCHV^k)eH z`jFq0eS?sP@!jPCdCUFZPDFN<7bKiV%Gx-(0WXHRN2J7qg7(UgQ?U=p$YfPa+RH=4 z!I!Gg;0K2c)L$+Bp^jmf#UN3b_QPt}S<>F>r_n?pES;7p#Gj!2!dsy!&r02KS4nY? z3;xJ1$Zj)(8%qaN()8fx*|flw$ap0C#&XSk6uZ&%-sI%L@(oQv%=Ql$EPpMU6;-^; zyQOJ(+?}1FkPnd8Tf#ZJz3JV1Y+0s1HrH)tQ2TzKO4b-OLRoz`6xaTe!I-nnY@|>X zV-JqqErZADRMo1M5D8^M$l_aqAo+M~{H`ufS_$<;R+`j`j)esW`T1yDHetx|2Pud| zORuk6vd$sD~_VJYqt(WPdZt2Xmv^) zK^uP%`Flz8ss;&~6>}1nQ{~Z%2~ccyCJD;;$aeYota3G&Bv? zvNY*}ZkA?Kd03~$#b8*pnez}im*GcfZ5z0e*^EqWNj#XSU_r&NXcaYIYgFVxr-Fnn zN~$9{xMA^$+W7-#KkSf(vX`Coq?z_D=Z6v{1wrd-6fE*@%J{-G@D`30`LOA?224we z89mVl?57j*1cVB1sRxKhWZKe3laMR#S6WNWBR5<8^DPI+UM9c&s*Ig2)o0L>r}$p- z61BDWM)At8tJleHUQ8Pb3ORoHA_=^;Gp?nSAWIZ4Vc=T*%3k$L_QSj;t14rgL z%0HW_242hp(^w#c{khNS`{v;r0Lq7CkC`ds|x;NpD!~TNyJ0qi$-3-ekn}zEqj`G+3F! zFMle!LRuDL84ASWbuK;7SlEu2Q|ujJ29W3adZX5o+d_$N4TH;VN+O{qDc`le>IJ$z zqTSq!+u3o@w|=z0{0MLt3yuj@efY%5Mx?cpVm2!_Vi$*4BgWD4IoVL8aM{@oHkdbUvDT>pV>N-EYmxqy6U7gLs&DD}Wn=qCaIh4ErO7s@_XQc@Im z8iF~!#-1HCH|Q>P?nFp13vPOhDI;1#By%y}hwqM@!z2c(7A97CNa9o85baGVMrR!9 z3?=s`UwxHN1M6TJXjp~0eGBVAv^qHXo_n&mU21(tpC8hLD{1+!$vW2!?Y~4Ad@&?H zDnSmFf6jsyPG$FQe;Jg zbu&jRJ6zXva?&Y&bNt#6(N4;0abIU7J(!N$)1D?XSEiPwzkuYJKYixO7iMq4)9p^_ z=X1%)@Q(+3)bgZGW8#OwEmC8oHx{yvRoA#iKi^l^c#0cZ=QCU(j$TO9m;A%^ZMmSW z^u1*1dKD|&1r{=uptepx@FU?{RC z%kgLjb@z8R{kJ{bk+P=H>E&yJM-M0NP)S%Ki7#0*T!}fgPsv1ns#+;Fg>D4yoJp+C zr7_;G_8O1gAf4apHu;O%;IiafB{_OtcTBZ58cD4M33_EwMn-?tM2~1Jfx1oS#oUL? zI}&GX$!(U20z1~-QGiY%v)-4jD|f2fA5!a*Wna@>nkPY=QshpJKqCdfw3t$o!asa02Uu9n;W&$bmH;IobD zkqiGq`)Q3(^Nu@3?Pc{hN6Nda6j13U84mcIH8~rDkE6v53ck^^H_(JWnr`YE_8YdM zBHb5>#^Ercs=beY-@mT+(RO0*aM#7%fQ(DO+ts-k_it)$DNS$9l zKXYAaf>45f-`ysdw}c+h=oGiL2#}L{vTa;q651dB$q$+c0w`#!M^Ml2fx4JXf@(7t z217hWZZ6l2av$kx_@Rih!Ganqm(@ZdB~zNHqKh_P^)CjK$P}uLJq~W$H&2TX+_y)A zn;vdVUY&}_4%@0e3S|XUbIQp7~M9TVIG&=$f4Xd)eqK8;*v>!t91o&rG03E8R0JO&zPbO ziU(1k-;1Q9>PP3+)h#S_fri$H4otCLhmAU>H8t_nSj@Jk^SW_3Y@;9r_yz{T`Xdt# z7pqo@iHi%EWh*l~Y>&RXf|P0V*I3SP7G>AMt=JrSx@ZW!zAMVNq53SmbIz8bdljXU z8ZB5>Ud7|6&bP;h(7PUPqq~__uN#mKgvNCSv1v9o(3FaX4Nr&TfGN{7BBz=hZL+=1POt7{nHR`i?JD$>N1yTVD0)X6FzMUgdB-8x=5HM)|= zlB-RoP*H9)H0T9uUdlX~>B}_a_veouqZ*K}irB3E{vY=^($Jo+1AO^BKEt^jvR~)NQ;|AKI&3w7VVx#CCO`O)x+7E_)s#lJGs8%L4;N#&lD7NC*iz zxqo&xF?hV);Fn6PCohe1>F4;A@Hlq6^lkiTU%g5HGIgJ5D4dRdg(LbD@0WEI-1{s80SyvnbuA@sQ1 zGH!a@Q>s1}sm-TfC=1nEj~3$U5qW|#?CpmXly-s0tYnN0207WssXeDrFL00ReL!Pt z$3LrUWstWcK;ocD!NwLpZ{3=P!)!EKYrT{_vItcC@4fDA`2bf^3)}+lJ?nN1BI%os zp(-jWG!+d5%5zK?mQ_YBM;8~?`$>h|pf!>8(bVf$a$}LJLPb^W2`ps9f|M%>S5nm9 zW9YeIp%3~JO8J8PGTX+mX<=dVVg4n|->tP|K=9+i8u?_)hjmP_WXD&7l>r@kSJp^Z zg)CA55rQx<(E}hclWLO~{1qnuOzsg)FzPA|H@8c>^zY9Q!;>75ozEh-&S(WRu(5D? z_wLxNh2{~Q;HIs8IwbzZP((hqJwDhIB&dqx*?39o$MTn@w~tY;%-G2P_@Fj7xm+c^ zrp}5FKjJ&5Q!&kl(y9*(RMgo~Gw-pcYd-fZuJ0CUx}W$3_4nuAooo=RiGTX4q46Gt z@gJ>H5o2{rP-dR(tYJb_OiYJmEksGi0w$5w{GI*g;LGKb+Qs$*xg=;P?QBW~GBR7a zjIV5dzhqb7g`)o$_zWV?vsu@D((Ys{T^WnalT##2P=0~!dn+7b016whSUWev_F6?W zo(e)oSuKS`&0BUp9DbQjXg$8~wnoN&I+nEXI6C#^Ire?hr5P@pWn-NbS5oq`fr6oQ zyD}lw4-BRdy?eYHxVoMM5xG;wvDYE?T9Yk&9t?20F? z=+mPTn4*ofwpL3-H0t?Dni^v7i4jGAor>~7e=Y7qA}R?^$ct$$MRR>qW8(l8GjpZl zNGiJc-XT`o-Pq5qo>r;S0FfjlD}H~}rG$-+jvDc2xRiE% zq@~@MD3I4w{3w8&N6d;?W4T`D8wMTPUK|ynP4Raxbl8NJ zTDV#t9jB$4e&r1;xL5hf=jrqyF+XE)HB{%PT%h~fd?8>$E98%@cL$~w0L-L#R^Rb5 zE)LDmFfxtcFUg^{z!q>=r4n%C|M($>&!Mx5>=hXlvezKaAoEo%1+iEu4YZ-2CvPdZ zoj8C*j{xIcJWN-ob=5koTn)x zA7XYi6t%zVylG2Y@jD+iW+X*b#$_d-#N;kXlHWXNsr3hxn$HZ9*4QH2OY`m==}j)% z!hX{WPD%Jk#^g#JA8L3oH}cny>qK;F`Uh?#W2x8YA7IhaJQ%7Q5_;d?`VH_pt<++ zg2&mCEe)MQ@^i0o6lp>FfJYa6l2Cx;{+wa1HovnJY^3KyXbn<+&~)kE2l1~}S(!f7 z4`>eIEgpLTmSZenE?CO#30^)($9c;U=*~G|CH-?l+WS5 zqY0sg6@2e8(bs8<`7=^Di7Gnfr(~?XU|z0(5&374uj6tT2wyXl-fx{&S~l?=SBO9f zN?4(dTpjT@C#Gbid|paOc&@9v!-!a+BFH?b5L!ZyQ4=cIR%YqA&|ik;Mr{wSA~tjIovI$V@kAm}|PFB$~FDYDPw#Z07EAv++(Ow4CwV?=T{v1~!C* z=NE04WT&CDwk7G4PPy}u7HIVdziMg@oo);yG3tvnj~q2$X<0SwkozOzb$@^PijtoG zdAP}QwP26&?j0HqP9Jy;JN|gTdN_Xz-PZ1gj%B}i=!l`s8najXG2hkeL{Fs_DOcKW z>0#K#x(y1r7q*uOZ_mBG9?|IvJy-pdW?hS!2b~uQv@y)oiKE-_LdDgoK4m zG}ewqFs6ikJ1V$~;76LBML~V3?GBDvovJo^FVpj+-2-i30bgJYs-dDpar~13J;$r^ z6>1D5)6Ul-1GSKht4~l5VL%)X?$<=0j+caqR?A8VJf-aDb}gzKOcC7sR|J!U>*iQCWLa zWtU`uMi2L4QWI+9cm1AF=p=IVd}R9Ws1x{M>Yy;Jg&~61FN=>Ih}bnsPFC{Zvl{%- z{j{2OdQqN&bwaR&o|NB35gXbqLYP%$o4)_rt;Lh$E*8kZJ%SgK2&zVTXUGi=3vn~H9*@6DY##-dVF zeCD&wP5*u~x8AmnF@CQ^Q?$Y2~Oz?|#RYM+~Fk0cR-dJH7)%2Ce-)xGn%{q+Qyp7>$55}i@8LvUg1Z)CwFily%Zk8bK^D-=YL9M- z9Zki@N6)i+5S5XW1^?MUdQ;bJBc$&>+AvuphV_4eMFvlrfK`I?!0Frlw!$-B+K|l> zKC2Ep{C!E7meWR@h~#o{G5k|1xm3>ddBJv+lVoAP4;1<6TCT$6)csON zi`N&Nz*YmQAB!0aGR6vAO?JU0OboHuIPuQzhWd*sGd4@6Td@~=Q-0-MUY6<$Wf{Z2 z5*qNT^{cN6fh(BZt?cs0mXdOGI^EfR6_Zshs7?f7vi!#C~Zp z>KsHYag?f~yXt3U;%hOq1&`X8u8@cEN7mvPLhGqOz`y^(s05Go$Qxiz?(C8C7kw{2 z)AF;38Z08~T_d*7htHj$X#C>p%Gr9qL4N~U&pMz^x>*C`bE^sho%8Ln7qRj2UvVkN z4}7dbC~C~i3ahjboEjlE@NAfQ9&;=-ii%tfo9iA{IwyNrUvV>_CU&sRaPyR{*Lz#O zwri>NmC5jXcV*+1@(XX$dque(awc)wry>v@8V%!9@ZallPa8OdT1#b0zG^c?eaud#N^IGL!`2q%Y6YTI0f=wi7WI2l6;^F$u7u}1FJJT$ zjmpbm)ID5Mzd@ejPP3>4+ZiyEIsbMk4uXQZEo)~3!)vAj4_?qWq4ZB{gHfyB=rC5x z+wI~RI(qf~EA7P2A?=SVzY+x1OLiTb+17eqO|*C(3*e3L8V4Sbk!`KQ-feT{6-H(p zrFh)Etqw`vaofTn-jDEHFBXU5Gl`V8D)p7&E67j4c0bghIBHS%&YmF8U`@&T{o9sX z$*s)ELvJQMI9EVP3HH!FYDGbDwG*yf#lg z4{J%?>KMny(Hxu={o6ZWe++R(0&+Epgnr3n1%8-L))>qwxs*lSTqiFTPGPw41Z_jsLSj^Xic|P2_R^?lYa4h(~l>(`g z5@BmDJxEok%C{+%xTs*Rb?fjJbW}VV6^SY5wb;YTu@Y?Uqa5{DG$hag+1Rf#u8pr% z`|N^$Jt|N~QM$2JoL0kXxs|l6jZ_`US6?fj-_W>a~v z(}9O8)!b)`FuWdfT%0XPkW<8F8&qO8X*&PP9u)<^J;^qWVPv~H92#EtYt%IsrcHub zG@~pz<+-TJdcQ(#Sg50dGNIVfy3V&m*IGb0H&$&c9~@`@uwSzT9HfE(!!J6z@_R_p zE|Ikp7h^ph)YQuJu-elD_U>|W_zK{WGku4?q*VN*7ha6**fEceOcy&lXqyw4vC(i{ z*jj9`2Cho;vTCB7$&YE;&2w$PO-1UGZP(1CUV>&2n zg6KB%tA#a#MIPe-&2iq9`pGy0gI)uJ39f~wqo+cbN7tlClHtT^w zZby!%Gy2^RTn2%dig6%m4C(#;oIyw0FVRU_sSd|B!yk5i5Gm>IZk3W2 z7TqNvut@0=5Rew>Ty%Fg=fVA*@0>pl9b=FEW4&uV?{m-lnsXwrR3}>nr8B>%OFK-` za<<)cO=Pjz6|iOlwgT#UcPIQ{_OgtpJFWq1@EP0IRQ{#Ys5X;Y73PXGO&&=n?Fii; z%d6BnmOfrAl(@lIbhVn^K8+O1FCX|##{2F%{EJH^8_iIzN;D~g*4$k#qR%4wLZ9o& zp$T^71+BAKxmtRd?3onDJ=qvn&n7pvoXo!Az#GP3=;d-A|za2 zi0R66H|Gt0+2KjHa|?&P+p($=S0nV(l!=JG8q=U7;n5gFslmZ9`Ql4PElUS51?7M^ zaJtX!NNQ>b3 zem8yKokOG_T3kHSjEts=o6PYo^`MngRUeH>>o;KUK-|_+9KuRDTgLw9A&@4^hwnke z!&sr(O|srJ^43m)gJlE)coS&@CKKSD!&`|>x+ZoV$BjlKF1HC7usNO zBynhd`cqR|Us6U!h6#p=IHNRw$bojW>G}P;(!!vCBq4FONw?w}smGrkNZo(93V#b@ z==3NW)`y8Q1U@Kg_8)gEMbGFTKMG>1!MEn>3SG^4L;WhE>1(=@o=jxfWzgnY40pp= zoiOT4Yr5g|H-yAZgC<0LT!&Taz5R*D5SX&@(}<^=^G)tZr{Q=Ubqm%{sXIDcZF%aC zq)g&Wk5{dE9Ln%uNvsKvG9b8jdH1Wfe4@(_n=dX4&J$j?F0IsbrV zaeTh){bS~L_bmFml6*#;u{iTJ0bLyXbhKujsQeB;$-H#y)7ze)#ht-}Na$87sBZJZUV!QM4 z@k`r<-Nl{q{^`ojf$3@x#%B(4Q}(N;>_da#wDT@9l)}UU8w)Ru5e=j+`6aDH;AAYo z_Sk%~>>4M;o)_Hv!ot48y6xr&JL+H)$mOg_LDQux?(*QL|FA58k_t45-trcooiysS6?wIlb7MQp3oKhL3Zu^ne9#R}`QThh+ z%j0l~nAG1Tjv@Rjl-yrNLj$)&3rfk#S~h-QW@=htK1lo$UApBWhD^Bc?gBP!k>w{P zBZCNZ?IX<*c;Vy%fgCrJCIAb}c~3q$r(b!B6xu+5n~KeKDd4e zfsAl;gmsTBTRZYh^oFaPjacAvHNRz%(KI*II!_`zi{h#btIUhH+yg834i zo-OJ35c-kzM&*+Amsxa?AQ}f84?L0I*B5#N@{n!)4~l`~CE{1x0ZXOt@%mO`I)jir z{V22Ps=zPc=A8fCNsL;DR@*102YK(7s`NI4(;v#wbi%RS&`R>kWO(ohb0d7mTpmV-Q}%?a>C}!p3|^&=Cmi4?x0!@5_JX=Lb?o z8>TiC8&<&2$ZG|y!Ql1|2}chE6g~0}sT`g&d})dsiMplS%LIhI%Rm7i-}3&81=i1T zam=}Qw$Fhz*if^|)#?O?8i(%f{7cmFaVg1JvM-E}YK$_lP(`9U}s>m?24y?ws z1j3l(t&@f`slX<-F{;cy_K6Vqn+J^lea4}EGIH7T?@MrQG76{`n<^xoAzrXjYD`3d zP=Lin{T>|(7&P0KQ$Xcb#f~qgY+#J=)e`;bQGafR+!cOXCHYno0Hi zHM68)+`!u}P}BY*oEWNw{c*_@Hy95#WLk8C^1?AbII%E=cX;dSOD_cN>Eiip$?u`E z?8ccdf{o7KMi@>@Rgy(vvTADFJS6X+APjs#d1BI$TcRy_V#UB4F8XYTf&-h!{_Xl1@*>AuMYvbKIq&eh2)2Qg1(Z-3XQk&ZDpNG`&uXvN(z)YL!jD z-po@%Mj=HdQrmH_n{~TC=S`{SBjKGlrT(?Y3c4?Pd#$`{^mQLcA#isc$kbCz%a9gxroJ|p9;)mqEh(m#9(%~ZTIPlmlb+VgicjJTnlj%v5dbm;5fWG#!k0c%+F)yK#w zlfu>mogO()YMReSOL~&V*kpcnU2BZmz?GI(HFm~%SyFNQHAVv}6MA0-yUQ=JiS_!K zc`FbX>3*mnrM*YZ=E_V!_MX6z^dK0;?EbK7h)!?N>e^9u%&NnM_j7KAY1lw0dB|%s zIqs7UL7hg8^#tv0x-2_JEJD}zCwXW@FL!7Of4s+=fClzLYV4P|w$Uw#OG!?ctE1b( zqkqBnJe+RYLvQt&e`4~+5NM5vvi?w{^pi$fr#8s+Y1j>tI(K7ADJt6#_u;7X+9F1H zf4mH?4ym*`^o^69)A8{?f5-AD&{9SIUTA^Rk?h-oHM??AJi1@Yd=Dd2p#R;6WeF5` z_?paD5t19T4uP=mCB;(M?m9eko8bMgtRw+8b!vLd&I zKHPT~S2gWBJD&{JAg!la`^<{_Y)@>C;D?7t?l8z6o=u{+)$cZ;fIA;(V#2~PITfDm z02{^C^=lC$2W`v&yIh3fOVdY+#!p%2XXvw2yv(3&eaVV(sMTo4begU{M2Kwh{>BDE zhcXi_lgfCA2R2iud_jw3b6mR$UT{Q;fm@?25>ngoiE_46DuPo3X&Fii`!B+m3n!`5 z6l9Ssz~aoD^Eb!pfk^L_XlD4VeNTQdpdqbQga2?{&Q`1`Fc|g=j4JZ2e`62u?-6)I zM8rXEuH~p7PO}(fFzhur%zMNaks?b=AR7P0#h)1HD`3UbZ9fTGOEMmA3qPkh)H+^s zJyI4I1{R^ivKCiR)}a1qI)keOa04(KII;v#ED*RkipKtf`fW~EgqS|90(5)ZtD zlo6u7n0->g09dW~m`o{#SP8XoZni>mH`xkRmBl7U9x@76p4!T(8Ql3AdjL!bohbMb zxEo~VN%Og<;V7xAbxc?HIEui)!UBb0!aqqzpp6&z4v8S65vRkaz+3P{3U*7JM7hkPlQ;9N*?w;6iJC zxO2R}fz5m>r!gTq?%wrAzes%f5qzWvP!A`++>{?bhS2PvH<;X?j&cl(vaPs_*UPSG zW5{S|clIT4&_ZJK_wH{pfD@&9ome4LZ$8K6@AOHwRd%+M>mgTo31t{Mi`imMI?oKk1{vyxrLGy|_c! zANvt2q@;9Zt$$-Nm>TZgVeQ+@jzuNgZT<1sS=^B~%?*f@0SnD%rFJ&+?`sv-Yt}5B zKHz%ZdJ@=7B8wH#H1o6nCEXetW)b^+|hj> z<4S}<9XA3m)U6d8qgSMfrG@n?yOP@tM z?FVn%;LvJ}9;}(=f0d?j$q>0* z>tA$o0%yoZckcNqI|!OQn%hex6r7Nh43+>dHJ1$mRZXff%#UT_8u3G<9vZQ6%ch$u zummWJ8)yJrykgM%eqfAX(!g!a+0d{i2BSNEA)IqC^|JkN4jYcPU9B!rs0@Ve&dNZ2 zAGeO+x9Bn+0{G-o`zY|iw7#W&G^q-QhdfUPS8<@sC}LMO_G%e-5eH*D)S|B+r& z%>(H#_3|Ee-?=Bn!)>VjqsrVfj$40cY^(uPZ+fgTpv+RzP&Qi|d?+<%qSx8ejCGMb z{5GWMX)O?4D>8wKvfPadtebT?9?A7MOaMyJm2+khm>^ zV*_fS2?DX3=!oMqIA35i4;ZJ&RdG8FpS+n%CGyW|wTb zbaGB;i=amQAhcWx7`*k=wDjGG=-MjJ%BXt2wEBytr|yEl=DlZHGmQ%Kqf=F*1Q8Od zs$z<;HHb1JsBjUpx8K0d@rK;rLDSvOz}E^%oJyHYen#C$-~EZGNP4a~or z^bzFa4P~~%-y}F73Z`7FEtJ&s&b)|l?f+RYV!Eixd?eltzd0*wO0U=ZP%}ZmMr_~a zZbx%-A$WNZ(4U4zhci&b2>Rgf);x^jx;IByi;Jnj%U(lcOtcRAcR=>WJ4Q|@Yboqg zfeF_K?+44(!GmM3W5{nN!wya7RPbFM!qsL!lHyEIhZHfYUU4y|jN%#HZiwP>PxfgK zo#RLn3wor2W}3=8tD}BHF794xL}o6u`^p^UD3zMPO526;*^RT!GXhDoL*7*LUzQGR z?t;I1nj8ga!1)^W0>;*gsFEh*a%Syx;DG@0c+uQo0cWo=V#p{3)7DqW>+{x&SRt7BQ~s3 zs$dy89cg6kNVM++RqCK*mh4~0k8moGR&;dm&fr`g?H0rl1jRF+H`;~?4Oix!EPC2M z59_}qv7i{xE8N?&(FSpV34MJtRdR7dpYrqx2qqnC zeWKai`nK%(W^FEL(m|Aec8Sgp8S@z~lz=-M`kWjAK;tnOk>`ngmC{PYoQ41VMjD)P zr+gBB#}>QOkeuY?to2Q*&4VFH7PKM@np7a2n3_(vV%oL!rZN2Yy|W@^^{OdKp|Ut| zD1qD5@n+s9Zu)at8k)mu^5mZ3qq7xT`7bB4iGDR7p}xeJ0CC9eKUkS1X9 zWj>=9bAuq>h$^!B? z+Yy&s7AucVd zzH``}eP#3?s<#woD}y|g^!lG$WSW8v=@VMzG7w=M#Jtmdo;on9j8Hx*%!pht@VdGy z@ogkDzBoVsyrd!gGbcL|qBktgYgi>&2Xjf#@h72EA?#~^+1|B&*%d<`68YtIkh zOgp3X(d|P}^=N|%Tc8#;VQFojT3y~91UA`OvytkgETV9siCn(QU+|&Dne!|?Vw$R8Z-*W#vCbt}M*e8f)zPQ$4Ybr3Q%8KCB(g8|I!Omk9h^dSO2*>WOOi-1 z#$K({wJrIK=;{o7<_Rd@=l?FFn8#&<1N==-ZkhaPT87A|)(4V&1&qjGws+x6(rMAp zZNRJlfxNJS&y@Yq%m!YLJZTF#=vyPtNe|j%3{GAfHMw}6-1a>EI^x(QSj%QOkyO5- z_Jza)$uLWFv=9jw!2Siw7|n3dOdr1iLYtonP^e`p1*Ugi<^YTTS49-(WZl~j8y*vZ zVPWjpI-ietX}dk!SQ>DEAp+z(54HM5re1eExR^Vb` z=Tt}SctS?e?f7bA0j2KbbktxPIKB=k!5PEp>$ziR;6W*@Ps`BTLE;dUyHoK|(sqTI z%z_;-s9h#8+~|Rfn266v9!*GMU{5}vT*g0R7o7Lz&FCvSx*!}nYB@P-r3{YyERHTm zEWl35-tR-^Cg^bL=9SLm9kQcR`sTk4AKH5&2j0Z1d3L$-_*t5r?>d5u8-4ha%+7pT zc1#k~s=~_!aVge04dTSJbt&W#_vlB_m^`8BUWy6wQ=T#fd^l9vmT{j(~V*Xi(#=# zJAB9+&vy6?TC}0NFVXk-OSTRQ(nD+QforR4{M*40E1UhGkX|-j`H<~tuw(k$P{E;y za)Kr+?=ta2F_Wi^2Eo5#^lu+rKy2!^>BGGsd!eE=!ee1e*I&Mt#zvK%O5KJJjTZG- zsW|beB{5Kbk((}hUrS{`Rf$v#=Nl^Qp(nB0y+R#Fk_M&QVYxU)FNG|vFQ|J)o--n` zihm(nnVDuNyfMK@ax&bs(HjukNAbdI`g=|?>SEt|r)9h*m!ebMytA++_p2lc`aMvHCi(AG|Czy$FO5dYS(+=V7lR875)Pu-aASz%IjXfmm!BQci;MmZ_^&=wrbG% zMAYMUUh*NI$b}XPrjlpyE7`|!bo{s1 z_##nq>%j&w9`reX2%cMTbk{)U*DIqsCV!NG;n=S`@>%F}TOOsoAqQ;>uU_nw1ST_6 zogUM;-@_iB!uAKf&+ulw&ZWAxN$fx12Rypkmniqex~VU;_04jMiY9ifc}Qec z?085+J1=#$XtBu3I6dq&?F8rav|K-FW67$6ITUzxKHEnYSfgHg3ufwYl710BMM|CN z+_f_3un#?2L94_6Xfyyl_^62sJjLt71R_JC8}>_4Q$5zTEhoPrw?{uE%s1F5b{u-F z1>}W$SvL8VkE_1jo+ii+2;Wfy$z!|(B2Talu6mAqmLo^}U?VuGxMx#;sgVFEs_>Vw zbEbXy$Mrz;E7@u>W{B-ouN1n&O~inSM_0LM%HsF(CVCVF2;6Qq;+u5U5lJrX?zR0C zzN8#lxQ}r6NF?_e@G4`S@F?{^88M<4&}%ZHW7LL;MRlEbIjIi^3&5%8M$s~2-ob0J8Qwws8(p4ls!M*$?T9rVpK zr%fsCd}l_LwPVQB$tf|fo1J7*URy({Tvpz5|&9( z@U90hZr~_?&f#R?qXUGiE&{XMy!n?Rw#7(cRRL{F_!y@?fJ}V2V{k?xsQRgWnQL!V z9Ab>InD+h;4fw~nKGE7%^>8Yll0jw)C<8f`#luYouaL%KT|n7?!LoPXeQi>=1Cmhc z=cSU%LMT=fSwIL}g9Y@>jx{LdT4Vx$yxQ!hM@~nqnX>?ysadECJP1z9SZ%lHhQ zd&9Wc@PlY@Z@vj9|7&f5*U&*zh1l39^ua&?h$hg=VS69WLmS(MrVC1zv|6L(je4_K zO*tWm<5Bryr&T5*m)v(Z8dwg3Z%%2jey72@_|1wbYUzNge@^&KC(W0#)+1RUp^$1n zzH!JsW(xg-+VHD#AB4L3p)F1RflT}J_jCJ@F2*e36LN}LgjdDLSpoLlW?G(c@Cu72 znX683-@Y0v{sTC@!mL_-+k@UP4&Ba`%$pT*QfLUIVLdg`5P<`V)StQ9<8zVvs1#j# z%GbHiSP=_7G)Imig<_m_LRBELhhDimZH{R;cb- z!$C3!!zT*y$kj72ai#Ec{#)auTYcH9Dm|IDFsD^4?zSEei=If~?2$Ff2{gRx>%H38 z*Sm?fbpU9eUb$4KH%RAj_|-8>1)$K~5_d>DWE zwz~RC{7B*6sn?{an0grm0BI-1J6@Qy>L&hO@aFb$=L0DK*Qe}>l>Hp2M9ToubMNYN zAna_S8zYUuQPeb=WCbvm4|`K6Y9&y(+?$5l13y*%nkU)IDQMpu(Nan;QuG({txsEB z-QW7b#Q1q6&rZ?*5n5fI9xcqt|Mg4wf=^a{$G@$T>7VQH(0o2FNl11xJP9%H8Iq%{ zxe~eP{MH?EBi+I~cql#asSEcs#%hcAti^pbBP~=np5yC;E~ro|EBpW}Ho)N_ z)#)yWGwGG;&+@T17G|wmLH@`6tauC$p3wj7JU**B5{xYm2l1W#V$@vgq6m1kruRE^ z@>*2sj3EJ{+43dI4U(oSc8#5(Nd8`jxb~|m%>Dx@!|lO2%vByMkA_Q=b7-&u=Z9_V zP}>7(U!(e@vGDNFhdue|?dO-eSImjCWE*>eB&1M zyu#iySbd+ndA{2?}ted zr^dQ7Kr3tU0Xb3?R~#2kK(kP&QmV;i-inE(A@wQ1R-V$t`=B`d2!)4#ZLhc2&~&0i zC+Ok+Ae)-&a;@9x9h!_Ru=5b+9@8C~Bs1*Jn-H z7lRz?!&{hVp3=yrS(m!wFri;l>tN_5TmT6weZ>Tw$VZ*LO)0c(yVr07uUcld`_UtfIcPb6}>cyY#J z=Ap{01bO>Ke#IAg>bL7qA65{5|CFVYaVk^Vo@y`d0+uiO1^)Nhh%v5Jqa=z1!J^l* zGDQA=N+1}iFGdS>>FHnR?0}Nq9owlt?ia@LZY4{tS(U7m!OR@rW;9W9JLd>BgPB6= zopKk2lDNPaKloFGI9$Jb>1+M{wKcF(iC#$PoSNzV^ziqnFJT0`b|%#5ms_-gO_e1r zP&ZqUr*Xc^&S|c&vZ~iEr_DF_9L=F7)X7QfU-Td{N`K(GPGS}Ygl>{x?qbgdbAK>` zODJYO<;}K@7hClvh~`w*FEPuWuDxtuZiocfRPJ2uW{j9mwT&6EJ)bTkgF2*;fD*InHrpO zZ-gxA14Xqn`Ld)Dc!;hK_6+I6cyH~RpT+cR+y!vRvyALP0w;{Wao}>;o-3XXE%^ew4Zb=i5oEV z_onSUWokhSH2Pe(1st2^?N30}?G!&27gzW-fyJ=02>WEv$r0Yw)!uAte*T2tt|B@a zGacJ-`$*o}OQFrhg8+}ONgIgoE9cXI|FPO6G*61UjEV8b#q|s9MK$K(0hS#C$W!axd@pbkD@1$+JXcydma60%{x07rpJWNdQ2dwzieER+3gyv7wV z#AYjNN#d2$0JI*Q0z{MA-(*4)4zkELcJ>;RMlj^DS2o6Sw%DhQXxy*|v|@?SGAneL zkA5$X<8zavev60rne?%_itlsR(ms-EtdUoGSoF(#XKR6;nD&fjB~wGBy^RM8>iB$% z2LET%ZfAK!nqVtILKJ1E*GaT{`qpebL-*Zb{MdE$=a-6skN2u5Jez6LhA@yA^M~%N zmdUtY8Yb}EeRqk|jQJr2GI~O*HuLd)K8NFJ*KfY38OFK%-A}Gv(jRnKztw5<;jPVD zryl^tYL&OmDYqDNt?6ZfzLL#ZaXy?>WYIx~9pSTY!d}ma_lH+D&)|VaXT%Lj_AkGG zvzw71Mf)Qw43A{K;bmcEleXV~{u*3#h37GOXTANNCxnuN-g3^McwCqOnlQS@M`Dac8W))e!HnR$h>o5wQ&**62bSL7zpv3R8eul{r5^4I z8F9uz2=Qj55LxWrhUakLAzdPaKM)%k0Guh(yw9sJclK=U3jX%Trqy~=W^Q>2q56@N z9@`xf7j&>p`qROo>%e`hNIU|WqcM6Ch$=8BvQ<-?Y8+*pLnGYST21Hj=f5>k8k9Ym z{@7r&F}HIgCGO1k2Zwbdyxl@3V<$k2@(+mom`=VV9#3Xpdhs(PQ2iAC!znx+h)5en ztn`Ev_T1x6L1C?6Hx7ylf{TFlEhGTpMbGP7&4N!=DeqRP+@tLw>ZytRnII$b^75Qa z+|i_VnDxnt*kshxsxo<~K#siJ;^ESa{r6%y@DB3u@EtFxD@6Ot<$1IBHFeUiq4g7} zy@4pEG5WH8Bo}(868@(OAn~RDYO+c^C@1InQu^MHQIM71pNN^8I|pWy^ajzWKEEuJd)NkuqQX2% zX)`+0*Y&*K6)GF^piuA4rpn6hLB+c}cp|O3Xdzls9Oh$?1XxgojQ6u-6L#dnOcnph zu~5}kbVUdu?~tUD61>fXMqI*pJ(?wBtGCTcXk6U7=qMMT&%~EIdk)##Wdf!3L7YcP zeBd$MY_rUgcd-$rLKaVF z*9bKs=m=|a`PFBUbXviE)|Y7uo&2IvH~S@&jB-7;JQ5ytIfLr&EUleXa8NCYP0fN; zR8<4wfy;cMsIiD~AY;eY`R5d_&$$LDcMH^YfSykW+0Hux*E6TJ#-7D&UFXU0Wcj(O zDkjNJnb)39_dK?B7`{e_kfWC!6g({hFxsM_$+v zYiN##BpmgafSJ^M>NOKpNRT@{wfHLz4lyHA1_`x30X4!D%z9Er#c@8hY<5N6h+t%e zdZHfms)sEY!gStueO;n}uRO_e9bZ4nbzF+gEGq2{b8gKw@jkNf(&TQ&F&uMvnLdJN zs$mBYhJ-$ZQADJqUy237xmmT6Wr;j)*B88*;@M3~bMKMh z#3BK-@OeKxS0y1Hu7!%BM~<5#^HN11+l2CFhT!)cZ%~^pNe3xRXvk$a?1eC<3U0+L z#U9f4!Dl+kxlPIA4c>C$eYIe|Mm<%`LS54@Y2D799`%c8W$O?JWN`F860X zH77`q!W1JCY`_*oUx;puIBbrZ`>~OeDhGN8R|`dgfp+e>9!rul&QMt=VuZeLBfs6 z3Jx|Y(SH4sLa-R|N+PRku1`)Pzb!T3OBwo_YONqphns1#^p>uz;re;&S~D?3jhgYn z_uRAYNEptUWDP~Agus?(7|wsiuDCc7X#jXrG!ny#$g3gLM}n>&p<@c zwnRU|_az&Zq}OyL6oR@)h@ru3c799(s!%B!5wPd=_0aK~6D{A3eiij4_Xr~G-O9fX z_Y`WmCN}b$j=P?9=o1t03qMTK9(yQFbJ|+OY!$s0WQ}r)O}90gu3FFH2CoEKzeCJv z1**@^6Py`=qW5Tb#@jH=%uibHlB4_0>gzA|Tq-P-FNQluuv1^~^HXpsRO8^}ae9uxKIxt;T2S* zesJk>LrFRUo}yndh?(OIcA&`$kb_)`lw4!4$xunw&3n)ha&o$Pa&n}!1p%QPf`)f{ zoKzFuM7;$TJ5zPTVq#AtNoOma$MlV~Ci6kk7+zs@t>KC@QOQ{@924Xd*8g{2M>F~pI- zulD4saVqtZ`~-w!P~!k3+Vwz;w~cdn+Zed;AT%p1vh?A8AY~jJ51f9D>^VpGHx%4u z0gy0vlnpZJ58BWwB2lvJd+Lt8y1IaDs~EN45sF~>!|@GQDr(EOMddM25j$mVJ@t8? zjdVr=8^3e1!4pKcrn*X~aZGjA)IaJ!UymW9MsZ(Tulh*uzP8=Zn5 zW1c@>W+8`n$hJkDxZ9BtEgD01mMbzK3qbzptXXOC>$6cB+lexxzVjjFT6a2tF*pO7 z;reu>ayqj0Pqx@=hfD|-)!abZMkxVt!4h(5GNC{VV-*9WLz-NbQwL2dIwMhmf-LkF zj6QrXv7aL}f~>ZD0zeOi<@5ef20wNs&4h@*e-|C4%}sxUgj6-QlEwleSrS!Te3m%= zhw)$`jXSOa7s^nQFeC!fB`8Lz7<(Ex%EOx(Lc@0)eqC*vNJtV9ZOY5_SqtO|i)G`u zqJp>FBVysq#yrFcVmietdHqbl8UyU7K%n%)LP?v+3YpLa!V|z_1wHuF>=#*{F8I+8 z&Y0SUcX$Ls8k((n8*)sDTrKtM8hOXDqpGROO!y4Pnza=XwSVE`%uFh2X-QVM^~6=8 zt__M($U2^%8$K#%tM1C8EGG*-Ea?aK3iICMn2LcLSxGugJV7a(C4g-21!8GmKMjb1 z$-4g$-gZlaTQ@7iIPq8Q`i=38yNS+)@P(^=Ld<*Pxep88-NTurK&1lGWs>2`--;mY z@}JG_EcLY@Q(h7$L}4PfV{REC?am&|)C}R_?+x`AffJ(vZWEWl$B^F6>H#eONqB-B z7e6AEX!dNygB{ap@_mQ)6)~jnLTr>8^hH)w_-(YcxXFLW{{Ft&4>jP}vKarhv5)p7 zv@kOc$v^}YC^~(`mIay_}FpC&% zFLVr&d-aL$3*0ukBXXnte21xJ&@{PT^B_CMHL#Fg4 zFjG3aDAv!by-}=kr2$frrOHhk!EZPDKP^Yn^FS0r;igDAK|d&xDyoI%SW* zWx`RINk6ae|BhhfPyF~otv`@Pj*kcQyuU}x&AoRzUrz&Bk$)OJGyg@yNmv#QHG65+ z>%l=&@|*r2U5sV>*+)DT`|62`X7rtM-UW@S*!ab@$u8%Bn@B(Vi$%n(&I-uvAC)iB z6E*@FMn)AL4#Q4mNHfa1dKLh>)(~y|5?5%@1>L!gHOv(`B|O=fT(C$y{gzzq@&_AI zzu(d|wI={#UJiV-N|M3u&1rTIxWF$u<2LJDs19Z!S0})q)V1~3DCcPImv+~JxJ3Ps ziY%WHN6e_p==)nV@V`no0M|xz!HsDRZ+f5sB!7WMs6k|pF+WIWBk=y7kx0jcl?%=x4 z)wg1>u13@0(UNG;>o$}eA>vWkIJE+14uE|Pd9OUf$UM-_6in~Rby@s4vJXG&wI2;8 zmPIBBRF6-uWPk&i-GMPD0%ZNf@)o}KTp!7k<+jo-S=N@hfEMMQf=| z@Ril(W*hyo=l#wIwqH^f1xLd-b%z@$gV$ElXdHr4PMOkfcPBFY+434jq`QNw9J?O;uj(UE7I4%>e$iB(7 zk^%|~68Q9oQFi0IVZVk^l0Jyj=nOAQxKZa}SS&HSEHjVtvGI~54MsP!H;v1c;Uyeu zwrY*W9RDIdKo2vWmGAUrp`nSYI}&30U#6#Y>c5a&E-eXC5xt>kQV<8x4@k!X4~O~< zGP<_=n(AJ_BX$<4*0j%LC^68}af4`1zsGwA+|&P%DG)glK3Fg*zqu?su~}OO9Ua#P zWBgScNIas5U?Uu2f8l&dcVaET3dYpqacy(}ql{1`g`uF{Cml%QX{r7x9R3;Pzb}eY zi{Wg&&!DM(S;qqrNneJ|DA@b^(dwS}90qC^jL#~9z>M`|RHcVC{d9;!sT0{Z5yqpX z)gGP8{j+x*iC*P%(8Vaz*r6+{+p|oT=BW)QTACDH@;CqD6MoIeO&cq=;}W$G^6DlF z3pR@f3I$M$oYF14%m&2Gjs1tc&~sXW89BAMy>uS|zC%g9v;XUEwYd^Pduh2gV`B&M z6Vpz%B3^UYNg|R8BPa`#z0UR*K1YmzJ+#izKxz%wYzF>B<@fY@(;BWJNN4FS3Z6>J zk91R4*$-5M#VxEQB}`*IdtfZ0$twXPIYbVsC&BNA_$FO&GWjQWT2w^<;Mz#ez5`tr+(g03){`%igl^!&Gcn~ii2HyK zk$$AA;6k4lzf?M1#sRRf+gwce(w9R%t3acm?^Yp@hXI{nw|q=lhMoMBd|_45{hE0) zzDiGc{b7PT^?KK1n%y1IQJWjot9j#l;v2*+R0*^_`SD01?u+<&^bIuEye0~s;y6{a zSrtbPx%uwi&n|%^XbZzmPU2qpp`@`vtvB{idJqAA=SI~K>h0pKsgx9!fTk}<+G0V* z&1OO}S&{86mR2k3Hz^c9Pa->a4)RKa2F(%gd30}Hcr7HqwhZ6cAUz(6en#jut@fBU zx}NF(cjvi{{I!~`I<4E*YV4Bj#gFG|D*W>;vSLp+;#!CT(p(zJ`JS*QRc7?lTn%h3 zK(IE(F2Id6z z&RFqoX#GtdN~gTNU}9(UF76sU`Jb5mCO3F@L26p96-UC)ZJi^nVwrWcsN2R7(Z;=o zJ>m9#F52V$8ILOA|%%@HxhV(fNiwC0ZYQaOZ0KYuY6a5rTlY|*esbmNm6_Jg6+$qY3BMBxc^@NK_N&oq@Y+Y)#y(7Qq>w9=gk&^q zQcwgna&6DVbG_B+yr|#p!zA-5u1!ga2sC_Cw7!HO=_B30~LchBqyHZm#bg3TS`Geic`M?EO+Kg-dhv zOR}?Y-zUE(n?FA{p?EF!8r-uaVaS58Wne%2m~~fLOe+>8Q%n8C#PLXTP5~t7kw&h? zb+~2VZl)w`gZ^iakFLdw{Uz3KRSmpsdeqn-$wv>Uya3*H_2YW7q@>YxDeXjP}IA<5xwvpDnB z4&ElA!B&s|F%ih|blmWmL%sJlxBBN$g!FMv+sZB#2xE9DI*RIKJ0I1b#5(4gEboxQ zMm$tT2`m=hF#YqiyPR5Xn0WcbMLr7(758s-z%lp1F1~uEY@Zm7K9p9h`#%;zlAU#E z9b+oq?2hx|6A`>wnBU23oB-U}Jla8wf3YRw%?pj=BT!ndMqNXu|5gN?HkYN}6&Fx& zXvb((H8k^BwryJm(#}x*>MW|Yl$QqUd#0*;ZcM&{i}!d*l*rM14*}#Y{*H{1z0-}v zov_azuU+xAI~K6XhlCWV^Vw z?eaTGwnQC#tc&Rv$kIw{%e>^j$jmhKhCR2&7{We1pKo@vM%K0zbkb~65jIs^gwy==7ybw6;Kf>ITfTrc$Lbiv8_+{Wzxf>DhNBSsi~ji(|Oo_mt>uuc-H1` z^n*OgJ$AVOC()h^zu&RyQ%5QACvo2-XqBNzOphs5f#mN94ep4vPZ&D&AJ#f@LhdTc zaEgH4vBr1B+vcn1a8c{A33Mh@67!Yi2$CLSdyG_T>T)5dG%y~8qm-m7{GB2a%Ax7+r%@uGlxhEh zB?=jE=bsN`e~|Q`64o!HtJQ@H`28QU-ZCnx_mBEEKmi4$q(P)Rq*FR1q`SMjOF+6o zkVZnfyE~zS%v+rTXC05-BIZ7V!SW z)|w(s9>k)IR)*<-r>^5sCb5ZlrU(P%j6$E3!O*&^n$0-}SQhu$Gj32LJihM*6Hy$^ zvy|a`d@FasM0cbL2HisaEEE&a0UQp0Jc@iIAMUy3<+)Ebxim2$eEP42g(J7>2jS4r zxHla&tUtv&30Ywyc>FW^_W8)l5C~eTYDSL0+3)zi4{4 zrqH@Fm~V(RRmy}EfgcFiOK#rvSbj2KLnhej+u;V(+J{=^9A_eG&5u3AzGKN2vJ6lcV|jon$YWS2l;mGhN+u%P5I9vWoeQ zLIKO8tl-^h_x#t9lp}(Lv5ec!r-7j$DhmpbxiePQ-NfM*W zFFX`~CAJgov16>Jw-Oa0t*ij}IoMQTRtPzJ9`>-x%A%kSEMZ_x-LC)fzL;XKClV}e z!W+#<7#Kjq?(uTru88 z=XC}Xe5#QtCpyaM6AvmW&%f{$0bMFDUAn;yAN$Ia8PGv#? z?UunyzBoH65AZXC6%^jv-!}9VDH9TZL~KHZzWr1zgH-Oo@v<>VAb4p6)%F9kTSe;8 zn)Yd>g_bXSFf8r)_7?XjzC5a9!x%!^8s&0Slo$+a&S2F*=7ZKkf7;z;l$r-ubhYKR zLU}@KBjUv znhdJ(q=K^iZxUsS)f&!Co&mtbmhAcRze^)s^$uCzZ2Kdp=@supGok?&{Jraq?d494 z+~v}K2QZv&V}raGn9iCOyRmv0pr7;tjTmSuh(!KXqZqg2JP5DD4-#tDt#^L%tD z{#mJb>zSjNWH&^YduB==z$HUQvCJAPeLeWahPgB05lcHTTFQI4o&j7WnV#7; zx|`rImh11sm}sa%2LULKN4;%wA9rd0x`149<&*jSL{9tcwHy4_P5o=%^zPCdqEksu zT&DSwM<6gD2sZYj9{+(k%wx&+A&@FIuXZiz8>eLdc+$rAyX|`MkI#Lqe_4ApuYKG1 zK*rVLZA7b~**WWDVaX1kG>N(YEYoJ%t-7%$m> zRa8c$x?M%10awjjb$%L1niau{2}NO?0^b9s~G_y z|I~uUuP=!D9;2j6e$Vx>0b&jtshs_4x(t=e&$-#?A|z5ql#LRb(;&LH>Ca!bB$0i7 zb1EV#%4CjiwOE8flDRQ@Bb}Q!-DjD`KGIdHORwKV8&Bw+&+L5T^`fQjwYwoZm=Dlw zj#}1n=yKfew#zMaz|Dw1;jB2Cd@h>HPvcB;z6SatoE(_Jch*F-{u#DL8F9k~OQ2@8 z&C+v5vKdqpGjm}FOh1Cgm6rtdwRCl!YJBVJ;6l0loiS|vlGwr(_jz(zlqwI93-Y)m zaVc7pq*W`Si@DoZ%0*2nrKbal)xY47G8CTQdwnEJz~U&@anbK^dGNNo^~1V%F3U>d zC(dvo96Sj0I_wVykIOh4a#=gHi(@GXr$avq4MM+~^!1-oW_n2vZpg)n!jCotta z#)1IsCZeZ_d9a~teQ+E)xE=~LgWI_}RUZ`9S~X0jimqv2c6UXbOlWs2xg876?tA3q zhIUH*=(CFsuV&HxU@%e6k#7h4Gri}!=$XUUb-ZUk7FS>#movOxCbYCDE|YD3n!=C8 zHy$Oa>~3)U62K-mn)ZqsAABfXJlAefK_UtY0n>`hr_=pCF@e4HQ}a+C=B(2LWZ(j2 z+qaX8COOz=udHqihVy&;%Kr~?0eUB|+^~+0AKiovhQ3je>7%x^nUCEL;P-m)BJ(H$ z@w?Z_Ed|s*|B&nz7|YF7i-R2Ny0x7G-xC@2c-f?g*QCq|C6>3_TY2+Ob!hqQ|Ir&T zF_RFSGmSs>PHFY|J|)B^(c;KXD$dimbW(($8Lg;+#GbZ$C48cs2{Y2Qxet3K<}Utp z5R`Y!?sH(1U<#tIAm=|(qNIVr=rkO$4S$*#ag}%Q391!$k1@42c8-p+{v;KCl~uzT zciiuqtYt2fh;Tm72*L5oBSMTLHsmOREEz~lZnEHw;OtaSKAV({>9wFqiMU&CYv;u$sg2B4i%Fz_<g6lD=5KvYcO$LtSrSuqQ>G8d$FU=- zsz2d<0)(*KN*xRcn=&Z{V=7W3HeeS1o@9Sp62PIu1OlJC6oZ=;tS$&R_@N=*^M9D| zoY!J9T{BW|y*}8~leEF+3~gNhZiCwWWUT&?@7B;TO8&}g4GR`T0tR8Y?86{TK2qj&keTvbJ^i5zbH@>+C{yY^#tt}*Au+!y7|aZ4H69ou2ijrM!*0c;7NLc|im2;CCG zAxBlW);~1(t4Qxa%T(s}VkA{Ki9_yd#A9sC$Hz&L-w(}4;1r~ur{Y{bhRm)p0xnS| z%;(Wt8v4rfJIl78NZl4ve{cs!4dn~6kLBtUJ3PAv8JF8)b=I_|zu%=}cM+{j#oTZf zMCc8S^~cqm*{{;_15zMuO*)mvP4%Bh&bBB<4&Ny&&g7^cvseJjU}&EK!umXh^o`-@ z(L)elc=x8TrOTP^qVb*_(@03z>9hC^!XYB=Ki(xQAA}D}&L$tp^-&2sz1ybAH65M? z4SAhG$RtWCQVolCEfryyRTglgXSO%ugS?DLsmeK)2$@Xcfz;Z_#&BakV)Y`+YQA7XS3PwIR6HLo+A@t2PKv@_T% zgHTQ~KC7o36}UXcz$UtVR~Z}8+9;Xc=$I}dzNh6N3Bl0N;Z$0Q-fX@~A-VnI#et2o zKaa!J;|%#}i+ly*>1$MRn->-mbmrL3x0#{l8!zd$eT1Mt!TRG&AU;>4YoM^owO zS)MHEp^x;=_zW8a`LJw7wOJpME3liPpiff4IM5qfCGhbI9^cudAQj#Os8^610GdmH ztV8_3EaY~(pWWZE5@g|X(Y#3+-Fxi*u#7l|S+a;M_xeIIemVYPEIaFWdwc5B=LLxR zBu$!rfkjuFk(qZx}Qeb;Xd>dBCWV7F;vqJrC^b3cWEdw1-02<$n{r&y4_JOn{DC zd*knU(T|b($K*qznu=;bqsE${_p|&R@O+cjqiy%;Axr!Ftb8Rrs>ylt^{L!NML%yM zS=Aht16#o2%h=*yF;8R^nD!W06>-Y!Xh-ind(CJI1tBjBQzt|wmiq| z%GkIh*gFDY|2Frnm`2}|CfxIS8E~BN=?w8b(+^GE9B8kWW@<5}DbJ}@t_4pjq`v@#`d?+h+s6@PF38&=TfLt4D zV9NNnY(i_qC2b&S1nhwAB9K}F7}J@Hkjh&rs-3;zi3vhTL|orDYBew^hQb^7yc=D& zI^ZYme{pH(?&3s;EVf^ywCU{}Egc)Lc(&+81vaw)~!#HfTZZ8-S7D$Rvo# z(d5MD_8{+jPfwak<8l>4gr6`YP4#juJTuq~JGgqw%!HQkHwP433Zx96Zx~ zeDV7MS;d{@yG;`L+Zw9%;h5FkzS=HZkEK&twU*H@F@L(APP+F_sm*|&= zaRHJiSmGm<8HObWO9(Dn_YZsFg0SXc%KiaRtC@<)klMOyYOLMzff5d>b%ygcQ+<%M;>xRa-2eZt=o5 zFx>uq&ST9sVkd4<6jam|im~j1pV_$Bx7S2Qrk2FN7=*TrG;ET7b70BcA}E)Y3l~LX z&Fh87JKMWEg#yBUD1^0eSKmReP-$LUz1KeQSCh;dg%LkR~^?TKt++(VFx-80|$4wszyr6s)L2LrVB_9r0d@dnFZd}*NF8h@KVw^-f8q$DE1nB&Zx56_w zW@F56ui`cqTy@=KhV`1YDJk+?ZsO26y=K1-!o`tQx|9aQlAaO4iXy`NXVp03;I`7Y zOqTdxzC`7|Je`mNPzl!^xVF`n6Ad5wZ9HDCG~W1Rb933_b7c%Xq*p&hZ*K-_Z=EH$ zsi{})87zW-v(7e70OLU4$qWeRJjm#o1N{UDcd}mtUTQemoA)62-aijSGy(byf(P9> zRp6rilCba#vMAauLt@O0DMKok!0gK%wKP+Jy|4+{<_qzR;ty$K3kE;7Vc7^RA*SXx zf9JFrt=xo=+#u%Z84Qkxx0tJa+FhNqM!)Wx{16CEH^>UkErFa;3OxE*>1Ae^mN+2Al~`xP3LQhg|abv`9qk=s(W;4xA6?OtC~nLlN&Y z{HHV?$~y!m(}yQn*VNe#!jOCl+xrmCK>}W!3*GAG`T?b50SyQ?eVBH}Yn+|=Cv{Wn zgv4idJ|-G#Z~M^4KE72ropmq;m#--g@h5zVNPi2wPdK2t_t@BC0vWyhbG|=F)AkpG zrx@#OG|QW7_&8?%I_Gsk*}u(+y8e zs}e^-vk$PVKK{c)2$irT$5pP94Snk>U?!Q}pLDF7=_REDbuw8BD(g&}K z05ef5)vMgTXOM~(m*16ZX}fbFcPNlWm}-c+8!^?|t{~Im+f?bvcohVn%#Wm&2#6=AL@@eE4VWSyXm6`^wu*qlJp- z_0V}f;Y7Gs&W4S)3poBk{>D(o-#4Q6Dg0kV7-c6e&bDG+M0dqi4ljw?U;y?MVA@nL zt(7OuVu0)N;L$S%zP86ple1V?2{(M@fT({|CH=tpd!1+ablS;FlrKZ%Q!VFp9jQPK zx(b_?Z&;&cpw=>NDWtm1K13^V=K_E=VXJw}uDg8f6Tmwb@@eu6;UvQBeFNldtIpqz zg!}_R-T-(MwKN+F@-@Y(b8I*4F;L3pAKd~-@C~geoOQlFovWx{*d(je$$1>}))U|5 z2b>Q31&IOWjihN4m()~%r;|EAIJ1EOQU~0#hku#1j~AIg(I_gcruupJVrxLpAheX$OU1;Nw5t#Na)NgM*KZe<-O(rRfV23(gikzpq$$K6?RZc8 zU^c(#dTRE_j#)n*a&9MsrG2MB^R#`Bea_IEoP^1lEPp2g3^ilEHYD$b$|Wmky56~g zI6!ddYz#5V0C0Xm($>-QuxE~&oVff8BWYZtvWwRlSR@<~G`8MrM34XWhoId`V2!y! zVWTBj=P|skiqZEPoY5No{(7rr5&yT6{o3Qn^8 z=zN<0AIAye4AK!sIA~L3I_9woEDpJam9fCnc?GwY@1Z5Yvdj-efm!Ak^(|Fl;5mG~ z5Prc%7L%d5w=|t})LN&yJPK_}zw?nq1k9?nHvycPLP$SPDv2&+y3P+k2Xwmgw(YVj zV#t^*pUhZcTZDn;!@;4y>l zXXDy$6AT{c+uRLWOs-{-zy;gWtKPVZ^r|~(?oxQ68o(<1c1eZ;&UsnaK`V%RRs0Cy zg68f2qvgP~K#RR_?M=1fg=9~HmhanN>4l~%Ca*W1Yq4MxL-u>jf>2{n{-W`8fK)cl z6(=-1aF*fm;w}?=?1MkPp)=FC`|-nBoJJ->BZY9ljsK11G}y9Yuc3WHA^Nu4LVL8C zdQT&ND1U(lOJ105s62DKe2Kye6_2<7)(l*H!1Skml`&@z2 z=8OXbz6n}_z5?K@ud|lgF8BnnC)1$u_#ud5pfmaa_9k-M-8N#>3iw)&?bKI-5R!b(&XT_<|_*_wv+2boAAKh#4hlC4g z^i{ldQa!B0TxAwJu>&hWxhO8KAc-e>V7*WxU)F$MD}s+v7C_Eo21J)B=) zf$GQyFsFsofncvrFrJX1l*eL~>u#E2+VoISfe#z^klua%av7+H*vdUGrhyNxLc~#gZRIeHil@vtTq=sFtKi@cto#cQh3ZTzi$o`{BS1`2 zfMj^+wG*M}(ffm@4o|po$4_t6LU8{72I1oyJph_!4t8B*rS2hsPBj6$k{!jE2rAn` zP}wYJ+C)5a0_Iv&*ozJ&F9KI3R)^6S>n)2(WE^3|{$Omg?Sk)c?qMhpZ`oxR)?7G%kSoXaq3cs9gvM~LR~-|G7Z~~JVJ!Kc??f(EqB3XRpbB$;$st7_f=Vo~4z~PSM4NT24D%M>Qq=w$|iwF9^Z7XEPwGyRPs8J%5Iz1CeYJSOw7ydn*Fsw%Dwief5ov){SgOENSBegDDF`i>3gU9Thn9!tdWSL z+3ZgRG0$K&vhbv**SU=W9Pj_(xPLA#S%?4N+wgR8VM=6T1urYA>douwv&m$?pkh7R zwgMKCPlgl!Jsn=4DTsmb2#K+Os-6ZzK|%q2*nRXNRYFA7e9_2}UnS4Io&L>38 zyBFI{Xa<{cSxHi#s22}2nBS{TrNp`$jT;Ta2Y-Av^CO%}`_46_0zWhSk0)}cQhgJC zX<&<4XxDx)uJ?r90uDn!ORer34*u!X-aX8=5>@jP)gj5Y z+A5DNC8Y;)7%4Cs7J-EUQy9JRb>nNS90cwr5?^e}cW6LS{J#NG@MGfuM+H8al%S2N?;QmG zN(Voj1gm>OLHF8Qt=3DUJ@m(6XJ+-^m zc6jQIE*6$s_^f?Gy?q`E$MtA0G^@FQDRuwVE3s-r##c#md%SK6U zBrioaQ>aeou0_c;*9CCIfq@%;XIBu+Dhd4+t%B#d?6qH3<3fD}$li7N!LdLKUJ+_@ zWtkry53wvkZpZ{Y%+X;z0+3zTJg;)g9v3tIbtR{ogj5?AA@N8+qvVJB=fR6@DKf62nt~$i@eL#VgK_%X1U>3+C-UFaT_YE*V%Q<$k0$%JXgB)-7fFhr zP3_a5?nQUQ_n>2zfmIYC6-xIyU1L(5MI2>70>Q&U-}YWUq6p3h#2bM<6WB~d;`1<2 zC}aDIL+2R_816@#;a`6q-!x}?zaz~enM!$}FL;B?ia;i6^3R+Xd~U>lJE;NlAz&R? z`e~J17UsE+irFi1k4soOQJyKQpx_*>_6_K_@40Li&rSbprD|x=%Jcku>dxl~bTQq! z%(`O~A@u>V5e?@sAj1eksf~@%+wfe9mskEh*>O$C=NE^5c@&8P3M6KI|AY(DxXR|S z82r=-zM_}B|Lzj}|LVzYS+mC|nFT<533BxIaL94P2XDK9q2ae(LuRQ6!0yPX$I%TX z>bb9|=Y}B_l$Bj1+n_uxJR=|T?+~46y7<_@)lZmW62T71$~(g}<>{!}`i2+lL`eO< zB!YM+V!7CysB_2{IKSgt)&xOazufXEx1ccc+rM$->k=xs4GLxyGKb>H8Y)w$vcOHW5GhG+GVHx8~J$a^tQ|hT3 zO^jNLXd2lb2Zx3AS&Q!IsGp@cnD-NKG7O}qL#IUdV+lB)sOp$dc=b>@+~W@&?E+>` z1CZ|=E~NcHq$E|52X&F&zx}|+-|3$*fm;Bm)T`?s{Kt`DZ2MZO%0kBv;bl}wN?2QG z@f9U%vPQ>~^GwVsLAM8DP8Ooh+VUM%V)Yt-ZcZQZQHMSR7eRd6j^%91uWWb>utE6o z$%X!ygM-=y5dw$Pg8KOPaaX(7cVb#1?IiZ6DSX{yF7^EbG=>{fI9A}JJhuez};bC+&%=h zAXIyFzE*6z0HnQ%h)(7C#xoP#;rMb3d4vv~>2a|Du!KiS1c;f%(~Ko8H7? zSH~3b8e~S*ST`pXn7;rDTH+!kfa@qM@+ah(r@RFD3^z+8lUUfP4o$vsISLBnXVH?n zoDk>5%hDzW_ud_w$A{`GfXC#APVI2cW>Z^a)FE_3Iei5le9uRD`HOZB9$-8}t%Jix zRUe<>WPg#D|41T;_Py!L$1fGU*J{lM*2F%_L`r6u8VjFU|G<5=v$Ry6)PUqCR#Avl z93VWCe+n=1SyF`MP28YS98Y}m&CQxg6{S(K5yhZ;yAGa-faBJJBkV41?8?hF@Y=@m z&V}Pg(RJk{ad*!zWaPHtKRNrpJk9AU>H9YrX;;oKRQQUo(X&VX=HL zeoPjpjibPgBHN@`M(m1&e8R800Mv8Ay) zJ(52$e@cs1Ui^K<{3O5V5LPsZd~ot~DRcK~N#=KRf$s0BRum&qzf{|@ytak{ah}Oa zMw0ZbA=y|O7zyx$0ED3*|| zV=;*+Ro3U^(KPw>Z5hG1w-<}|=xg}uY8}=t@-LCl?CpL9VQNj%z0vTvxRMC`d~6Kl zx4Qc-4)DZT%PTbeJuo^{{Cv+RqJGYMG+bV@y~Ov+tGzup4PmHmTsv(#nm;%vInyg_ zGb=mc`g3mmYW|42$$5#-ZQdsCv7WuDs&W#%+sPjpnA~qrRz{blY&i}~&Jjm0Q8#>x z@dGqM{qM|E^3t!&p9#V`_s--s=Fi`Y`)7!Hd0{?55qA&KMCYX&A`-eEWA|d`5vzYS zwqC=Yt_D7OW?QKAPNzXztCh z*bXk)bBcN*3E?+3mR$@B&|+E1WN}w_D8DQI926-sM%LNv|MFCzXi)0vkFC(b!cM67 zC*`w;vlo?o9mC17U?Qe9y25iSkrwkJ&gYLlh3tnQe)wKgELT?)eNjd497VTw|E#YMSS_v> z^NkYlA%UbY3*x29ZmhItT}5GWteCHC7SwRwab526*cQn7j)rvqxtG34+?HHZam^}X z@@j|-OUbfdFyrvO%Wt2cb?piqmQDsHLFQDp0~da2ZhUn)?&!lOIpR076g9Xgnd@I-Xl3w5o#9edTO&UTo`xklec zS}Z7dVPX1YRCBL9Z2YqoD(2IX`?V)7cDQH-f0tR595HuxIvEY-(+T*so|=IzH!{nf zG8VfH>&n?~e`J@CaC7=WI>4~bTb>D3R+Sv>6SYfh-?O{x=+x zil?{<0{4~ZqJCVCEwAzOm`!Cb$k>d!;(l5d*7kzc6hM*Q;jO zzK+SEtX>9wNb(6_rdwrG!Xg@pT3;=aV^VJ3J0}%X%jVwo!B-SQ|FESiV&#C|pRqVz zaW4AGE8&~$c*6_GD^z{43_WD2)Go`5{r4}yX&k! z3smd0m)f?Uo>~l>XfJ?8^V0q*G>)8zp?x8^^GzD>CA4Ry8w(S&!Gc0M1)UgGQqm(m zDL41vW*-wC+>mDPpvbaJ&ewcR6hWUHN?4-@-+Az#YVq zw-(D$A%Soc87+bcB2xol8KY5;@uPPqo2l1F%%t7jnXV4iE&m^L4BXZe#)ggUCjTThgBbD?G=n_3uG^IxGk$^dHC_3v zp6m=K`_(gK>mm1&E33gAg>;s;L&TXR2VqJP;%$9S+wW3F#D*hxOr5-csVCpwUhSPp zuU^(4edoSf@FbxO-TF3->YIx-Vnex^&++tgl_xQ|=lR;Gnsm>(OxpYf)}Lk$Cy(ZH zF}k^A5xFK5_nq;whl&&|4BgC#tiw6_l3^rkJZ*4`QO_vH)G%f`7NI(#Ea_*3Va_zS zxGf{majBEIHlgzRzR63uBttBaYAfhfONNRS)O&kUe@d5akKIyCOc@RKWh4t?x&26I zY*o;^;uu!%)U_dl8*Zz{0<~Y0*YQE?mVD{P zdwFvq?!Z0v_gYDr4ssl`wy$+CJ3v||J-p;K!U=mxz@pW$m#DiYhx6s=P}La*|AVS_ zbS%Mlhd4J9GW1#b+r|*HZz1*%`cKKzwVURmD}|&V3aDt-UOlcGUdvCcDpxv6C)lmaqVYGBmLH5C;?e zm4N==GZ$HmfTx@?ulLHl(vBCVUyYyPTWl$cM!Q`pHAeUdkMUNb+nsTxqsLR$)1y$R ziGJ*ky>ye1wwgmMrOJvfHRIJyjL|dhMbZpFNP`Zq!V?mo3ZFqn7X7dCLOSf};P;lo_bP zh@P)GttQ(&Kd!5HBDr3C_>#RW^Qn8;0aO)l1BL?4q2(2@A=6=e*Il93k)WLkzRR0_ zL(ZKa9!_ERElc<4H&Cy>lGgk|@j6WNH+&zELBNaw)os*7`G(_ljh}_IL<;fPdZF8R zUM+###P-eWQ2LF9Se6;@dsc;?_|JVtFMJ1C*>ie(pXq@dcJJ~pCnu-oZXm_FpBUCj z8K9jjRZN+VbL%{0F-Eh{dx_>_G8XkWZcMXDNsPW+sH?xWrTaRrIMjp1X?paF+Lh6R z_|@<|sTaJ=>I!e5_yf=q@z7fKb%6Zbo$Z)FuCB0&%GEu3V8jJ&*_qDZE&{epJ-n z-Y!QsgRp|YxC=7__xDL%=*KrU!%1j^ManEF!6KsYEk|O;&C${R)AGt{v4!?d%KR_o zdK?-JNqs%%mPkjZfZjMP*IdJFCh!$#(`NQ^YFKX>H{l3#`c;3RDtXsHD%XujYzKS! zn32b_d!3_cr52a)o{ddev6Fp&HP$1U*5-*=DaRXf3*~X6$Y--RE23H8{fVcjg_-b^ zXxip{$9BhQ+;-A^`GVA)_qOq&73cl?hShZs^ex%0Y9q<+y0oW5q^RguT_?*YB<{SI zOb+vD9jTS|_K+_lZWH5nW4gbWTdS&!GCXBLq=%dpoz=oNN@MrWR_~#>^w6}-VAEBy zh44hUR=%Kh`5x|ecrs{0nSPx&K2dZJw6*L2+HBs!*zD=d_5VhM*I9znu62r-Q^alccZPb=@3Zp<8%;Nb;XK~8GXSXGpc*N zG}H`J(Tj#b)>QxBiqW6k64%~P9L;q@4V(rITa3$odrK=RrKmGpzn`y~kj74cdSN{B z>Raie$WEVEB3@z@^_l(f*d5xA6XJ2A7T*@%m!dekH8Lm{XVQ!Se{^lHDn_$L{kHo3 z34UVek?L{%`c31>dcZLLolp8KR2n};R5^CZ^QG^D8(BGa`(o4**-81VuH)(S z4K+jyW9s*I>s!WiyM96<1H+xsud#yTRzk%|0+zS_Z%wb?!H&woeZU@yCBmlo3;(61x+2D7LM1JQ$uX6 zf_Y3}Ms1b%n$LX@G!{#%{qx;b4ko+QHTxXZ&sQKhYMacY)Fwtk2CKI)K=Lky*`~gy zo3|su>xtQ4UT20xd2B@{9-he&Oau?|N9?a7La-++kFp6{3Clp0R|uRw!nLTFxFZI= zGXj3tvUk|F6ieOIsv@b{&?2M{`8XhkM%7SRF5c|g&pHRTNpwL9YM7Dd^9t`XwF8yp z{Y;p4nVG-q`gQK-osJ;)EF?uO+4O%_@b?tL6ZQ28kG>vT-f6huS!XSGUectKu;Iu+ zs+N(~e%T6wW3tx-IZ7)9;*pWOX zGAhD`MtXMgt(2|Y`H-9O!kkfdWA}?5=3;UstWmE1u%+^Hs>?+f zFP#QiVnA@%V`~;yQc(0Y+l+u`+WXnLWqIeAFVvcNCP%&HV<{E{GGCt|t0w!e`Ppp^ z_q5{ux~oKu&jw#l5ZS9Jb_#9L$ZviF3HT(32krrV)oY9%*nlzL4sX|U?K&si@W5h~LCo|By;k<;)a)t8jjj&SH)wxd zBI_N!lQ?XJiYCJkBz=h6s?nJn7Ml#`Y|4jXGt+|hVdYFE*R&=C4;YG+N;Ps7C6zT( zO|Y2_g(ha=i`ARYW~qzx!)%K|lRZ!2k(Q*eu-wG7BC=WtWD;ZRH(k~9c%0 z_PO!;TIkhO%K!SKzG8Uw_EYUuCM}G+&w0k#mSn6hWWNO{PdrsqvuZS3R15Dem;EcY@tN2x9syb7Oe1m zX~vJbq*CdQK62cWXb4@XQ-yIAAHK6>Cw0Cscwg)>-RO%-LfS2?lL2f--Z-y6TYtWc z_I|-&)lhK++cjS}txo#Pq4;jw`M<@JkjNdm&z@vIF=6n{XrR*F`j$jO0;tBQbg;M1 zczT`7BCXLapTpemuY9aj1n$<@q{Cu?VjehW%H%$*rf?EQP&{F+240``$-u*uh>I^D z4|INDt0!QEgiokdbSPesn0CaaOAen(syS5Q%}-*%f7&E z-CIaykBS|;9cp=cqoxWzaqmUi&Cg6d68eVh{>kRMED_u*cq~mJ-spR4xJ<&jqaF+g zIWw2&P3-pH{h=?_eg$jwX2yvKcIIOwI`+2mRWBR4vN)Mtcu!lF3*KetUt0?@C4Yl5 zh4q>3aPxniR^hX2NsCjXZ4?OO83H`4#jNlAp{-$Bmb6rXDe zJ5=e8ebBW-J@&2htF%#1E!@V*2#ud7o2CiNaMw}aUAYd6^tzT2kS!l1HT2=a=V-cG zeooqb?ViVsBC#Mf9KMyv+i>LOtz)X&vPOA(Eirx)&@(4<;_u_ zrCL>DU{kNPxN@k+)zu5v1To}3wG9+^pJt79&NavN66ul|9T|}ki!g~I&eZa&%~S>( zEn-S$G`hYb4bwg8=}PW=&x@08$k>8FQ+Rvp!tV{*w1bt-2;9=8w{XE%y|3JP@2v0n zcKJcl^*I6wJ&)#QuVbPjvk6i;8Kdo?TE|>j5z}cxzuVdNR9ZDfb${kB1h_0ALGlz9 zeiH(hU+SFYu-;ZD4i}zTtc0YCV=B^=Pjkx6UCYFbDgYR&c1HdN?$v)SM8Rj}GH2`6 z1U7a>7EG|c37Pm{HJ zu`G3KP=xLnczCONARk2ZezSpwfmZa-hde#?R`l*aqyw4`nl44OVF$+y^zbs>#27i@ zd$N?EEI#a~)U(4}OSTh^cJ!L*2N$^3u7m-joM82wg`pc=u?o|2{tmCcW>|Ywn3*qi zP!Y{*N?AR33$Da|Vr1tDNKnyxW#uVo36ay=w(@qf3cUB2IC0|k(@7^xWYHE!T(m4~ zNSQ;XzDFJNH@6a;uS2!$1YK*YtTC;5-t1C1A>~(J-3SP%jd+YV#xUXxppv!TJJr_? zCNPB!nPddhuB_VJ3{PJUmLhAn2{f|Z_O)Q^dbBV}Zb^KS+erv;JBeRpSr^Ly_Tr-jD5U%zuY~iJ?79-;4HfcQ_0>&UsvwJOe zmIY)sy25@M&FE`@sS??C<>eTnWI@N~xRSSbJH6aqWI0fHIcrW7_&-yiz$abR2v)^)sI1_aTiaxrna5Vz5d(I0?r-{)6E@ z%&3F2o5xB*()o+{UTBjA`LmOH`Q@uxe*5T{o31l zI!(*McI@=%c!Nxsz^hna+WYA;XU9@Y#ZsoW^GJpBgHkjc3j@O^N|<1OaFU^I#;!RL zF5aBJ`>j$h=1|86e$!tY2i42Z{h}<-o(G*Nq($m_%Js=s^_2c0P=F@P zA|iS*iNXks$U&%N+Cn$V-PI!b+!wHiJ|a^|)jM+<|5jHu?!CGC3#*T{um zDelC_OP;@gw%qxX*Ysq!Z(Y}zr`ZO6QhlzVMny#ri*;X24{!Gj|*^9qc$%Tsabn55} z%wn7n_{hP5!^1sWYy{~QBBZH6K0TI=gMvL+3vUI*4 zZ@FAC+MeqM%mhSWBO?x4WF6O^#ME!D)kBy$)9GztWx0L5I+_zI%IcLun_FYL(c?>f z74bYr5qJUaTQ0vsD4wB`-=JpoKvG*q4p&q_LfBs^EKgKr*DF=|aDtJr{YZ#%wHX=R zNH8;^eNsUl9)`&XgtU(?A44p%iew0HV*|bFbzx!KTf#0$Nfp+qfZPEB9+f{otreAl zOuozSIl9Uj*>tYYU+7|e^qDmm5zt5>h8&3H^Z_UL4UaRNav&J|r*UT0D<-l5@n3nm zcPNo}*_0%xTiI>dnXNUPqeBLF%)eIIBID?ZPLPpFuJs@?_c^@;E0ZgHFKH@)yyb3>0Agy+9}ChXyi`QuO)HS@E7=!27$rf3#D4d_%!|q=aeH{!HSM zdAZT;_52q<50WVlQ7+9I++v#htnNc{6tQEEvl2VyDeY5Rn}WzF^HcQW6B&`dff7o9 zS+!_=m$z8fyeOXk&RvNKCzfVWq~-M49Rugflc;^<9v9u!=RyS4DiF-x{lm=@_25pR54Rg2uSEL;s1H!sKanzY1{Ex z1267bZsK3*?0ng5Jr{P6EpX{{jv*qKE;7DH``Fy=N@8a)8!{Iqe48JmP&l^pvafy)IwISJC-zAhN?L9FsEUA6$59E0xyz zZ)WSu&p4wD`)S;KgXe7ucg~Sah;H|0_w*LgU z-7v9dxQ_UULUY80XWt2CW>rGel~?9WM?hQRXPUu$(Rh^2QSHiTmcl=3meQl`>bxJu z=O+s$wa8ce%CASHZzpu1U107HA*tlnH##hzG1Z%-f`?BbpJ z%*e=Xw&Bl+Flz077av&2{#BzbEL3rDFaozpo}4XSK_smzPl6)gJxkx!rRTHwP`B%S$w60$>8BtV&MYxOS2WkVt> z9A!H0!)N(m!dfc-9)W+wB4WGPtL}s~T&zSqGGa4TS+l`CFXlD8f7JVPqDKv$Ny_!24{pn`n$V=T zc@7#mP7|89a@0@qLk+8%vc$O-vEZj4b|3H-Ox-s&Uc{3o3h)PX%D;~L%199LA%r|T?ru;*q*J=PL%O@WyOHj0zQJejeZ1cvu0O=V zHTTS{b=K0SE{st^x_$Ce)6_jJmGXpzk|CF-(g*0m>_*p=g40AYN8(zN+tM@~s9_qp zQAkOV$z{YFFCya?HBcNIL@Z14s}uS7j5#ngc%p;I;SHX@V`>IE4}6 zX{UV88@n-RD2Lfq9D7C;Nkq_Wz4n(^<_C@+*q06+K`y+1#*P;k6FO{pv)LD^DteHZ zAJ1gL67ki7oT}hx1RFvHw6@9kI0>`t?!%x-ydOr@ zeA+jaCG3m&m7L1xakeKv*T)ce&eQmmF$Cv9)ZZVZ@%H#jQ5HnLUzE$@)(12Lj84o{hkxA0C8bKjJ~^Q zQW4J24+;w5>iTx^?CJ!#?__vLiN&xDD};)&1IPQ{nX`rfE^{$jEA(^^r#5cnH4Iuj zU5!TC$~AmYa2$~9XIUHn$7qkjhVF*xv&Q7%VJU7y09$S+#&Oq~*{!dQMF2uC6sUEQ-8LHawIDpF|_<+0%T#=;#=; z%L{a&pABh+FC(JBJ|ue++TS37zq&$Rx^)oCl;}_oA%%DNgPiqzhKb|-M7j?sI7dwb ztzE}+*0d^p$A{GOlbpz#b+_d?j-|!ftSmHJRZzK2CPvL!nZX`0zg{>LYJ9-B)1-ep zu=gAMaJUBT=Asm+`$re*Z<-yoe=OUjc0Rk;AfAUdmZ2}GXWHN6KRj-XnTI4P2Fh{)j$|j- zvUnxNMTy(%zQVfPb$(D(4xpp>{G>2v9&QhT5pSzjf`5@ZbaL$-*$Fd7lK@+ew)WF17=HtH8+gQB@XM+KIn( zonZf=3dtL^fco#i7`_nz$~7fgJJF$L@pUV4Da)B-ey8L`H<*cGDtHHOdjJB18o%#v z!Q-djN$u9-=@|45b@oOL6JooGI0;(st7kYhN2HDW`iR#3_%eRS=$@!RfO+aqzONOR z?)Il4AGCzb067rlm((DJG0pOxgAW1l6t&00qp66qR|VoNYl7iapT>xYT92Wn1kapr zBwG9$ZFSM5b0-TD3jlGKVU^+s;8D@_o^q+CNbOYjH}4_HA8l}r5DmK7kvHWtuD8-> zJ7gdCe)tx5G&RJi`(keVk!;p%@_T#8t|UYsj#3nkE?<4Zi%v71oQps`K6{!HhGSWI zk=JesHqpWRJgQ(kv+OJ(fr-^&E*@&FgM5zz*>U)nh&qk#5h%;Q{seodP2O)*WS4r9 z9W-nFn^&!m#lbySZJuveTeFpO{4Qi^zU|0NQ_SdI*|fkEq(29+21N-F|9T?YN%6O*SL=cabZ6#pQkw zi5V|#W%cO`J_0r}HnJ!D4Q)%(*|Yir`P;fzMhEIFQK$?PWTb$A z=uKoz>+00Gvqz8@hD^wiJ!Co)zrb_9+&4%^x-`8@7}4A4&81y04AZ}k(aA_awtEAO zB^|9i9AKk>RdJPaWTj0Y=VYxn#HFYS<&uFabVwXW=%;Oe-|B-O$U>1L#YYloE}6(Pv2zVjW3JlNxKWBAuvb z)*jz%P5my{tn=dH3-9ydEcv>c>l+|Xwnrn97Xc=;`q%%!0e4)!WRzvk=#gYE!*aYm zJuwa10)=ip>xRn~rQbJDy$qMNOc@clQOI?zQ8TgN0Z!Xnmx%p9_5xm&3<%rSu`eDoQk8w*Yg<*Q zJDjxLYW5WDoj(Rjm9ayj6=t+B6@e~a0tnH;4lFl*tVdpT^3E%IQsecg0;28hDm9Xt znKX)M?L?92(qO)G9NQbb+<=X!9}|g1t2-ebnxc9|TCU9)*Zv zQZCbcFa_`H{VbQ8Byi7z0m1II-Y*~jF2`IHSlHm+KU$kM>zzjdWc#$p$VG#xD`l^? z;=3DC=*=kud2Lp$CpAMQBBxD&2x!r)r2zsCL96u}7yFd@2r z$C>CH0vVXKOz7uJ`?nA2cSwzq-oL39p>P7^q}>%JWY@dqXO;zmmI^%&fApC&DVUV> zWOhT(4x;9iV-b*fCf(qVTr{+FG-%g`N`#nDiq^9La%T7vK~mSDJ+Q<|2SHE{8+PSV zIJ&z*wk(t9!10UNDTsC9B>?lPb^eOi^;~pK-`uaHdx}(hHaNuaDNgBkcHB5)a?gg5 z@C$giEZHy?KXw;O9Z9C(!r&w9nrB60cB5K$?(W>;hzMteZrg%UB=mXpwjy$N7I)ZE1Z|{hjLD;}Yq>vWbfgVe z)tG&2Un}Egj-35f23tg?v1ye;CGdnn5nt6J=cM&&ZUe2P{)YK<-i8XEH3Jpx@8R?Q z(io9PF!*2lX0X*4y%JC@j($`cq{=Bd@8(nGM2b=}3`Vjdq6iiWpQ-83{YlwChL?Q9 zl`Nmwd@M0iShctWB(;E~)eAMYEY542|UNcwK zu73OIt5CDopy{07(f?Cp861_r&kY5Um2(BwA``3yuOb?l&~W>7&v{Ej+SPM+NhB@u zacAg1Sg#&Qc#JO6P?~{J$B5RFBcYQgabeRQ`m+)cng*}vwW&J8KX?ujc=;M!ii6|J zn_mC`Nbxbto7u0^dCumhFvC2hIukGw^H5+}G6Hk7t)rhGwUg%W(F|Oypf~oNumMe_ z8ZHrl{vvt?VobOdxV?m5@zb^XKRWjXJx5xg9$TQUMQ=W}DTO9A1fa#M)dV>wwh;J0 z{-$U_8KS;^DAVAlDJTeoG;4lB0uWNwp8autrGv}EmJP?|J(+CiZ%lEQ1=eH-m*x*s zvT+Q=kyC{Rq4>XDgGVvq-hM!ZG7otQa9Ce-9S@Lx*YXq*PswBw>1Qw?z_tct!=!H4 z^#YN7T=ozHIbmieU_BGh>D$QxQqV$(Kzs*wk-_@ zMuX(*#<%Kz6V<5+pqsXc#8^azdsFZh6?pUA)^utx8~GcFkHd9#>y2W{d+IfX%jdwD~unddf-_mcpoJuRmG0Ri=@X8(B{Ab7N!O47d&(ok2OcYMW zC&O>fwU@mDde_@FV=L&k=R^2J#QYP?TCQRr?yNAy4Tl21-B{yv_%FO5Tb+`rLI-?3z-UOx1DP7B=rbiJsQ>EOfsFha2L7>%%|DRp=qZP(@m59<~gwgZp ziOJ`^Fc>3ODrJ=S+UdF`29B}_zmtx3X+(SdxXWp{tiI@P!l%dYwfN;*!aTf&m*Own z$L@)Wais6&;?uh(Te_x<}hQ)NTJ$ zWAw8Bqa5NgnzLHhePmyHUI80lA|7NHn~jX>Pn zX^-1U6<9`NjQ_4O+8ln8Uj>X_!(vB8y(B+SgzAC@x6j zt|X`OU(RIm#&Y<@xloD}>ntrBaVs_KE1pF5@@Jg>Fx;-Do96kIG~$6w{;>DuJBb$$O*BRox(lkmp-%LI3;P)KuDHO%Cf2J7V&n zb}w^zrM#lIE!xj+Wc)zl9iv`QuEt`{`b7c`fxIQ-v#TqMVa4=dCbF1VwHD>8s-H*Z zrJq>m)sv1a2sHxTpkXua9`9CkL?3qY9k3H}o-GENYxSYITjhB-sgAaFOKOSO+qDJd zH0dl86HIkG-{EX08v**Pn(L$^KotKpJUXlN)fdSFJO(L8u8ZSi(TP@{_7?YD+}Wee z%^T)G>AmDU;&odq+UEI)0AG^{qPgat@sEK+K48KbNT5NyApMWI*Zh_AyN@oVAqL?XqfW+u;aKsD3o!oMX}D z!eYl*7M6b9U6j9_-6~e{iH99`S8z=4;zc5_EErLZ_-aUyS8o^nOz5clV<5zRa>q@GOc(w;gD6Gdu8zceZsmx3TvcXZwcM3K$7#=}1RI$vfC5Y?D zc)o=1xy}jZvk?(x{^i0UVN%UPkj&2-k9wO<8Tx)3NLeBc5YTutD z2qQdnOoqWBStMoYy z8in{vk14+0jT;S&r4k)yF6Q9+^?B6n)YT(8CUEXA@VfAbPX>q0B-j1((7ef`0^+$f zJ{#mwYtgHoBd+%;KlQ$kd?fDbS(D&J==<9a*sn|W*n|}l*J(vb$cFR+Sh0zdkLMu{ zZev%zLS|}Ucy`P@!SAPrs70*$t1%Ax7J7pZe zo9Vg|K{IJJM-8{RuAe(L@sf*fC0|;WBOGOYn=bXj8P%@6VzKHn4%9t~h&sl5L*Nu%fM5?9w` zTMeb)^&KsV$SZj0YNMX)$Wc)Kn4DzdyFTqPh@mS*=>a3sC$_uGvq(M_P^D7r0exAc7R}J-MCrh16vx zl+Zve&-gs)BS{>4nZ@MMBk=RXdo8Y~$K(3OM{vpZgkpu0)UF3shtahir~`;Gku^S! zx2eA4zU7~f=fLqjnCZSD;-reJ&Ls#sccziJQ)TCy@IngGpP1rxkq9Sg*1Orf-1q_e zrKMY7xBw7LLx=UGndmT^-nifGVfno74mr1(QsM;%x}*z-kZ@ZPht}4}bsEL{d!sx$ zO0Mym7@DZt`<0>ZPff#Ru!3T@D!j>32NW zhss#-^E?ELs>XQqpY>--e(Je`SKj~Iuu%)9;;Vj}H+4K#y#=uG@hA5y*G)DDJ93zul}A>h@7{%^dXS~}OiWr_%Mu`HyN~xh z^E&b>Q3$1-T@ZY*Sy*c0NQHUVB_{Ti#x;@pzXHMY2In__K#ZN)Pa2~?PQ;0E{eskg zXBjX?9q#=*#?l&P6W=MX$SYy84*r~hGi1W$Sl>Ij9_)*l`_t9A*@uU5ympZIh?**|hwvB}UikY@fNPoT4wAzy8^xy}KM#dhBI*N0{+;w2sj5T}K`~n1& zF$szB>>)O7?2+>fGmkA<^g>yahgo;<7sms7WVCFXVGis>wi@0!*L)I{ zH#t6ll&hk8)$r?{{apw*fx5sO!5&hSMCR|c<(b2A63dA;DT@5(Gs~=LM4Za?J z?&5Z*IBGz*-cw}|=4wt`pJn)hD>;?4aFU$(@^CGh{ooT!MVJX$jHOwMQ(M7V6Sp{DHXueEVy7BX5K2z=Am zH#Irpy;2=gMuF?Hu;lnZ2C+YB0f!%;ak+A|@d>!l7m4B#sO51w>$uDE5-Ug*fA1zd z-A>F7hIQ9{ttv1JgF8J<=bEzTY*Vl3o!CFrIGqli9^a*UDYe1%&t&AtjiW8M+I-Lb zu(jaF{d`^nLIhp~6j8sRQC}MV_)1L51J2v~jeqYlTNXH0kmW1V#8Q1^J76vU9c4pZewm)II zF1Pnp7D77U&JqzwCC*|N>u2M?cV(a6ZBG{!wO20^wijE$xI!oIsz~QHb3r>kW=j~X zr}XJTyd zX^;PxzWVTF>L-m;|4>LeOkN$iP6{M7BQBu zV+9_yhY$e)MeV8dufQcA+VaF3Al$%zj`X7-=!gvEhzny~Yw>k6RTjA7T?{Y!7AII8c&D%98w-{HaN^KCA(06qx!W;rM z2K|CQ(_Bp(#zFM{>0WYj!}_zuFh2L?Ac+z{f&2QCiI!w5B(`@Qzwh*n+=RDc?vytK zzbMBHR$Hv0#g5`0_JNUkE-v&2;wQ^=xbH+9-Sn$1e1hnHf>1R~_%st_zK2(%_o4pD zbKCO*WlW0;5?72N4^G9BDMdXvKh+h*)x!cR429)obx26FFEtKI1~(8OKR^d#%CS+} zulaeNopZ5$jf?`xmLXXFg6-NB^eU07{#-GL_x$)rg(W@bt3Fjdffr`t0QGzaEI8lx zdJs;vk?Kf>65BHZp>I|pn)o0Y7ef$u1STtFGQ^OxyFHyhxNBiZ%n#Xbx))}j*R|R( zlM1I!!X){#I0Z~6{SZggdSN#HkKTZrEUG$S+v8^b%72!pI9wOf%R(o=s}erNxES-6 zs3$3Gt*|tlBrm}Z=cvv}=XQe$pyAfqb`UAh1f8{;o*BHJxj*vY?So`-X)}!V+a8tz z5On6$HYBa|BgU-+cO>H(nzmA$EaFWAgvlf0%D`) zX-&q?G}e_QQ3_deim0f(o9+cew&F zuNs_Yq_V31#_ia*gG7yQUtiRZ4Kq_w3djpmX~UoC&BB2}={9Q+ScA0alDKLk>FzcC zR{h2!8zeBVexH#TJTMXBt;3zbxc}vP z8U+}{PN_y($1M)L<}ujrl2TH1t{PdCtlG1tsal47+Y^OK^L)ydcWt(0gpX%jE~ z1(zmO`4h+VzwNm*fSJ0Alc(2(sSFG3qBT_=@&ew!`5xMoiDj=poSmh4vetPvT#urG z>+fjE5)8JnxiFq-^r{_A>~b`&ZShxokoZy-88h8{3Iwy!s08?7LgIm?G69Ea$Np_4 z{23Ik@1u!DH4ave_3rTrQu-XW;R7`Z2{VG>l2T>!DKUAUd^=_AC?lYCY|uBFuYTqv zi^-j2NeS)|K*OA3ZZDzVeVBQD!AW%2!o*~d;x2Fa>?sIQj;C{LTPMcrv9aHVe{%_v z+{ghl&YvpCzR2&uj>Y~LHrTJ{B>DHR^i9R$!pF(w(hG7*@k6n(?cD*)n_JdE`5fE7 zzj=8C-PcJri*Ije&^HeWyxYDT(p&GfvPsP>=TklYBqeg;F*b}>5Dir0S=*C*aIUQj z?`Y#7dG}#$y5_C!&w}w|Z@cityVGoJ6!I%CALNyK*H6Y&1q*rEB232cASJ9b;Ex> zZ>$%RlZGyfuS$|!*C1~?2=;iN%X>7Mx_6fo@s18jtxLwI*{N-~QQ!J3H4xGiTe|lR zIWU0pjd2l@Kh4luRte02=)McwuM0#t#Y7EF{T;X+9kh{2Zr4}eMI)N)EB4Dpw7dAT zP%O!AAHts+9%Rs|{!zcx8Z zhrMiIxthEX#QSg;#$I!^)%U1fgPAw0Hms@6c+x4H2L6~Co=v+pAaR8Vl!6;KY`d<^oE=UREe`b2FUfK;`M6oF z?DerH*RNU@Dc}A&RgKcaLRaYzm|;unTyPVz7kBF^?iSA5SZAjClwKg7!2(G`^k$fA zL`E&)*V{wNf2Z-UFIYd)5Yjo5NYIbk^()f|32z?(Zz*@R1+|RN5?0DrxH%DDKYIj< zRy#JrZHsQJ8hsb?mH@%F*h?@U(^&%+3Jz-1PS zAmx6g{iJJ`A`>IGx%&(W?Yo7xLb|-HiU@frE z1d3zqrdx{9hXk)&nI%nZ#1gfxAJ+93uh)OgFX-zdFr0b~A2Is7smm&{Z{vOE@8^;(7d{Zu+hBO4j;pi-Q za|(DZuxbG11P149qk38mTP#g<=cI@~ZhU8-fweLX6Q;p!ROiX@zxlor(fk`!8ji&Q zVo?PyM;vw4sve5bBKDOcy6LaQ#(ShQkw{>IMVjJ{|Hj^{)|6b9DO@aw8x{)2tGkKp4d>;6VcF73ok9RBgfe({;!@Q~-dOrRPkKWvf% z|=1g>!JGT9hWi)dZFyE0PA5QFkSY8d-Y{#Rc5 z$pb|pSM67TiA!AuyWDZt{Q5I9Zmb<(jRo>xDiXv^RHKA~PLK&zw zEP-f<2)!!)F7fCMR|Kqa9XucZKtH88#H4}|2cmohTU{6ich}b_7@}dA_itZ{1H2c7 z!%lYZ*Z5A!<_{a?$D{C2@IA1%b6K#w$&YU#Ja4sy8qbiQ;xJ#qcaiIyeC^br|IT2w znBT(xSm9$hjGAF2mA#U8{!2nS13Y%vJ|;YEh)h_?QUkRK(u)Rmf?T(+?@ew6ZH}RY z62G@9@qlih+@??%~uS2cqPAGj+Yso9`$aV(R2-RA?HkF@ZbL|(zI`!<2L1lrv=0dWD+`(rtgLgvmK zcW8>aGv2I%Eb3zmAW7-SqC8ht+dLy9?Hk;{hu)nV=qo{SjSsT>1vPNj)s#LW>cBcc zfJ~B;ucxwTd|s3U9K0!ZLyYoOu|($_aqAgh7As)1#o>RV@Bznsw&}2itY%2#Ax&e{ zL<0LnV%NVolA&+itJEDauY{*N=Zt(@aNv4= z9H;(yhk&wcv)=Ro+duu6b%C}Vwdz_I$R=zJSmhlY4n63)mWBuh2W;x>x3@;qJz1@e z<_!`vto%{{VEycB2pg;1sPM_O;a3Jd5!QXPJF1&C=VwtrLV$C2bSJC3HRP?DMR#rm z2|@1^K2lNk1r~_+{t?mDJ^s`^hoy*?BV7fumL~I0X?S@9ol4ZjA41=|JM}4cmmEK2 zMWbT1h&wgueFIXzF^S&?>+bP~ zYTL7%ZM%hQ{MFdj7%9CkCDyZNRCLRi=0$K>PzQ`)<-jkyUA`?M>Q5CB(y>W4ecC|Z zlQdt2uyPV~qTvbIEYZE%Y(YB}8=QU?%0;OjE3u37oB=kF!|;{Jbj%-zy4vGAyr-vA zpwNGDDMjX_V@cHuR~o`RH2P;?ac`RvO)=+n!deAZM9?Ho0Srdj2sWjE&6!rqbATm=0%b|LhxEl4ay|{kuAaWna;AhL@4-DG% ziP@P#?h`u3%CBL59m2pUKV7lKkMJ^G^xjbL_w@Bgf?G8{5Z0sd`9v_2-QyVItuk{S zRijH=Cg$nuyX>Xq*L<)6|I($?KmU8%-$x9;*>?5F5T`eY1mFB(W3N4$UHQ-VsK9Yg zMvoovu)*|2i*8E>E)S@1^9t|}A0j^M0h0O#jrj_ zsZY5Sx3cb57t5`>ouz_G9mXf#`3cC6Y5A#~_S(H1SkC;P`I+J)9(b86aG&-gA^8Oh ztXUd6GPd=gV;sGAK6tjEh}*w9{@FXxO`Z)OZ|mKu9Ux5&u&MPA4A-`g>;>|1-G5#2p(85HO1{OD8pXzl6hskHudCm~0 zTV?=bq&*JE7eKtQR?O{B8#%lE@p_Ujfb1)ctB^!A-bnA5P~)kJrg>@JXQsrq;|}1v zDOzA)|w3TkE@dSDe;x1aHwsu#!t()RUlcd$PaD14y!A9+7^UM&X|2xz6i#7eXu z{P-X@BKVRY(d^C`J zq37v}5|dN}1PcYor!y)*b36pVbAlr`&oCofY^dC*0)l7Mz73FK0Gv~@inF6sWIG-d zuu688ncR%8Yrb{qPm)Jc7pnZMH}IxU>+{uqF)Uv-tINp0($~0ARoVDCJJ)6)l=jDG z;1|xg>jEesb7X45qllfHoi!UjlO~5mBX_{Fe#}Hhn>yiWpIg4vaKht$mPb`CB>Ph# z7(4;5O~s?~AqztkXzQZDD!GTdkK#Bq8G022a0%j2xLas;AN(w68fabk3J>Dkg? zUSxfV0c0=moC_1|5Knfco2XJFV&$LazP_&5@><@??THE04+kn0yI&dk-n^n#GzkTq zN*O8Y0f$vBuaK2$9^lWXi=CUfy}v3j7<&d!ziU$6qv7jl+H6B#&hu0KdDY4CHf7%$ z@q8ljWZ}?tY*IPH;7#d1n|mHUA(2=u#-a~MrnoaRE%|W&UP9>1b@ZjU4~I9lv8lC; z_c7{=)RIFKbtvE;$~-Ecyda*+M|OLXMQy=>ISFk+&RlTVdP4o?D!77dkM}>JF=?%y zG)4rL>gEzomxbVdvoKqdjI%Jg%urF%y|agNZ0JrGghEEXfInr@q<|JmyF!uYn!T| zW>RAqIc6mQZGzn9Q3=@t*c9O)%DJkrNKH2zIv2#_N|PHRi)gHMXQKxmpxlbyAULw1 zs-8*0`uY;H$(x^!qp6hG(gKOiT|>6fRBdd!!Bk>c6qPXa)39nSOy-sGS)G~&ZUXX; zER!$1Ews&C(uAdIUAat53$<14vEE;0WLZsNAuB3?5BVrF-t$FY>Dn&@wA>VVy$P^i zj9c?d)pumPwFKQXrq;?@g&o+-qq!*9y3>%`z8{wQ)r(1i`sn1iM#>0v7=qzdc6L2I zCQ4><`RE$3G$(m^PW%df@%ej+4Z8yYg+mF?Op~0SbA5 zX=mlA)tB&lmk}cRlj#uva7-Ia&3waemAO0@0?xsl=W94UTHIDN6^U=9fqHi#<)Dj~ z629so5C-;EtD1d3aR`C?$pFxo$ot%@3n}d{6FZ^gnFd85NC`b)v)R3HXz#gV3sOh; zJmY!#Uf<7S!J3;K7rBr z^mfT0?4ceH>9X|Lszk&ieqdyGdZ&MGNNq7jGw_$NS~)Tqg<^n{mF0e6*B6jjH;=AD z-6fju{nCnl2U;un|LSguci+-1P{(5K?VnOvz+~=)ZC!36w3Njtv({Be$Fn!O&rNlF zHXUg7O#qyhnX-cqm{1>OX(c@i1oH-im^giX)3R*Y!UvA@i7fpCq=SYuSsSL{wbPrv ze#x2sJc{x%tYI`!PHEG^D!r>)XSp!|fwiH0f#qkBOYly9h|pE>tuxu8?6wH>X5-L} zzTPYP=$Mqb>=FtPDW%J4k0^Kw!(+6tYktK705#7~ygB2nE zxsDQdeIUT;0GnSF{VVp_8{~>5v65T2CJuJkh1u?XK{^f|Nt;9zmFu6x$Lm7w-KcTy zcYSa&L6Ig0zjb^UnFs{zfSe>*x)|+odZm~s>y2+257Nx7p;6`wg7CHF7N2O}^1w~y zPuJ5W))qjpnR0$<&3D<}^}n67n<3`IpMOGZa)Zdd!Xt9M{uy3PtV$uS`DAHU;@p4- z)D@WUI`plx<-CMt{xI7qa7ajZEoj1Ug@X@1&~4ije#WUXdabWMp^(jD(tmV^9J$IU z0EzGUV@=rp2o1wK=5$nh^+iYE)I}jvJnthXLlsUfs$5_}M&Wu&8LDEL{BTg6VP)1t z$4YyIE6tv~dMOTQYpqh$KZgs;hf{NEuXwTv{tcHH#f*4KCAye~zm5S)6C|Jo%(4Zr z1oLy*AmLEB%)_l*eXZw^L+|kuG|-qW`5pahLGB7)8uC}*Uh3fS;@6CE4f$@_H!L(f zQs_qWy#SfXfe19~z$@ZYny|-^A6-09?13vx_&;f~JY;AaYo+0fXlXyJX6u|wQonTK zcnRD7CeEj7<~P!1-~Al)XG4W3kJkR=x(&{m(UKC}EtiH{n-J6@k*YJ0^61rYi z6x7k9dK;#8b8v=6QI&2GMp!aw!MHygHv~yq!+fneDJpActEV8}5nbLZ>&Sn87c?~5 z#)Yrnf`TzeW|$$EK!&&1riA}hcDrjTX?odcE9m4Mk3TF`Nv4I(AA-fNDMmCEWn6TV=R@}8Yx?Uhf$08!p0~8v zjg*#G`Hi@Jhuud{KeS`{gxkx$fF3YmC@1I;g?tTUNWK6cI5xD8JsQ3Sw$d00fE03xQD)N(Jt8d^n2p$b2CHYp zKDpqvEFZA(+r1(2p;j2;3Cn4UT9NE=96^v&$L}NLg#{F7Nb3h@$m5pdjM~~aV&ji| zky)46z*D0fP^3BrR=C*>GeLwI(&w(6F^XKpsle;4ZI?kEtqNGB!-WthS+ug)j=*^GeT0N|$@Vms-)YLDLDgG&Uj#2D7p{mFOm>pzkV-BFObo!2 z)%?SU{>fUys=_?yt`Ux6$gSZ=M>8o#vNhcW{EH7u-4=iiFF}4RGi%Mq={Yj?>^pqx zi}Q)(*IvciRryo^nA|M{tXq-QwgQg>RBTgxn-Mh881pD|?YT6<_0o(hVL!-jKxXog zUy768V6FK^Lwr^@C8f;pIoWOrK+6S%W~tj@p&R179~nh*{!Dg=-s{nuXuTn)=Jml6 zbmtRyJhb?8mXk}^P0g<|mh4ejZpK-5SHyF$BvFdIz$LE2wFqHvI9s$*V>mLc+56hR zq2o2N$RtPi^|2ERqI&Z1Nm3HrjN=q}nV#O+<{lGzt7U-obIOlqB~{holQmYVPlSxf zA8@TNCp#KHN+NE*Kmz}p490KOW7)%H$*m^zHepT!W5={+19`virD_vr6{*Q3-XEo`NWPX3PB+)2eWCREjNX0REp_5Ny$%zt zP-{~?Zp|@qro-|f`-CZ-+-X(r-S^8d=2TLmw1KMV_LFqI8|#bbs=4lU-`{bj#pef& zj`n<`k8Vn+AOddTAnO2?<;YA=kG|=I`}s*1cK{wC%>)rG`}C+GC!BMr9R@fW->VQz zPDX%^dPl#<7iZ5=OKB>3Uz>mo#MFQaS@18OQ$|D3J~bY@ql9tAJ|Wtkm= zS3UIc4k|ottd>w!h|zp|(`ZE*wcD>=KE7O;_RdSQxVGW~ke&VUtnV)n*fwWXa5TAr zfdF1O%}Fr7apth&hh-3`56<8ifO=-S*d@>HN>{{5jn6<`K%}dKa76w+G&M-!Z9F3~ zmc2aZsKr=OxmF!Ag?e$AV$kHfMf^+9112N2EI$S4P*$5lE<7qnE_S-quCfe-*C0YP zf~(nJS#WIW4zB^0!4NXmb=S}%MfRe&x<04kMO4YPJ!xT;xK~57sM)+Gtqw#RgO>kt zM%J#)oVk(Dw}Ym1m&A1L2mUlaULU<5DZ14&(;C1zqm$-uzy66=C@@wJWTv)i!7{=z4049THBf#IbrxXo?t zQPqGUnU#TYh+eK>GaQCc&}et^P-112kWRf|a!Q zhxg3ILPsp2&oH9x4vVm?uT}1c*wklRT4?Rlyu3pAeVFz1>K)w=f-Zi8CXMeu>4SVu zlw>MzveSwO+vE`9yLoB1;d#{TqZW};2P5hn`*URw$mY29CMM9EjV6Sj6~m2~ZiBi3 z4s>y@HcGLDw2UHhpTV%;o7Wo=rDj2Ou&#tG3^d&k+B)1%O4It>T5 zMYO6GeVV}W%Cv$ES(a^94Iw#sy|mRBrK-}1Sf2LZ1f?YNPJ!>PDT$uX$lZ-dGlYfK zC2%DNWvm1|x%Yz?lpL;(4r%iQUq+5}2B3futzwO5-rcKh)8RGwc@$Yv?<6>p`6jf$ z6p0+k@{|5gz^KubmOGSFZW0xc%oUPXK+%Z_3#7l|pc? zyHTS{nCa##d#vZ+vuJzz|5dMv&NYH%!%MNwOFg;5`bA{{V|;U*ziB z?28&>4)J}7ByXClX4Ng5`n6B) zs`BJsLeknW07Y1MWBn`Q*9I}KF>ybDWP-b%jg&Z%s?6vw+8kq{nTmXmv1B+x4h1CW zo9i)|Vv7}D*_ZC$A@Cg#a%KenZv^KqidK%){_>k21+Xvf{L-0_&fRFv1A8a-cU%~b za%1s5Y1P4UAqdAIaGdCauHJv-6e!}7m-dX9X_@0vtpp;|>amNIRU4*<=Bs{#2xP-C zB82lTm%0-HKJe)J|7bd^u&lbaYpb9%DAFm7bax6!cZqa&cT0zKcS|?YEiK*M-5||P z{FCSX{#`db4(_$qoL7u-j?Z6V<&@{@hW(ezs|+P?(eYKMGitb~0PyW3c@X=0@N=n* z+dJU-@w5EZVky0Q&!QiBxaw0iqVwa}bTIk68x4dcz*^?|22aAheJd@}N+iSr53d2R z{qo$erzgF*!6p8l1pvO&w~7ifKyEus^YTcQe&6jjz4yRoB!5I7$r8>RK~WoUxB<`} zsOgT=t#n??QG^0$q;7e0WiVmgsrA3KhPV${G8w{ls%w&b^cLlOU#*)^Mh!O^&G<-l zMh3Q*{!P`ofx_lxaAD<8qf<3iI<|!U#+Fr0&F&V~c6wU+^a9d(Dq379FtY6L{`BSr zBsO2sSK0~#kl|7nUICr^!au`Bm=7h_OM*WwIN}u-GaN4oUdF+_daxXE`&&y%Z2NJW zj{KnAnAJu0{{vCOa^lKE@VTO#p{GC4@&EYLp}MMEli{F834pUMa<^NtBO*c2(4E)8 zJAB$*i&u(?3ldf6yMm*fDr7LM%HX23%S7 z>w}!EE!!a(HoA*!QRgg4I!i2eum6_Q4$WOPvt6C~!8B)QTaq%YC#1j|Nn4(^s_Z(f zb~ryjI^G?05?CKQiAi4(i96mTOWAZGO#>LquxUAXg0Q~+!Etb?$U%OPljcZpIbn*& zh{?$8oc9s#=KQ3CcbtR{2m7*C+$xRAT`)qfF_c7*{QDDrpFiK~p|tIcSmI(8X@6Sm zvF#UE8X^`WG!!4Ai3fFhmm0|?<>Hdv`kKyf-uJ5Z_bg}_I1E^86Ox{#>X?6cRFr$z z&fSQSPs*BQW5$SyJ9PwV=7H)`eUW@DO-9d3s?WM!vG!21tq89}>^k@L*N28N=Eiim z0W{UGwzhYoE@U9$Vgtz4Oz`qom8*p6{9TCU#($8A&w_!AP|&Jmn3`r+umK6Oae57i zNgjQAJm$YPHa-+#N5PAdQ!W}lX8-7AZ`}O(BW{}ox zt0Q@Z9?P@jX-xSAK{Hjm?~CwYvAj^3rTr*YHlYy0zG73~*miz2AAK~ZD=g2lGkn3c z-X#jY_C|3Ur8VX^^GBaQ^J&n9u&+AUZ-zT&wmOwH&)?&?x{^;!2*-&V!#b@VSfxNL zlmmVrhL_&mi^hGB_Ei9+V=Jn^D>83-j9HO@UCpS{2Uug;U361d^~XL@gGF>_)_E7o zGNG$7;s1xtX;r+g$2~DN4Qf+0789$?sVJM&yav*OZ)itVfA;->Yk9?Mu{%$E8o-!) zb4~>QtN*}Ct_gnK1_kx}{QTiO(t9gfl%UhB_TRLsw(Z3*`^Dv?>?TU-XArLH%O@s@ zoc#l#r4a#Jxo)$BQ`q!}yMo&{HSahV?o}j$NdG{>5aF_5=WTO!T0FeCQDvP!{$`;+ zk!~NGemX&%NFwQ+d1dVxN@k;w54oZ!V4@`;jvxlFLQ)BDvjZLD@MeBFD zqZGCq{@seQ1BirH<~QzjiNFzDq!i_zXl(b=w})nhNp2MUIit}%~} zct;9=KgcjO)+oq&MiXes>D)F60Q!Xy$bZ7k8JJz|Sm_d#sOw}iG{Tp)cGF}eORSi{ zc;qFZiA0oirj#+rqgH@{k3VlUdpu|~b+#=r=pbrk0zT|~llBNg7327w%QmoF9e-La zO=hlj@mp$Ly_DOJ(tYcC$v8e2IYQZ24_+ZPBk-0!reJ`m-~o#N&E9=+U)3$Tt&DT) znx_~@lSe7kG5|wfV6_u2S%pZa`VzVu)OUe26)^aHVU>gUZN@+AD{s-z(a(eUAAIn+ zoj!@9+S=L*3k(0g^$?GlYjQMaud6(~yWNa*-T#$%dsH)O)4ZJKIHM+&%oNaQzZ=+6 zSqcC$R{riph=rYVk^&?1JTu z(5~0*_sXQ)&TNiaWTYkl%xE`0I&xVyB-MIWI1XD?g#%2DEH+Iyr>pm;4=2sNiy-!Fg@mAb^{;aEiY`mh`_$y zh_Tz-h4gOz<~M8>S$cmAmau;wa{94`{!Crv$3tFdSs*H$;?H2AG9%!y;=7Fc&rvQ< z_?9qpqcoe=894}whrkn+3T-GuQ`NxNqJr~-if8=G7)^iJ51Y`tq~YFIiSD11El2SF|n~-9X?R6IUEnrL_|c&o@P^B zuBKHRuV&O;chjBa&;sm7c@uMTh%?+zIIWuY$t5Hug_ecE2wz0_|BJZYzn5`OS7UgmlWw59=}VL``DJ3hnJ^nzrs(F=Li)P71)3kkD&} zPL5aOQ~eL!2Tbo++;!V{TQlDP#mWbY?j>v~iU_p^j?lhEYkO;{` zW9ZDaEUe9O4>fhEifer4kmbUC+Rt#6(DIk?<}ESvd`{ha$mp0r-vfCJNJm|Ks|l_F zs}U|q=TPdj8|4514miJakgsAi{)?l6CMH`!&ZN+#GnQUr`C&18|8K#4Uo@-vkW_l{ zYz3@`%wzi%fBX3j+!DWWL}Iqk<52R)6yGACrT{L=uTFJKMLF45^^&R_Hlw%exNHJa zh#*_xG5ESZEA#b-|t^02Q+(td@M zWy)2&a_YMO?Ow8N11mJu2LM|f8Q;#4Qlb3G41El|cEQJ*>kr89Lrb4GHsGIDpY3gr zlG-d$@Csp@=2m8KF!755h+eY5&p<)m{DW4#?rcm5Wg33)Be~QkDyrh?Spy>@C!xWn z3{S}Q`ReoIs!2-k#4pK4K=Y0!4f#kRV*@#^ukn8NB9~6-KA0{Mn)wPu+sm*wUtn#y z_Su=Rr9%Y%6}}KWIK2->qgW#u)59&wGrG0u-STFN(3+_}+G`P*dnFB(bRC{Vx-lVK z6(vR?o_SZ#m=f)>#)(*%pyRhssX8n@O(A_3I!zNghR&9bs-2W%u8Nb-oHhu06s#HCZ(~@_IbB=H+>?fz+#I^_!dPxvL-0 zfc?PMP6{Pmf*cxBP*=xNBS8WUr+q4DjaS?TyQhk#k%S-QI2TV_>#dr}$?xyxN4ZuA zfr4A5Jnr1>>NdNjrEYiIIpKC!<{pj?sV;ZW7 zw}!y!zt$@r=V^~qQj>&2-<~Qtv)`9-@A(OQad&pf0&n(yyr!-2GAXYE7;|a^nVS&> zr99bUM`4T6p(*BmKi+&cf_k^u!R9CUpE0N*j)#|AABW2(_N|<~wf|Q~{NEhOPt4Vo zQ!5N?sAlB-9|)9i`2e4 z+T?hM#pmH7wm=Devl7mc4396*T#$2g3;XJ-nwk=*=9S|2K7TCYI-^y|j733G1+kBr zVRzdAjp4tZN+M>seN?B_!@s*dtM$7~<9m<#sahl7Fcw?D@%IDugftprEw|Txxmaai zot_hF#5+16iObRlsR%e4;@eyO0DITF9aA~avNN>5WCwmN1+de$;>2mp30tIdi42+i zW8D1O?P26n{Px)CMM;ONPD!_TX;_PyJ~0scaFxlYnWh*w*7Fe>o6*RTaG7?Ag<>R} z@U-hVfs01rSKc>Dnkme}?`1Y?0)su@xF`QFpHN;NN85Xu^)0%6AHU$iO`~*Z4qH(1 zOY-q3FNHpvxl1c*{pyMC`G%3%kEw@|7eznc=Umf!15xwE;^snnDMIdwKN!e-YxCi#?dE2#fU+$IZ|yi6I{NgtvV0?vKT}Grt4@xPH;*dvEP*JqE*g!Q zgr5J<$o{>OK(dt%%_^pnO4ieTergg~JwFF4a+c@CLaH?Th%%Klb}W{*M>dvm;cQZB z$yLnF&ByLuR3*WNdcu$3bJa@*<=9;Gs%Vhbak{cjOuZ-YO7f zG|k5ks8JwY5sza{Z?=4dURC7?9?Vy&T>j4GtI23L2Q{-Sw32@%7%6Mv~J_jmTvh)9!GfbTNydIlnLJ(gBvS$$aQ0r z64(t-{KSDOEbfjbL1pH5kDDF+E>J{NK2Ka2`lc^pT7)@S>a0Y2x(A7M)_7x+b;yVT zXZ-|-eWcMOl+f!enLiMo_N_B8=zh8BZoR}PF22+&eT9yWO6X}|@azQzun;^?4H}EP zZ_dAiUezoYmK#Ti^5yCn`viR>qoAfX;D^H3ztm{YX}bYkRaM3FcsU6!551cCk%xD! z!SwA9sF8hsG=mx*=RL!G6s)Z1KSuc=rQE6HfN}R;IUxMB=RDw%36UV43Qgm~BUXz$ zN$(ZznI=b?gx|>lw@y2vdrk)Zn%2KhD}xmR|L!_Wy8jgzgNhKG^9|c3F?_r=upikd z;kOU%U5`er2k;qS5Z}Es519L9_nU)v7em={O%DD66Y*v7xYz2MmQvrKej&5y_doI5 zB02?>G;_K;0{_u5owC$>i51WK><$wK6FfePy)nM;3KO?=Q@@DqRC^3su5ny~bpSY5 z?(bJ2w^W!eGD)5#ujZh+Zz&dC_Zz2mmQBo4W=LrK{``-hdHjpjt&vvTj{$k>*$Y!# z-0Q(>d7U6B48#rl-Eh*5a~QjyZzS{`mS>P2uWCP+LB%B=Li(&j3D)V`-J0i>(U60l zTEzU?NYdS{mZ9gX4ez&xs}0@S;Y!m0cXjY=-Rq>S`3@bU6<@>$E;0T+E`syYID5UI zD4dka6h#zkmT9F~yjB76r@S0z-@(Cg z`=snkHc$Zp0pK)8VqfY2H+{&@p9qdMU;cor|Jioc^M=u&|9zds{KS#{OojF+@6A%z z%drp2#-@57)?l&ZmGEzLSU5l_zcO-l-mp!iaMK!C>^o|b-|mK&sn%J)CgXKGfIs)~ z7)c*rDL(1*>}KT8l5m{Q4Tk7`&enM#(-B+$T~jRERapuw{$#!Orel%Vk4ZGitv{=k zO71@%9?D0fRFviRM6wH7qe5TjicLh=N^zwUJ>~wus&Qim^Ob7z#19p!P^19Igp6m> z-lYa$7)2vPRW`bZda4W&K|VZ3Iv;~oqU9SQT1CtHdXnb?;rduuRS)}MVa&<9sadEvk{Cr(OzI#TpOU{Np z;cEVXnkM5(xZF4yJYKkdBS}hrF#g%p)bX5P{mfISQ&oIlBggAc!C%9dq_?rv_WH~| z{-*{l<}5OR0+LVW^_KMN!c41N+pW2aa3jgpdbZwCV&+Lum$U*X|dD=7OGTEm6tY4pY?7b`L^ zi%6H_97>`k{gi8_nxLXDrF*Hi{v~wq*_GUE~SZ zp|Lhb;Gd8`U%>dR)g-U;Re`Lt)R^b3uFED;!#?@rs;0OFOSH;v2+QGR$yQiC z^W5rSdeQFL>k+Tb<4tC$fXJxuS@o8`+ahq{Z+`lO5h$%W+PuES5%B_qoOYezNfTjCA%cAqDIBU$LY11nmvpp|`-BIQ>0 zPB!;WTzrBg;>}|#Ur!IQuk6dF^=1DyU|GN1s~^eR3)(OsrHi@%6q8D`X)3_69@Kum zpEb&?@q{>8wO*-&eI?Nb{zLY9IiU1~D~4CqDk=dg_}5VHI(9R2rcMu&8OC+8@Xm(XqGH0*4p|_F8DJvG~zU7xr!ST1K0+akM;X>&eqBwhsyKH7Kirz z1^pZZOPX-X+nQt?p4Xrn4vNbyjVq%LhL)v;TkCjM)NeNsIBu49yxp7e{|>Hu5g5HY z9AF*p*qux&x76WfcJU8{F{@F-q>H>9n~WKed+&~)7}w?p?ZUV&vQrZb;COdVpyt$f zU3-0d(@sQ(e0@3_2~NV-T8V#4)2KPidfrpV$JpKl9X&`1CUkC3+{_9r2iD1{%v`7( zzO0d~I~{fkV83tnU}_^ee*E+9*Ur)8;Z@x&p6qa33+f+ct#i&>z!+=otbI%_z(?!Iprr*eH zRL$bh6LROeNCBlr!`U(HxVIpJ3XV)~Z z8Q?~@&-x})ztyv+Bi`s?(85Q078S&%)7Enn{N0BZuOXGZJ`tuA&tbS@{~ zVO2kaku4=N!{Jm)Y+&!ajD5~zrbNo^gvE%XJ4<(aZ;m-Ipou$Uxxq96 z^lk#0EaN2=O-W3@JWp2@M`|}Vui7S)bh}C$G~8Cb{2{Js?&7U;eZ{=9av+85+vw)f z&!DCeE0#aB^)5DCkQt5x8aq3|{XXa&lOd%GZxoO2yl4CsvUYFTef9KT#S-tN^72&_ z74(S7ziw(j#{lww*Aq$slg_SD9p%1;6Kh_W>fNFCa6c0%1?28lpXA=OjzDn+F9upw zV_is@S|r0A$@7=>+tjwT`Tw1dXwvA=;d^@~um1l1``trkt*XNws6a zXQuJ1sP5BFnzsJKy36q+2ztXUBn8U|;J*6+xxi)M2tDtk_+;%~a{UPMWZ#HH7k2zD z*!1$#J8d*}DTZg)x_n#H=P|7P?t!3a3eE|akv(63V8E>Hlf~wNs?XvTeEAIDmQt$c z@c!MswXNHep6449eiV?f7(H74#p`nXlP9;JIU3KM%rRM|l6^DdRnK)+)aRV?E|LHj9lX$tSwcNjZdD*`)cZV)O!lh~iGNx)o zFvq?=g*iALU#zcxZ2dA2>Am#u*wjE!S!;fbvFOevA~F?v{F;X{FN{6fcn0CFoB|&O z-l!&Uy7-0v(&Fk_BT&dYK9YDnXzo5_s+V-x-X*k&)`KUEMk6gv}28?3f7A+=K>UW* z4<7*#%(_PY@$x5!=zqZ_GC{x+M$iPIP{(TuvLn)m?yCmP1IqtT zU~TwW5!Yh1qr3k|T@QMs;A;VCM$s{PrWd>A+S&svtxY1;Zym z+nOd>y6+^XD&F@5QhFG|Bo1D0Mtgd<$k2eFoE~#M(IlWBlY0rh_jC&wn-7|`|D6@( zSkm61`k+~uI=KmWaXgJO2HIdw2tolCd|N8ot@0%lZ=c+uK2oUY*B`!hhZ?P4ywaO- z;(pj+*8)w>{mpD}eP&*gu-*mn;roeK$rfkP_AkU;(|$2+wCsyQ9Z z^MIiNl$>C5Im^d>))uZWlVdE~_1hRz^j^DH+IDdPeSU2EcL^AMjVqGt-CvvY63&|S z@aue1*f;(C=QNsyzc0^Tt}rL*H6k+}*{G){hST{T3Jr4MjNI0a(wU-xaN{Ad?m+It-uh*iBYeey8=AQX^ zg5K|QCf_Hz-limAg6J||p>Q3UF1udWiBKzu;NrAi(n0(|7*gScm%FM4PbE>{bz0%X z&FP-kDtRw8EH|!yzZohOuCAgjTZGZWStV2YR()aW7W_}>)I&{Q8o%f8Fy>kblN4_?0fAVUEX(S#CM0r&0sju2(BE*Xe(MzmRg9u0=j;+auI`Ko0* zL1WW1Jj1K}1w)bPp=WSuLI_fSK=;xVT-f$L^Zm%>W!p4C%AvUo1t6%RCrVa8s@$DL zj_to6r22?2s9S}AcAKQA$e17zLhM;&U7H9Nzc07WJE){bDnc9d|6+Yr|ACIE>>f}( z4$wthMe@S_i>449tDLvcP*#*aAbh?RjqPi{+ri~~y48P`e_4A~0+O@ydTjyxpt0Nn zAK0SC46sSuYRUb+PycIrx^$pcCiL1XvGW0U z#1_%@{@L{d>+;^Ps(&?^BB&p-e;#l4-u)@>SRTv1UkyWC4&ZbyF9Q7jQnx#Li#oG8i*#FNZR>M+ZLbnC7kM{6k_7k&;%Pf7G%2TDcPNS0PsUPkO4&)bUgP- z1C)5ow|Xml?`Oy=98DG_9i7qopMcv(FLIf*{7qnb)62DbQ4$d< zm%ea*ee~u9i<_{X+8gwT+s_gx7>c#KazaD|3EbOV(ZNG=KcIb@EiM+KMcQTN;zgQbub!@AXFe{zOTR(*>Y8rq_jNGuqhlJY%kh!}<# z)4WAe>+oshfR&RyNuqRhYTC`=Hi9!VH+Qr9&QS8`UD{~kgu>=&KmZf7aUGuHhQpt= z&Q7DzOrFoIXnRxG%;fz)>3i#`$0_p{C@qW)YxxATOl|g}$POB*D~^^RU)w~*Zmmt3 zs7XgEw6#Y|)x5y*Gc@#xJeKi>(^#gj{Bz1XV5|!m%M<+c$@bP}mrqEWbY*nDF4#ix zoNZ)JOd~eS`aKReS2`ESk8W}thBVYnmyfY9B;znQd`uSRe{#vIlrtJh+tH63V_i0g zNn#@F$QH6{^FBfj^w8+OiCF54Cb2>$a8Oj)G3rBRf4&VmZ)o^N`VPb$34v|D-UwLb z^%X0Zj5(%f3kAg_B=km;h@QE%hG8-Kwm)4}AmVYH9dRF!gPUvhD-C8CZ(Tfflrzvn zQ^Sl7*W-{dEAy7jt)Qk9%QJhi5xBl`vPK_yT$D=-{lHjb%A0_~4{NPn1%ZnD(4`L? zBf_E!Dh8KdZUc*SX)7Prpp%+NI)&DZ|$= zZ)ard0%{r&Ic?3;koaTY6i&O4$s3``%19iMY84>?rd<6TE!DX};a;&IY?Gp2e|Og+ zA70VJBg}QYo8)POjN{wx<{Vdaw~S7({0?Dfxb24dcCKhREWlsaJ{daU6Xq(Vhtizf zJ<}YjcQDs}#DuHup{vJv!#AnQ>?YUcUUf{*L9v~liX6X14w|`T2TQx3zI@^@N z$UlI~8x`ZHjH#*SRNoj&|8TACfzqb1kRlhZ^90VaC$Ez7W`P-H=lI5Gom=hDLaoZd z0V&XTwI%sQaZFxfed$AYEyXvyGD{93tb2oMR5NnE`AC1mgDUN}-lf=Z%J;3F?!D@` zwWm)@i@}O_yQi(RXY>~7$E|L9Wog4bU z8CoUjrikCX6?OOACcn0OxBQFks#VqpnPC*PkIAt7EhnU^eS3~{Q7=l>vG~VhKy~Yx zbh1}7bi*rfu<(V{p`|~LuoS3q?(B=WnU_X!_166}e2`GQXc(?h-`MYdEej11l~FO7 za*MZF3iVo*;8Sl7N7}0L-KGuQC1Nz}MdX*|H4Gk$CZ#x}QQP>L+%dL1+ZENnX@eCp zG}9d&6+EHI{ttZh^esAXb;fh%JiVh$a6JCOg%RLiXx86***e@I*q^pCS+|+$uJACY zvilA1SSS3V-{Wa)95|ZS@3nZR7WfF!R~#jZ-aFmA?YHMwph;)$!*FVUzR1k5X_ixN zIPdLk!tj19p;*`Bvk0I*=Re2GZ~AT~zAigMSaV!#sH7@sv0|}Q)0gADZ*58K5T3!< zH43`ouG-gl$luYHAj~f+;ukjfB{v|;*6&;U6=i%Pz5mKt(j1&`Mmf?Oond)JWl=)t ztMdxKu>J74Cw&d$u$zD)5v%r7;PIhT`}Up9Lx3K&_A?S-4pI7mp1c zU+kA^@!X^INE_rsW9L&_8Rtv20tschj5Jd;_IC%>`EuI7S&bl(WZ)ma$`JU3ydrnt z`B;#1%fpzwbjZjO9+#HfVymOm&@m^XUxtRxib+J$6E{d-Z~NeqySQxND@g}eciS{F zmJWV+{nhocuD8<5Cp8EabeN3jeqX*QnHIrm&SG;a7+>skV|XvxRXZh&-K?M!@ly|e zb!~(b8OLTH=}zOU)b+Dz=nIt_*RD{dcpn8ON3U?%F53re86(((k6=d9d|uk!$xkFC z{aJ!hv74f^rn7m*8o8#3NxV?UYw{KiLRNogaAj3s(7E?m+Y%wfp^^hwP zs5B2PHPRXfi1OX6xD$YbJ~kb{Lyr;fq^y;01s0v&vH4f!oL5~6?)*GkZ@7I_x}~}O zYRbYBp{6|I`heA}El1e1tp8~RYl;?>-uRQyDx^@}$2n#+?GwJDQKy3#+ddl-ZCCl&BKza|!Ogk|F&3b9=qd zKf|uqUyou(s$#PZf3^;LH@64}{(~A)N+8b;Qyv#PL9Ab6BA%|N{40^ezRoc4HrJNC zM%dMJy+9Ix8SwW$U@@C%#hbhdMo)Q%P=2G&O%ZT!Mt{f#vc9|4Zzd!$K*V^Bh1#2? zPi8p9`3_XnE!5bXW#b<`RSdQ|=hHyR$;puX3CkY}W{H+-SrUV1s4|8&JX#;01KETl z5W3x^K7Mmap1A!+;1#(nvdxavF0l?>^H6WdNAf@<1O*i%t2uAT!c6_(?Hc`-Rp8>-8OA`yXVPWbcWE8}V6eZ>wfa~diO;Q<>9`VWg7dKdAew}`6dVdg zQEQ>Y=h#lE1G%1Sx`8Mz;_xj+%$iT(i%T$(OH{Nlb=+U+5m%7C&`C949O7W9)A2Xn zt{`2<6IohlMMZdQUwEbIm;AiR@f`*wO&dD#6E4XKD_mnDq%XPRE0Rg>R8&FmGwLr>~l}oxk%LK+^ z0qPE%94TPuHUxx*4YHs~Ts10STGG zFU48*7E5zAr>Yu9>$S5>XqfKbTgs_q0zykU=UP~m42DfHc%4*;$$f@Xb18gCD8>;G z48KM=FgP8}Z(6$fjhO|_6c+ByJ%#?{1&i~Y{^%wdIMpB&+#DpVX9B*Zr`e}NZ2{qy z=?vZ-7wP%~*06?*y88W_%`vagoDT5gfsS}*Z=8$oX>PdF&ng1nK4^4PIIS>ztH@Y! zPJp0DsV15ybcKl>Vo~P#)mDpTHhDTB5o>fw})Ex_qN0k{tk(+0tb2l`X>(f)mk@rTy+|hAp^U zh@1`zdpfcB3?d)hz8d}djZ;BtBBO3eP0|%XIpeEP$iYfeZm<>4M_GMZ!5h@3-TSSNAv)5uoB4B#_^zm~TA+%uoQ=w= zsHaUt=#8*EDj^f!tr;|GRgU=3 z$2f&hV=sAcWr~JUwnde3bICRa&dVv!h6-x1|6tBBkoVDNnyk0<)QmQzd>!LMGHIIq;otW&HHp*+#1Xa(Wo{*sijb5|J%gax6i6OXF zXR(R9eP*m$liypAusnNx-wuQkt}@G07Q>T~85yV8n2tCWu_-_Z1iSi==Wp9C^Nz)^Aejh6`lymtfm-U0*U6 zw1-D99N}Lb@rOeO0q8f^>kjI|6I>yQhW)ii>7S;rgdh07%99>$oG}8&Xib9 z+SK=jAdz-R{b;A~&cvL3s~)b3>X6pL^JDCdYU{e~&A%mkCXAo*4U+~FcUu6ESlz8o z!eV+k#LTo=O$#J5YHF`1CXoawXpyX1rzHh_5+6M1L1e@@Vowikg$o|*-#z9Pw-U$K zJTn~WQSs=ogzk!}kCnQC2n%y6#&eY?ycuEyUUL#^$swR8b2_-vzLVH6iZwQv8yK)< z;keQlb>l+B$AK33N)jopugG$TAW!}@i&p8p=_JM5NMyQ zz84e*@Y1~h%PS*`Vpn^r+?&Ej+T)HhC>jLGFR3Q-(=4{K31|B?kgoB4=3Ag)xSsKT zKc%yUWW^+lfO1tFTJ9ix%xDm}*~mEb3~rn8Ds_+tydMc2YO4I{_Z;**FUr8vBX>Qo zE0`trJQrDgv|JFdrNV2sL!O=x@H%br!=!6TB$M>l|3$`v#AZ?X9`U+``uD6HnnMuO zVKW34S*CBRsEf(qQ$}eKB7PzUT^deu_`=jVK~6yro^pWm&3&|q6gSUPxH@iR5n=l7 zvb3QgzV}0Jv*?DwmsqY?^0#tmU|1pcHISgji~6^BkkIaSA}xTlM7!eIDF%@zCD2)V z@QY+igHKT0>ZslDbqhD_HfvDCV^KlQv)7gwJ{j2w!Oz&&bF~P>s=`>25SYN4*7KUa zh5e_KW&#BThZaf;<$oOXzf#hj^ie&JzUfcw78R71e&5b+(fDIDIbYfNqOF^scOsYh zeK98FDXQbpc)vpWC6mzJA$nx$1h!|OVfj6x?~yaJ3n6@nd9=cEQsYTgwgqn1y%UpLnI#%6OzL`KM#< z24`ow1W)&KW9dAj<-u^l@#4_Uji2Yx=oaKiH{MUu>w$v}YXR{?`Xr`5jp~mKEV0!7 zVn%kAy26sqpA)RClC(>=81j3uj&^gOE`A@rN5?AFqOEbOjn}C(wvSwt99oRek51u^ z&Fb?ZH#+FaU2SDNWjWj$vOrkT|1adH|KX&tFV*&Oc1ST+R>+%+2*k~N#d1{Oan zhVfNVJHipyOxzro9HKirIqw{)Dq%(3Mg6?Du)53dLzT5GY2FWUgUMcnk`@vI@`)sd z&hdlmm^>2kUg00p@INteOW0A9zy!ImX| zhQOvdDcq0|heQ9eUgq-bec2et@cNkRjb_aUPFI;I#R4fr0z88?fj^FJ(3T`%jk6qJ z(|`b${m|r@z5EeU9XK3Nov+-gk*rr9_&(Q}NK;*ZisnN`vH#3@$=mKMWP4ZVvhM?(wOnN zVNwmKzDmo~08IL})Bx-X#oD|^EGz|Cg|?<2arYld-}0Jh6=`#-eKEnAN)sohrv3rI zAnktFF`1{^ld|qB=nLj7YDm>~$2x8QPCOrGvsC4%59U0_#OD`s3NL0=8e)jp*@QV+ zOXWc7>=$Kpo^yXdbm!g7O5>Toz4;Om-HDmRkFMvgO|-?NU0>eT#aW#)gN0pVqs!!t zdjVU}JCtvrt9yGoJslo#39h%&Zyz)hvvNHR@?u-qyPdk`SN2M+4jfM5vm4Teq_}r8 zPfb*pRKPcWID0b`8tjr=T^&KI-gHwFM8SiWt7B&1At$-l;co8iud+Stee?S1V?&DecoL-ikik@8wDjwNC9$g0 z@v?b-`3NPf*F!@{s@1=k6bUK)Mexi(PVs+7rjC~m*{b)3*~pb=C?T^LYJpSRxHGdK zYxt>K#?F_B^(>6`k`&b#yMf0U&X$Azp1k5cWEd!nEj@U*aYhC2M-qB7*501P*e;ts zQ(wVKqddLEwqHHRAmqpWFSSON$H=mx7ToSpaq$#QWQ##(SHC`;5P>~*9n7iFJcR9& zE^!BBesw?b?H3_-Jfea^EV+7Vv5r0Z+s8n;O_Yw2bc}Z>$aY5tRHmJ=8fEPf8=T?A zpV!~(xT=469Tc0l`z(BrhMmXT7K+XM(4av+G3j?SH_kkNlD!c|BKq!bToX#T`9xp1 z7ppcA)bO147Aj;DI|I?jslKW)X%Nx6xH{zxJJz(U-;NCpcM;$wxx#HwrDpLm60`N$Oq|F{d? z;byt2*yluNAVa~t>xxXYC$zRhdS-u$uE{I}`EWBDdxIt^(GV}qW%6QiLjv6Bag%Rn zo$;#g7FGn)#xu<2CH+sJRy=3@+4Y{dK8uS+G-#08wSRhl`BoV0y;g~c4e!~~HR)~_ z(Ty992L`dXp5G`6c~zEELicLmL@4i@ Dux?_*bIutx0gV7$m4}SKrLEhgNoS4v= z)Na?=bDS5;;JR#bBjpu{zwq#dxnWb3${{vMSc-T^1s~Yz#Ex^p3IDs@$S}Jcmhe|& zN=S}NQX@C`g0n=NpMwYV8-{$HUDNWUF}JvpYk~J+BL-@ zOcW=Zx~DInE+lc4hlckgyZAD(#U`%Fdiy?Ps-BPhT_0v2Mxeh zeNyGgNZ~Q-uuHp~|M2C$7wF+w7Wa-?J^7BM10li7Fs-z9ZHEG>hv=LZ_nJZ%|Tpuk)pyBn`p#uyxeFp1B1Ef z^K~LyoC8%T}qtb+!R#K2=*t0+PyccRLPQRRYCO5eY1$cp`DoxB5S9rX$F7M6+~?g%Iup3j6hJ<@J!1OV{L)SsCsLtlDDy>x`{kI z&sG@JTM#hV9!grLI7Vsjakxh_(drl5y;vrE&x0DBNT7=z7Mk_CMG~QK<@bxv#ZZik zq(Hl~@+VVHhBcRfN*et3eB+cjvadLslopbvyg&@cMJ{1qBG&}MjZk`5$t0F%= zz#Lb2!sBoZACXH5jjS%H4h1eE8#dMV4SkK#T~{=-Oo5DTRr0+XoF@B*v7LP^Hgj)h z661A)nSEd6tnH+<7F|0J)?~aC(XNA<8h)nN!3n>uI^57q*_FqcPihP*3b&KX?K+C5 zymuyBnK>iiK{=nl(ieUyxgLZ5tYlwc4T;B)g}Z4At|||uz>Hk(Rr%|cHce0%7%wI< zb_qJw(FTgn@Q<^&tiPou^fF=6>-sjrvZC{La9{`#>{VT{8NWm>DrXX5x^GdH45!jg z&Em#pK(3Ryfj6CthG9KSvpGm6tVqT@E_2x#Trelt0@U5|NdLiiKOY=rk=S5nb$%eQr+p z#a|(^(wN>6W#6H~ z-<&B{gidqu`F>dcLt{uj(_}>-t#;SDvV^^7gkk>Iz_Y7|Y%p|qEVR#LKGUzHB0)2m zaFM9)g!)aTBU1vXR?^oW&gZVu9w37n>`iHgo3rPtH#`w1_7~R1bYNP=xh=CXDbn8U z+=bN7t;P6nY5%UAK28!R6zT(eNEH!D*GSDM7Y@8YZ(vtY_|f)D^7Lm$l0mn)sP_@H zrn@M(s6ZavDxa8eEgTY1H#&M#?OGEA-jjx9)cN_>F|m%MaNvo9U>G9@{DVU>EwA~B zeX^%zaEdQ8@1uv-?^)Zbhe(OZsiNgdC&o9rK0304leJli!xPN5W;Hf-_QvL}kTlnO zan~s_=_$6?oZcvw|Jl0w=VOnG`^;R~R}NFvfZV7dr)BlWfa%GytOD&fp=M-+!as3% zaq+W*5`qNULwr90cUWmYW5f9za$DluvFhptcGH>Pv~9O~yonm9TTAwSw~wgCBYQLm zOQVZBrZl@=#U&z_d4S>f-<0dp8mD^$oSpJs*HC7E`9udZ{Ci6EpIUs^vO2}AoLB7| zpfVob$Y2t7T-0c1q2L9x4v$p!a4xylLx=hnU1IHo+By70ADu7^r?;^AEvZ}}?xlxR zr;M^TV7)j_5V8?9o<~Y55F29?K{$Wki?rIj!7_6{Tk1Yf`KQTC5|h7GK!;QD?qtxG?b=ISctupL)V4@jH^sh$83d5cBUws#4Hw<0eg*?gc5-PFirkIxu`PRsLPagBjj7Kr zC!EywJ6N;BW3`36u|~9IO`!h*`=la8axj-_?iu7^lV2An5mg^;!YtXaL;dn;k3Jaj zWfX7FaAV1pK8gu%rlkBXycu?27ip2wLoxr#)2H6lqCD~fo9p}T(rivDke*+@@5FcFzy`;XSz%~@; zUz(j9{cjf=Z@}>IkHw6xHHLW=Lh!d?oY(FKW6-G<%)u{4aZ4O9X#YjG=Ox5_z|6Wm z9P{Binmb>MH}GvrKBWJ=JLpCmxuT^1=7bk==6Su4L+_zADXJ~8 zN1Wisib{{Zd-Oj&GI%zT95njDEYreEWFy{$!h=r3C#*MBW4I?4kJQ|(xdMM#3KA!SO_#z|9q6~mlx_UEqx^-a{PSk zUb6bV^3zMVgsziU@jsp6O7n(Gsx=gH!>H$ z{Xd@0Dj=(_i`J-wAl)6(E!`z8jdY5Xba#pf(%s$N(k0y`-QB!&=UIOLIp>BuxM1(S z)|_LG@yvW|TTobnUP`0>@{xz8`+5%Ki26{x*N&^_^fYK3`iM9wiY6*zlIEK{*eKLc z2u!vLJe1~&x1vgmAZ^aS#nlPRqpHwep6e+eb^3#I4x=nom!ro_?Wt{XTA;0x0yzOo7nZiij8Y2a#%k@SxL95Rla9~cZ#IvdexY})1R`& zjem1O{v-!jFE+&Z#=<=PV+>8$wvtp4@zBN0HA*=wH7Z5Fdf1%*mAR5l#{6@V5NRxG z>Cz}Go3Zjdjgh5_142{T)yf-ZePIKE+3(+}sw(PO0(T|Fk@K9Jv7r8k*sgq;M5Xqq zH0{?LoS#Vd{rVkvE6pgbrQTr@B+` zL6ye%<1eks+Lh#r)ra znzL0zKH}m>a+hIrRc@h?@g!A&#X!hGnU*Y5ff#7*FXf(#s@=it{^;8DcU1~q3dtpx zHlhp&gYuWOF%!(K&`-tE8b%n;>q)sryh^{ka}+ZYuZInFG7L=$1R~b2CvWY$dFF6j z_p-`c1(h?~j#$%(_?8Iy_wpMWyh>n2dw6Y_nsY>F!)F@S1IlrXTdx=P=6+o|8om~Z zUPzaEtEBX**gVyyn2y6_>IQ?A^=NCWyN=U0a~Dsb>1nY^M^S6RtM4x{CX7*|-QSa{ z8xz~1bF|zDq7E6&h|3ZdkCwB)s~q4s;3xu83G-9yrcgjWUjFxD3_X(vPP@MugO^QV z(1)!cs+I5qF6?z@kY9es@v_P5SEsJRlNA5Si6VVEyE5^v1O4NTw;QC|^;)jC21yvy z6oZ4Zw@u zni!IngRXkozd;;4;tA0Lr&%Y@j=Y>8O)wfI+gGv3lr~6jUDw_wMMU5N67%O8?{`=A zD*@ZxI2y>rq*mt6n;|KsbOZXzLm+v+v;+@5&Oht=cpKi#)m25W+wwrdJ2mQYf`>fY zpIu61*TSq339>5vbC&K?pCUHCqQD{lws}vswFF20rcJ14@M!)`RP8JO$<~vYG%Ld+ z4Y(L;zW(8(R%vYU?-|cifeeS-ib>tXo9EBe2{rcf=_|nY$A$N0165j%)TEC(GRh@@s3s}>%=aUu z;l8ZrvPEO0kV=Nl>uY*?;y{vUIkkB9Ji;IK@is1K3ji8+3YSMit8lO$CHmlXVFg?U z3I)8wys4s+HUFxkD!k%DLfH{Lk=XQwxL5njn@zT2^OxJwGzt~h-&{6p zHb6u396khNY#jFYd%kq*fg`9^?JvI(QJEq%C&{8>5L>o%zZMjV>vkB^+{~wcX;I0^ zeqCK{8A>p#@r_q6oOyKym|)50vTKB}P5>X6XOe#d4MEVhpiip zYhM+!29fD!)cfS!R?l)^HvOj6KJiC^esA;Sab{A5$M~AHj}1)Np#_(1i#612Gnccw zvD}_S`8*w(oT&GOlcPAxfr=FR8&iFfd2I#*|->bZ)7-avo4_b z8#Fr3E1~dE9tAJZJY!5RD&QlO^{l0sx3{T|Th*z!X0hw#AItwv`xQw`hrOIw;rjSz zt7tWacR!SA6jm_MJGi)YF6=`C*=b7}BSD{d%~a@u)!8z#C#1Dh6Jxm?;oXBXAI94a zqW_(FKh(5FjZa#oP~q8lRcX6Yn#-_YRImg%kWOOFpe6MERCL2sb|vhaqv~4-If^Zk z-(-x_Aedq=`wKZhH+6mYxlF8VUUn1V{T|Q|21Rwi*|zk&9F8mBI=|9(+Ebhko77w@iagGCQmk|r^xrG#$TIUR5>Ru4!|_2$ zmD`zt)n4x8Ogg>}mlN@ts7ld(ypP#?-FP^WGz9z3-79KqHxHk!wwK=l4@s9R*re?) zUkN3L<5i;&MllY05QT`7lVNMvxU+Dlte%l+pUHZ874DdA!^yJ6&X`Xft3!SUrA*5@ zFFm-#03(<<1bkDM{QrGZ@Za;DtzskN1;P!~!;BR((Oa_)W$=9TY9PR+hR1F7e#cO< zijXhZ#hQ4f(QVHe4m_iq08O#*%WV6#hd)v#jXpe+3^p}}Q$8RK#^Vq+Rzma5g;BhD zPx*H<0x$blS%PQ@`^<1(BWrbMkC4mnCw1*;cQFGuD_zqkkJxDvNnpAnVD;rP1QX`u zlHfxl9elnism0IbH=(1-{%*|m$IM_wp$^0SikQ?FbypW^QSpoo`LP|T`ywQTyq~Ua(H6<26$0~Q!Zd1K z`^yAf{5#e1Sbi+oC~LIL$w&uL7ZXd^C?Iwd1iyCJxvi3PWaLa4y}t@;xA^w@rt=-- zpL8Ec^65!JMX#opCf@zA0bcsAT{9&J%p_)lP%=q+qAf2PM3!{V_&=d#BRv`hH>~fEiXS z@ifo7ZPGTR+-uv2DiF+B?Z)jK2+O;ma4(8VvCB)%6-KyK?I=zR#jLzi8iR{p!MozV zoc@Ln9-y;}iV?B1(W@a>F;#)xYn>WH-51K)t`sVQXeVej991!Dn(mfD6 zxQP!8y4mjT^Z;K+vODj#v#V+x`gkBlQQIOkxkV2?fxgZA;aGSwv#`H&Z$bnXnSE3` z0^Ix@Os@Y5l3y0=s)mEw5q4E|8MHP6Cfv(>nTS(HyR3UMpU;wv zK&PGQ0M)eo9rNwlSTZhSJ}tsZYGau7HBX}wIhR`>{m9bM2x~M3=0BzNCGb#_Y&CGm z_$%1-Bj(fFBSVF9zSqwe~3PUYoSU@#w`S=W=FnfiReNNbPmU-%=g%e0Pa~~7X3qavg zQ*$h!S=NSBG|T}ilr^v%wK_mCuGx!-i(3NATBVKt7F!i<;(2N~A``1Epm1i@A$ zLz5xvYcUcQ3;a4FaSb@WB*=32n73_oo=o$e|2X@j0)ODm55oq?u42_TQn9>BZKD@= zI&~~{nHiE23eT+$olU`RwOe58>aQ4RQA$|dMxrolTLHEdAwK+83B?^j| zh7g}`v0^vWPcfI4uTvbm+^+gtO}XnIi75OuyogIvID1ufqD=Q$J=Nu4YVdSlFK$LS z4Ly`S+9q$^q)%T2n7jabbsE=Vr>k}6WfO< zB(8m#DxB+Sqd^!>G2KG*+2vbFY#g4PgjeX-DC2c=3vxj2oiNVT4stPVCS}?CCbXz5 zROwih0LqU!NB~-&k>AnLZTcygO)dgR**hG4LJD%x-MYmV=pVctq|iUy8xjxNy#BF< zb?Grdw)f^gTMTM_Ar_tCvPWm**hwOl-Q&+$MVS(*|4EL&?-!DfbVi^4ig{Au@f5C0 zOPlW9w3{2%_&DO8EVazQv<3{HOM&Y#s@|rH?8dkHH@`?^vP!Qp!z~x zKruKU&qP=54HNH>u9hf&#CA?sBAvpAH3EJ3=H*tIceg`~d~W;@buT?=8EDwyF|xa} zRYjjQT-7lgae5@A_RYIDs+ULfw$RhIf32T?QIIy02%;fS%PIxysh;MVD zq8eN@>2+uCdLid}IWd<`-P7~WxD23cx=R^9l1(ssj*76}gT*_fQ)4^ZPOTY?G^h4^ zibO!+zT3;W%{aATmaD+a65JtJl|pV_bg+Mfl8Q!~G+~u4ES{Lvw-bkokOZe))GF9| z#`#}GV;AC3={J_kj#>4iKBi(bt)r%DS`8gH70sEFQ{3z3+uXc0lKY+KgEse=g1CLN zh~L_pBe)c8UcQSpRe)W7^`)}O0r?$$B+?qgBB}bGvVSIO-&ei~$Y*0UMK|-t$Al?=D712E6QACgQ9tQ$)}+GEW}lp4fuy8e>yGfu%k1fzm|Ua}Io~~EOqK6~ zN$?|}7ddbO)HB>PgVh8ZStL`BLS^4G8>=$Vwo$6R6c?Y)Xz!eE3JV9@HvzNL-GIV^ z{&-FE0qSKuF2P_d%DUqLA_4Z|&0hHhg@C~GSO*wB3#Hz?Z5ybO)@%LLAO$n>OI7zr zn^xS3xr|Epzi#5;KJ>}8{&M_+j^S0&XJy+m-8-{T=#HfDZR zU3g1~!6fni7vWSPt~cfA8971qJY>&Va`E_DEu8$X*Rn1Pihvvqo7aOXihbOnG2H1Z@Q!To895o?-JRuGSQP`TdGI~kGD$|;?a}f{*2yNRWSyl4WN5 zfXHqD(+&qivwy<2j!T~Ici;XBk<(i(UO12FNbQ!~?vW_+_bz;D-|#KnXobt$g3Of% zCb^WaeyW3KX7Hbg_S>hkqJ7P=(>MXMx!~~=WbQh~$VPa{Hv%~8KMhJ2K?DGQt{hR+?g!=4A1Dj+Y_%Q}{ zDItq&8udJXunv8suY|Zb9SY2`m|#_WKB2;Ea-~Av1asm0OgZ_9j;@30p3~qo{(jrB zT!QuRH(SVIf&4{naNk)X1aaKr?c*Mtip|Q3+wKVrIq-3!+Xhg?0#;crr>70sS+QBx zl!t{katG-&qA&vN-9}2i^Z6TurZ?N!@3M(!W2T1JkwK1~wLsxJv8AoXC*?r3ct`c$ zZ@OPb0;$`fAmiS#Bt9W%)GH#zyvuXDj+v`L46gXJ&_Ah&5D;3FB5atyHP~5f3k;6t z)}#zjWSw!wWFHy9yL6S(cy@myY{2_S+3sylb1qt@U>?f=KEJaXT1}0)A8_*mxK;1N zzFuBK0J{uj+yCZw!P0032c5F)E@%YSM4l-752%JLJ5)};^zV?&Xqx5lal{z!)Ve7uh3IbSXUtB zqxV}_u+t}~j~IhR9iUFg|G7j_+u6B?uD<^$Y`@|J3UUq&(tAkQh;D}2SUKgly07o0 z;@B{DZ=-ri*pV8)v2{$TY(W+mhzIKP3270UCWD+-^&A7qpH-V{KxbtE%IX#Ga z)WM5DWkp_DN_tS^B)0jEhxWL&BzYc(cxR=#IHxT?vOzBmXqKHj4Z?5MUNhea09M8YX>z-dkx(WdlA$??psC9G%igJwsZ2oho0LWtMsr-#W7b#^= zgR~2;Q*Xq{V_Wi$zl(&$54Gql)b==Cx_=o+3MYWOOTnKpK+`Ov+ka21xE31m|wJ{oN#fS2jOZX%{? zejb%)-IO0&tlB_Sz~kmRZTM;wwdq<_1$Q>tYLNj5X`w#tkH$hkpN8km_hT^(5GwAT z0~W{czW&qZTMa|i;j@c-u3Sl>*+oI@Zj`8(;{Q8hlNE`7gHmrZsGtApZNZ(dTTPX~ zGj2R4K`4R3>DtPvprr+IkBVC-P5eUgUV&Ne)`-dfFY!8%phltd!{b%Qk z#+}}%1`(o{3w`b9aums{Tz)gLt6`TTqsL5yQJw~}oea%!Cv$!Gqz4Xy=i4csk0r)Am7U zPaP9`FqClr3(&;p=j+t!KVx#ch<&|*JCgvv)khK-jlLm>q5qi!7P8QZW2%gIsdi~( z2@D?Eb?oxDJzcdd=^(IkH&cIaleIoxYXf`$7*yPe{PP_iC(^MADQ{t&o-at=wLd!@ zu7>4zTtl#BsZJll+V<8uzG;r_#@wDKh!4jJk1zf=y6+Z>%J~U9+bpe0(BqKsPUehn zuljXyu$i9qrUkyg-b+sosBz3#{&xP0W?gb`E!(W$9B5oa!tjX}fnV#Ymp}J2b=2y7 z*xlTOV9e&RW>e^a9Mb6ZTlNu}zn|5q*PXlK8Ov60f5&4HiFcitTsIVf3tU=|%d`}^ z&DEOP$@)~EA0HH@OP5w$4X%JZ8#T&Ks z>s*b-WJGVyZM>PSlEjJv* z&Rpp;Mr=XF#7_6+UszfdyIJNFa0JPop?#`fTBU7f>-MZvu&$3-KI_|HK3I3(`c$ZI z>?s8aJxNQL-_}f;{W?XXtmq#&+q^m4Yg#u!N#i5?7d*RJ{%ZXHpE3oZ!K{b(tAA4` zd>@wRF}MZ1h8=v@(~jOSa+v$n#*w%$a$QYsYy(%SP#UjIPxaEV>PF_(1cc8&w|A+y zV>*cQG*NtqK95iE(AN#dVr=9kfOT+g4(~E}^a=C5Y8R@c1a1I3Ru&<=Ks1=IwKi3Wc>=P_Cr&;(@SzTdKqr|2xd zS?S()vLiNzj+EL#Tx<+i*Q?1X8c~-(;#FTa^Bz`W>hzZvknX4S&{l12o}3qSv1ZMY z;AyzsNJlfKkmh}mAR-k=L++#EPLsHH=Px$`5;_Zkx)O-s?9CmD#-Nh;EP;myA~JTH z3(g8I)b-0V^foD|GzcJtRK>|~OCZ>C^H6(zdeaUD%#LY$7s$k(AH4g%gPaa{M}{j# z+P~u4oF1JvYgA+ws#6;_6wca3lVUc6!Ux_SjC%_e!#6(hb^+%==ed&JNI`2~Z zEec0B;X@K)Oi1>gRJ4+;=h;_g5Oh`O3KmASk!m77T;%*t+IDvLT1DNZO*oM>e4Jg` z)DwPa9i>Y_+SvGmCpVM2RgIN4!SsJmFz2V#-mRQkvCz}foZ6(+NE&>Byg?BSdE!Pl z7z1yeH?~{NVK-_yj!xhJSn&xuuUVZ63&=&FPY}mm0mw38iWtS0> zk)HnAcSzO3XwgSGeDYOY`!gQ!w60iG^wk`t%b%?N7ve-q$K!ELaIXGl)sk6^sF4_$ ze$bs;tYWi(eba7ZgEn8De13h270O>710rWfiFKj78THwRr%xvjU%63m8+%y92EeZP8o402YFCkUzOUuPjWlij<`;Z3%EpzP>^&zmTk&L=; zwFDytguoZ;G#jq9gofgK3M$pKJ_Ulsvg`I84R*+~R9!tDYrf5rV?;TXWzc(o3*gkG zZC$c@@a|hOnQgC3`wVteyP2c~cK4fN8BsgB^}51hTHw-otYeh>F<)afHRA`Axrz78 zH><1mBs=yUb5-G|n?KzUgv*T>0d2e-Ya zRbO#h7E<#qf;@DPL6_gr;;z|MGlCTt$Vl3FPmT>SYXf;$K}5t;@AGETlnQ}bNn<^V z=r|lu8G-c{`ljtCD|<|=FcK69(hhS>3&X*EE*{JbVU3C$AEA;bx~H(LKnm)V{$ZKQ z)gR{aS2Z%)4_KipZDYPUx<@Xaegw0tt?Utv>vo*y$pKdN0_Wl)txlu&fv^WI%Xw!* zon*ORfAcLHNhsKTQC0;~Ql80EeE3O=$R$JBr=DHqJD_(owvyH{O{KqQx69-s1g@~o zbZUW~d21;0u_!g_KTT2-+cy_!ndoFwI%4VWy-DOL`oa&eE&eh;W;*AHQs(jU)c1v;$iJ3^Q_gMHq> zLf@T5@Nu1?Gk2=`?4I}pQp(`_O!kquTwGP$Y`k)cyqYgbQoLr>E_It)(G&J=<2qiP z0pTwI1dvd2^ghQRkx8iYdUm|>R9D3nT0vt9ZuDvAD|XG#eCqzZh@cxNBO?+|MoD?^ zzM@Aiy5-#JWu;&QinKi@V3rmpmC~3}#<><|6dZ>BuAnzRTlAEx%Y`L9D}sVf=x*)W zon!XTv}QeYkHUrQjx|}8Gw1z6G0^Uo+tcY6By40i8IC$Cq<7_uHZrdAPO!55b6*V2 zS77n`A@Fklo}uoIR0kB5s(6Ai!^!dCQj@-T2OBwDhRil_$8w%jX0)317%qm;m@_mk ztGqbmpe{B`ZSnji;+ii;5GwahWb04-z`9wn_(CBWF!BmNB`M#j?Pbp_)?lB}M_n%c zb|RwX-)NsNl??u{ZG%|5{^idbd$uZ~OSK;7>AWb_XVzjfD9!DZ+d-Yr1@FSIuaWMK zm(NIOBSAjbW7UDZA<$69t||}&tOe-m-jr&-8Q-gEI;vh7Q^da8)9pf?B^VN-j-D%T zVlSuhNTO3tf-Lsar@Xe~DGj1f@#wUkg@>iIZrnbKQPmY#O~H=#x!><@Kz_GC<+x11 z@;U&?LeOnxB@Q)ev1hYZg>>)azdDG5VbmclRdKW{bQFI3bt*Y;mHgy(r;Z-BcOjp0 zC&FhM)6-bKAcBf}=+9+j-T(f73G~I4Us_fveC75ZR<9xSEMo6q#h{Z2c4cwu zxppiRAfzD?!2UO<7emKCp^X`jJ+`SyhOKBb@4#e1AYr8#HzD+A(=}K<)k*EZzfMn) zIeVq8gH34lPL9q0sKR@?qYFiQ{x_}Qp%W&SNTDy06jFqtjE#642&SHe*)%jBGTBrp zxL!KPd+BF^yhk6&iN?f+E69;yYKCR!5ajWfkFoT%ewkBwv_3&CDB1NWjC>4Xo~hTg z{henaqTitQFKmurx3h((?DgbA^CJIj%K-G0e59D2Hn>#I z8#bUS{lqAoQ^4ym(^|7*W2{d9eg&%w4x$fhc(53f&nH{9khDGo{vIY%UfTaR5$0;LHffYAz5($oV;N02yBMgG-j_SF}Qpo z`vvSsGrFEaLgg=v*q*-Kb^#xvm0>e1Cc=>0j|Y2C4j$6W6w`}4Z`x+> zInUlRiPg2w>Z2@=*D3T{Yw?%2c7M!0DM!3%6J}UYvoW5(!EB`+q(YbL6FmEC)59j$ z&Zhb^gvmbhkW~8gtWRRpW6SB~{_yE&3GZbm^H}URqlg9g^2c>Sdi=X^q$_(^nXl~@ z{Nb#N<^YS|1T|%sp&9~ z&im^n*~UCH*i3=AHM>&KgM&l!!fnhAX+b<8d%0HSZL8edzSdGbtYx)|R${kZXLG@# zk9rq;D=F=RbIzlPpRlo=X+VU+5$~#=K}3Pzm#G9Y{stH7Z+VYV**S<2}H(!XxjbJ z%jlsQgpL7f?qP#jhlz%n%UX4CNN&kR|G_)QZnFtn6@3s3=c~ufUv1562xYamxTI|( z*vW3x8{zW7M$f)eOz;ZZ3zGa7<2Snjakb(B@6?RMO*5MbE(nzc1IHV*pO`S%1M!3m z_I-$oY4BT?s7GBsW_(DYxE)ZiUAFgVc47OnuEX$fy)l+7HPVz2_Efv^IHMAlHQ7r( z-8cb3mOoiuHE^-Fv9JC}?r}hBq}g{EN7H_1t^C|ddEj7PJkyd`l%G|s$Y#w6?vBwf zNN=vo`glrT=IR%=L(Q7*H!=u1_Su6+j$MEH_W0>}`c4k=OeHEe&Ykg4DG*WDVz%+z z8LFs$UFPlbDm6!t&+B+1zDp5n*d_5&*_m(Wg#sIAW^Ht3f@BqV%SUGv=G7`bx*aQ| z3c`$m^~dTR4^b3gd>kDwu~fdc&v4fEk(QM+pEB@azHZ-q5upbyHvUs#vHx_j!vkdG zA?e7Hz}T3I0zO~f>PdsoA#He&RcAano6RJY_==!*iZYnWRaZ%yZ-=ea({t>GTdhRK`j&D9>eRkTrKS}Y| zKOS=@!zLwV;WA|3A1JmjYGKOxeEjdN4s6bB25=SdRyT+(HG0G^$$t^X*Kwz{oEs;T ziMBbIhL#BL9q4_QTRfKN=MhxeaHLfGM? zfzx*W!9T@0w@Z3;miy%8d4gwT8!(Wb?!rv_vjT>y(UP4SF4u znj2m}l?xU1v_CFS6}^%OM`X3qBF#T3GxLX$ROJvO%ux8c*}Lc6yX{xay6OCJHmjk* zsldy$ZPn|6pF!`)coswvQ4v(kUQV?qdA2tE(*D;d1*;fas21eG z9hm_@0i5E29;@B#=KN*{1<)g`@!LZSC$=_ZD8%As4CuU10egP2$-TZdo_R^+f=X|B z@=|!;08WRqCGu%Omwu-Om;DOd5%Wi-KS?}@c+7f6Q`HEYwflDYvR6=1qqv}?FBKQR zwNEx(#laptT2blAP#7`p-@^oUIfT3zAluYaHRqM>PN6U|i}h5tIS8~G)= z1=1%`K(@aOQdqX(ON1eQRWA9EkYLA48KY8*h`}pD;Vj#n0=QvEMHM;PZ_60YhWk63 zFBv#s?%$prGz7OODa2y&r%@^iWfXUYan&7q5h$5A;xf`y>H+F|fLL zdrKP7pIDM8u1{P7D@@4(n<@5FxhLAb7W`jeS7sZrxkX+g?-Kb%9J#a{lKu0Y?X;@5 zTB%g2UqD&y|5`6Xeq6{tYl>4ii9+f|jhoxR(Fzg7d3Y4L(pcuOgbS2X!2gqFhOS1B zh>y7y!W??iVLi*^Sjcqjvx+=@wNK@KpFF2teJ%R*VZ5{gTs^9)1|#@M>iV^pjqmrY z&?+_=MNY`UD%0bCTa{mnbmpiwNPQN1^9S=Zd)ZOuL4S!IrET51KStlz<^I1EQFVh^ z|4zD>zz#Xd=1}slEobUj0gAuiUT{FOcbJD81abENX^lTNRJfmlg0TP@rl)UTVal7f zPBP2vUtl~s=S`t|8_g0ddqQx2$Ir2fHLgGh9_9Vq-wm*n#60%Jw@I;rH zWOYNV(d9WZ=qA#p6=vw7N7i%!`qI@E@#m#Fo;4;0y!#&$jQ>uJeK4TmrgCImeOCWi z+h@XF%0OH8Dep0;jKA*F?JM^fDFd1n@$B;GUl|pZiaWgoR@{W{!$kM*uyK#ixK`QO zyqYpV_ywE!+8zveLpo(a5f1_vo{x5m){o_=_H{xpEpd|tloaqSdO`3Qua#zNFsKja zs=Ah~t91XlW&9SAoSe{iGb(Cq^er8F(&P=_XVY?UP+gxSxZay3f$(u-Bj<6;=kTJM zwgP|v=9`V^L4WcjC5?(QQ1~Sin=fK!cF9;BDq&aEIL-SSn5^<=SxiFh%8g9n3X534 zWRrrj14|uxvpr*i9lZO{gh(ZP7`@S}ZXdmLw>~9_QBI+d@b85ml!zL7g0$uk_B%FH zDu)SiWWc=w2wIFWAse}07s>$ZgO2u};n80b??~*U4b2tYC-=Tmy7b3hjkpiV0ibp6 z)c^@j)(x46_l?Vmz%dAY?^SI*3nz?d{CRljD6mT9CT`D!O>n@r@(naa62gVs?HiNVNxNvcE_f@HGPu_h60k%IgFvK1 zoNG>($!JGX=vbaw^`uXfRpA+Z7ji2?p@--h790~aL98vNbP7J(U1c{ufrJr0EmYHP z-7H~L%1jVkdwDFNHbL&m@6q~qeV!U%Sj^VxR8z0m zwLLw2#{4Hw+Tt>8r4kBt1@xTy5@^(yrvvB-(8yAv$lp*P%9sc#L&l zj17enE#CQ6oPpLFa5=fm%sQxiqCh9Ta=fwD+G7|okSe&$Ez*|y;2KkMhjnu?^_dlg zfBf;*>L-2UNgVT82HsHPlQZ*4t7)$}$N4IAJHPKDW6#sJ#k3(Uzq6%apmX!xkz+7g z(CioP{g6Vse(iXyg$*y2TIv7Gos&Mar1@n^@swDPW!pTUHf6j6>5FL=k?{ALr={7wVZ{fR>oWh2zO|2_v zR^_HfL^Ew}I#gsW@JI3*lfJ|>B{J(V_Ih+NY`wG$@{Ent|cLRPklk6UX@gM6ar5i^35?Ln7j}!!hmLD8p#aV(yBk*z@7OnJ-8>u;C z5Wy7e`nb&SWF?;H@!yKl`I>b|eVFC*&C11^BffdUG=6I~^$gy*Kv?#l^)6!4dxtyE zZl_i>xgSJ)45=R0s5N+&J8WB3V8or&Co%jgj5VL?zwweL{N)ZqUYs1T z6vj-&Fw%H1GC1D9*KAZa0q3?~)3)b8`;Uc9r!e^&*QctcU)jFddwWf1HvBJwX=Ex5 zx2Fam>_N}Lp_2v+cwf>hk?} z;bW5LYzhHZq{<(B_iGd?%iLmLT{tv73JQGB{u4kSZ`b+=OHi(X9XCQ~|EcXf_$Qzl zw+U^sTbz`2=;*=vHnxPa5cq^l7J(LTGt6EJD(tZwyw7;tc7$)J!%tF1Y2I&gHYkpB5n7A3Mq~}iRI&r<# z8SIu3#f*mIvqGMJHZI3RIkg!(b+Bn`KY9mnWtW{lGcJLhaYlOl9}nb5nNKz^@<>-2;wiyFBcan zIDbO0vc8sS*UuPo63hzJXqsN`?LpkT(2_Gwj4w=3U|_1AmI7|ECw1$jzxCVyM}@Jb zqdSPqm9TTaJ-x>93^S#pKfGOBU3#4Lal>O30~@T=Fxj8VH}l$&vmCx1YMa zR|pej=%y`6QJ4|Dh4`;j-ifP_?_hu2RkW)rSR9?y07IHxA#Hf};fh8|YVB=)+2Y`T z&6t;LkhQSVm$R=VAQ5YH_EkRveF+p>fJV&*fN~b)c2FZd*T9!X$g2`KW?Fi{?KAoIpXLi&AE_yOpJ|(YB#nn3>RJAciW2J*(ZSwR5*ymV2+$qRWx|${neg7HhGQ zR%38z9P8)U=f3I>n@&KAA>ax}>oLhQk4ttU5K+QS6u_Pwi1|{rM&boOol;LNdo(&P zrJx`(xfZdzIwX5VVyU1he5@_RC77O_*{FhP+GT3B$!38+oMgB;#}ee*H^ga%J?U5R zV*q+!02<Wp4P2Fk;w;#D6x0M< zN@t!9C;_&K95aJT60E;I_usz#vZMQ;;vH4{!-i0=L+-~cMxwww$F$t`7GD)r@jnF) zy|JMJg#k7sKmOoZsziSewJW$~7utDc#^bVr_p&PPf^|m6_!G=m*ZZ1Xn(*b>q0;FZ)l-F_J9z6J?>T3Qw$!st@eR$!7IF9TMZrtd4itCSYThM<%M`iGLFnKlY3L8@p~+KYm_o9CS)>c zUeK<9ok}^17sE-Mf{)|f_Q!xLm0ItL{a4^@Ho)*ZO)}j#BqerL5atA`#0jdO2MIaF zBQK%G4Wx(N=&g#H@=Z*}2AF)0BrE`%b;~9eKr$w;lA7VyaYW#MY+DY$g4DlVHiMaD zi{y8by1LpM;FKq#llwJs{~xDEOXCBCJLH52)f)it9&zL-KEGgM1W3!gmXG)Jg`g;q zx1Zs!Xz~Dm(y#Dajn?4eUCs-)WvEf7sc05fydl2kuAf4OKG*L+i{$ zPoFYj<&-OtiG7)*zv(}~&RO;^25VU>$hlg^jb=P=K&cv+*uZvKQA=N_tf|2|yfyr5 zC^_gE?){Je)@B<-ZX&M4)IRRkL`}hA$?7qyBMA(`#fd6nrjfkN^_A7Tdo1P6W91tq zxs`ch;(30@OCv=`ujIVLS<-khg;n|q!%PM81K)C|;mq93^ss0VGm*Ilq!Movm1MUW zB|__}y_%`Z+hdMfUJVcb&M`v|&i<@6)Al~vZ^d*`BJ2h^?;n;&v*wXOYs+|v8;&Z* z4v*LN&oYxpUGqYGap&zB@_$Oi8~~mYYh$d#ctvRZ>nT_a38#KGQ>P6M-tLto*IigG zE_vP!g;(yix!T2O~^kk)p_|8>; zHkdOF8iDdX)qUr=3%2LI&vIEIs(V+wb}~? z8lQwg+3^ht6rWA+fY=AtITNdfEo)sW&NMBC30b^H#D{Lb?V0bnj-!|IKDPt0m=RVw zaEC~zvHi%!N#`J3D*lvPM*HFX;{nbK;tQo=k-n#PC*mjI+HP?$r?}yFBQ~4ggxajh zA8CrexEy=Sj(HaA3ry&U1mU~sSnGb(azgp56`!?p*g9{}u&k-$U2f0_-I9Igm#_x7ci-%);B})T+8+&29 znTri~m=vL)oG2vJ=HSqrQeDmKeBw+UFvm1g_2#rWR1){1D~STD9HGyZCrzST>H{u` z5_uHQ2|&%Ij_&lRJ$!uiQRF7aOzal~3SB{9T3ZrB&WJDL1KFRwi4Sh}hPr@vWUVY* zON5h>F37wxmsMpJ0~1Kji~hlXa=yj;kNvS>%C7k_$8tpZkDk9j;Ff-rYEj0-8Jlj1 zSFSL=A{bd)AB<|@>6B*(z zh$_GXQ_Ot%*O6@C0_qCDLwB{h;8lJJU&n?6$$h1oNPeb1#v)s`nkq;bL05|u~%*yA$IiT=_TvU#{Z1nzva|>GB>mUvqr$$_M zXG}5_kNrcqqUPsjm3!sJ%rnH;AY-Pqe#k$@AV_`v<+G9*>X znrj7*?ICxL*uK{_T3LF=Tx&@};ZtXZ7p04WSDvw?W(*cyTWL_@l6CP*BU-AwT17n1 z%Uzt#$x6SxByk4QJ>}iq%C}7&F%!{m(;sCurW`Al+RxTdF~Jv0%~b@g5q_S{uiYjmn;WK~_&V5+cpj|GqM$dOneH@L6;nNGZ7VPIgtkwrp52ZKZ} zt7gZJN9To#T$CEuKZcrsXq}dpS26c~9+RXRYg8J{ULK@XYwM2iwdrd`Ri~ zisCIK?c?^!mo3D)vu4X#5%WI<_lV?=5o@}Fu#%LM86p86A`CM=>zhIYS`?OuFiVOE zH|@3|w|Pjj#W=gG^;XXCwN>tDY-j95!Rhw)&-RKoDWgT!)yCLYV?tqKABr*KT+T5m z#_;mbU?h$wClkvxEER+BT8vfSVUCRY*rnwpk$6Ou$Xo4oJH!2*pVXA z_z|PJ@NP9>oL$OehozL+rjyGHHof^IETm+e#dUcEx(X|fVXlN#NN4p8} zkQV+^U#=xs!TWwOiGXm>C0HczwA^yA)jZX5K(|V^gx5p2M*O4w|3m&iA(J)S5Uz{3 zixRt^V^~DKpFw`e*OMEONin=nhv3QP8Ao)fs0EPFSI7rnx9cj*jEXXYjF0#o{Ka*+BaMEd3&iabwji4M z?hG{ijLOxq`ELt#D{1Y~>kphUWa?2nB@~J2-vw<^L2a=#c3zjZn-!CzP_$ju@volR zk#pVM+GxC+*$H+h^fCpiUIjMHt<6(C!_wVkJQwd!sWATv6gKuC5DKvNlD@iSNz%YOtK9yP&R6S0=%Naoj}z9D;QN4gO|{y7t6X zo4O-tGAu#*9x7c7N1gE5QZKWic2Ku4^z4M4v}$9~71 z#!E?AW}15Qd+pf1BgBvdP|xOtiNRy}7th@P+k3$pyLxO~()LRiefv*P1V6k3QI|Xd#?Oa7_O#;uG#f`w>m%;6?r*rSRl&}J0m<;zKObr(sv497T`*Vb}YFI-Gt^({Or-U6VUmLHD zD<0&x*{gK7{5DZ8_^jK&UHOqs*T#(3#8kihjr)a*@1xd`1IShF=)$ti{c#B;n`}2G zell0&R1u_!Pk!0#o_^fwei9yfedY_}P#KH4IhH(U?y1(Y3}ybWW61eEb(1S`B-q%F{0kPM8L6ko%kb= z)#M3Kthow)W43v3_Yn%EiK)hk8RwCWBa{3euKqHr>h62vg%w2!>28r!N`%d(Q5q>} zknZko=>{nQX;A6zMp7DS*fi2?wsgZ;c>n&-bH;fiFVr#k)>?DTd0n52(rBr53c*Im zDg)3Hn=gzjtE|%)k8rAg&AX(Qi9PjU1o;L7NY`srJ?tl^?o)8gvk+BaF}~7Hjd%o9YY{tN5(KvU+q@RraFR>2P46zmnZ1Env?|GZHJG2aOb6 z?uPnW9Z69864ryEOdu`A-dL6<_Fqy{}c6%XRdW-yKA`(b$h*b(vev@ zXR@??{s-xIwr)85tqj1Y{Q6aXG+D+=+SNPrIUQqkYw2P~%}}kF8vwD;*|>iVI+c6W zc%2e;p@t)&6J5sAwyabvns%Lveh2D-wws}af=IXSg5}#`S@OD=Ri5?U<_2g=u7vE0 ze{S4kU``k0nfLg4?7X|f1L|?Z6AWPbOCUd1`1oG@hf`g*6Wz{-BT;#Mka+*Tn(E-f)QJ;ASw&bOk~mwM4WrVt4yZvFgslKn z0O?)Ce=1mVF+Xq)cy{UK%f0jwN$%!^DvkFT6|!6BG;lSCrq)qy4%nkZx2o!l@u`-b z{1)W&b!6JADA5$Xfkd|GRMmOQHaoU0Ead28LM{}(0$ymf0EA#qz*t9 zb?ol=QgK76`z>V>qWxNLi7DZgB>8@m{Ey~&;wd29wQFd+z#u^0hUrH5?C>pFcr81D zd1>gMNl^Xn-IQNoeg>@C^f7hWe>0r_zRfS~IZ;$lu9g4}k-ue)=b;<$ zdkg;Mf*p~ZgCM#W5cezjDB|CsW5x)LMt{sI8xQ2O%QzxeF&2ykQT zSARg$_N^;`VUxo4{6DO}AHPM*`?j#fFvyjQ`TuorSDfwvA4va3Dl=8PCHagb&DQg@ zy>{O9z_GLFh3Aw$F`qJ{T84IK-QYu|`JN3~Ae0K-!$W*<5sI@7r|Uv`SKJ5Kdgk#V zp8MN83arXy!X#YDC7OIhuIvVn(;P7c;`pef4L-hB8D#;}hJ1z3DJ1FBx8K=*g2(KD z6nxIkP#!Cf=?ecipB^t>q=xP%J$eK_2C$zQo>=gZSDgSfqCM}*AW7$fjuMSNhJ_cM zyR?V^8Hew3NF=Ex{1}qm_V=Xh5snI9WbZ+DD9&Ha&9dYkvg@e}reKU+IL&*l${&mh z@kAO*qIm#~e<}FSugJcxT!3cSD@M?2*grv7S5xAVmGXL#paaT92E}#ajjgj`&zRsW zPK6qtDH|ZkJht~;^IXN$dA?CLFvp+e zHht+?jx7EKMyWd0lY11F|MVbt>x`O zFSbeAi<}3ytv8wR9s#4Y8{t7GCk_s!9*<)0$Jn9I&i2>V2KnjD%V-|@nUCi;SZeGV zT=f&s3Z3xzZ=~+9vzzKFSMXjjLH(q z`5uRryQA|4{_?@E7FX*Rl=+&_VVe1~T>oKs1m4=5(`7mO74r6tq70h0rOD8tt9+N# zGs{p=?xUFwf695x955ei{LTbR8Y7kw)zN6a3%vE zO9=zQR89|%A#ae{^Co@8gBq|qRT2UCi4wni=C}D_`s9)-5?k) zwuK$r6SL(HtG^F`d%?n7n`@qYw)ZeHG`0Ot-@na@J(sEDz4=QZ6hWn_oyMXV$+u+f zNOC7BQadY)T>TLEdAz_?S}U-`&R9mxdvdxnmc|ZdEod@QTXXK|EM}#q;s%FEpI3Cp zaVJdy#R5nS0~x0XSGc;J3qCTTcjr)AJH3S@^$mQ;tdOv#(0n*e{Ap88`&}tk@a`H2 zK?Kk9F_IrRTOhrYA?9Sftnlp!oI*5{p{4DB=ht?j$}cp681u~Ja3(MF;f`!;^~O2c zfQ0JexblH`6B&=^*Y$_cHpJK!D%f|`%t#TjjM2;EA==N-6L8+H@(Zp-Ijf-Jl;Lu4 zMs1JtQBgb9dJn+DbJj+APY(%61j#epI{HJXzN$A(kyb5Pf?xwOTh6prk>IUwdAsxW zAyDc-aoGUi0%wqu1myjLznuiY?#R6;^odEB z{;j-*kMt3?k#U#ZPU6D{6HJdjh(ANjd){9hQQu%ShkIqN2K9ib-tv~ytHDiu@lB55 zwVfbyRO<2`|2jv?jfv#hXYL*Z941a8X)>Ln)lw>eFT6ck31aV4=I6gq?1_`$p-R2E zjS4DncKALRFW;}M;s;{^6dC6|nA)@e4&TD3oc4)=+x$)31Ft|9)NB*vi}!s*F=Gy zP@F7A@e&V^K*pYvgq0uvjC`RE{fEWZmDOAC4VuVge*ckXkp};>lrEcEx^;F#8z|w_ z&N2~M%FBh1gZFjniq*C{`65Vz92;ByqS?%>P0FHGw_Y2=FgC6~Q?57R2)0%O)S-Jv zqEBfhFscyh;#4CE*b@lAC5HZY ziBdz9eI#)YxJ7UaW@$7RKg57#ztiiFp_ACVI@keoLyMzrDdX0oC!hMjxeUl-hJ-l{ zwL|5eZ!vLdyBl=LA0NIuvG4ESnQ4K^YG`QNQiW$BQ@XvS=YtK;^*U`F;kxikZb@z> zAH<(@#Ed$xzE`$kQsNb5uKF&5Q2T&=;}dIh1rD?IUm2Ra3Fzo3SsNL#4^Qg==>h(CdHL69ITzYJG|acK6R-8Vo9I7yAL^vxltv{rwxh%J{>~jbZJ-(0Qu1e$ZnIqS6*z zSk6WKpl(=j%aft8+vWy{tl1@)N~m09KJrZzJ(E18b^(WdPC8ijR)2g?l~OkK)HMYn zMNP7E`N1pi_o*S%>&xA zwyUlygJ!L0(=8Fp`)5f_K&3bN z?M+P7WB$eZ?X@euk{e902WPkmZ?r!Iq7pWGNpP87)c0oGQDd)^wFbRIu^A#}GiNe+ zpNC*z2Q?Y5ec9pq=|eV89T_5Re&fnqg1WK%kX zoll^sUlzj$6*q(cM|ck2GylHFOzLvHtfl16anLE>p7VYTc(~p62#E4A9(|tvK_d}x z|I>#_)Kv2GL*WOI?(M)ZJTmQlpvLJ8rVHM>-K)}$L9qz8t3|)$&``qX`YdrjL5x?TiR%>oC8wWrs9sQ6nb_e=smSxuIZCioWVx0fpFRZY&@OQnXL~MYIXYIL^+ZWc|u>+LHsP8(z zB{i=bH}g2A_@#tzK6G+$2>i@wmLB|uT%d>SthHnEY;m*%vEn4Gs`?3Bh)fFZvhQ6T zr3yqaZ`>TYc*Pn_H^8M5Y)Yd4Gj3fRD=~egk4>Cx5H0~<-qDn%xN7To0YKwjX-`w< zxq2{(#Qv~a)EWuJaoO34oOBV)R2b!6RLg0;^*HJUIWY+G2mpcsn7gM}E-WU$)r07U zXXGtVdBu&CXF-HpY18n)aQc0sq}VhyotT6QU9oC9Xyb?NRs!4s6Rr02NtG>ta8Y=* zKA4=$SQLyD3}QQa6Ks}gFU*5wIeTTgu=t;e3N+24qR)t9|8rcy&W*O&iGRN@<=4|Z zdC(^>DEI#(@19&=dcDgV)p`}Kv>m%t)LlDC6#7A4q}1j2wP&LUUeHYtFU5-4Psb$ z<@T+V+R1S|Pyh3*k?5Mo=_a7p2EuT5UNjmPP1;psQ5FNC14Y2o%$7E6YtXqaDBvnq zb+n}l&ceEP3Lw2ps`%0}!q6mSlQcs)tnA7?H>@0k6Yyr7g#QBViE*us^AY~MESNiG z=V4euT*R?`@6ky{d&u14(b&lLO~Rs{Y9GHgneCFRsJxeM+AMzz%vrea!3@T<7Fg^7rW9`_EFtnG_X`T@H^Mnpv7$(R&nr+dgm!mA zabXX=1k2SU-{`?{VE1YO=zr)0)RLZGoMH;26qv3vQo~Z!pz1z?J-?@r)gcwTr$tmP4{)mq!h<$gCjb2%ziWeodQFDL!d)VfgDaibD8!~3|I&*GUeQ~3dIFgnwFEo zXR!#;NZ@b^)%~ZRYLt`M$K=GYQ1((Y0&Dk>4jHQ+DSGc=XzUh7?rUv@xyZzafdVfc z-aDShFJfMsT}~#WqB8MrT2dL_eKd3{`Qf*-W9nLh;dEjm;1qu}^NIp^5&s9bifh(& zv>0T*<=s%gH2$NvbjH;;;Rvxcn6wBQZ%HaBL~84efGxBj95;i_6<(Yt_*kIwiyh1kJVmnM{r7F!qWQj?Ng2d#BLY~J!a=u@mlK70l|`N)3& z$1f>E9z_*zK>R!jo;KazarvgJt;Wm``l~?m$SEuQ<%E@BNtX8GE6mxXzTw*c_2s~B z`#c&&wlSR-+4D3xH$1zam?)0S_E#b%p z6?u2Fr@Ui`C!=t?Z)F^n!kl-ja0sTo zR<~PwzTMK2RR~VD{6dE~g}uWj-lsGz-ZKL4)oiD7!YIC$Lg(ttpVLP9il%BGmd6v-Ih&kuyc*KljC=j_qayf*v<^dI==0?!hMO zdXutI7~}iS)wmassqvAmxYEPXa=imzVX|%tF8;Cj;wU7S_g4z_vH$sh_wXq2@!_{` zRcL?iz0k=50ZcA;52fO`bD2Kminoa?{2lK9`K_>`PjQ;_PZAV&@Yh!5r=>VUjvqE& zKQ(~llzn>e$%axyfYP(o?v=KzE*A)9L@=1Ue_b`Y8hB`O!KEPfN-e?KV7=ugm&V``KioTMf+$78{|1-0jX&>*#`U?a`LN%b2sJr1MpDypxlX zrto_r6A&>RZPu}E&{QKp-wPBNCVwO)BI5nw1SwbO)&w$9-#|AIpqPP(x~>%}<_8+A zvu#WFg=&j8_k!G?6W3c$CSp!suC@WU>N>0<7>d|iQclKs0%|zW9|L zud`8gu>J6Z*6o@0VU`7&4-Mvv*V-icArk-9Bv)* z3s#q)9|Ha0xJ3hUTO)JYF&a$5i|-jJTy!z%wsTkABjd`o3~ z97aPe^E-De0o=%v%5MUbSX<*uTnX&0TwfB$&SE zhrcxR_6atV0C@7(*MK2S5wR(9{Jiqan!q18uKOxteoSS@xw}!QH-Bzrnxh24{ zh8Kjhdfb)YqCUnr_j*`Z)ZNZXU$6Cy5{kB9B#ici$9-9{Xt&-PMCRHq_`9lN>Utfi zrUfM0XrL!&WEhaoJ?)+Iwz38@(Vg=YGZQk0CASR3o?@J6}D+KZ|*QhG~`Faa(D%VM-|9k4X z%co0>R<6-a-~oP#!8GJOKt9|NUi2ym&u)F=zx7QqAUMbKEAU@<~nS=%jH569t57f~3D&8f=0) zJX^Ulkp8J|E^WZqUasGB=<^^R_3&`6?&}j$^skhB8~f0k$}AwfJ-H)WxaC`QirJ$P zxhpgGw)F$XRK7fxHQrsay|mh5-7q+kA8vT`Z>1DA>#hQ`G=9|Q`dqu|g#WLCXA4)Q z`zg2kG79+dae@dy;Dj4aF3frdv1{n zkE1;Cmz-3Y@wsBG67=zx@9T<;rsC*}qe8FalL2}hdN-i+~(BRrz82TJ7TvXtCa-^w3dx(v>>2Hz#3ClnM{ zH^$}pSkvl@_cgs>S=Uf1sFxq$X!-ajeQWmanqgn`j%K?9)*n)BcdR&CC`BAN}gXdt0Y# zsAP)Gx9>7x^c4gry>fbmWi+T5@mBX@8py7Wjbk0y(7<3Ya_b9S9f#hq%&{^9y~=lw z@!I^eNG(=wy+y0yCRZFMUR0gem9w?*3vM!c!HyU?{!jv;M&={;Ic`Fe=HY;06&ayJ z&j;XeEmc2%_3)q-AA%1%2KgEQ3d9YZ;xe7h(7pS znYKM92V}w#1JiX2wGb8H?wU=*#MH|w2!0n59@yDH5tzgGcC~SL8R3g?Yq}4^GIt;b(Hspsz52BQ@IsWRk z$f=cyz!6Bc`XPh5d_c^k&Ns)^1yL9!eW57+zW|L;)RM+w0%RaC0GeN@DXXpS!BT>z z!~$$gcWBRYN9Vkm*M@cKP@%)bQ0m z+>o0fxzQmHnh3h`Ny#N@{2;`Zr1HO8{hec0_?#7mfII^PfSD-p9zJ4C z$MgyPp7Si8vONU(0hQ_l5DxUpM)T*V8!=M?*w0Wb9(H$3lJ^)4^t}?K=8EvMws%ua3(bH`I zWgZ?M2Zw85>O1tU|(hKTrLEudfC;!-t z9x$G-c!h@8EY;iLv#eO{F24F*qUzuJfZqQ>+A?`GADhYb1!O`;hzJlI`RKm(HhwTM zjVK2y6Tn|iyz~hBW0c+<;l0uq;>Nr;m$(`r&##X`R9{>auRiPzMpm&xsbYF5Tk*IU zNk!x9;vZ>CubAHnkCRz5Ro+Fbmm{~Y#r&g+Y+mvnCP|ebL`O>!zI6QQixNw8MYv=_ za$W@%b^xY`mtff22U!X^$-IzuX*N2O=IE>&5cvH+>vhem1Z}bkQ~55!;#|U~Yt|C( zo8G>8YKLK#Ia!eZa^1-i-ag;rWzdddJ)P3p4EOgJ2PS1ocUO84;D;L7NW4^S`AL=h z5Tjw@HbMe#kl6ohvo1ti4(e49T@A4|YG6V;iLiOWZHMgVs`>gNgEC|76IB< z9eQ5sv7fSxdWt9GYt6WJxyUr8s3j_}VaP3E*6V0M+yB<*@552fG_^=WAUh%9Jk(O$ z7&HR+`?nLi$$~sKYTst3t=x-GiDN6%%RKd&gEXo6i_H{bQzVsk;&~R7U5ZvQgS!~N zDW`LO`~-ml1x4{FPqJHeR@aj-dJUzoWRy8EK)V72_Zl5DA8S8aB$@i)xSUqmkSZ^fsziZztp>El&Yp zVf92jxI%4m5%ayv9vA`|TifYldrc4yoKEr9LcbNraAeHQdt;P7tN&;1Hk$JJ^%g<& z8ljmygj+M?{*}sc`*Bg|5HLKW-p7YtQgp0PYCehX@A@`{?S#2}{FA0+P6EhVWBvy`M`Cb?AsF|rk)>kaFXjwW?8kWx zZoWRA*RzJm0^9%P$o@z1K0X>0*8rNcYG98=#FI(M zW|*RWUk=x&Obp1emUxGp#W7@0OurVmkPX&l1PZ3jUfToiXrivC|H&#l!4%9XBiup8 z0^`#GLP~7_2H~CzC@6T4yzuI_I4mmKEstaG^E3sfqV1qzdq=~!jp4_k4zZT3i7Nz% zWeA=AsktPBJk)ivNh^2;Giw)6ftSC% zP?zP7g^k&V0x{;_3N0j{<@zdq7~dvx2-ZA#Yfhq{#f>p_42vB}Y<%4}bw2N%4;~tJ zOL;K4{%mO`6?#+VI>jt>ccR;Oz3=)a)9Xb#B=anwOlYuYe7gM2g^$lE2U`f{WNaqF zx^_fVAo1uht^vee8TRr5BMq~H#?95K`}yThK4Onz$xwJY?Vp)yBO`}_GPdqCd!3kO zTMu3%BVrtRpF#5H5gZShy1Rp`l)gkE#V)Kk0pMp;%0LOv0wB zHoQe@u!=kKY2n7!#=F&WYdxHa*pJ0a861?XwShcs9E!tL;&{kK{g9e7o!)Un^o>h#V&p+@ z*mpE4?2v#vevLW0r8dvHh@;t{?Jn)f$e67%Av(xp1k4&gbT3l*@@oGP=|W#r?@$U4 z$GLZpp&~L44Yr7-(o6jBH7E4Yd6OboVWk zL1HGyP4OqiN0i>m;^Q8rW_&&;3tfAx&wrS)^haY{8!e^p%_umIJ?mZUsx*E>LekQS zr0{%e7e$)nU8ab7zZ3b6Cm-?c%}c-DnoZreLwr=#w|?R(r5~$G%b9h>y9U@E>lCHB z8U|!7=5rT075f)<3=MVB`8MheX`{#9ol(s%UHR5KeEfiYeKnR}Z?rajnGV73+Z2PQ z@Z6rb3U}cKs=g{L9J7@{19>-kD7&ewjS&ZTR}>PhW5k>&6BgxSB26ld*hS2|t~RuM zu3t%nZYRXX!#6kLsvQN43rHe$y&q!Mx01cFQmN=2K2Hl&Va>q^+#IOkN~zZXgU zOe-ll`tnub_Q_@)M_cAMn>MQf&$m9Kt6BC=*Y-UvTyWo$j6w-H5qxaw-&>`wr)9W@Hbgq<~L!73%o0y*RODL zx6zY`FY**6`fFj$)N_4RR&_yH~aA? zRJXr&#wjedy&+Z$g@$joC#FcnM(O(g?#0AR&sKi_(MvRPERp4V14(mMy&_amQesK? z@`Q|lmf;En*9!0-MMlD8bCEsLlNUbh-f z5p>V}H64<0Q+X%`4vl+K!2ra&=BN48ZqUuu+)b0#EDtwV>-1W;ON|V?;^lXWs2@0z zb=s|3;x(3jn>W2%>KY?F>JZDRSe|V@O2{3ht1|iGOSR5ZgTfk=nUA7*#DcDP)+wPD zUt`Nx`EAlfCQGvuXB8%cMf9t-%}6CrNGmmsyU{KZrX?7)gu;>P7F0*Jehb<(4Gm?B zcr(;A=5kN2mwPy~G`aFU3X*F2XcZECiLCpv*V&`Q54`usPO+7&C@h$i#o6^UQc_{@ zC7Mxfo@czX4dd!wm9x*81_H)k#%AoJ;$joAIz64N*%|`b2`Ou+9{cg~a!al2PG{M4 z*K5qa2{xVzDl@eh7M2)%B$;5IrZ@VWiZbTl+Ijk9uhnw)4WO9hNJ>?_aV|_u!0*KU zQ376uh@;^n9180$S#gQo2JekK@4nBWPMH-u zE`b>(Z*Ji+nI~&w@$&{qG~yNspH7e6P*H{4J&2a}ETlW)K;UnCAI&`clqfz43x#QwaRI!?(?26x^x^KZpe z{IF=PK0~Y@`MVz(W!w??+t`HYAc&%^Kz$H?5`*X0^HfIM#}|V}qPBIRqeC1gJ{=o( zKEs9XMO^Cmmr}3cG|BJ?vYcs=^l07@fFGeT?09d@A}Zbid_-R*M+FgMu8I+UTj)ysXyGZhF6ACvj~gw3WCG8!AVoOC8M5E44xs zJ`5;}7r+Wc^!;tg5XJUEqTg&J)?yT&u0gM)q^n+=MB)t5uxa*>-0}x4sS0?la@d$m zZDxNps8<{kQG)Cg&dW?6+F=hQT2RK4aBM?QwPaozKH6+Ma1FxcBFkcAL~HiZe5f?S zw0;6ZyBu8B8rR#3@Ld)d`L6ZzO7ugohF6q7*(gs$S=czdUJH9;@>jku9y+Vcd2*NP z5H4>Vj&;BOAeeDNyWrKqGu>B*jGJ8 zS0zj{O=SZbc{_8m`OtUaOG^SvOeo&h@XDIn**VDA7r|@>`$9_&hTfqJ0SL9yhq27> zwx< zF|-sOQ~|-jqvhq1))`9Qr3wC!v(@A%5Xgx$?e8F)x>azP+;Jvf zx)J*ftzqJODxss_ekpcSj9=9I@Ds`FG93zj+zJ?b(wD4MnPh2c(hfP&72l>G7PJJL zYjK8>a}AWTa2^^`&A2G<+Az_qicZehA`?xIuC71IoP?80GMaLe$tle#r`${5jM(k2 zQCg)^q82c}f2WtBXJjjoSp4uQO^^9_{#=Q{-PZjjWn9>hT6a^e41TJxXyo7%x(Ic0 zFMMx|FD>0$D{t&AP(LOIRZ!g~vf;6<1XU3|Z56_QT0c8$qr-%P9v0@RmYo$VMw!@^ z{fOSlOY+=st#yO>)%V9hzq}nq&jl;(4nn4)cX=7V1ub4Du`yhEZfJq=MHczoit7)? zMYj9l$fx03p0F?lEzgp~uC9Dl5NWNa%fUYXHTmuPOYY*Zu%X4Jb6z$UNX{if zF&2bvN(Tc`6(Y&ajXMJKxgr9rxA8o1qgejR1?L1#8CbcTrf6QJdDl{xrVjB6QduqC zuMAjc3Ha&uYt79^a_Ya(d#g;u6je=x1=;27v84$uW1XYAMAN^~QiUTC>FycB=f($G z(Xc`aU%f0ZZ+0#MP#yG|8jOfSlPU#0;&uaee-u&ONf4vPeiGvuO_i6z=KIdCs(bg> z5|ox+{NM(mN%E$P^l;iA=wJTR6S{pQwl^a+D#Eg>xfYcECiZ7Db3?C;&N%D0Os9*_ zn@RnO2X5?Z>3mQ(`nb=ZpzbJfBOy?C$*Lg#9=tTuj93lRe&N!B9A-#v?`;1wf%;%X zIF{Y;w57+72Sw)jO;KB_H8L2ulPXQ(7TdhaO3(1#FB&B@VqgR*>~P`Ny?3a@%EZDA z30zA}9G5puKk6g;q7?CW1tmXTc)n)H>PNxlPLwx=!lF#uvBFZY<1DaS% zEjq#X+c`gBwPAS|!tDLQbhffqHn1t+!&f&~)NtXw=9I3iLrOKfKtJU`tS)<)a4X9# z?#*(Z*FjLc_f^_pCcHXqZl#E*>b;`7nN3)8%b?e z8`D$@d{D{lmOPv3;%061c_E^>`be-gI!8n_EBg`71SG;qUh=tJIs?Pi*OH6u!wHn&aBZd#~~W>j1y5F2;=!p^FY#*SJ(B4(pF* zi$or1U!Nc&>(9V(S&3%gimAO3c{_N*iC=s)$Db8t&_`$Vv5eV-*tW9Y!cX42@r&zb z?|%NevpxjXuGhj}jKx1ub{J7cR;Q40#l#@^L`^eI(|und@ZAuC z?sDw+lA~c!lYRY%;J;%SJ)orp{FDlHFz?awsvy$f+L-|j7m^|sgluQ>=d2QRqo@=P zhB$@XV&Hb0l(B-QI`>3d-;($)eb6l%e_iW;cMEkYLk5(Le|Z$6*_=!U9!O$-$4*!d z)xydNavmO=-~H!yn0Ttqi4y6SYSfRbE6uQaUG}X_{MM+tj;p5Zr=)$CO?@+j+kAMT z(Oxk}x-CtPF17I$bh93RvOen6CY)1;J{cmAjjvJJg}wcSIkp0}@^|Hl?`3qk z$#&R`mH32<(i5!H*d(=xA(IKi*#?g4Aj4D)*2esw`8R!AS79*Cc8rjHqZMISy*7Dh zCnFzhs9aw#O)iW@bI`A2>Aps;FjQ=>TY!H7WynXH=HIg3Euwd~J*FQ1Eg$poeuWA~ zA-_?9?Cm$}*fscD`{LpPyMf~P>gKh#h+DmA=L}lw-A(JHJj!DMn1CbpOoAC4?K zK6@hhE0taJ)S!m*r_|{XM#+E2vmBq3)Oyozb&Sy(4oNSF2&>O8OB-Thm8+v^$8q*< z#B(Sd5BphCH9pfoV9{BQ>J`eHcd9yr4T~d>MtDMd#4$+GGGX-W$IGP54btponlVsE z!qPqRiB1=*PF(-+f{O?p6Pc2gY+1FHs#z4iaw^@`2lLxib95P{gNYh-3M=XwEQ*1V z3pT4$nhVTYGmomCdQg9v|DJq={@0}1Yr&HA+Hzt|retWXB0&WEhzOV%P9O-{yWn!NgArG1BjNN|gXk zehSoEWbbK~R!FMOv!idOZJnU{5Xo4^GAUYVe+H~920&1F0VHJWII6Z59yR>$CSG9SDAS4+6%ctl-!1>k- zDlf!Rr7r@zR8@fxepFP<`7pVBVXPPzv%0FZi+_8tgZ{>HU)Sw7P zde>{86IyWd7Q*HW4Oo|#s5|~LPKsa6^8ySeqo5zpK2CA|=}>J>hC~&m?Q%o2ku(hdlzYh9@ewP}1E@u@Ixb#jx{KOdA2xFAb}x9M&Dg!mmXoO1h?PCFn+WttX()C(N6Sg;>DaUKa=NfC8iLn{ca#F1I5?HoK z@bx#?u+PV&R{-$v;BbH;CJr8YL%~N#TR^?PniIi0GSUR8plDan`FW}WW8_i)J$SnA z)a`P2B4np$2E(lGDV06NjCgDH^0KrE&Sk|#%ty_vS5+R&+)=_nMV^o}{r7l$m@8~k z+{jZz)XP+&@$TyP6ZCJAJLhM)B}7+ntB;nu1qFl|-l`@`f-nD+g{c%-1cW~=EELty zID^YeyfKxdefd(=1^&jXk1PVNr=Hh*+i33-=_$5U`I2{+85kGW7V#-<&TE(KM7;I( zfjB=9h)%O9K)=Ie*R5iqO}i~hX8e-2HyS6@ZrVAFPTB}G@i=8y{n4AjmXuP~8s~PZ zkzzb>DF@qOBwbR{_2EfN;fQ)MqeEV6wF19rF(&+aS4Z?9tv5gQb^MYt|6u$9R>i@pXF0Ik9zMVQji>`~ zz9*VvVI*Q}N8HxDICs~48zQ=IY<6|GO-l?rgI_=Arh~P-e%gB(H8Iq5@J(mF7YnM^ z0DkK~#eSr{NrDnG7fFLPLL+T=im+0D8~JVzA=;~`s4HrPq8xQ)|xq*I`latobzXv;#o-2!VFUm*BoONSy9~PGEuWV zn5RmL*1P{))kk8vng8;({`eSlf?&09q3egFnj|DKd@(SG5GBtJq=GLfHUk1JK{*`X zYYr4OND`8!9%Y&1CTSD$!n5e`k#llLFKtt0vHBwYPIC%BC_C*i_LsGB9duHOKRG!v zHZF;9YYB>slx)4|DaSp$pbf@4v%iA>ObPt@L@tl|4PUxq+2swq+m>ehcriTz->TsB zpjSVVc!h@g=P$IarKONUQeUVw8oayiLzl0-GdFFT+?t2?#rog3cYLlkMpZuC;LHqe z2bHgt_;{pGR>4SDAZku|6G+p+{_@6OFr++T+ekSvS%D`1 zpMF??({h+}^v~7O7X}g!xya1$O0y?OWuF*4-FyyTZ zsp|o)xFuf)w8TdJO!gG4U-~2(e=34!`3G+v_#OZK*R1$$(RiJ*Z|iApAvLD7WtEy0 zZ8A;Ir{v?sszW=t^=uV|iXxJ~1ZFmVeDOhmFx}kt=xS+v+n_14!I9>|WkBs&hL=kn z{+2brjsrLCR2lR#dR~h}dSCHPpCN_@|KN-F@6${t2zgnr_d}Tu%f+d|_D5{=3i~*fE3K1gi&CNR1(f+&hmu%tmbFDQ%7N^=kf9v(g$(!X>z7ex-!bXGr^n7l zF%ZF0`E9H?)`o{S`e0|V?1#^FN17ODk;4~*4U`zAhuT+5!6~Yf(X5cMYiQuPvm2fL zkx6Yae!81n-N)ZFEP=h68ZC1KobG0Oo0Os4=9M3gWZx4$>dkvC<(bKg-(wC#irv4h z);4YFXfyO3Qv0!@j3-NHZ*;l%r|8B8?5cCrvHAYvAcSPd@h&1q2Te$ymResfw6l_Z zhBu$CV&U$hnSa_`mjC8uM@h{?*#Kv<++SFhkLv|&F3Fe+}0 ze*ZG9Y=d`GDNvafpu01L|2VF`^_-u0+-kyT;spLE&A+8MB@;eTciJ#8RttmQ=EHu* zkL=gxYu>qS1KZ5{I1`S58ndEVNK?3RT&%7fC03Ttivo)%vOSpbyM-?vwg1fT9d$tIBt&=RY zBx{f(XHgi_B`Toj_ri?gu4dAW67U4;+Je>&-g>v_`%Sd9#n4E|BoF=VCi>Bi)cZZ@ zHzv-?qFCCi`6_|bS4s+(F#i{@n{Ex+ z!f=|hY;H?oVb1(lE+xiG&fueXq1uA-7R>1$brY}*B#{_+<_Z^PlVZ$hnr)xg5_``F zIEg&^VV z`{2`&reeHr&SJ!Y@?DX++ioQ`)*Ygu= z5xN$nk)#A-)+N;H(WL9$Cgb+JQJ+#%ZCyBAiXqQ^GF&ra{QXB+ljjJ|%iKdAMN@Ft z@0Qry_fwPERXaMJ`7<`w;y!E@H3lf1Xx{G1si5L-X}8WZatgRthMX;7p&yqJY5!RX zA|horl%c24P8xMK{5@zCM+_a72Hs)QOyu7BkIdK(P19fxYdLT-Xkw z@xLzjl@(r;K?;MJ)bpp3?dl zYjbh@OqO@lCUQ@#V12B{FDPS%gXXv}Mf2>l^H8)^v)+q|tT@7Ga~3b3-ULI`WXP~4 z)cDnVV=^;;vg`75W$I(CvcD9z!@@yAhid;nM7?ELmP^|hD=D@f`s3LvX_Y$dU_7E^R zksT|}c^ay!_n&P7|I~+}GM(0pdqRBe>ObB0W$_>Dc2n?amh^P_%XR#)!^4T==vuwz zX`qxvpLT>IOc#wo_l|jkxPSD|;5R9*EJ+DC0dZK#6~j{j!4tF9gD3AH7cx3(V{ISm z=I`^1w{#z;lGr2AFcV>rSY3`nI9?CdtPZ!)p)n=CLm82ar3| z-e}X7H0cMU-p`#Py`ZN5KVgVVPUZ7=!_HldMi!gR?JW*0EY31IfgyPU%-}%XeKOaF zsA)JYtrp;aOv1N|Ltp;q|4?;AC3%()xVu*ohrkAIs{1xEC)IGvH~?Wfc2Iu(~F z1$?0rPVmhs#z*Dg7IPpK`=ovRkWn&UrZzk>SmoP7-5A3iQy8?T4#m=q| zkTY^uE>4%>Vrilr&qUZieMG?4rrxTIo_e?xnBQ}Hh*%85><91HV7ZbqpMJ{`DNNn* z`^zL(yJ6I`@^bjkiy!F3$pew;UDiX)mz-%Gq-P0S7slOm3|7L-d0b|^v$0u7SeJIT zd@ywzHIjiQZ{EUQhoN#}HP=%U=gOvu?VWZYd0*2+j{uF1l4Jcn8H=_(_y z>p->w7dn+HW=~gN#X&nh)bY{jj}zG_TU}{kczv0XusOo;joh9%@^6VIk#zk_96)z@ z0)kh9vihFlQAVeS>~^A$e&)jXN%KK4A9JJBAWYW(&^0MakA=znob_oUfVP<6*os|V z>k(^7lY|qOX>#zdh=yR;Rher;)Qv-e<9YSQ=)AlY>bl~x_`uQYu9D`&btumI4bFQM z7#P7<%&EgSR8t;Mhv`PkD>Zx$N9^q6qUVP-^IxiSvXsGs0!k0+H*kf_$hPjTVa5|U zb_{N(at0icRrvbWe=aU@=Ot$RDj2#HpO$E+z@>cg>nI|VHg#y2yT z&(-(RXu^`$AJDT<2}-QND-++LMO-OP%gTVE74n2Wl=@69t1MD-a(4{>P?fN^9}*l` zS_QJ^+FBxexB#uwH{6odm@)-v6>Q7R{E)D{Y@gDX+%M^4323@xsNRs3-4@=HPLFTDQuPjT zYXzb2S-J;$KNZ%#2XxgQ?MJ`5%D2S5H}fi3v1zhBLw45ZgGYArB{!K@f!kkSWGq(A zIv3XSRsv)v6?ad6iFMB|vhS7ItTB$>(8_2c3GnGhCD~&#lYI{dXYHzT;ydN|L)a)B z7Wn2{K`krbG#4|u{b@-m{h0A8tTX~S3B|pPAzbNP6eAX7X*gxvUYAkK6o=^B*7YTv zQ8%a9BZ-Lkemk!5k@~a6A{O|Xf`Z%bh$$*^?GWYF_cDr$AC;p7BN1#G8k4u0bAIHM zzXDVv(iVY?p$4ld->CKb!(WjlmgRy2J8~LkEe34&VRo{>J!8IL4u{fgFL#f$rWwO3>aM-XDjKI+MMb{nCxqc5P&WT?&R}K5{Sgs$ zy$j@|WPQ6=EB$nXb&u(9Z1S1#J2eK(TUP|+RSCv14!4GOoO!>Be5O%+)l(~tKAMp-+AR_$m zFmu7~8JCxh&Nr8J7W7|vNsRs=xX!bn$Yk8;t>Kh!Hl$ZWv9c9x$=BvtDE0m}$8S4|gh%jWXrfd@G^%FdBe)3LP7ut)qIuVY zgFN22$|>S1Hs^~Hj&bpW2NN_QAf)0IZg=4>@efs{#re2Y-hJiRk9NB-HWu1-iZ-7WeT^9b7OuT? z)&_PtB*Vr9TGSOmC_25TK2dc3!_eL_@$D2gbr1VzZc5ndw^^HJl(6}*`Aue&df#8e z;~DdZBH$nB3}a&GD(BRztmPMU@Jo%bJeVP`RC&^^Z4YkDyHd`JN0ky3rgL*~jc(yWFG$ssc%@*kIsf#U>@5S=M=n)%x`vOs~37#_|A6@^jYbjvBwtzJyOU zC(D?RqXn`#EXVH@N{aP{@ySf4Dwod+b9*{dxFoo5JA4N9l@w=9IYdP8%C0>_TWDdw zr~(azMbg7rta(O;4J8%H)=edmh;5lErmwILFkOu;Q-04$$i{!YYkX?1+gG;Po z_iJ7P{(qgK<5n))q_6ql!_p9iM$={8wgxLV|4dwLN4MIqan|1dIaU-z%uxv7eQnb# zrle-MR0)p0$bNyt!5W#% zJ~xnc_YNR!Mpy9<4|K-H!JYW(erwvYpW2$N&|DO)8XE&23t0UACI>e~^XG=H(DLEu zxQ&UW5R_+}H~)<#B+TISd%k`qoUIw|I9<<<5-dpx*o@~{Ut4L#2@Fc+wPVQ2%7Li! zc4v}@N3D15N1r(S>_%j4_Y<ZBEy5qD2*;tcD7eTf3{P>Vn@7AiuvO{Wt3=S;BPAa?k(U z>plNZEM_+%%O!Kn45CkM?01-Ak5}ju<+6%#WgB0z2=%eL+o4Y;XBDATLD%rFB^(zP z+%wL^SGkGyL`$m_0QD=|4)eqbi)nD!SODvj^hDR*$NhFuNM@Hs;j0oRahHi*^g{G# zAxRK%fmf{~k-v?_ zI|>SEAmAqz&#|7ZM@otHA>Yq-2B3Gs03xwB%`(r1)Z_mB*A;;wGi~{tZkarNh@KPp3k)23W%l z<<^#k%QIgHj-@&x8~)4;>?+03GCn19S8eJ{io8XjF3JDATQMm2gN4X=(Nw!~(e0Nd3`WpU&2qv?g5FfP05xJ@6k{1lk_&&K(aDiYv`JRg z$McTJP8Af>?>4BF$uVE2(V^Tfso1X7K&o8xY=_u*%Vwm1=v2h0QU{+)N9Vx8(|bQ| z`w9>}R5k6}Z1&Ayys||{NT?nOKf9Ed{w@eX6vN9e0NX~DoQg3+j@QB6o;V-YqDhaM zx?vGzy}PCf%UDQC0UFWo^mxxWKp@Cl2@}>3r%(kwbavqbJ$@g?w*+WOp2ZQngu9_s z(cB598HlFt2ot{F^MS!-Fz$AzZlv&!a|Xxq*!^NgPmKrZlm6I#k2xfCbSYV)h*Vl* zx=hu+!DWyIOl?jR?FIYXVyDnX+GZ%dGgW)9a6F~zs9ar zVrcoE_RqcZ5F5RsM%LG?HqfC3SpoId;{yd4!S%kO)^Zo@Xj;s0gZh|th+5B}8xL1Q z@{^9th&U;6YM72Q;#Eq%O@g55mW_)76{&ou%g!emafEu3!1a5`-dK+-#6jsRYwSj{ zBeBRbN(4(_W-4BeT!@a^Bcd*o@c_NIGjn#5Vqdf}hRve?Ks_>o6mHm`oRkJ}VS zC?`=*zcn_`ta;9|H$9NGWE-P%jlGWSsF_0BA~j#laxri7 zCQp(mRnZzuzyTq6H;?<|+2TPP{K#tpix@wt`?Z2ZL{JPJg z2_4iN^P3fwVdcRt^FaB_h4uc8*ubgf(^MdXS%d=;J`H6j3VAQkBrD=>CSLq z*0rF~<0Cy?Zlh}v*UyGZ6gRMLj=epfuW5M7O+mmVtUVJYG8>0{Sl>_my&H!IekF0u zD8|~BUa3_rm9y#NkO6~OH?A2tkefVr~1$3 z!>PySQ$vZ|8ufDe=lbo(>avT4GE-;CWH|9ojlw+>vOdwXg?dmB)bE&r9zqRG)(tl) z#MOSV?~taX6a;$&XRnAK1dtzZTrArW7KtL+KZ1N$T-G~pv+wW9fqk3j2|08eW^`0= zOIFoKN`QVTHPvFl;=3})m%CXDg0}h*X|v>1V20t^AJhBwT+C9zhsP_sn;7JRe%itE&H_;( zJ1Bp&dOb3-tF%UWft*|w?H{@5QpvzkJ*eKp?5i%#)xNrt(Jr(F#xeRl;}$}|RQ%2o z)?q@R47##39p(i;Y@Uz~MVSzKcRQweJW3_)J~KP@s;PWGxF}Gmi8Z3Izkn|wGt%=7 zYd4tY>5Sk(|ByYs-U`3d)69X0RF|~wjD#Xv$r2tIPhaIrK;RHJxfzRkZG&5AnQ)+a z^#BS$k|7TQTkob5Uc=Elx$uM@&+q}+B&FR!wsyCFyGyEW+ZKDA-2))dXB~)jKwj(yx|jCB0W1*D6wy>Z19oCrI;;ugDSo zK#k?Q14lw4TMg&IPERO7=Mh`W2Cefgx@?KdQcEqv8q}Ai+5I;+*9M!Jgrqhi;6e_S z>(i)1xkx2P0yGP5$^^{M$Xv*cj2aTPc{Poq9b#zXcObn+8+HuNFJq(tZ1+XVf?8er zPXh}%Z8WIs2@^WJigjGN-%fd-*Mx*#=Ts=4Dj8~d@Qs&ld?9gbQ(7Yn=E{24n9V{v zW-N-`zjC^*&0zp9(s?T>& zu=aF&o@doL;P`yI)wY~)4(#l{`oh9e(VDD-Vk116?D#7EHL z$eE)aqoa3(31q3ZpE}^AoZqhO70jn{jmQr5f{XUS(xIufE+^Cbek&`>X?61@_hk?o zQ6YP%`#+`{$X(?3Pe`bW$g$M(98Xb=gJo;Hz$}B zl(m9|%Y&;ykv=BgY@i`$@fjQ2`>h_3FWNMxIdQf_)PoCWH7snfTZVf(OJyx0l^;;R zBYH@4Zne2Ez2fLTiMC!Rnw(L7LaA|4lRX&+;B{q-qxvNdCLCVbvjHTfrBef=&` z`?kG%ymsK4n-tY0-iAH4j`a-!#bVoiS#l*wQUlUS2Sak|lM(DM&yb4skAue2{AOQ3 zSy|a~`9E|nOROM2S@U+2IMiS8SFT(UZO7RKD(|Ci%UNzLfwucHiTp>Q^7+$j@igPh z`sxMzyRUe&2Af-bXc#ywLixrwufnia_b;!frL=%-ocn1e_?Z9aarozC#ey`Ni>rGr z<9wg;@}VM_(YV=)kn?>qYIstKi!;!=h?(gOXJ(|T&fF*^kHt9^NWH&fYi@T`bR2Up zF~0nNZV?!fNGz6t?z_uk)R+W1r%L7%jS6gH7-+-`K;j2HJ-T*udv#`j4uN>@w**#J z7XfaKHP@=1<3bKEoW#FS%^d%yz^?@e)dWR9aXCMV2Y!3aMDcolX7!t8CC5lO(X6j@ zk+!VAf6&Uq-XZy8kq6W(ceG&eKrCra0Q*_X>HT3jKlCFh++Cp^`#zi=5k^(l_^c;D!Xq5lIbiIcZDD z#L!-iP}bTH%M4Xy|Pen|}&msrja!SH$5DbJ?8tkbFcBt!^sh$Qs&_ewusdF)5dC@EEt zTK+7rSS-{yCUIL56U!HMtv`*=e$>T9Wp!eCf+r7x%KM8Zl2_Oa>t2?sWp63`L>p;H0=zl&6pb7)>)S3OK7Y(1`w#tYFYE)MlQwu8f$?cmW3pdrOIPp2XMh+)|X%{OZ z90SzZLxeSFr}}pVlOKl0$8qnp5)s8GMTJp2wMh$x%jl(S8A(t`cydC0Ou%=?0Zi+pfJZAh>oMyKtMm@PH z*Yk!vLYD2}3E%koh{Y~Pgwz{?P`45HTj>~^9tDW))Xp(0jjlFS9B8X*286VE0pG@!jB>s;$$B1m^o3rr;@Z66Gh}Dm?#JION67{(ee+_mt>_f)>E~)cp#23k znQYwkh`qhd686M}<|w8G`7){ddwlT*3T!=uNbkx9MyAdVSBv*|9)gmA5)W0wKZ9tWA7tD6=WS-#GzKeMBib&X6}8r^i2=Gi*F9@@sPellZ$a6Xul{gsrxv*f+w$ zZi=;6yF8!|DN4i}4rDE;VcwP3Sb!Od4FVXU4uEFUL-uRQXn3l0|?ZR)lN)nl$5 zQ?5cCvXUnQu*tMn6BV`v068>h_q{^*+y`uely2bwr->RbWIoz8aPFU`sy8O@fG*S+ z7B1fKF}Nwo4;KpV3w5o3b^?*RMmH2uyTeIqF)DJ+@>R{Z2;+byyxkO_BdeQhr#-Gj%aF2uM zg4Zh}P5RbRdFuA0eW)fXAQaJ!x?J!(oC%K)vo3Ow7qhO`;j}GTcWROIK^(tp(#9X%Yy-2MMNIo*ApnU#yX6(gC2I|}<0ok}FF zzEm8quvxif*|elZf1=cB=PfxC8Q}&bhQ?0Ov$lVH;FLs5j$Xh4^CQBVlTzGgg<;L# zYD&L%Pd-z-J0%EfB78#j=z>HZZ4@9~S(z>?PAu7RUcH%osB&Qmd&=WEQdZuHz@QTm zlvYg)v9eg=1BBR+`{mJZy2XSz4&d5-RS=JnX+Pf=z%nYga;tkaw$*9POmm`+v>OzB z4N3C;&z@k>^P$k0)!J-SUGPuiAcn5q#7si2$cOSY`Vb5jwehjM6nECmY!8>N+l2vZ zmtH!=z4qGfidxB;ugqP`zA>ipU0bdqe^O&d9}qmFGRa-sdfJ<%r)5Gey%)@1{rqS1 zq3aTBn42mpMt?VQv2G_`b0v&oLh>sjGskzSNhaV4?o+LbJ*B%Q%q+7lsEg;4TleWL zRudaPpcKjCv`j>c6s<{R7;B;m`e_Gku!i?Is}LPvnuF*gV!B>YMEJIfUQci3Qj~Xi z(MI+f?QaSXBvxPVO3IXF=IgCSF_U}CR`0c4ou4xR!rH!L^7ïVye^75}Urd=~@ z|4C~~8c{+g^Uv3UR(Vq)fcW1&c$p1xD693OLjQw9 zbh_XrbLMXhaXd0=nbFOc>d$xypD%_<@ z86r_{Z^q169#Dak0W~k9zC-QZqmb~8A)ePwj05HSc0TquGpWxMI%7_=P>!$@4AGz0 z{g4H@P^3P(V)HetA^jf2aLpKrH&itH%uWv<9-g@#aNB~8%ZvBN(kn*3s;a|+9`G5YD1mHUA|eF+;-4HyH=O!WwL`lpjdtDRI&dBwdd zhRUG>$4E(T$-f*W*!{Yp6HAzo+W57vux&ICeF^=&%q;80AB^&^cAI&zn!v81?4OZb zG8fN;3%aO_8 z+a30{yZPFg6rrw(Vmw1T^x{MdsFHUzD4n-^Eak<8pUm~5*3!rXH$!OTrO>40|JHK= zDv>x9={PI)?C`hMU+E6oN%Y)oESVqYBXS{BIf-TS;()uHsic6vjO$9;e^(jzWiC49 z_9=I@F!_gr)w3SC`x7eZ;tx*+Q4fk_gVg8{>VFE*9r?InRn7_P#pUW^G8hboS!8tF zFNh*==Ko}O{}}(|ZY}qz&vr-iSYM*;UE{~AA7VQW@A=-9S2!DO^@`jSf9K_ci9-+0 zd%~&`BLSk(GhKey-*!?eN2`MmPTaKg)~09F&;o2TX}YU1f4-cmnhyvJKM-yZ-n`@w zaCAZU&q=2L-tCa`K~%D&_hY>oRYNUM@R4;J>4j*Vr5m+Ax+~5_cc2w*-lV)CL!Upi z%e=|zonRKA=Ys=aMJmS{&R_BdD{^S(zCc zft$s0QH(C_>PAO@8|{!B)~v45@Z7iB8e(w_JxXPP_9 zO<~HW_0m;~ZhR5CncZIM#H?O9>EUVuE4F?#i8V3{IWxY43wpF})7?cfJ5a6c*;0SD(WpU``pgcNS#8V)=Ymczo` z>!W4OXN3O@r7re(@K|Ui?ei_jye&YfxIJdKw_3m+r8?C0l$!iqR-kvw0L+-R*;(gc z^!D*--F=M7LPEXW=2`n8%pVrieLDP{LBW#WHAI|u^drMIx?LnH0`}RD=JQQjp5GyS zvjeqx)b}{Wb<w!XCmf zz@5!+?rQ)<|8Mes9$Xmdn0jaTBcsyn@n?qYsgsfHf)nMUxTK-q(TG^p!dAmy1vhzE z%Y3O39}n~OOpOZZ@xM9+jZEUbz6$fkzH|mql}$0=m*>p=p-xR z_nBPH4f(ktOi-b3TXe`ToMz9pBkz^PU-{7)ninhcpLWkaw&uH zOax+V7t8||8;uzTuTAuC}p zNWeCIuxvs2nHMR~WO0cFlm5Uilk>p1WGjVVwGf*LK}I&SbUwtVtCVi0=6IkaYDpB= zyxrAPs_K!PifE(bD*Nr0^5R4&6T%SpeBku_i5j^wv5)aQiVe@dn(3E(h;2}kd>x)h zRbed8X3vg!PPDJG=5B{@*7Y3_rdsc=ti3%7S5=0@Pk%+PBP=i)e72zOFsVA-lpwPY zq1rfAA7>|<>?@?u}x!e20tuy;*owMmV(okWEsNo*foTN4$k zeq+`<)xQ2wm0Z3N6uzV}pDj|MxlwZ23p!7m#YJ@tAvjBA0~?WHsa+YI5&y(e1TIEI z3FB#qOy0HG4PsO>aEi*jKI22uzFjc`lcyE!06oU1v*}fdR3DS4*HUOeuGDp7=1wwX zpG35!Yy5}Jjr+j0xVCG6{rToi6xCFjs}!kwFeEikmdkVwtxI0fvG!WSK8zsuJ~04r z{v^ZZD?G)@UyU8ZC)e@cQ|ne$&wx0rH^qrV#qCzY#^|ye*QaqrwU-L4aL2i%q&gf< zh0|_zjA51R#guN!h%7Lu1MXF)OaBQ}w#D4Aph9fkE zdup%W5CsdHa_0dsck*-Zxcf9{Pw&U?&pa?v0P zDdWH)Xjav&U4F>cP})kc@&KUNobmvoyct60Q#OVsmDdZgp&=j{>M~Qb5>M6hE)*9f zQpw|Me$f8)^mCtq_VlPLa(-pL*r?Q8NAA<*9R$hC+ z<;DrkF)Bz-xs4zp#w;O{v0ob}fxZbn2_;FU*wz1K&ecWxuCUXL{$YQe+IC|D3xf#= z-_PeqUs74(F@DAF00(2Z31ywEdy=#9k&dM_w?;w8$-@JNtN4pFt0ZW>$X`s%7~P~d zV-Bx1gtcC|c0~NB&+rK}LEn2A1JJYSCYBNRJA4#nJ1N)AD*8QE1!Jl zNw}uzzUc3-*e#YL7_eTLFdTpvE$rG=XgAyRj|aK+@%FpZ8!_*A+cq5$?;Q*4{hnMhtNhU}I~9aT}XvUR0DLBF`rt7UV-6tqM$Y zwT?)h2aJb)$Wi>@>-P(qE|@RL)|@So)i0(g@!9RyW;Fhi>vSoaH5>8OLB#9P`2XFS z8gtTn^X`hE;B_#L8+m|$Sq`Hs;wKku7-SPBY+^(G*1 zwqABkN3A6Mw?7O#EC0Jc{df@p>IflB+Haf$MI4_372@lNX?dgg3tUFeKC22Trf3c{ zmwIob!}^x(H&K;>owSMQ{D(SSX))1MbkPJP2Q6;k;FwK1hO$9}l4ExG{92qbFu$t{ zhx_;()AHi-yW6(Q?-?bX#YxvfoC5jn`h98_?qiC`fn_U&!R>>Diy!%CtSK?2TYW>T z*NRQuaF6AA2kwa3Fqnkw1p#|xj5`llUx|kJYWO{)GmO{vk-pjah32mgaL99<7sTqNwB_dxA@jCH${o|)%zD>1X?6o|z5)Nu;GDUFv z`4B?P!ful)tzxUQJ@MNI`llz~f!`^i*;=!5-yGa=6%{sD3&wAjj!0^^pMC$*mnBvF zgx+qlL$XF)-kwChW~S25C#Tc#edovbJu=wSD{$;XUM@MEZN4Cz@;gA6Y=c%q*VmO zXgg#67-VSV;4^(kG`9HOQBk zm6?w+p5wf;3|V!(yp%}|@n34Xzu@826-Ik@6d((FQCuZfE!>PBRiLW?-o7WC9Eb_U z%xE&+-x;MDmAbpzANzcom~CLaIi1K$C#rs7@$5n4>`P$~=(O3WRc>0s{qTmVK~!cJ zaWBi#_alY2^$mP}Ko^PfsotRRq{Zhyq{oYGFs~LFwTYWMUVU`F#9La59jKqn0|7_7 zyS^>RjATIOH%zi6wA{``gcp^+mZCLN4RBv zDYUpqb8|b>$NybvmSyo*LUa^MogUs$s~LVw1@?LI#I`t=!5$8<#c<=PI9X1@oBe@o z?L}r}Ry`5ytub#+w|uIq!O4OkUxOV)nN#{3#fF-UDsC?Bh=U|hTx%imTIznDb99&! z=`s6x{in$Fl#EfH`zbBj+#x9lDVUhRidP5sQ*8P+Ob5;9r{?DBP^6aMucXD2jrCf7 z=i0enooJ0P!LW+9;2RB>!j~UMOFXVhtYq)orZ@^_mkoCIL@aSTYDmU{zxFd(^lki1U{M>~sKaS4A~?M|zveX)X^Id-RqnYl#nyZe_gbqrWCSsm;U=HSM!8jW zeJejA>nqm%TSd-u2^HaUxtl{_N-B^8Yt>I<9%J6*ds0M@-Va*^xuw~um!7c^w+Ae(w zR)$weU3H^Uuk9E-)*40Is~<{c4^i%~;=@NRGo{oHhSnodn}aPVQB?eksV!87(p^XrQJ3*^8pXYdKXIa~~^25ItL4mi|1-gvGre>e_UA z_xlyF#at8-rZ(8OPvjxQfVd5IY|iT2dleH^5V%wB>ddFoEQXi0nF5sHvM1dg-SLAe zOS&vb733!_A|gAOrwAZ&KU=H}*!~dcosJ>Lx*I)1_d_YaB+;0*SN-(vcpmAn(Mn^e z0dQ&{jDX5Nk5cJd`UlwtgRt!-a+V7H{!p-kK2557AShJoF!ZNry|S3Uga^oFx{g*P zI(|e8Qx=@s54Xx3exgXoXI3h%Wd>fM*Llz1(tas{d5_N&DK=sOM@)1b=%Im01XoC7 z75kR)K64C6VL=SV26e8WjJ%D&t0?bAa~fn?$nV>e&tKg&Iv46Nz+46`uv$|&nEf9Q zSk?^th31a&(NEylYAL0iuVfpAzr&IB!+OLivc3?^qBG}!HNG|TS9MFD82I`7(x?pSd^YGm_7?_(@edKU*@{_ z%w)dhD8trL;(&-9;{QJR)tfm2gQ<4EHwNArEemxB+asn^obsla7i!=-dN<#`&{rMYlNFk}H~`4dIpw=A=cT-l6B~ z@*$p{KB)Uq^IGJnejhU1*Q7b){tJ*}UJ$bPx7msnQY*jaRXdPk5tVKPR#i(2%PNKg zhz9w1iCzL%X(D2#p5&Y$4v;tj4*{%a>u)Pg$soh0Os5D~t6`Xu?)#1_KhZ9~X^^BY ztw~b32)K^4_XILVOGf$BxTMtjhvzEBt|4F0*{Osze(EU+{DPT7uQOLkf z+vq`-=2selP3V%`*Jufj{ru-lLKg}D$IB7=?lZOCTUSIa3RE0G?w;2e*s@HichNNy z$51Y<|MJBj;LL34ZI1ks3y<@?vIZ7OD~_lwd~Z(zE!PVt#TKYZBa#DmPGll#(0JaH^l4{q5Hy&LLL;dk3W zranf4o?UrchjT+vscoBPgf+@mB=+HZlNm^+K`Gl4_{VNC)Z3VhUlp6PgZHse*~Q*k zqM?Kagm&)gXMo0`d91Yf=-}+unKA`kd&@>#FbVClu8rTb5xlo^?1?F@03j_?30uzt%)_bd-8TQ0ihny$zKkl)Hcmb;v&+ zE~Nguck{1cp!O!-y>j?CR~4=bUnLE%$;)y0Z-UFEqaz%?D&|WQ*Fr7u%>us+nK_Y;1g?oJf`nu_wrJ@xE#a}|9Zv5FsQuc3G@VJBTApW=VMbbQ*~%^p3)E+>XX&T2TXeC-GvQCL>e8R~ z`vTK?Y!VSjHFnw#V}!-c{4=hF%6MWOcq-PHbFPlI;^7vpdWKVVb*NASzJYI!E2l@u z^L$Y9K5N>H<%Jd2IqV;HkB$paO>u~3+AAy9K`D*b4WmkmQnsH9sed+bU21*fiyxq4 zTDs6fUN6`{(8RElH)1Xz;hY!e_eKuVWx$??ycWU79L%OYm5EnyHFc-Y;?R4g?O zRi3*i#|j!ox_&3-9i+D52C$-Ho7~*iT&wMII5Y{WI_%SoV!ZWKkVb1WzvuaL?uS~p z(iM*SZ*2@G0AfD*TQuMLnv^ufKZt4BWiG#_s&*@p<#h==_FiGtnc`g52X=IU8kQCJ zk6^a;d-{bzAf%3`^oar}-G*I$kvuo8c<4hZ@9(GAs}L?w`UTqtWwiJ%qtiJ$P~f^L zju<3{5G02DK9pLAiXwQTi+sEncW9#9uc3J0?{&i5qXhmbmXq>p`5}V|fr4kSD8JU8YheLrMw_G^^fklP@lcYZ~^9 zn5y2LPw(zf-u)j)V$#zV;yF)aHM!MLiU#SNK0jio*=G>&z%|d!ad%IyWqVmM*;U}2 z%l}Dq^dn0g|2-0f;c848O$TcdE^*|bT1wOb$L#S^Fz2@&oiPQ;fhZYIx;*5 zPK3`5w+KgNTtR9|A9QoHm79b8V>Q#7+XC{1Don;`*`FsHI=xSsc45p+I=yTkR%Wqh zayLwyvte^D_#vN@y zbO?x#vr4dCcCp&8my4`it}zYC{|jNEHx0JKOq&S~xuenhZwdxJ*Y;sZ;_VJm?MCEC zY47_iyUAKwg~=E*&$nEDp~k9`)Z=wJo8;PGyXmEegB~#%E*Bf5Ohs!nc|uOFSrrO~ zgb3mTE@#=lGmyH(os==|F^GM^w9i35+q>He5_%e*H|0R|>)4z8GPe`$__#|H zWTSCgf?k0Q(yiH&Wm>Y2#IA}W;8N1y-e);yq=qKtysr-fd9a=%-vBf7uafV*Hppr) zovRE`HLoKPHhoun)<;!$+|t2-#*v**-zERDJ1%NVHGQ!$63jX7aa1IQ2>SKPlSSYbbTW3RT#{IAP@e*+YUQJf0y7OFI96GgfcFA`oL6;eIj~#Q8grS!v##9%Rj-r ze`RG+KVE*>ai&&U$xbaKTqlK3*2Gu!)w@u7VmB6;&j8I=4Nd3Q&xf!P&YR5hJu;5No@oRj0spJ+k0xR|=spp;Qt>kF)Sz`$wB!WAxW zOL{-m1BE0`Bo!w=!WzfL89AC+q^l?3%kP`=QX%ey2n=3t)5&2YA|i^K-8#_~|5>?o zx&^+!dgGe6p4^gvj9Y+b1c_1)yOIntaWDeEtnD6O0rBHMAn6MT;JgfC$n*oPhKoJ{ zP5}Vu_1o{>bKpT{F3wKgIjS^A@g=ouW?<53wY$1pwRhk2$4*O$Gd;HFlSA0N4xA;; zkC~q)=L7KK{SPA}9vD^;ie;wPDrQI4@2yS_8M2;F%m11DZ(a&f#)$%TBYq&--j7_JjgKhYv=0 zh0{&p+<>L{JVnmCeB;Yz&q@4)^9AhK7eG|{<(>-n+-~|)O^x-py5Bs)kZsDP zu6#w=yl#e{`%d`H4Tx-7Rnb&0jx3-t8LBkO(QH&5X}U29WU8*+&Gq>WZn{9Dz~I&x z{pU|^=xpw%zslwOTkBziFKw2_`V-_P!m7rgX2|1HJ(9@sOcK5 z`M9SzkjNU=a8w`U{%CG&M>Q?tbd{UTlsM{EAd!P8XX;uyE-Rn+8A3%-(qn&VA@Tz1!VJTXkc-to+`hH5lc9Px#wN=D#0tp{fBtQ&(44WMt&n-u+aG<}l}RV|zD&yO@RsJ`(rM zr}1oYo&Fda^{Rr`yd}K6L{VQu9d+XSpB=&ll=67TY>5~B)+e8_zdIK^eS!rv8G^PE zd2XtwT?L@jz`khM;)|^j_agV*DETiTh^SI&qf7Em<{av0h$4!3 z{UQ4m?+*W|3Z|&flg=EWTav8heZq~lE9hJipLrFAulVeU=qXo*2uDp#FENruv*b4Y zUkn9CC76uSp;k(qP`e0#jk23~jka{knG4>53~a;K)+1VI5H!1|tU5(m0oZ6uyKBZX zLrFzajfP9*a}LKg^)B^M9qHK5oG&Vg&=X-PRU`SX?)GW|Gm6R>j~p}~T5kmn{^cDL z&A`0A$CoG~icr?u3$|^>*N1aTs;Z7N+OGB&Bkb&+ah;4Gc$@x zO5KAApYIN<#^lk1Uf=LYLf%F^AMmgO)SHvE^P<_>ekn}-njB>oTyh%Ce>I&Pw>{cp6I5Id8;9-0>L@svXR#l7|g|87a&Dq*}w zu(*AUC8eEFF_T;SQ`AJb9)V%0-epB-fAQrt&LQz8GE|KFY?3fvr_^*9h$+z z0LNT|4oY3}XM9UHdKWfV6}tU-0&axm#4;0-h1o%}{N1!BXI(-MnCUXGnATU=C2BM& zbV1M*geMpQ4v52|f3yakiia-AjPFc*E0fc_d_kXARB_gP`Ps+O356}KUM4fr^VqL$ zdB5T4MtYnj7r}X_MfxwRmJg@bsX*68zxW>w*uj6))QrdRIm-dBr?ZA2%&|Y4f~Mw> zoXqo{7nP5@QL{%3 zdT$7&lbwjNQu@By@6nXGogj@s;=gP}en{pgBK~-3m$+DNzqFCWFzJn~4ZUPQe!u9) zU@H6N>@@3Q*Q~J2hA#NFXFEQOOfkQGx|G2j)yhU7zWLr_wzl-{pp@=dI&+x2$)Li6 zU^slPQ$g&8U9e(%(tcKo6*W%iMbAeq+d=>S5mO#0wQc9v&trm$JVkiULi`Hr0B=UpnL6^#(Sn{I`*VLycsA{f#TMmfc*b-&5g znrm@X#1IAQg!01(Otc>ao!W(lzKMW}CbV{2!BB0FCg`oF;@8zedi7tyh{7DVgo+Wm z2Pzk<)I2z%QOa(f_`Y}+mp3f|Cejur-|gxZ7J z82;yE@W;hAm-K&z%&jJ<3^@R;dgJ2h%zh%#hnB?z8Lts!5x(V_^uu8hr{kc!ss5M? zo-J*y?$B3D9hRJ&!f7d)3f%9QBCDg{kIghw--AWtwkn_Wbln&rjpQ!bk(S-TL#*xM z!hyd4KIRN=(8hY$bCH89u3*%|Owdwc>u&L0=JvD z<-_!5u1HVRq$?v;W9(R)6$K7+%26&n&{j=w+OO5nkG;B5d_c3+v zgJ6zz5H96>V_VEQ&jm^9`zDH~%ATAt?HW12f_Z#m{Y+TZ+3bEr?Aj(P9ob2h1Rn>< z$%*QFE3{&xIY!1OOW_WVm6abWb4yK*^XWwosz<4ebY|2+WoWyDJ_ie3xKHo1{;XJ@ zSAm=LM`9|F9?@VH7QTrQ%c*e4p+ZLasi;WG=#Uqa!puvfg{?7Dmi^XV4!v5`ssubz zN7s|!Y%E~%@kGIl2%4Rpb$KzZ(a>DV@7vG^cx8jT$0JW4jcTbJa3N-UHdAKcQUO_Rr=;^knqO8N8lWkMNVC z?6)F}qbESYd9iu)P)IXRaC%S&3|pXxv6rIK1Mh(?*hAu`q*CP<{d`tIz}3(hUq(BVXKhb)P(Z*Qe)OTxSD;G}E$b(QNvn#Xgt* zqkSvU9v7V0nytaEFV5KuJubVq2GRa{e4b;=`z>YmnyTozqCuW31@$-H^VSAUK;1Cj z6;iP|=jY`@THFM79FgFKTvk@T>TgZnGdhu74kO_u8r8BG0G*2fS=y{S~CkjON zB`K#IiWbwAKnH}Qc?^dtmiC^27R;_LCz!6TNIF|`cSmcdXbPn#fSNvf%%m%?h~pd% zk7rR~9^>0|; zqy2r{%+J*Jap{Y7^D0u0jP_9KB}a@X$Im{CHX(BSL6ljMMhk4r)2CeNS17w&A8^)l z0deEsFD9ZA*R!3c3Gp@fHzkt1S7>x3hY{~?-+$=N;49V^nFMbTaP*1G@w>aosb2n1 zPm2a!(Y>z6M1)L84(KW}*_x-Or0S)j@Aq20DfSQWYJqU6yLa)mhmv8Strt~wf-D*4Y z5-2?7eo~#jqGRs<+}wFA^Nx_jrXe0WIxK>CI-?UE$`C}(pxNavb2fX$|2kMdf%*s- zn)Lo|R&>i@TdFlwqxiCTZ1k7q|Hl&)Yn&m+&zf7*d*Q;Zq$-s>(yQClLQLYTGLBkn zhjUYfEi#@Kb_9}ZwKnt}l`scXps)7!mgs%1L{h7B6GsI!=R>ot^8opYcYg46O~syv zJ9%umiunhslhf$7<$FGNUpp3Sym^nLT&hVEqcsv#*uQT-Tes<28ec26?R@}w$<3UR z-NHor`oYedvQ|l`-%|1y5OQ^0~sAb)<^60t=Kt;8?xPgOeT?}te5xoUQ7>O{gFnBU; z-cTbE*}42^xiDpAt~tc)nv-VitRBD z3UU%kQD&Ah+`U~_WE8&v9oeJOx(y9C+q7%_y|1JP=RPY!T9$(whq^k!p7uj7j@n0S zK0^c*hx1cjUK6NMQ0_9!m5;bHY~r%lD0mT}c1Q}sZRBRJ{HI--R~-zFR1)1*&5TZ$ zLB(lO+vBehgNK#pYxd{on>Iytb(~8tV`K6NOj?7kV1#eP&G3-^6G9(Wp#%Uht|5gF zKC36(re<9>YbrlDhw5~AN73E!0XcJy{V0#<6|3rU;=+~|iHXrLTh)hyyzsU+kGiBM z6kk(H<%`t}3l$YiZdOfn2lvI9hP4{ocGmIQ&umhh`;PP3r9TvWQ~Q+q-#@+Xmc$i!vaf+=RfJlYuz?H#?j})*-X8i@_8sk9crIW=7PcuwWVKl|21{Ag_Se}O0L(HvaijNeq1gQ^`nX$n zne9E2qT9ttVjny0PpUrv)B&+1$O z9(&|(a&mI|M@Fo#TH2nk${WBu=v_?P!!fr?sYVZJ43FT~uc+Wo0(*B6tK+vb1&eDM5kg1f>mb4n zIlCtxu&qDdX@9N_(nEF#(H9}77?*UZ#Z$I!k*`?2OuoDh081+aDFaWK9IB6>+hI%P z3J{)LUmzuAge0!Lg?^h;Z9l^nJP+d>8_F3zP$Wd;UmryjR}d^#7*fE&r7wCpk^$UI zELn!%JLg1v^=`%3wvGI()LG9e=D$Sd7bg%$?1!m!aX|GuhsPV+Vf+yGBVGP2;co#! zjw$SpHeiSk5ENNY2*kp8t4BxMalYzZPpI{eyl=y(x`t?)<&^=p7kGcaYB^=(50Liv zH|%f&u2GF_ss<@HN@`JEomRAp)nA#Tg0&Z-Og><%;>!O>9)o zL*%&r7gP5{a$FDOgGEMWuHmc@5*aiR=+LDMx_&TGo@42aVt!l%K~t3%E`MVF85nsM z=1_UD9GkFoj{BjS?@~|kgLKZS8~dq#rp%FLO5qlY*S+8%QH-AJ`r+|%f=!P}z@!qr zO`Whs5mp)k$bgWDZ;r(Mb#c8wCmMapNI{#9fY<3iKOT<3gyXm|%W|hf;(~5Bq<+94 z#YfW^!J!M4*a`Mz)`X#zR0%c-`g)x#`u<6qpQ=@8@~410Ol%e)>ywvob2v# zY%JH=+3O5-@;6Dq>yR1}?9=}SO2kuC_`W<(+#lB4Z(y_AX!RX`e{B_IC51NYyFuMv zkiH4@Zq3@OTL_uZWYH*Nb6HOXJvSDq{7keZGKnOxu)!g}S7w%oo|cilcAxix%fsRx(xO!T5wW zCrbbqKO1~siiUtk1XJ2})6&`RHxaxdTr+yeX8ygoX|kR2zfxSbpSdLc62OjrazQYm0kGyxGXDfFK}R zP#F&b8Xqx?T9F5ItZvz6`-KX8i1-ZQg{|k39Qyjz4R0#{GybG}HT;Ybhv#402n*l~ zn4(x%4-ug!#_AKZO@|h7DgUJNMHx10h*qu3l46lfS9|5}h0DO+AN~iwiWk%kGWu#| zItz3uD;Lrk)VTVeIXs?Bc}Q=M5s*Ii#Jb)vGFeVa)Sb;`&q<%! zfJIo!;CB0kVef7K*hxK!=koy#`n(F&MG|ogh>kN1i0c_4cXb)!0|!k{zj@@fPdIFb zM<*5ab5T!Zt~`m-LgEtQN>t_u8E#qCx&ftx#8QjtPoaqiyN$k7lSpcp6B}`VUHoh0 z71e2`!%nKFphoG&ub6IrK<)mnIHNpLZ=l6roD7>^LDjJ$2i<)SlKfQbWp)PB;Z~RY$Lo zvi^xI(tj6$92-pumnUEbd+B6|2ZR#OC$=ZHM*?%(0dv*Gs4?1+Er!A&%Qc?Rhb*0HD7@zYNIA8j4TfJW1kV;N7007h< z27vyFjEt@#QfsWt%hC_6%}aHe>`0831_k@U`?vQ&z0MRFg1YaIEx0V16_dW$o^e8EuSbg3-Sc^u0A3`IRP}8@vt>`a;HZw#Z^ob3CK( zmPM3QyAxpp=}Ix?89E?KWZ)kwF>G z=0l-s73q$a{N!m{!zKu?5O^KOo%a>gL zStH<@3n_dk4gp+(!-btgh6O+4A*1JWVS0kE$El!{{ zn1F&>6057Dm3ei4@TDOC!eZLhLhSJv~-;BBUD6&Ga=B^I$zSP4SJ?OpNaM{ z*r<^Mc8)wc3j*S?Qp0v*2N2o;S_I!tN*I2sX!m!0;q}g-px=ful|bj$CmaEEBb^&^ zXlsr*LC83g%4+;&4Bp>{in9;?wzbKQhhR`ivcL|6?^elX|HcIuY@xH+W9cUDzuBNb zBq(;V&JYLlMbqZ3=0Hd7EC?>bPPa%alXFbVeuIlmPoTE1RlF{(z^Z&XD^yUi;9**G zE2NApIuDn1 zS7ZGr*B7)Luh$eL?^}_M|0r8gU4`CD)a5gSU+zHN=<4wUS-!4%m-0T>eaff$qFss1 z=r(>Tk{LOmA!_DPZTGDPSi`p%dOo3JJU;Bl%l@n4{?C9)g-0%t;>u zlLe2)H+;(xQT_+9^4zyA@jDqXLK@A`P*`%YB@CTXfZE|7lt1FeY^e##_~f>&Boj~4nqq@8|&hHP0it==9qO| zgFOdXjx$DzM>~}VZj>a*g4nZE`1@zGHXRnaV|*Q`s6B;=w%STkkBjpGah7JC7>pq1 zY9fN7BD06&m1pb9e}5@~uh9Mo!}x#h2T%4ES`Ptau0ZJp3yrms@xwB=YbLstdonsr zlG>_`+wH8NSyYW=a<=I4J6!CXniY`d`0yXgDHc~T%NW-QkRYc za#cb0U9uE1Q{dNyeHbv4Fxru2-pSb6dU-BSBzpeSbW^zVnkezVT-VoXVZ6FiowT=n zpu_vY_D=>uh^MGWRhaI_^TTnmNJ^Hd3&gU5dGxNk5cpe{MJJG8$V&RL_91swQPDdR ze{bWY{0>6bd&C*DmT4S$;a3;|MQuP^`z98ztQEAK@s9k(m8z0d@7bwA{_{NN8)^H} zjm1E?R~^KLfLIQHAI^QuBA@QzR|OzsO^IThSrZi%TMy;=v7{NJSaAc-aY+rf)VXt? z;cD~BFcw~tZ#hVP8RHAkR3Uj+mJFJTI%};>^3&LvzuR&i=#4d*K$?EbM*(`d;gD9c z^(`>I@%+p}>qA4bv=Ebn4JF7d<~vX|-E^ykJ2DE}X0-ZK(D3JuFhwSa_F7)bijCuo z_MsjS9!tTXx^DGqSR}4;f6Rw{SbhKtO12n>NstW&kv9lOlBFGHJcr7HzC2kKnti-bv(hX+6MZmdX@jgFK2>d?50@HZSS7lTmt%Y1l&1C1UFXnvifX)Dd=O6Rr{5LnpGccLljK2W=JdbWJicm_bCkE z`kr@^zIO0}4Fg8p^%M*)B&mpG`J1=!pNLk)_``)OSYNCRS6um@cgtthGHzUYZbD(5 zRKeJ%a7#ev<@gidReB$1IgLn-Wxd03?)~-xwe!`6`vffyUc$)g#l{>TRs1XIO{pEk zULV1Fe)RWN6LdX+(-UU$QN_UtHPRBo%vBT;n^HlqKdSW@11KE2_k3ku-Vc^<}L80*AHaEwVl$7o_6P`5! zndF>TA&sH7NR}T6^I0xLFmJk!$!Y9iDwGr?Xh0J%|8xf$2arkF%6qt7&rEXqnBm$u zFkt?(jW>nS1)6kT#j)}9^ah3nK?_>)?jh|-{lSI@ES4hg@d`LZd4F5;-WLw9WEQ?E zgXm;;O!|4&pB_}m185(RT)-EvZu66#7*jC8QD(4R_X z(SJNEM3yZF|67?anmv|t*1@mE{x67nIC-sOD-O&f6?9jgSsvm=e6QU96CZD+PC2M0 z7C0jjd8~KdCuabf6_6AYI0N=|^vyX8)~WV%j|QG{;Sh&5jU;h@z}f)>3DsiGg#4Io zwfJkWPdT!ANBmjX6PB2dnu|5o@%31>KG!@%bhrj1JXj_4v(9ms*m0sIYvq z$!$>q`@)BtuC=byaWPTMsF${7|C}$2vqm;;^dtdzu5v2jNLfSv#6kF6;BG+Ab!`VWPOPSZ$Y zFUz+9A*?LvWz9rB7bi$K_gzxlPo5sA+uc9A*EmXHTx9~JCOU8HAMtbS*1HGo5Z6S_ zc{^L+Q4CApvmgL+zn|yDZ>D%qJ~=pQVr_?fI8#uXblsum{bgZKoG^)w&)bP4=r9nu zqCzv3CNf0LMlRnzWHE*3)e27bG;LWRztU8)h>0FuKYAMAY2HdTiJf@%ty8utmmJDl zNk&onWt=fUe~gzN>cGyKk!;%(JHN2K0hm)CP0tIka&YWbXsM}B4|E^kb>H(*aKNUT z&>)+?D(Y7*hf8I6vZ|yfi>o`1b&StAJIYzS1$(J4hp+NpdMV&5q)> z*8USNT+yno}N@knGw{h%=Xc zaAMT4s?1Off~Q2m!xfDR2W=W*pZnSe!YaPNqH9|COjy$f@!mgFvERzYO_pOHnv8W@ z?`}fg3aD|Nsr_vaddX^WjIqrbe0cG6NHLFRp$)>UfPzAi|MIK!<2nH(9Bq=b@7QvZ z_u|x5Wqq-VK9G(adDkWG!x2;0B{*~qWIJtPx_>zkaG@Xng|qw}Vv*pMh`)Pc zB(u&Af@sM*a&OboNTrC6A4p+l&br{tI_bW=@F@-Mw0umK!|4bAEUu*CISWKyFocqs zl2`6ZxgVfBJ?ld)ZzhRPF@KjDouYuA%-8Z9xp1_=E-Yy^8G*^t^}soHHng60hg4^W zqU+FPo*U|KDKt13nN@`Q!hpL7+?PXU9kOukn|E88}nnd!8m;&TI6i{nWx_VBhBiQBi|~p&H&3^=f81 znOP~!PhQWQ{Y+k07$5LwPd$ih``A*8#!tEgTS>yGOV-s*V$)0Fvrf1Ra5?-F?e~7U zc=5qjsf#6&Kl)_o{bk7L{>q!M4TIH2N1uevLWRys2*iXdHUe?k_Wh1jWEDnXk!7SR zEU=In_-l56Y62lp_i?n`fwsr2pDgFA%hqf(+8#^P;Fcw4Z5`af=eEwxE0)Irqm4f1 zUlj1RN9ou2Q(cryE*BHDbi-Gj@y=>jZK1HM=!n>mdf9j0YIgao) zzEjdcA}8F`Mec|Vba5K~gEfcQi5!CB&1Ag8zXG_gFS4jqsns>Q!yGEsf3ey%7?rh5 z%W_Ef#`q6Fl9O+Tb}9aS_FCjlD(<~5cqx>^xnDl{4TIxfEPZ(gAYVdxzfi)ySvst1 z`E>+D4R4R+V^vIEcP~@4#N6co0j3NT)vtqAM zN$`$iULKxozB4A{qNp8U|E_SU7E&W3^z+MDzUnDC@8FqePtgX>VT1f*kY8|O@ywK zQ~aAXD_dF?1ReJtN#kGWSM>vsxn*H=E=wunEOt%YV>=wpQsh!A(P7AJ7O{W#1dN64 z5SSf|zGrYp`4_mmKV!;8!gFD%wm!p5D6*ZE@Fe{}&q!hJab461ESEcJ5Q`2yc+d4y zzRQ*Z?Q(zWc*GJlNs8k0kgQ7LQ#H)*)9!^xoVU{@oZdVzVj_G`)miVLo2_P7*ZiO# z$tXxj!oe}}?SB^mEqFVQi7GQ2T)juPenAn;V~Y3*@w=sOwGawQ9{b&Rx-uPC26*uv zyos6Q@tZ0VYrwHC3%Y!Ep_8PCX7gn=#)%(2-k+-O?|FU_n!dPv%8FO2{6w;=qSASy zJ0-ES{BfOq%jxC(dvE<06y5Q(2##Kh$}>pxS}R6o`y4y{tf)dSZy8dhVw4XO-vWa> z#m;L!Go0h7b||R9;>l?~02!(OJ8d2PI?$ z$)>J5g1*;>==cM84*d7x>nksbYethfWP4iPHKWcmPdZf~?ug~|NelQyqSmIu)p=RLuSPpQiUa#NJYaB>-efR;7_MSP%%qaN+Dz(;0yi7N)KOS&_O%Gowky>01~7SAY+_e&!p z9<`Ca;Fo`-5yXA`&GY2QXs63Yr(N&<(hX3g&_3+%Hg+5D)p#v#yq840Zr?87o^Nm3 zRSDWO${^rwCa5ePz40nEXRyzS;`PMk(FG08Pa%Q}&d~(B;D??k3?&Q{(tq!rf)Cv4 z@PZMYKjyB9t%ZLUEYYMKoha>~_aVM$T49yedwe<}?2WeOpcO957&FwZ6IpR+FiNDa zTR#)$z~^E%fy^lryFOxG&y_WvuXY1(XzoEa6&D5CcS=tcT-^iCpOPdSAA%rf@ai zr}V4@LIqyZf3t1_%X)cqvZ1;F0Sxl z^$lNJN@Ls;WMx&DTpUopZrJS_ys&ls`?bVgxn?zboum^7Y$|T|d!t)Ubq$ztKbQ#@ z)Bh#&jZbutbiLLG?V$B`UP{B!OYQ^;Y zJ5}>;nOr|{U1_Z~SCwios*jI&z=O_0UTC8C;U6|8Ol$D#OBs`44?D=7UUzM)5`CtX z;9_6Ydu*~lb}uRQr}aT(;4-I;ko~<%I>OS!!va%*T!qPWO+R4k7_P5pr)oU za?GBAR_9#xo6vFGciD(H0vDH(GZTArO7WF?6>eBUIO-IIGH*+ier(6un=~0pPIXHD zHqY=3EJ09b_@b+0pWVL;{OZ}2po&^lvORRKBp4SIIPZ{mg*UFmkAu?-=RZo8T+6<0 zatWp=5N|hD{N6B9s<1C)rBN}Zb6BHB3j|QL@PydzKyu9-c0jE<;d*mx2~Q-kr_~c! z{(j!G`uf$$@Qa_g2iWwRyaL{9obWK9Oom|?^uASCsc<}wB8f0Q?~G-BP*zUPm-}^?ddA^D^-b1m zK!wdaZm1`^^?-#_UYg@INhZ3<@1T>$pVVsXC}LWeRoYMl z*A>G3-I$60#(y;Vp>?o>r7P|L}Xr^`|K-C)u3`Xu@b*J=A<7!=*;fL1OfJ1CFT! zws3*McbpS<@)MDc8g4m#TXE`jqlGoVOu`=r_H4SkS$r=30-(O$*;P0R@_`hHL_L@} z6TA7X<+AZARnLv?JLVat$Lw)-s?w0A(QOOr3t#IxSP-`2ud&S-Y6aAKmVN;$BaXl2 z%}m`R>@yep#R!s(JrE&??(*nD>AoktLQ1OW8Kh#(u{Y@q9lgsf6l4Rl(;-A2B*m!) zcMp4mp&wiYG>P&5TSi{aV$yN&-e6H>p5w2mIpEdQFp#^WskZv~7(6t9HJ8KMexX`m zzL}T6k&~dPC~})FxG+N}U}Z%}!NvLUV{EF;*8N7YT`Es958-C#l<8twen$kohJ6z` zh@F9hPmBJ^shE~}|6~;dKN=u91igRU%Dyl6GY}GveLgLc2o+{jl!kL*g$~Z4xbEAh zxa7`H_=S&Dmw0qn-os`u6lH6q$EsMO>BssODwvh#-B06q(tjcZsNVl&0ntg%j!jWn z0Qk(T_bmflaYjb7IV6*bv{g*zaZ!5{8!0Tmf9i-!ae7P+<;xHf*TQrC;0wq&WQZX{ zj3U@pU?i^fbuTo=f{x**6Pwx(Bgc)wXmY7px&re+JbrDuyXIbEhV(<(g3){#%o2py z3o=SPJ{9F4P{=@i$fy}^N z$SDYYxf&8rz)*mw%eT;~&PB$6ju$FEb(?RcrArzfFK&yzJfl>Ta!F?tdQv*Suq5sI z+7>jJD^{AtN_)3dJnGDZecGMU%B(_mTnKiY zD{tkLL&j#EzZGH9=k@w7Vb}tAiL(_sZi(5BIaGF(aRRNtb5zI0uj zD!R-FZX{KHZO2yh#k?oSh;Dte8}6THZqUB3N9c(qgArMM=+sHjV6b;G zfgDQrL4ya4Vp0(ppx|&gdlqU_INjt8=9msReWL=P>pDVEU`As<$CPbW$viZi?+!-W zz_lGc@c1d9-N~$Ajovoer;6$b66q~U%RJy~0$eF?5 z;q<+pgS2vFC%%8Q%yhH=qY3k@mGHg=M+WkTeK#I}Kp_m%RZ^zV*so4zoJh%?#O0r{L0pbHty@nBcfYR^CUFb?m~S_jfjRYkjQ1X72T#U zCs!~N`dNZ7d9=|P(}Qat+jEY1($h!Mu0LUiC6?OE8c0qMI3dOTH#>kU;Alruhlr>j0n3}PO0YS`_A3* z3QoVQq@9B7_L==N_lN6_(=|3h;*A@5@y-+e8+$7LHny*>Ioa)f!zn&Igs@H8eLDfJ zE370E6mrphC+xLHH&XRWy;rNrj4p_TEU!(-K>WeLNNL~Nn?V5Pf5(|9_ta zmWY5W2LpktqVE-qR~3=age=zxw9Gncv>pWA8pBGKPmT<|2?mr+x|N};7G~vfUjdoI zeaOq{dX6JaLJrj~8{YOm(%s6)W*>rD5jmV#PAT0;huV;&mEa{wFx){cYYm^u`e4** z{Pt$$1eoec(H4(_<4}QRU-7F!G{+J@t%}?NA`5+|D_g4LWgUQY^P$k<&o zGe1|+B~4{iQZFg_uVFI|8C2DQ?PSPWZ?JAu)rvRcgfT1=wCIj)@#TO2cFC7@1{5wJ z0R)=`QAjv!{++RyQV)hy6Rq6Nppjo}HMhUzh`2%W^XhEH`?(>be+>s^Z=N2q9yril zia&>+t$^zSIA4BJaRCY~^=D=Z+%63t4Goxr3Awy_ujqVDmTy?QJx_w|`6@(1G|)vj(?oE`kEqW3ZCNu9zxOqUyz`7S zV%mKbD|rYj-r+d=8&gGTR)m2a(&S~Vfs;Ppi_+kT7bA*hkN*14oYr@=xYMkb3^N{f z;;fsHstgYT8_b|^s9Q3j#D*-dBc^bcDnKLO?Oy{@>_c9v^9hTl{+$?v6{JT}+$=$bCjFf3EM(%CJe=h8rq!euWfR z@2KEVDD!(D)YS!CjxRyhbVvp_Z(czN$ykksv&VH{W1|_CxmLQYLM#9TU%So*7Jm7w zT>sE7q*jMve-j(>?N4#b86#zdF+4uUs_~925;S7B3Ib$O@y}x+ll&w9+V})x%FjcD zoIB_kIML6&K!2sGivw|!%8GTI?|aC|pDPB(h@Ei4p1o1oWVklTy>K7a3zO2uLo5>$;&~;b zC2d9a^Z6NjCh2Y83n}Xlq3JIW2dF{7^1|)5s9#&;| zPWfdYOvFhv?LSVX&t6eG-|)ZT^+dhhd*{V+PsbP46pp)o7WbvJ>|0Sdb_%w^wlqKR z_p&d;_UAeVSlO!^e)Z5_4cLvoHK4=)#Sxtc5MK2jU%cu))kQ32cQUDXQ%-MNi;{6##lxcf zPMdNU>7UdCDniiOzKKO}wBe4E>Lfw{y)D~w3(?xksW+&@Ay_z2yEtPxIj@ww%HkAS z{VdX{Zs&-N?cGhB2+cK(&1*xMo$KRqZbClAQ+YdElU0gM=#AjQv-YvtsHiIb;>PK5 zDU#5GE1p&S3UD-%FKBY-?pfm~oL?0Lf>SVazgCuGFVNVO;bZMyVW zlfa~nGrX@yce2&sG2d}wi*&8p{@$>TlHN3P7SkHz@XhZr_oQnQy%dX)i4jnzCV%%j z3o5QyOTt~A*gkU8kBvP)>7b(G3YSMleq5+aBW-KD$xJE8M2!!H5U^CxIX3QrL;9@Z zMnxY(E9Pm44&~r@02{I1SQa1W;Il9=TGnSX6Kh<5J%2Ac>Jqj!#LIJENR)+?FKwRI zpjl9Lx6-vElr?78;mK2BZUXeAr7?L2_ng5)aF7{kUp|T}CzONXhZ!j_2E4Ir61fy~ ztk+^Xm{zyrxa=3vRa4Tg7T>O!`9N$tS@^NMO=l>My!Qf+pMLuBWNjqxK%xFYI6@zJnUBdhR+*}CT>W!ahtgzvTF2(>j&i-|w0pV3I7^;lT4eYG zG?m>(oRGvMwy;~Gc-AMChU224xr-l`Wk%+<x(sH%$z&SP%}qGfW<)Z$P*qH1q?WW2Q;wa%VBO16Mep*Bx5Zjm>6KSPTG2@JzMhPWd}?eLtejQ^foz-ZUiR1@BM7XU9s|Y-PJ0p`31aHs8PP-A%O6dkAq7h8 zh;szRB959A9qpf-k(<62IGJ%9Bsf0VM0G|5ziYK!2`+JsmoVK|TDy*f%9o9zbWBdz zn=oYG28}Z4)-JG|u&}kf7-J!Fz0+JqmDOF_$5;={fo6>Wb077LFU+3yP}twJhYx2_jwJ7v zZyf9d<@~IH9rcYH3z=q2$cQ%CS{|Zj{37(lM&9RGv*RuWEif`ay*6W>)!kF*gY z`tVbgp7=`-1UzQ{V(S)lqWqVRL@lMOpNP(l>_Pb*=UXZeg!~|XbU1wv%X^2$=`uX1 z%Kqt!&52;x#O-$N;(@Pg^g8&IH)E|!v*9P`u4cgoFp3tPS*Gy-l-!8%OCU z{mI#V+!cF^9u%5Ab0`y)|MO?}BSOqb&G+yvOLY-C=(Yz(pX(~ewnBczm47V#gOwMj zVY+s{PhXoyl?I=9?+(22+)o93jVLW~H#cYPxSW-gLHmJq#d`==hEL(D3~CEeHf+Q} zfPcY_kI+pc@yO!bMmoCl=L*3* z{!Ec6*b`e|2(QHyL@<#+7cuQe=H2GgbWEQ}b{_OGM>so(>}<%7WiiM9s!X20VPkQU z5oUXB*t@~G0Shunc?gT(reS+%-Z%Wc&@X{!wH_&(q>eP;UceqWJx?H5N=MvidkL~E z^HbGfq==xDE8CefjoQ%GvUElOA`-T;Ox2quSqurXv?B2(A_CPJ9Trv_)>f0JhwnQ$ zJDLL&#x%MQPGuZd>3*QXookqo78U&?q-Nan2iX=b9x z&H`Gc>Jr$JVGq9Aq-zV@=^Tdt64>hTo$rW@Gj%coJN!)pOPiV!WjCRq2@Wn zc0iUs-#Jtx4XLf$5Y>7y)h;6RbR5AhqS)n^e?c5h{rwp>mIn59GHIA&r)!AME9huN z^Im>OWy9bR@SJBn{XeSCI;zSp+WH0{f^@fZgLDZm(n)BsqpLX;D}V41O>A z;n|4Ox)dC2ag+t2CnksfGbZFO*ggC$_@L1Vhay(D1K+@C7Ml;BjC!AFqGC=&Kmm-_ z=J~IFqJlFpo?5f{vQQ?rs-HYDDjPbTn@(nRTBfJ3`_9R_1tZ{t6T4|7jf%frAqTBX z^G8*akohl~CUY394?XhY0o5E%RT;C5hh6;nI~He6O@SfdigRk;m|mx}COem9bU_wg z70@kuc3&bGw|PI*cdlEWVq?`(uPRI`tqG;M37xLT4K{hd$}%1CzGk_*9*NMbv{+GV zMG|=)CXx@qZBFNPtg*iAnl}zJMGyFmR|x{9JxF`7Jt>+_*%0bY5X3VzO2xhS@#t$$ z`4tD7>cqtqlwV94ymft_X*#V5FYy~E$`XxE ziCU%m?xhAcJXtjS<_475W7DTz_;(Y#YHya7H|K zaPPYeHU9v|D$gvpkso{8yq;oE#$zJfMg&b8-4qu#6wcomQByy1* z(lA>&rTn<@7dh*m12G^SOpN{9N8Sc3ot37;^1L1-Jo$~!NEw~~YVa)-ORd@RBfYs_ zXm|muA-FQ|JG)4*YxKjo{?e7`TeDbk8z*LFi!-kc>ZV4-)w_fK90VCk-4EUtVOZbI z;2!q-Qb$m)Xhy;YAIx#I?r0uo#!_y-X$R~q8}}Yrv)~_&Wa-tWJx`Fz`^?Yd_NKMy%`>@{imMGOI5Cfr(LsuoWI(cK}t*VrXA;*o+{Rkxs=7(wwT zjiElSLQ~{86{%mQ^A2d(Nxd*2ow)0Ttt~en5lC@Hn@YQ~Ihq7ku;I%|ogN|Bkg%)J z;d1OK7J3+pq?^n9sUJR?4);H{m3?HPkHU#odf>!81o%~~4@hrx(5T?%y}iGHrxO)b zXXj5Oe{HIyiya4_c79GLz8V+W178Pi>CHtoi$eja0y@T9>~N>9AeOlzyWqu><>cs(W{@2x)ZE)&vvs3J-+APAl5Q#e8A zZ{C-#R;Lm35Qw6tdwjJBqGy8CX7R5$34G?@&YifqEk9U>;1fH>$D4$pm#^OA^X)%% zHTkb4o&~)`MGd~z+x6Y7Urjbpc?XSzC_55IJ{g3gc6J(Rg;}@Y&&MzQfkT&DL2@y? z(qyW#tZJA!d@wxESNpwr2IY+o3%E=47`%vj1*G}z&iY&?SxN%~s8QAs-40(M152xX zODmz{c^cekpN|tJA~r@g5V2ZKE@3>J4g+F0-y(O?{3W4%tvU-=53@uNRvUM%>QMPT z)EKZLu!XyVsrP3{f#g`YBP~pR0iTy1ngzZ=AW*MCut}XJ#1gU2B(zSgF0i30zUH;V@D|#{W@jIY>UXJTt2_Q>9HkAOepLs-w6`P=aLu<-q#F>@_K_#8b$*u*8py>rdVA}t z`guU3g^8@SayuN+Q^rrg+s*gQl9Avq= zL?6v%mSd6NTx{jXY{_1{l!zUA$U$7a+4F<)<34J&-poxfcu#ojM!x7Z*B*=_u)7y= zqwpR1>;O-%0|u!F1e?tX18D<_@?TrpffN_(0H3EO-LcsB%wc?VEdW{xDWx}bV5=Uo z>sD6an!$}OT0x*u5ST*-fS$(52uDsSUjEh^A!Z`w%f9)&kXojM>%kgb_~ryqp(BJ*ODDwM-l;I`r!(VSA@QUoZ1ZG)v6aI^2tr ztLU~&T3AhvT)sA{1KDl8+>pH@9(jzL6jqi~aB(h1U!yt|&2vGub2iy_IPqT@xUCFO)ySuG7 zw7QXli1<~=$W})Rn7EP(N=drZruHR?p(8@_YQgWsIP#xQ83&R*(zX=W)g3Hl z^Q_qQy}{Noo~aBBVd96od{7E~ed@nEi7np{Dl^|JrrC8_<&?oLebsGT? zjW2e$h2(&d(P8#fRwE0He-Qlw2qo|^28SGRN^|n%Wwr^v)zR#MexXyvHXiGCI;ajX z4V(2~4%9GC50{SLnoP#D$gp|@|3oV+v9aYaJ?Hhy@`!0E0iURx&kQ-+V?OKFEx|#% z8QHHe!l~$&M@C(0m|{6uYnV_6lYwZXWk2I`#ZrA~tPxX>?Kllp5|+_((nq-ZSq(K! z!|TLK(9v8|vF01NAE_)vZHZmlorjvdasjVR>(Ej}52=XAql15ymU2Y9N@+wMj%!tO zZ7D@dOW=nOB-6AQpnYR;&#^}_kbbb0&wmcI?nts<)+z`eB$zBptXtIjf%5$aruS>k zmJX8AsS#B|R$)I^Me7U4J+Bw__4s`Q8wy7~XCt%)9JIX+8I?b!zoJu$T{^b#=*sw| z^F{<`)p1@eUdm!o+1Z6l&lD=IX&iW79{A0E#HVE<(S$3l*PL(Fk6c3HXC>|DW@AIG zomYq&dp!)K=?8|6-%KHuZcZ0Sq#k#&wMuRoSSa0% zJd8h_2^0Z``|TE*1A_vXVsFd?LW>)-x)uQJ6iI4_+mg_+mAcR$@M_|Bt-Ud=phm?_Hq}#maneC`ZOiE%8L~?%T>9&^^1`z4Y>KF$t zEb|{w3!#4nuVA9>qMRJEXUk4g4mMJH&ty8P$$Z?k{C0X!S~7{SY|jkHzO?sf_HB5C zA`l7CK~)^P-T1wy9t71|XJ%N@)uo%10kx}he)Y|_-N^z%_87t&TZWAvkj$=jNOOkY zSjb>Cva1#f5U8(CjH*aZU701}uijdc)RR}q&S?uCp`&YMM{Ror9e4gfj^pcbu(6pENA>r(ucubbaA`;^8)yA8Pl-@1&?WF0RZE+oT zWfeip5NI((!@;em#)>U2Iui|6e1CSsbd*c+soEr^?gQaKe79)OzV^bLPtbg3*oqUL zY-Xp#TK#@))MykbRLpkIR_FKcFKtaM^xm+MEq4UwIx{<74wKayU_Mb_M;AYKgy5;E zg?Y-MvBFtIRtRo|6>Js7@WoMmVy1A|31x(|KMD8l2y1J=CU=jo21(3ojpt04AvPk2 zaI|D_?p|$WEr1HHnC9!(L{g3uvB*UAt{uXm0)7Ya)sD+OTZImz9hf2o7&vEl+Dt0Z z(T>gCSN`6ub*+L&EtA17-AkDR%I}Tfcv%7!?Q`Io#h9xvdB1o+yofwh?0bV7qonrh zAZ=)eFfy52*}}O|w$FKR zD*?7zTntOEF%uda%w@)z44C%vF~NQR=<##fYnZo!vL+}boL(0l`qAG)x(JtgKuckD zErsWZGTII$9)QrsJZkIK;*s^MnJ@gj5wto7+QQB$Vm+>TW zd}u4^Ap6q?ng%5#_=mn$K{j>HmJN;W#4KZ?*D=rLN;%$LalbmeXM>7NGg-HJ4CUM{ zAVrjO1;GAT-PxZwMk_(s3VO{iO}3t$mJ4a7r7diZX754Pi)%M`f~Gz3j`L#pV+bXw zcP+iPe^bqI$*rb+@fkiltjHzt^W>b5_9X}>n(Dov25P$0-s73i@KQJGL&X7tpRCPu zerYv{;m5RT!yA3Na5Z{1g2sj8+fR<{rAQ|iEe@>c;Dnp5hbJ#xvASO4Q|yJaGR7lK z;@PA>IUS~3?B)iqY;n0d#0@VCn-0@u`8lAnYSVRci%Rj#3E@4ZY;-$!eZNc|Y7BY~ zt?H?3S$JO?UiHbTJEv3(4RZ7VLplOlAeI*TYIc;~srL5ImI)W=2uxmaGu-_LBCNu> z$&c8$!-BVppxAhux2gyQBXpyoy4M^-sAPlEqdL&xaoI+?a_fe6%@^7e;5+X-2(#pRYrkhT!Db=&B3u)dE9lk~X1Gy#laD4QhFgeoSN&9$G|q_3R@L`=*#%q#;b!<6%m zNaR{Q%K-Y7Osw1R%EjfPy7P%`s$wk^C3Z) z32r!%^;(=<7FNKbYkr1En4ZRXNOcQ2CkNPEfN?=OeV&O)*EoyqR)v$jgm-l${JqQT z5o*TEnjQBpIE0LuHmfNv2P!9i_q7&`$Z7Yvm=5DtWOmeN!R)?MUFj6Coz4c?m?PjeN{#pw!uVYspfPW5hM$KTgk){!YpBQ7w1(0tLp( zI3f&rx3-^KPyf z@$slrT39*8aw8@LB6s5qO+f1J3}H|ARI!Rba25p%0%{gDHK#neC`!tn?$s`YTT*<; zSa#45hXT9J-m-!UuWIM{)EqYZfPhgRf)YkP8q8<&o+Im@^BQBE4%;vArk}43akQWe zFE)=R^aHV?X_{es-UJu;JmTf}m>|DtCuKc<-(R+-JZiW|n`$06mbzRUnjoj=#^RNB^vX%iDvwZGLCNKkWp^zeU}1O$HQ0YhI;v?bnSll;%u6yQ!yFYuR_LGCx1H6@A5WA`RS8T!n~aFLdv zeAz(_ACu7Hdn3a3%uNsVXL%T!XhBHnQ&?ew82< zi5j;x80We}p2X`e-E{0bkR`Gp=P<=83x|zL7!}iZWFs7=vvQ}T9G}QU+SWRyk;v2` zXIl6=?)5hU9I0X5gg8!5=5og3Cou5(y1F+E^F*XI1U=l%r^WMNYl81o@kyv!DqD-3 zlgUAT_k|8`=;F^GSrXOP+yu!m{g{n%={LD?Q4(n?Hb6PFALfmWW7r!reV_Mp@@f%Z zG+bJU!Q)d@JSd`G_?T4il9FQ2^e`>u%Wl@B@Y3Waah24{5iiJ#yyd~`DvVCklCwMJ zY(SjSL<=8ZP>rci+|@->i@ElA<^9ZO4nZu6y;r8$J!sm!K)XcnNu`DPcXtj4b|Nw^ zbIv}s4pNdaAb!d7I=ly}P_pO3HFr3ha`tf0UO}|GzG6Sb@=L8y_!*uyGgpR&m=Y`;ogUtnMNg# z_GJD=TFRm~3JdWww~t*X#uv4c^KFHZzf)6Pv|V$*C#II+wc9)I&91yCa%zn1(1m3o z9Nr;Ott$ZbB7TK!I$mCX`T}N2HzF>XVIM2&1}h?M**Tut5W&xr{= ze1yO9R+RQ=aUdYV-$kLOn4bilP>v;wC>my$DXj`3QqpZr6Wo{=V+;w>nMXE+9*1^0 zKA)J(z7j`9;!bddy}%v1fDv=Gm%Z%Pm()-MjoU*_x!T~k`YXMTdxCBdgu?@J^CC<8 zFr+JjLF-x>dJiDs_+Du@oaJ6y2jchN#JqVEg&aMnKl6X_dnIF%ykap-r4>O#9xbo_ zHuaD|`s(IG>|1*J&N3~MKgxjhW&9^0RRre|W0eY=xI{M*u47!ASjFoe-KV$AJ`c2f zSing;-11vhqUui+j;Br%JKfOZ zzi}f?CXM{@E9uozhua*@e*N!mfOk(;;@2>oux?8P4g`If?i%Zh&73*m{_ zF>EHAnOT|M+Jff&3^Q#{6i0zFd&*)Fv;y>tzm5EZ}v&(`1L*y|5hkk z%Fg|7MNy-wRu*IAJpu@Xr@(bIJ--8VgKZSFEK5Dz34uw=kC!owAh@UNc(X*ol4U0%8`LY zRT55VtK8^NE6A0N4{1h2My;EyTZa9#@?M^>>4G3Vc60RuIqgpZLE;>BqLW?aX-syO z6@PiGx1^-Kih1?#Jr;PNwpe-DtJ&k@1E(3Xb=fxrABN)h^?k+h_DyP zHLly(j*AK1pvBVsvG;Lfe$4bN)Jj=I^IV(bJTjSFN(Xdzz?WI>61zUK+@4EdR7 z_95bfWjdjTIigOUZ3IbB!QnHG*=(~}=#wEf2d)|FAxA>1SJgy; z<#wR>_Z~2Xg10JNUzc;;XvUsWj&?+EUBISajplxrp`mQ+UJF^lZRJ zOfk64%<7~R)jES$UtfB=#$U02pC~Z*&^`GT|IP|ysm|mQaM~=Mu}NK0Xxs(o2T^0D z!c^;>)&_sra_2ejv|te6(pu4u4Cp}d5}rKba>$iLz>@`i>3)RZVCGYtJ<3XTWz7tY zV_#=~>|K9yE>?GUG<@9H%)zwc*9BZEgsB!=>Vk=|U315Bss2s2_ohp7`T(&7Wlaaa zivR3}y~lMf3O#FrtHmbF;(!ZDEYiHf=3rd?{l#>Y1+v4NC!dP4M545)kvzCyQ)Zlz z5?u#l5#4|FKZ)Y53n&!=Yde@SN6A3(4Hhf2WgXQ$DC)V4h;N!Hv|`Ek|J6}O-$8J= ze}rZ8@OOD!k)E8~nc$vDD!TL}`2kEK#qN4+sd2daY1l2S9+JcqUcMqgj57X~(yEh_ z$`TSx3}p+4>_5C~u_&SQf8Sd%5V@0ci^3JPUUn5UUf4BBo3m8hTMQ}y8!d18uEbfxLvp_)V>G(oVp0pvDE|WLD5)tr9Yv95IJL zDmDvoi@3L}+L?E^ek-YjaCupiCl#(1VRGlWz?&Tijy!pp5HhIZ>rsryjYrQ5{Iz>% z3%R<8$4f|dCRNN)4?i(a?C_jCXq{2fv#tD?gk-cuK%t@5=XsNZ?OT1G7&JJ(CcqqL zzm)(30MikCGX{yWSJa#$y-Cu^p z?LCWaA%}{ty5ENYeQDLt&SIaJv7^7obSa)$CJUO%lo!phd0$2+8wi z`^j}?Hq}~KAKelk&4c1PhxtM5#jXr�5RlO1v%86NSdz% z=8cv{Ugp6|jCAAF^CtOOFXpYX+mibXIFp(CwB|ZoFcnkddVi*6 z&Y;Zx`6c!Y--`a`wWAuE1e|j8K7Zh&PX=~132tjavk`Z4+d&{`O(ses!~MeIcMD&f z8@40?zxRlD^S&PaM=UT6Cjj8>>}aVw!rHfNy0!tXlqqI9Cb-4XNHppj7?uEId^=u9 z=yf}XXz`IUtG;Do+*NJt?MhdGiPVEX*)RUMqfMSAi2ZS{<9d+Yb?&L{#XiL8tT4CB zA&}k4sI!jT1QFb9{-+tutEiXgP?(##=4GOgSKS@+69~Qi0ZotROV)^f zw=gq|(jWcqPAg9=r|(2sW0^MD1dX|oq+-(J6F7p6T`vGancaDz$a2ZU4Wc~%T-_$C z-@OZI3`+zbKrYLkl72hm{U(D2W6paqw30qOxq4|4lpUjl-=iUlt_|P41f}Yaf+#>i z6H1o%0}dx5opMeZp|`q`mqdPz#{Ik) z!TZ8M$blezQTISW84M0!!Aj~cEWWVcD?JDKrU+`uRYo{jzcf7wCAijNGQ5g9W^s$_ zwD-Dd+JXyuXbyIiTF;5@PO(xU)!=MXD(B+(C1(Sd9O&D9i8#2G(8Y1edHTF#p~bN{ z=ylun_4SIR*R-X@^w*mCMQ zqiT&UUvHJ}&l&4M^vtDeT>o+N8rfWb@~0^TxaGmsG>MC4#0+sBbRbAAjfsH~7(3=sJkE0tY^am% zf-hzWGBy?!SO=-TTsz4}moOQDNbZg_s%*#t4>=~i**)L7T_4?Nt1iuQ$O2Jv@_nRU zsdX1O4vwf->&zSe+oV>l$j713Z4KX=RcY`uEaNQ&1MHoJ*FBKaZCscNN@byrN=Bx( z(l9J)kA+^zW$oEh?suvzL6lhN3~YWSGjMvKT;BtOM3s)fesxt9X*a!q{S(>qpI2x^ zK*?**SRV2^@+4}yWmOS>qft-PVB+_D&a2jE4hDCspGuy|==Y)iR~BP3%CtH6A52f! z(X20?UF*;nX-wNcbE8x14PE14mP#3Z+rJf#r|y1;o6mu?;}mPv0hjL^ zXZ}2eUSpmB`09v=Qiem(I8e9L#}96HuI=*fS*_EhO$%)`(BHJ54)@cklVuS!z};Rr zI>1Af`sCqkQK?M=mLBB|F2sg7tUc{g++s!#yJ*(|dc>CVE&q}jFc(`lt>|wKOruwz zp=NnMZt*uRodbLg*+Jyrt4{F2&Wt3%`s(E-lCx+REGzQKk6X!s0mD zM}3aA9e>*LH=c7lF zm!cM!3oRWvm}30%=o8~k(+Q;XuJaP#)8kcAI}PG~q0V34{ijSgpmPVOTuHeg^*1!K z9@O1IRipEr6xg2D9Wec-QRS*ADG)SY`|N){hDNO{+t9w-7nXuuG=o@9ymrWMdJD&ZyiQeG|R3^u%8SXr$r#;n#?cYKl z4BWQf!jARnsiWEyd=eetoJ}FoRsH;Nb)+0G1YB%iGvbyV)YG+DaeUidv<-@=wMq@! zX(rK@^-4{TPeTa9w+9Qx@?5@1Qnk(RLCKM!b(^?&abX#HEF8yS%O0S?k|%OqCabG!*_oRb zof-FSl6y|(aga28bZG>{d{kcBD!e_n2#CgjrjRS+H#FyVo*%6?q7Z6Wr+CMkBJJ4qkaFn^igMMi0uic+E%Ki!oGB zry53yzVHL-Q@^HC2w-R&ESOa;dxP(b2Dki>q~$q$R;HZ3(d{LQ$h+9obUL@q1Mp z-Ia-VlflkDki4>jN88>8O)J8GZ+xB7OI_R>Tm__LJ`0&o{jWTl?% z^D_I@m3K2yqUQB*=^X)?G58Y_l~8wkI31qBiPhe--(NU<$}dGx$$B0TY59={l-hpL zrtEuf2&3i*Qq3oQ&+FO!Mhy2=ez`tn$8|<_vMvL%U8Gl z_=qSWb_xrobSEabcZc!FQ}tlT9bN^pTiWBavF(y? zrjB`r@ZEA9mpsdhfc-|EvpT0Uya@NjSfSu%lF4o~qt`91RgFcrAaCrH)CLi}Z1Ls0 zrT0;T^KF`&wcTP|*6kz*8Mpkhi;hRf#b0}NW)vxj1$v^|aqSsASBnc8AD_R^@RB?a zZO63aNR2Ds6P10~o!B~B#~O0-JLUr>pGbTr+vCj6j0f}sy}|y|4ECLw!~tnM@0+;r znG!&fH@gMcaL?_${E4!HoyKE#R?ydZxaq+E&wUDpMDcAF7WRHWCX-#05PR2M6HiMY zBaS8$=Rel`vKNF1JbEEDI=PC=!W1j#8xNcOnzaaI(%*dzqs!1;Pd?1SzsXSAF3B%a zZf-*>PVHMMqIyy^&5DM~-FSyGyqjWc>4BuN`b#uyCdycNM29` zxvAN=u9&V>hgXhB-x>iJXN@fwPc0MS-v>oa%?)%&jh|7s7uDIOsK8e7L)R^V)0keH zuFA=>qhiZV(wwcLx%j+P@iIQ|S2VGcnK}9Dn&ZVGZ!?i8uE#aGpoO*JP_1=9&pNPh zgKtzZ8_#&P~Cz+yunQ+`*Xxvy+ z)3CSmY8p!tZkPqN=YJlKr*s&25I71zb=X6#6xEhQ?jK!)ZKKo#3*q(@BbPL8=AUh( zcX}AT8#s3JSi|$o=q*#Ow(wt0m(FmY*SIf8RbvZbd~_`7 zl8aLKr_dD8<2NvZ0itch`-lB1=JFOA#ZRvq5S`q|1a}I*#{b$LMFhi!bw29#AR;V^QH z+CfCX;?I?fQ!(82cgiuzm1Smp_;Y1yD0ze5@{J9*u4*2% z1hZyurI1lPHCD4i7ypG5)5{4shfS)lRRFbiEKX|Ro~|V4-qi;g6(9>scuF9)ZNAA28@uSBtubh7B^YOoG{{0(AdkX-)JI zEo{gBaSK@Z)2oLg7pyHhwe)VGIjN9oOh&Vd>yR;uQGR3AkTJ@a#w|Yl=hiI7H`G^i zpH>5v-){Q@W4KY{CN7U0%oa09`7sw8G>r+y@{(1Ia{#?55Q9rhPw(GD3Mt_Wb4H^e zv38*~qeJC5p{IOb#-V)2L~)s&S7E($-K;d3qLRjn!1p-sKVb%I(SXR<;?huuxhS@? z;{^WK06|~Fgs0PRTCp1347G&gCemxqI$d+Xm9>yy4vl`;;@|pQ&`|mj{as4Lh|jD# zFEcf=RU;i9KhJE^<3>Vs`YJi!BDOvY3r~v-I7yKE|1r?Bi9XqiSH50}qu0J(1h}+g zs^I_)_yF40B+4qRpEExySM1Y?CScH!^9+^Ev(5(gliNFpGZcP83JpF7_{V9c>Bo;c z#K`aVeY_-Ac8mR_GYle89fm~}vy`U~9-vOA(VHS^YwtobJ3=(;a9N+MynXma7+Hq! zuu*$pE6q^3gKVaRa6y1|tryF)r|Pg9YkRE6OSb%e|8}@St-+`MkB4ZKmHK{+Ap!VF z)gE>~A#}lX)OP@D-QReSP&cik#qaQ#QA!w2hphV5yZf{9OZ(I;lTiFVnY2}UBJ@b_ zm$&{%ohNGA?l=j_L@*Hs2%;9NsFAEGyZAO_XKMhkxXNw(l+NXr{b}ntT8y-Q(r7!m z|KX@kZSoH&bDumyv+uGI&Hai{QS{j{VJgZr#QtkT*Fj{8^<*i}an!`UB5uMoG;=Pm*Dd${rpjLD2E8Jo2 zL7MKD0aX{a^e)Mav;fx23E48v^6EbZ>dmxc8Q zspraMOaaPG5Dq4DDo`94gPj>Xfg`d{7@uMUydEHwBY7-1@kJr+#;Nd3MErp{rsIn| zXiFtrgI3wx-fWako|29ayDUvH|CoPXeDVLu7F+X>4bZY2QC=>glpwIYlEIP#G>UeK+ydP*%`3olhba zbmRtci5{=S=r0$xdUpJ6*LG*>Dt=viFF{=I@*hMAjrpE|p(381d*isHtlPR{B<6|4q~0&U*4kfk?$l{ZLxFl|zVl6Qows3R05iHKHR}*bL#l>Yd@(bjWIu z(}r+3Zj}G6XBCve0WZK5TA2xZjKM1r?c6@wLds4s(SY#5Msv9WJz-EEoP z@2B+`SuNXcqQSBXV>m!1YiuYuzXs)z{}m~}&Q|)3{cLyeotXH%a%b?}=CB51lMbiQ zBLoTl6=EWYv%pXKdYn4K`4Hr&6w`~YVr!bA{`+@R>86J=dLrk<08Jlq-sIo<_WL8I zR%_ytmj~KfEgwPLC??pCz)0oyi|@VAK0mG(7Wl3a0IS>Su*UO{e3_^!D=QS1exltv zn5XTZQt%I6`DawvhUY#XqKjyjW-_R@zy2@F$c-s8Q9#HS^ZO$S@XaDcdc4YzTg{sr z1YBv)zupK~Nnjh`+q+mCP?a{CF*}2L_38Xmig#LGS6RUJ3lvYO5ln~QUK4OV*Fbpz zx@ONt9hx&eJCp=6u= zGvpN^6O(;jYe(SD?ttbEzH7#T0aNyoXlR(mrJKblNz&(g$vop>WJ5y=R8)r-&qK5t z-<#kX7;?G%wBqBsp<$=ovgrvzs_knTVdaG6Vv^T@Jca+-HU32svs(Tvx%TOdJR5Zr zLv;(3lr+#=!p;X8&F*s*yI$<}LIwj5gO?m9XRF)lXa}BYS}HK4qMRhHNAo+x^rZ`n zEy_D(0Lyav*HZa+`}&(XGy)CSpIp-L+{+XKFtcE57}8yVSHE8luhyj64Whn^d>!dg z=dkz+S+X41CK}R+cW=hvhYns94H90#aw)J#>&^-y5qNQFmz{1w>~ zVhMD|VYXA*v6KZoqcx^FEfWF!bnrN%$dIC(Iv4#xE5gPs%BZl%+0!CKstt$nEDe z&Qd(`-^Xmq>;GCHK}NZxluS$9zNwmQLZO*wI4r_sU|n zT&joCs>YHp&eHp#&O%<&;e#V;RlztYJp3Wd$Tek!*D&OCV8EwXw>08bZ{f8uXJ@0+x$B z1aASlGsQ?AFH}f=+1mSMt%iX7n^7R(6c#ZP_j9*iM}$wnRT*`)Y%?&b_d0twNBU56 z(P`aYnO1NDPbRS8-|1NP6S0lb2Oo~V4=n$PSk=i<115~_Nab(GAnO9jEk$OQsktEZF2SQvOo!6%;W zu=8$jUqywBZ4cc-&r@m&Jas0@u00bqR?^iFhxu^*yLrzgp2+xT+&YNRBWB#A4ORlh zpkpH3pWODlWQ(Uv4!!{@^hKkyl*h48QWRh8UzH5ls2E#W)9o25K53;@iJGR;se776 z(fm0|XVsev3&>ySI($ zV1*7{S+!R&2drt~-n4K{*GBY>U|!D_A^+>wnR`FJ)Q7KVf#xckId|DJ5K9drJp%v6 z$Yvr;rzQ8F)G}-YAoWx@S-#RjH^-g0F6M%0Gr8Hx3 zEF{#wh02sV=78fo-FHZ2{L|z%7KmRVti{BT-<4QpKcWE_&#q4kvaCZ4h&@yePKX4) zIwQz~4qB@crcbewlsVTx>DUfwpNZ@z&tSK8cgS#4&vSI~ZRhV#%naTalj#5se2^C> zMuby;je$Yob~aL>&LdHjlVwv!;&b-rGRB=72&WFSOZRA%Ov*~gMWuexkusN%gDY?S z*KE@7T2CWuL0anJ*`cNJzA9Kl?uLWTysQt}+FyS83C#nX6lBuvFYM_8Qb~><%*hy< zw`P+Ogfm%J_<$iXUxI1VRB|t;y6|g;&n7bsg%tk{zRA&co`V^HCHALR40{l*zfyyo z3=mHA62^afLF1Lf9aW+Z52j~-%mfmbTl zuKNiNl;FQYY@pM(OF#qgt#<2SY5-)!N9*o41UX|W=ZDAgDOh5L`SEdm-)Rv=wseh5 zvCgLBOUhyQSfsr7e%uyMAf7Cr8fkQzOha~P#KnAEg)qU~Lz#aO`+Z$M`M(SwSrGCk z8etcmzIYuF5yohBRU6*TYXAI~zwpE7`J(NRbnNwGhIq7~Yri&FD}yrRlf16f8{;TOy!6gIoIDl-z7mL0^^O2ZzD*u9&cNp!@PONT%mujI;n(k zP?x~_niP_8%sL|mOpRQ}2@zjAm%cD09ZRt9R@#Ty@xaWV8MBD*L;+imO{6i=Yu<`EaDiOi?e6W@JLpR3%R!Ldjj0HHpr&9k=Z>0CMvnaaf@XmN>| zrK@U&n2`oa5qQlgTb6OztUK{Thgwebww%+Cx@@(VDm)tlEayB5Xs+&~quZ!)4v~njkG5_P$ZE`!b>EA-7m^#Frl{j ztv&9_#yKI<`KPEhB}IMCc{%+2UF%2g@{~3&Z+9QoG5InBtVi2T)Zc0063Td;?jiz6 z@OOx>aGAUrHMRIm~#B)>U#+B#Y%z3Lh79^Wg5We_FiXdgG`t}mVXZFJZ zCnHK&iuz>l${h59hvnd3EEbrh^Xjl0T?ro{pNIV|<;1ua z;;SRz7aBj=NTLMQhO@8RF*enQ)QazlmGSY|LViA1d0Me9&CZ7DMNU~`&~+NThyk=L zP-NFGK{5k{$1lzo6alm9Arr;)AaVS81ixG)!D*$gUl6I-n^${Vx2%7}`Py=4g40Bmb;Hdfl_1K+M5e_0_5z(GMG&r{!wr1JE~+cbxP%Rl`)LR^<-jA_~=|1>w>jL+N*RVE`2{f%)^2sy_WensKX8L^eRbjuoM%Ak9JoN?&+!tbi2a-mE(TNP z&73Y0PyXCatb~nV?C+-^6xsebVXnrZ)vx=#IE>NG_C8hwA036l@T@DEQ>%K6`rS}W zDZ1&Vg#G-@KD6X?A4;%)5B!ZQHaj{2 zY(}KGh7nu|Qm>pVk;dRy(>)wG!E|BRP9<*@WmVvZchthC&D9)Wn;4(BJEVQBk0RpZ zd7EWUakqjr8t^Tks@d|jb2h_B+S8a7U>o_{EXXpU(!A)YCkv9bNo;XhUq7XFDx|s+ z)s9j_%6bV=XPf>0XS?_@uFOs19Kc$uaqE$^n6xH@BER^#u=btE!k`}=_3IjzD}t+L z>#L%RK!T+8JlkFM5gj7_Pr--;5E%hx#!oa={T4IY_9PS3R6J$y`SgGsf`a11Ego5$s2z?oB(U+gw|1N>QBu3PqRRNyE>`N8 zIh1_Xw1t&<797~fadEG-@VAio^e(1VF zlFW>Y_5!*<;jcQ?ae%=@`db?oYE@4tuMorL~yfzPcn)Ui&Wb(h52P*3b?M~;YR%tEqO_I12=l!^$#_8P0 zoq%zg5b+PCvB4l#=I0i07(N9y2N~bpm5_vFt{ra-ZgwsT;V<2CvC+aO{cG7uXAmNN zuz5hc+h}<_mi)umoBM2G=Yy9!z>I38E9B`6zc1(GQciL+POe^xgpY8cM)uShbq%ki zyGJt+iJwokE|t*WVj4f*8RLlfj7X&2A9>e06}cjcFfn@zQSRaYHd+7p#YpNYWnchH z8oFa=5uor{SumFuf9>!^xFiXAX#@L|k&coKywVe2qmny!&wq(GeOOEM!AJ@#97_Bx z7KEC;*22xS!WqC4vKji~a*3!-Zxo`B{@Venn9E^;ES0+S_FB1iQnyFL*`X%mccBP5 zPjYwhyZ3}4Nc?A&&gDVgC7jLC=Ek|77)emO)YlcI9X&Vfz7D&qb*YOpQhN=HB4QdNPO`1@W&=$*fS3Hdw^CLjglpBo+olE- zv~LSv9;nt@{_;3xv0$X90Lg7%7~!U)CmZI>r+yw4nJ`Ok>$<8hu78qTh@hp`e zxu0a?Vu-b3$fXQGNb$uH2a}TpFCIJg(h+UB>QjWboEIt}k@rdS6?;67EW9|cS}m|y zwtl)i7h&>W9w06LC=(*i#^wRZSJukY(U*eye{8*FR8{XA{%L@ubVy6LlypgVx1@k{ zH%Le~NOvo7=q>^2?(XjHhI#z@`_G!0HE)h@Tu0YFd++Ct>-t<%I4lq9bOAJV-|H6) z=QczX#!<8B46vEtf#)<@W2chH{IyTK(@NxjeIBgCU>242(HTnt%FdxbSRGg;N_UUXE5uTT;e?BM-}A&VkV@3f8& zXb{oGOii0&eD{~Y^Pl00{!HBrlBWC6CSYdPEmG^(4FO%qj4a#W?u0FeL%`edP8!j_ z_b%*^&%c|O-ekM+)FzAPb~ld%r&;Z?l%m`anv=Zp^CoZAI?a~+3j)T#S0>$)s52^k|&j-wawgL=xKsqhGm`J@NOWCj(@iP$i*H5t1LHPJq#M?GzknZr5 z!>h@eRQKUe5bE7i*6oCmw8dD#B7rT4n;EV;xs7&o*Gckoyfm|NJ?4Bf?a@J>lF|CP z?hU@v0MyH}HL=qSJ1tXOFc-9Hu1}A2o?^+hV^z7(OE$%Xv)fjBY||J3<9gdn=77PT zn|kj-W%s4a?$|DLs@d59y~}-F&DoY^zmk0*mjbgaum^m%I$JSN`g=eyV@;56sx*`4 zh=ii~F(%?x?=WosZ75dn!`(D|H^Dyz?|QwPDuXzIZVbq?h96F2J( z;VVlTe8yrm=Yn^M^KU`$kTk`5-aLU*O`yHjPbB+>!0zG3NTW72*rRUWNLRFUHHhmEm~D zEzbqfnr5mw$!NWF+Ww!XE<49rvP{c>q6nm=uwQCDSjElZS$Fy{nSLb?Dma5uERHmz zhGQg)-`Hm+nGcfw$=ev@yj1=p(d?@TRl-Lx%*`B%D7HU+VL0BhyUYts^BtsgUDB{D z#C!7MN8@n(J+31&n2qKMsFkl#5G9K=w}}C`Vs=}|x6Wk;1-~?yoBEB~`D|GUW`7PF zi=Uz4yNDItXGKbKa=&>?;d7umZdWqzN;btkShD=`GLj|0S>uluK!mz1jS_<~6L(XY zbrBHvNTTv{T`eXqRaj|rCdK{v#4V9c;NN4O6yg54bJSL~#*8^xe(o{dycv2n{V zqr140RHBj?{vv;Z{$c!jd_TaPY4}^iTR!FORqwuA3nRoV6uOpgq))f!aKC=xEQv_8 zDcinMQXp=*?fpQ87)-8HD9Wvjn0kL;h0Bv)w3>wN7x@ou4`=a`m|USE3Y((*3-AKJie zW-tGulj)0~M@ond@BPIm_&1}2MzZ+D7M0h*tXvJ&X|#XGjM=O=m6Ytfx7ns98t7Do zw$WSpna&|YFk*^~)5_<*q44r}JXe%JN}zzm$)P1D@65LRhH4;Q3LBgf`m-}B88;<_U);Hif4Wwg-?D)l%7 zSjGRTM&9O`eokIJdRn@E;CZ~*E#0>;P<^N35A<_A6{zKv<_R!)b(}Gccra5k_LnZh?d!sf0c#+}#WqBp0q<<4py&WbOoi z>jJ5S&u~z<3j-n9_JDS>cUwMIyI}Q>tLn>`8OVE~F0Q*da&F04B-l#+t4aleYLz%D zsuNbuqvLrPkGqc;W{&lSS|8dst=abRdG~l9MX*OGM3^E5X-jPMDt7_t%>BW3pXfFC zS}1Mg(ORg%s93{xGgfB@7AS3${}R=FR1Lvz8;)U@GK8p z7HhGoO*UktTHhbc&pREHb9j9WuiNzMa6frr+y6B3b6i_!^&FnE-F^P{H*->-rXAC? z^0*LxYkW?^X##r8h~v;ZYMVVH%)GYM0qThzC+Qt=zr@qYb1mj3)XMMZi{~psw<<3XNOeVeQ0@>dKDL^^#dI| zf;h|_LqLNCC_4W+1rVKUA%Y4~IqXs<0uOti6;&QsbR_KLuo4{wo*jjMK+ z(iD{pv3>Y{S_zEb5j0wEH4SfH0A6$bsVK~A7~H~7AK$7Ll?gu)B1#q?Il!#X;BzvI zJ68KGBPZxC*@|cb&;`&&I{wo}77qm5#bHKb*=GN?WGS))xnKVhxkRi6<`yj3U0@pw z7sB?Vp?m|YPVwM}unV$Z_3n#6@=fmGl0|)V+V69t$aYw7h}?g4Gpj{Oa^k{2Ml=t5 zA-Hp-$%w)G`QuG5G~{=)sPVJ`ky0diZbo({j))T+lkg&Luj4V@?4NC*-0LeuxILs~ zA3b+wsIcFNqzcFD5zFzyAV|mti{5QO#!O^}#(>`Ll#QTH&?gRpa(5g@2J0ONh-b`b z^duS0fhks9VV;_;MXspj@0|C>OT=@JF4hdE3MQ9I=A)3sH{*!pNMkfpMiKD_FS0Mp z0&3d%$r-x+CEA2KUQJjZ!|&9dp}z60zVSfsP5mSBc3ILR)Jx}7T{+_Z_Ja6d{^69Q zINHR7xR!?_r7zKU4E&_*tmtZqDY|~=pTyXqdDW<#( z$-0@^srsPBlf$*wyC^TW8mF12p@n)z>%U%}a?fX^y>gVcj_SEBs`BbWW^>hj%(^f~ zuta0I5~W4oM-WF;J&`wI5_&!^Fp3O*+^xSLU=4coz*7y}*q#RT!oYOix1)>tQ6Tz= z%XoF6@^sFelJZiEna~=R_N8FrjtplvbJzKj6#^*EL6Fvhb4JE&gm+#4G9v_8nU5SH^Pl0Y|EsI=x5n0Q^vi1P#Cuup-67Q9gdWm0&GaVhO-kh+t+ zz^Dp5PT-45CmcbG!r?#H?Vsjdz0a5Xf(JVN8NUKa?h z;$F6J1Zv5yT?D`Zr*gj(!c6@t!d(xhJH72|a`FK5V~hSxZkBFQ84{HeBMxt6d617^o0T5veDac0OgpkxXrS-&4kUImUHzA&ld*A{8d z)_cIEi12ZmW3rw6B~Wsj!P8uIs1Ugw0Kzbk{B+SJ(OA>Fxf}933{x zGnEI#GbnAxTtGkH z#ZQbE13~K<>;yEZzgz1BHapgIj7=dVnA$f>`qqM2wiCoJ9kV#-xR{ZoL4%_-RrHF&GyOCCGy$V z(k~C3mtTMf$)xrQVeZXf@mOtXT7eRQA3-GpA^A<8lg zgaW0ViMw4nixPAflYi`{Sxt;dUiYM!ECqhUd5%AyrXo`@Sp#Q2qqBwB%`F&K4hK6L z1J{sIZg?0XOdzt<%pnRq&X7r|+FHD3a{7S-S5}Fv*fhDB`DM?BtXkT8UOa+T3w}JS zTHuvjiP#Smi*UIejeJ1F$*wd}I4E)dSM-tokBx_hyRAc;98v@`@=^mi)8uf6Sq;Mn zneWp{NEQ^4d#1->!D6qDb8|k;!OaU9wI60YH`ev^d)$f`q>(eL-wA8Da>Z$xRMb$O z_t5f7^B{TzanAfb07{!Gn-=ch8n9UMfAe%<9{FfjdWnc~XFSo_7KJSTv<=~urcM2{ zA+-1OwERgV26vm5>bDTQ(D3Lww#P^6xQ~0~xo-L<)>1Ue7m=g+u}UIH$(4sOp(Qo3 z<5ES${jMN*x2g8zF0;EKEvKpwP-}#Szxb->g!A48b%bCN@;w!$HxNDi(0lIBPqC#e zA%~0Vi3IGbv9Yj)gK`VQ%;K=tU$met{9n>u)S&3jlo&tcaANW+F>fe4{{4Z!^aFlc$Z!O3g-CaKywTJBpswgUIjNu~yX z(UX)^gJc<)+j@VjnP23Wpd0UcHCtlO_uuO$v--zH$!AN6_a*^<{nsk{n5t+USk%-3 zq!a(;N~XS);WqvyJpP`tJ7ByZ2Z9F9j%YV~iYbOj6zOBBuct?BW(OL$lhMPrgc-He z7A5}bp&_t_#_Rnl9IZx3SL*q1j&6E636v6~}-u*&~~p(gd!QjlN7eHxfQrRoKv zT)>w#v)gPpeXRR4eJdiQ@@xB~zuu!*Buz6uu zdL@1oxAYLF{q&CPgIvLe+Olg3h;0FCa|YoO*^n*OT}}%W&ln%_d|OmqGpgrCPg84U9_GcjZWUo#Coy6K@yZs-B8-6M)EA?__m(D;{3j9Yy zeAE>jv6L~p!pfBtUV48gPSq@S+gN@9s_tY*Q4ss`K~0@!GG|R0H>0mnae0rfZjsR< z@pVkEdU4se+Puli{b7HRP(!d35S$Nm|ZbYA>eyto$64nMTR#lJlK4L4bI^Q<}+|3F}~f@IZ!|8>YK z>jmA88CuEP>BoK9#+NnVmIR=oZ_Uj=a$2;zjr-!1#d(40uxN_%3q6e>r09>vw=i>$ zXY#=&g!#}97NO~{M40rAc?f|fjMU>#Qnn2l3pM~Y1F_&>h<^CJZ9*`m4OhW%PaBDp zGWkz?p+_$TH_rEb>GGu*uhNe@|2@_3`mfN;{9@}V(cF~LT9og zJJ2R>m>)m0S+Lk{e1aY^sU92i%g3a2YLs(Qy50lvjd<&IF%abk1M6*n?2SYQ z{nSfd*9~6PKdKc^@kbawO`=xo+q zH%LZ!J+OtdEojAkqA6{~-atkS?HiQnsSNfgE%+STysrBB0!8WfgCXnl zdAF(hH_qJ*<(F9~SsNRbg!`+WDxW`(A9;KpVRQdnWY_*Plqu;wU;fy!Bn-o)OSC3W z;c0mP*4E{@oaQEKx)7q*BjAe`X`2TZ*@3J1L9^z&wcGRe+}1um=kw@uTh*cy)_v6@ z(3hIq@1QK^W*V$d3f*6)Nxau-nona+<%T+yRVLRAv=u(( zgdQeZ_2ilU7XgKLF%Rqisgi5gpmb|3TF?iHvgXoX8h4-9GA=M%*g2-Fem41yH8ym8 zXX6|DVwi6|?LnlpoMn`MCe`Ns_v_&PlA_IGeE|&$7|)%uPWQ5oJ=y|* zIonE==tfaa5axMZnQ@E5!RR+j2lQGXFRT7`Yp9ml6qq*taWCD)*ng>vd^FgUva29O zzvLB-46q?K`7STM*09gTrrAvXGk30c$mvJ&9B)^^k@UAEw7=rg{{hD5f-0PmS!sBU z9*%%f6ae55`rhlR-?R867O0@@Vml+67fZ@Uyk%txOmAnPw7uIrZ{W0h` znWE#GB{Sgl5~jIoF64KXka{( zg)R}vsZhPF>`t_>G&PhrV0r?Q*8M{z*e-5)+cKX56DlzFDAHLxUDKqq-9a%)W-2jF z?f?Of3z<$NJQ6JC@fimPZeZ;MRMYiq@M-3yZ<#F;J*PagP0MU^{P{c_FhshK6M#DN zY{nq1&;|l&8%i?*&(Y701#-Vy^)N$joA++7@__R+My~6Kv#22Zk57q&T8a%iXaLdw zVYcw1*qmT5-?`>rs*B@scigl?FOZw!Vmz=XMW*F2-abxfr-`(B#nktx4tD4GlQZ^?c zD{9xJBa1!;-F$lcmlkm5#h)j5B$Q-;VoGj4qMUV*76Q^FfvFP6ibT_?1nmoZ_CsLF z$%#wpdG^WVUG#f*!`^OZuPoexG;w)QH!f+tF$O~Jp_q5qFd|G8zcECP*~*zmY+Ogx z-7^@o2s28*l2{rjTtD5v1~5=C;AS(MPkWh%4y<@laK0sIwBs(DQgka0ZHY{+qLDj5 zW5H@P`~`5-T$r`6%bB%f<7MkQ&G<1vf(y+5eicO(oz_6FWmy$hkwOawcb12Csp<29 zf#K5EcQSoe#9GJC+^OPaLG`lS>~L=lYsaD0kgAkjo~<`S!^rm(|gK!Wp{ zW|zrejdQu0pF@-6u^CQlE(iX(?o|27@^$ADv5PVR_$eF$Un{9#?r=pRblNu_fsyHQ82`dSYv!+eb^huy{iDvh@HmT=Aq$JtS% z(cgeYSNr}mQ{w>>6i4n#`LqmOJk~EGDnZrf?fa$E%nl|y8`fyu5faAko?-x#_N#0} z$hDq{jSlT8?1PvT#X`E9q|usiIYj&!2?VGSLUNrf8>9qMl|p4f${TRM2g*M9 z44~tQw^;k2nvZt5m$eRBF8}i^vOPU2mDCZFEB-FFRrqrbiJiS+1sd751R*<|)y1%2 zl&q?c;(Iel3oTEkt)epVE{qOxuBJO;d^qN@Z|JRAQ1J@z zbLZ{}|FE0OPAvPd!5C$1{|>B+!1gj739f25&MEPMX+m@I(o~dw)Hiyf+uV2d zn|?EQIgTl_Da9dmNOSE}@bEN3m#-6H-=qFfbig=IxZhzqS1mej65C`jwsYGiY_DnE zY-{kKjfQ+#tPv4zVE4<;l(|8r*oJ#mZrg)rFT~?rwSh4}c+E+9ZyEG?x;{qXoUIV^ zv6O1C;Vq{BTs*J-p#4lXqztI_&(^=jrjG11eI+n6l=H-^4GEi_)E}L7(hM&)$;Wvt zq52WMmZQdy243}6jf0xBt&q%b6)xoi2n;|)9YFzXhy3#`Enp;E_&SfSyzmoVo@{gC@A2_GLU!2hp9Lw zeAil9)S8e*1k^}gEV^LAtN6Mw6J@QX-;aE|5=`Ns-f;IPySE%va2VWQfGRz=$%&`$ z(b&{&P`6eknef?_Q{vKRhGwbwKE#hR8V9Gd=aqp!jGQ{mrKm2#rIQyLA`xEOa#rBU8(A%gR!@k0qvlVJxeH;Yl~z26E%1v3n1T})vm*}Oqk z@hgxYd%`0BH5a=8MX;h*S2K8?LxoIee{4!yd!)On>AdSB8l1US4B?u+K=UsQ_kcLUcp_^(L zd?e`)YWcd25EA4je0zU9ub%{#&)dank>*-CN`cxJgzuhmGK%PuOub}{emcW+qea(^ z+_Ngyliw@Lmzr9FSAV z@%!WOlXt9epK4nwDGD^AUFh;V!iR)N|F*^*rh0aQUoRyw+uy6HBOgk#8Z~k>NM5T= zPouB=BJ@aj?09&-qd-b%z5oOd3a4pJR?x@mKnV8W2^T1|y&|x>N`T~`yl7_j^h%(6 zbRiYP*xqRoZIN04W%X~zBJB4U?^s2uJxa3XgNno#)0LG~mNr^UTH}lQn9BUiDVE!& zvriiToBb%uQ4WU_qxE%irz84c82^phKwvYm{_Q?7;f4>z*r$$qNIK`QXr0Gr)d%hG zrT2N`UIU%(lU`=DN53x>RBjB51IeD9epC2+Q##{*$!$dmVA(EzE+;@#ZCQz^#p5Te z?g?Jhh5x>&>+^YI<3y&VBdq*_GXRZ*LN@a{C=^r|l9~j`nWz}hZW@x*G=F^^)MrNN zH-|6XFsssM2p_gu3% zhQVk$ad}D>Wlm6*z==un5fM7Ba6*pLk;A)_cFHJ%tWZBT$SF% zjL}G&&bXFYXG$Vls(0r@sFgWXjLG*I60)#ZJf_bi=Ph}7xb z;8D-;3-YWYv`*hg@YZWxv}q5{X)As3&Gp7)FnXnanvK?V9SE_@F=vf0m)J=_`gM`< z%tS#mWmS}%&tZMW+T%t(`lR@q0*AaNN}eY0^>Us0C@INFcq0}D^zFFZ$gmcI*YnGp z=n}y(W%uBmPYRHsLVDT>ew`7vSRKx!&?8^z?&-%zzh`Y~wVjKUarZeK#>M>ipBBvAZ{Yd|t6sEL_^7JBauc(xl0* zUmiG_-d%_TFcL^ZN;|NqAL_+aDaKm$jofPwT>bNscnAT!-`mGVp~2zjbL7Kq1@)S< z&-tSJNr#())e>fiyL7ch(}$82efWU$GUN{q4sNBfITgH1{?b%@^*c^y-p_WD_Y_fw zFXmY2|D1LZu}oC^G7#j{udF~sYr)xOyttMBhS$$hBeeda)Cg6q9?p=@)AzBD>VT4JQ9T6Gg^=9*mtF6N??S`i!*=47^o1;&~_7_8K?WEnm*+g4Lhge6K@R78H=NnOE)!cD`fsYl^S=@@|i2 zICM!BYKU+t`A)asjdv=>Rs}_HVV9Tx_<^#rqkyhjICQpYmlMw%9IRk0Ow~T@{^v!S z*Hfj{^HqtcN7P~KzS=og$lW5R0*1jWYX0Q~dWz@t@r=-B?(tKW3Bl+k^~& zyVkx+dg>oU=ojQW^V$_gN|}N!#D_ z&^d4IlrUHuezeydeI+u*7%vGwbabs9^S>bLb>U4Il@=P!3Jw4BW;i&~2$PEcYC&QO=aLDqeq;SJ}8U zXHxSMeJ47nS$|U8nbaU60-YNpTSVjq`_8uwr@&~P3+gzKWykIi_S&t`F#KD0OjI!2 zs#uR^t+H4tE&SBwKD8b9JKg4FuNKUe3sbn_ebrMWQkU@TF(uCDJ7H-kSiNjSyxxt9 zZ?#FU`R_?vaBrBzjGoFh5o~4iY>`1Om7FHVk;6s(%>fHCVD7K%6~4Z#Z8D~!Vdfd| zrGo#NdpGx!Z<vq421l5lL0uQ|GHjQt~ z2>|!(FZ-2P=zvcB{rSGG*xIGfGP3szd_D`o@ysgawGi5eR4!=X-OtbeadN*pZ!Hjg zfdV`e_fF+!0^mI1`=4WfWz5`wv+V_7=6-pRpfi6NMiP2{WoLIRFrn!w;2?R9*4`)e znKQ}abuWJ-nlFsl>0Tl8x2r_JwVB&`6)@J_Dm!jMB0t-zVsXa-Kl$~+B&bPZj?6-i z-bZaY(`!>87o%Bp&+n{(p&e)beUn%uBsE8;(ubLhCud#(qsrX+kMfpa!dJS+GljGd zZ<=o@m$=*su<3NeAcCj&8Chb&C_zprU&aKd=-4&FlvFlkj{RjpnjFVLm~yQWgxe+s zzlhHZE07L*{b`dxyQZX;z195V?b*0`jU{QOThs`r9$}Z_xX=wfd~mQQp{uY#=Vz~& zXhkO#AJ0{An`1U=TPv>|?&Z^fp=ImpPMy8&AS+w*ZCA%sF-3F?9@cPaGZ$p<8BkkX zw|5897w<0XjT#f;$nDp|SE+RhX*RY#m(7R6&I0!%-=p%@tnt^7(A}%cMwTqd$ySOg z5+^gBF1acncqdJX{UZP%QNjPd8}Ss?mG3A-K0Izn^9=OOVX$1OWN@>+=*)G+Wza5C zy0QBJYME5ck8Zs4(+Llig*Hyg*~8OUEd^9%YzDlgVhe-vyDu_4ClfrU5%cs!^zBK0~WZkP=D z3E5G_>CE~ei$v~*sH73@^M!d&ssX-to0VsJIBdg5UpA(ru7MMF6Llqja7N8s1O zDFS=H8(-h@@zaaL)e?>A`4m0n#ZX<@l^miEA|&7aWc_|C|bR+!}8}y^`1Yz+|p^&wuPoc!bp=DJb|NQ1Q9*9mfxda6vSbgoNjURl#Jb z?w}I`6O)5eo!4`|Tl1vtKzi}%qVq&W+D$vrM`o5rE25G@K#aD}P4IsGdLVU{&x1^0 zKZoi^QUQ>!aN2K~2&YXNCJv&&ieq5J0)%nb58{^qMdfD!@~aO4qyKRIk2lx#V&3WH z^yWYc<&i0rF(*C|7sXTg!BDr(xuzb@+Diu%#dUAe8Zrk%Fc3&Qw4M-4idhNbH4}$ZpayD&szfN6Odif#d;v0#zyB&J->% z7?VcGa3;;RGu?5_(T%*;H8ymjdp5!L%hN z&-RXN5cucY$X`?Ux*nTI2<5yVK7{Z;_R4B$-4w&a8aJ3;m-VA*eZ|5x)f zCA;f7_BeO5671R~W*JvRR!w=;$O7`dKzg9#IV=7yVO2x?_JC8o{X-}JHs4aiwov?~ zd#vu$nACDJ2tY#9TWlEVMa`?+ZJGS>C{UN#!9^u0Ei&2{HofvwFx*#Fo8}aH|D=aE zXjoU1zHeG=@HoBv^BvVwJdKzl0bBs0r42T1Oa(OoUs9aJuwNdz9A&25@3#90Q)RplaBmG_=^Fr&AO(f& zMb_XqzcEKVa4a)ZDy^kC^B5YL{rq`zvqu|)y4gIS9-R?uXmDf09UNRE3KJaeb{2@b z4q!?yHs5X65zW&o`%5@5BD9mF9X5OA6`DU_(ZN0*;hgTX&J*ST5ruQ23F=T$ZV5TE zgOFjBw0_-djT5tf=c@5ITC^%yCky{@xAGbT6MxI3^~(p2I!I2aQndpgKBrSrY9zlC zI4`??CA_J7ygJ&CDWdv;b@?*XHL+c*gJx`0e(um6YTis^3MgSRGA{0eh?3Y?BIIsj zZWSIpNqrVqzjp}dXv<1MB506H*vw0LSYE@lT`wn$m+HQdV0Mo)Fi7E3SXKoGGmr@z zZA!9>MK-jP9Lp+1MO~ERHc8F*!R}GgN*SFQ;?2(5t>Ym;P!tY=~ zaJ}`6URFLVn7{TkNPfu*jv~$3BO-%1mfFEe4aKS);~2zFZbDR?z^u<|A%2j2Z=3AU zwX)Tt+|99geW+)|Wt$h_o*+lzq=Wl+6;XJjme^-xVFUovxFQ07VMy5i@!)o-30L^ z0)k96$>My^2(q)Ao7zMi$nw2ZYl>Vq35;Fm59pf zuY@A^Q~zLW-72T~8dcEXaUuL`G_Zbv!!voVN<3z@rLjDK*YDI>?Uye9I;+d?=qW!1 zZwQI?fQVgVRNrFH{*>}pzA-C&UChT4j<6sBZ5ZpHf7@yW`F%{XG+BV}_A9|#Yx99# zrT*;C(%REKFfby{uj21*{S;h_q}vVMkNx`ZxI9~!lyg=rgYO6CBS(e}ePjhnf)wN{ zyOIcSvGO+-A&KoQe`hsj-TH3Z?A8#Gi8Wc-A*i6YH^CLDsi4foc6lpP(4_nsj zNyCB;O-TpI6+6pRE3<)ES>#PeI zFn|PBe1R6w&j;R&cO5-N+M(U z^c_1|c`g;0s>043?kG4_#ZqTdT_mPUZkRI=r*Q@UW=cr!k7wLwr>wsidvU!~XxrMV zg1>l$`TDBq?F3So=jEjQDu4;M=~lsu?TxiyDv$MM2}gdRDO6C#KEH%^@2i%+aX=lX zNVzpNMB0oel#Wp~I4zV;R&L=hGrq!?w6g;*wVK1$s#mQKFVko31)qm{phQ|z_%PEl z*Gq(lpC6CsxZzYgZqN7mtP&8U1PB|l^?H{z@?gNjC;d5@*k+6DL#y-SN2~jz-ZB}! zZ#Rr4pQ~BhekBBK|NJDj>d+=f`7PMhlj&GRt2>9T<2W#%%7B@6VJpi=q~GxYJq|kSt{6{W8{`@wRXxvQYP5S%EkI0jO#LAn16zu$GRA^kXo7%m zn2MN}s{rNhJ!|ZUuY;=nHNjWn;5XdK2!T{ZOux{DdU3eZVc)z(>lH9ZBU&CMM{yuC zzSb7e{rgC?;r+MTZRMSVELenXo0H?%GU(_KhPW_qy%~VNONdgY4`5t^T|H8?R zo;P1cx$W}F4g=D=H3NB@s=mZfc(@r0;pQ8j$YzI^&yR<~e^7Awq`h#!TnOw?ARS_i zZ%BzeO|rz032@@_snV#G+T^PCs;J<3jb$lp<(WL*h@i3!NgQ-MrrGhf8uG01h|GeXN!OK>-s?aazJpj8Pp7;?8wW1o$;8SnO*q9NF~ zIgu?jI`1sM6#;Km?I(!4_p?k zg0r)cKE!@Pq3Gxmbf_wKnphnXQq6Nnar*CNhWhViX8%4h_2A+Bb)xi1zpm4=u7g+cRowr_sUeX`1qd!ZC zy!Yv+tvO#cL-u{Xde_2tOLw=czji)7Hm}ng@ODz+ptqL~ON?%1f2JJc@n|#xyLbqr zs8HC;jhR`)W&KU_?B?qHn9hqtNvWC4pX;n5WfM6=^bjoE$NE%J%8@o6KM?9?F@8q&9(h*cmRM9AS z?CKNrXC!=?Ys9Xo#KWgfC{b@O;MG-X(3dG5_IbL)B**11y}?uMmHVyJb9B?oq2FF9 zV8@|%Fk=?wach_4=XZqOiEFVhA3kjwBctVBp4R_HlbYIrB^k`?P`o7>WTQ!cogc?} zBe^zzBtwA_(MgfX%kS}{+lP9EMiCQ1p2?g=5=gImv5{iTZX*-zpO+q8NP*Q*!AK^d z$F#3LpjW&a#B68SuWC1;)oXX<2v_s^LxQkfMPvo@NxG?ElTO__QaI6LPhj>A9rLj9 z(GK!$sWx)zw=Z*v3`lo^PZ1GEnLe;kU;H3#z$LS}*(IDbPhV~rjH;zr>9I2e`;7~% zu&n-V8iu@+gUOET^F&D`1n4PR?rG^iNlsgCOf)4S;=j||l4bw}Lo9|6N-|^C75r;VXluVTDQ)hZPU?7z3_sV==msyw zupbLnKSSWjoN=bE?Wi5P8C#n|klAidwYUkXQ9h|*IEb{eoU^Nt>>Ka%_B4b<_~~fO z>ZK`bn-%w5C4*Y*;XH%zz=}w2J<^wso|IkXB8V(cZ{0rN9&o*nlq4aj~Vn zl9hxg&kr*TQgM?9T3;%;@;$#{+grblHBV~KnC<#IGt|fJp5W8WcVVm)>bTk+$CEX~ zbARK;g9aA=(iC7fCKgXl$L3!R(2Sq}Li~9yWD5n*e=II#X|2A8h&X7?aC(}4+47v{ zNCQF)g17C53*2h@Gi5KlZhX7?;xM;)dOx%HJa%FiBNFM{H$a_R>~JkOr4-Y&8a+R~ z#7Da6<}Z42aZqp`>HLbGdx))T71YZQR3WD{ba_yVQOS!wdRAdA&x?{P1BZC9e?S0_ zZM~pcox>*FV1UU%(%*$Sf%nh-hNT;$R|3W#K*Fzf@ z7Nge)wU~CJmvF^u`HUR|&YZ6~e6VRX2dCFyW5*1R-7uj4{=8#m+ji5&i8&ar6r4iN zuRgl#YkyG2xLe|ZE4cXxBn31^i@wH71}eVcRUh%LF&Q@Y&t2mM=pRf! zeEWJ19hf^&ygN=x4W=fOn}qRvo~bV-vi3a;#wb>6XGd$d${E}~MlCVB9cV5F#tYRafZ((bm6OjEd% zZ4M(G#PpS5-X)@-^8pp}SEapi|M0hO7u7zFk|Rwf$DZyS z6^6kB-;OoJB~F>X)u=k^S}&TFd~QNBJkoj_3Jsk9KT;3&Z&XqVzW+}WLm(3~Q<-;U z9G|c0a~Bj`{-t_q-IW@p>ILe5;34`N?hs()jyh4|D%g|z2;n_`DO?=<__W3~W-OYj7?Y+e&sWnVNIL~{|l2%KFn zFXh9|l6kE{&`LlOk`{BOt7YIlVP6%rWqd7dA85 z*cUqL=4jS8P!B$o5~E7`8KdUsAdVw1cs4s zW?EWOfBu}~drYSAU(bO!=G(Smbk-%5E<7!3t?>4MS+1LG)DhSr(yF-yg%v$FK&cUI zY^MMYLC3Kdkp$=_2ifP}@o>mjuTg2GOje@mf9oFkdfYGDw${l!%+FBi)e_~78+PAN zr!F|%sw~tL_0{E=7opM^k5;Q8X9h`BGb(XMY@7@Yy%X{d9A11uuz&Rz!hiJ_QWrju zHu~v|t@U z+VIwIq%Snxucg@^(zc(weDeGoK|&n%N5b?2TV`_uW*DQa>{a=t5RuoC(_6JO&elNl z&dzpQ3RyC<*|r~NkPp>TL5BkHMuxVVQ!OJ>{QiW?$ZnSuq~dE#YCU6 z|Gr}`=a1*ddu(`t(-oBsKO)LfDNnS*G6g44h?3;h-31dG*0f4j=~X@zI)#!TB2z4i zN?AJJ>8k6aX2>4%kry;3rhi2Y&8SCMi>4-=W$!uTI|c1!R&$!x{QdE~znjnZda$Af zT{jx_6>F*2^95i7nU!ErVzVAum2>#~kXq{ae=&8IQCY2R*A_)dL1{_plJ1u7?rxCo z?rso}mPR^6q`SMjySp2{i@o(mzuX9E-!MWm{Ln2qGwERfF4 z?&8uFilP{xZW%(vvm8EIxPB@^7CNNqBe5dV>5+`M@rR@lEMNnyiaiEsKem{ z^i=!YAqDUZYnM(JmKGz!f43ZRJmjKX2s=%r>U_Q7P&3F?*kvb3YiWzA7>cISs!Hd+XB9&WS8vqr1-MI!_5cE2ZMg zal2Wh4F@w?oM(vT&IBFXS~Au8a#yd=F`bl2Gixu2Qn}ZWxIdSiMt&3h;ka=%gJB_4 z|DFv1=wA?zD9oX$j}ailHy42d5<{e0J#A%ty0v0l(;C+v6v^0C?Bb2jKi9mV84=Ho zh-Dg?GOl3!&qhFZO#shnx#aZWoF2~;!!uUEB818fW~$QcB)4ke%mh5<22=LAy}+KF zrqQ67tbDdmu-5JPvTCpPNWz1PcRas{XZ+)E+>lJQTL00`0Zin@g~-_%{Ad}F2Ieh` zJeJv0X+7OhELpreGI$~67m@7Y!3pFqYTG|;1nj}#@b8C5k7r))W)XA5 zEKyi23G#~(@q$E@E=TP5qcTY;6+^0u(RS0>*WtXfL|K3Jz^j04oPZDM4|7nRCwGni z@@7oo6^H4h-%m~zfz~=J)~gD)V1dr4j4vs%)z!$M@EkbfndQ$3QC zpIO_fIk2p!u_5KwTWy=YJ1?|HPd~`7x{_6dZ~hiOJyrE!!i4e`+^`Zu$dG#L-&q=i z{ypxG;tmn9&32PJL9WXW03!uGJ-I5-eC9p2;{@;q9-E9Lcu$#jkoZS$yE? zy;{G_K?X0W{Zh`ryJnq$WVH$v-A>>uNR(jrZ0^_@^&}E)TZgEw_r!|U#&h@1_r2uQ z;7;E!t*~o#iNB)yn}K#YSp;5^8wTpJ$m#EpUAZ5A2WGW^sN3)PdSzc8X(5td`)ZcA zIfcJn>>PYMk}V8J^eE^?hda@sz>yOg@~a}T(IArE&kWtYyMgc~|R2cB8-f;|uzAlw?iqukx`!N_7 zV0OdlNpEtC=wxrB7Q~?YW9v2wxpDK60xL3Cr(esrK^I5O7PhluD}(h%vg6($0j2m> z<28!WfOq|Isb)21=+&1ntX6P=px*>@pRx@_T_L+Yj%=ZR9*_-?QDVYpzf$g z(Bde>kak^r%*}7mKgdL&q3y-?)x;1IeA(}>m1*KU^+)7#otJeZE{!ZX7+H#;?yHEU z39MYphVE3XG@(7MNyNBUtidhy+j9POsGM=iB*&1h1mCMXshXC}EMWO6fF?_1jL19U zZfT6V{uZmxsq8Bo^YJ4)XuRr+!=-Lyge_BUGZ_2CEK$aSdE5d~bHvVZuKJaotz#)V z+(Oh@P2b_&+?q>%A?>&CIA!R?O04!hi^Xo2y`+XqcV^!7RK9fj55+2@lIDhL(JP@4 z^_qEq6$m`!*zD+k75Y~KI5n#SEG%3E%y54GUR71)&X7k*setBik&?zYXDNTXMb|Z$ zB*T6Kkd81Yz{Pxa7;eMDTwqw^#NbthDD zWul+^@frFbKOXs30r-@!WzdI(dgjGShF||qo%)A9gX&^YT>Bi2JkBF!bGMu1ccuX~ zg9zsBP)fJHEFl#_k*%Bc1<3F|Sq1eN>=ROg0RkYeeJZG00hO)ozOnIVUq2*dKjbYB z_m>|(Sr;2p{mFlcnslHawIJgJt@~nd0{&g0MkWnuj}i6o>=PagdT$3i1>0t%P8%d1 z7W2eapd;}w8_!jQP$Z#oLMsO-Tv=oj9|~DJda}I&!LK+LO0xJKLRw0f+r7RtpSgW- z8FGPi7SinW<>F|uSTz4i?_`BcgBqN(NO_unic^;((=Palh@GvUPg*Hkx4NKl!)ge_ zaMi4a>Q&JUZpM6MVm|oBl#e`$Hq4(legcj7$0|K#W+vBzg^DVscRrmc6?^J?o45^J z;X}yV!S+pG%F^GltEw#uv#B%2bFEDsmFP>IwR!F<# z1L~*xWx?5*(?P8FQ!~sp?$=Fg0S{}Nr#*0JjFn{h6e36pO3cHvBt3@H-D?luc+ehR zshq4neDgYYLNUshLPy75^i`a;u4&r7NqKHPtJg-hVrxab*sOkF!Qz@elR9-y8*cW= zJA~^Qm{4h6LdFc)w52=QK-l;ez)M;kRGugCUM)lH<>BXI?9k5V;{LksR-z+i7XDO- zZ*vUQjJ48^=Hf`QW%cXQ@1q3@Lo84+pqk`AYu*qa$7_%iO@<5*;RCDfa*cV%J&4?T z$0A#Sl%c8@w~VE!BPpJbS+DewN@Xc=c~i2;gw!!MI?+>%D9<-y>FcZSMM#6vev(837TA3w?UgaGZTBhjPu4TT$^agIW3{ ztLC`E;t+5^8yicuM4iNe2|axEe5br$JVZ{J4ZtEh)5F2$U`dAAKoY9=ATCO0?tS10 zc3d5oAZFxi{V&ArgOU56-Gz>di0Og#1a!}iT$^*XS^*sIEDX=dGwSN0MIkxgjN zZFcD2{&yA$^zrdy)lw6SG9i!f9A5PXPXz&0h0?~W1!TicEglrSK$=QKxbkVl_oS&8 zKV`6CJ&Sz(BbN&^E^Jm@oN=4(J)@?l-oQW$aMbKfAW+whbx9s!%S_Jc75#s`a*}Ai)RwGE|bcPj*cadg$#Q>%^e%)BGqcV@%*ItditX=^0c)Y-+EW$%2tOs-fOEj z;~^ov?&t=UufhG82HMW~@PYVR5my(H2CEdkJt;N<2FFws zkx$mn!=V*Dz>2-sLQo7q+c>P=e$`xuf>7cL3WedmJ%wVgdsA%&S3`5=GCoESC~VPtToYM6L<; zHb-|(l`oTlZ?xTYOJOhacTcsJnR;KAO*n{9h{>$(GaXn~DxLpaAzI#l+(sXS8a`aZ zzp<1wQe7A`@{m?s1^+BICuZ;2re=1S_u{s@l3*Cs=Al!jxxgE;;>jp_!_o@a9CCKW;DmTG3{M6iXn2^;t8S}l$zgip6 z!{Sc^=O9;A6r*|E)4%?G)4Sd7WT;mn8ocuOQOc2?8XW~CF(h&doRXeB+M6V&BiP=6 zXWa){|C=szk)is}f732FrD5hp1CP4ukCm*i7cog<{U;00*TU#UMP)f}4HmC`vs(ON zxCe|vx>ZG(5oP#jTpwKj)I?J0T<*a#ho^P3a<9T{DK{>crQ3Kp#JGs_a%2^rEV*UE z6o`uv>FHe*K8N`iI56mZ-B~_vn*Y<}cv5d;BYWd6joO zx6u0TZ%4&&DA@}I6&ea4bn-jBp3dT!{gO_@DGUBypQgGL=Dl(=n~6n!<2`~#~S+=^^Ju-M&3-xBmC{gZFjq5(uujj zA4wQ1^6Kl$G2UC$awzzj-W=H%jImZ#Qixizpy3;RSX+yhd+h1Up@lcx|5!+>!ai>h zLP{7r_CCc7t~u1#D-9nO$id?otPM9dsU_-zKlTu~A1AP{BIz9j(B5(yS}iU(2*0`ud3OuHLU$E2I}CVx$H` z*KEYRs$SYN8*A!{IM=V_14^Bx6hp=LTV0mk5lxo|n+Vkk#s)1I(J?j$F+K210&3U( z0yl&FdYT*K-PNQ^=J0w0gA>DC`x<-I53h&pEQ&u|J;Pp0H;=?SX)jjGz^Nz@E&^?x zdO$BVn|2jg8*~khVu?w52dWx|ZfCK6{>Edah0U*ut=&Y6h@+$|teUMEZS#k5ApKMp zlGQ@vwcDxZ)8z5Se9i#o-tz}=0oea@vC!)mwTKhbA8EL`n}&`dUqc)qC~_uAd(-y$a8XnQRt2bg)Fbc%dK3+KF_9VYlh*ER&4 zDEJ=_TNhxj`sDFzQB4K&(z#5P6^W{`tk%eKT#=w&R$}1D?fXepSKc^RDq`dQSW-ZE z|6)%u)td&4@;+}!q|)Q_^D}zm-@Z7~%@R`PqqtkugUWn_(UpQSp`-giA#&9+$z z1(IaNCj02?e7S`&VSW8;gEZ&#X~XabLb?Xd;gM}7jmiKITp82~=A(SzqnYO$H*;LL zc#&cztfzXj!QG2`8Iu@o;{-m%atpPn1t97u5vHHoHQlTsP%9(%^o+cC@yz18n%wdJ z6j!he3%h%M6S$AKyN8c%S`*@iUgVXTRr&p@D+2D)P8o%BI z9Y{`MR&Itt)1N@j>zJ9apWV<9iDgNp5z_O@obb;r*kJwRFfp$)Z1ovd92=I9kThiC z;AX3E&EQzTOZ6U*h-hfAEv@Ym8Jo?M_D+9pc!J5$$>QPdcL9Fg<_EzpOBSUlko(C~ zrtv2Z&X8?bGR;(;7ECpv;1BekHJ4CI9AxJYWc0#o75x?^+-6Xic7s93SC(AN=_c1q zK24JNd%@tfVjQarl9s3HRzaTs&I?Z+Cji)LN&=_%H{+DGAXYMiaP>BNq7~C4u-Rgu z@Z3LmCunn>n|%zNI351UUBU-QIy$>VpcBb`3=98F8|t&E=Q z83MQ!K?|LrFnYo6Pf_o=Wv5`MH_{akJD2 zl0{`umZH-7d@P6?tfb!v@;cOkKu(B}9BVTf;^Z#uZR5)ILiGdYb4%Fo1vd`Lsk?SQ z1NHJOUoH-5MVFB&B0_#bdbw?25j9$Fu8GTAGPJ~?Wy zE}((O6|XWde*3!KKHVSp4h$G<4J0i%OlxvpPRJk3RTeEB`lV}n-fs5T9uE0@=?}-C zBQQ`09uQjad-Bv?{SDsez*s>=!H7q_y>%d+GVlF-l6#G(<9h}}A}9ox2vgI?HerQr zyCjsm&C~KQWfu$68ef^1k5x(sp z?V4DpC#BZvWwD22EC_;S^{8Ic)^NlyHW{;%;=&W1S$F!fxd9-#!w;XUKncPqhQ+AuMQ!}Oc#^b9bzDf(BfL;h|Hl=dn8qpku%j8ffa-BuMx*3_Tc3EDbjd_j+ z%j3>FE~~gR30K-QCw;s$h`5)?%@woSuFi6j$${h^U%QCJb0@pgcbqHrW!gRR-Ly#eytgt)FQKBZEz&i+)1`$;QQ!_(dV!+|l6{?S6Mg2F_k*8SDI z6$A#Y&ez6!cu&WhlT~K&imxMaGKx3)O4{5Uw)luV9$ME(I{Tl$sb-oWg@jaE2&-W} z;x2goiRVuVvwL2Wz7lUdf^RRs?dCg32h=RP((qRb$^iUc8P!z!)CCdaF3?{?&^| z%)i4M0%ARa;gU$FT3@pw(BGE{Okx-Fl@ODtB=6gk=y9ndGf#fK=dABI`2sD4^7DEw z=H2mfmvg}}1CYGW^_G9>((E}pwbdTVq15c=%GikS3rv!6Fa17n@x7I(@){Vd$J^N< zfMNf{#MNO{lj(w%PK|E9Xo?WhVfo(l%1W{FzW4y1yC1|Y+AUeqk^p_j{7X32^ht-U zrpHo6dc=RE=I1gP0GV zJi}bq8a>xy;^GiHquIiZ_XwU_do7j0N<~RCGdl?P9=!J>sHHYfg?vI&!LCot%|AK{ zU~n{x5jJC`!y(e!bs@4MWRtR1Y+Fk;KYWCE`xXs_`0i)cujOZWifzfw3#=lQU&|7A zQ5Hl$9s1O(Ed|@XB!d)-Rz{zLu7;mw>_^%oZii3#yxL5W3!}S z%VQ6m??|kpc6e)Dj*2YQCW<+Z#;HJJG@_%xvv~(c{%TqGh|H6H8I^aETWED0$T4C-`Hici9DolplZD%mEG0= z#ERF`wigDIsluc&gYl37xZ4)&hPgmBgjfFgJ-FW3G>sQX`rVP65iCpJq6pw1Q@DPlc-Uek`M%%6O@msLU zM?sh>8Yu?YtcM$7P@@APMLCV|&18h&x#Cid|moWrsx zH1GB284EEf5`lrpaDO&CozbkjW@PgUC(cBh4!>#XcdEA5*t ztP^M8JT@x}h~j4N_B%9y#Jl(Oa`12NHIRU3$F8KhR;wJQ1aEO)W?r!T!$+f1>qxO` znmss%-^Q(lq96~srshx72*<6DPdT#6Q9nhiJcbOo1cC` zI!OK;nhIWlzx?#=zV26R1C-0HVQR=6J2TntfbBQd)YP8ijFc=iwq51jwlEkth=%RX z_0&^sXAMjtu9%Dy1BZZOSvLLc;h-SAuHCT}iAA|(jgYK&loh9G7JT$)fezn#$&Ihz z{B;+}N`9QWJ_5(7fJ<$M`*QZp8_a@DGu21`q=YqG!=CT2fQ=qlE}WCyqY4qZ2Fjjk z{4VfPY-$D6XHfP`D-=-w{5eoiXi?T~#c`^sFX{RD^NZbzx5Q_iU^k!>lS=(?vM*ECe7%5aJMH@+Zj#TcRdNb>VHdS!{ycA?yQ42`Lv ztPJ8jAnuQlJmf2l4T25Hr-Ci1By(`{BLbjBnyT=&qrEJoq`_{=X^piGv3I0@0g*kE z*r0zN(=(nxNx23mr8o)Gq|lXFrV<^nQ~!TEr?*a4bsCogQSS#hR{@2XK3B0|{M1R{ ziWUv&h+ttJ=3oU=*EN6hiG>w@AuK9tV9UYj2>E=^6aj-gA$ft3M@(>7*xv6mXm-+8 zm?vvM6}T{I_iM~2V;r?qO%gCS_r6|&lN@nzjM+=E1m&U$B*3^F9kWJA{L2ugSd)6h zA^S@mwGEJTpb)+eX6|Y~n;xQUS2MA?iIkGbXjvAw&DKqx3=H?hh>BN?HhZB=YZ@D$ ztlZ5P*FBuX#+bw7S(1|XPQ4QbBLSpuGIVPr9G&qHc9q5a)PWaG^Mh@LXSZqP>y`5W zgm{{U6TXb958AQEP50FQjA8D3NC$OIO!VB9{tkl?ma(A}r5Dc%28>%7yGl^|nTuX~B9q&Z;`*$H}F%>Jx?d|H6 z;LtG_5H`%@KO97IM}6DWZ)QZ6o`HrIwn}0`-?}vzZ%Jr0*-2UUlgo$D=Egb*1r&3N ziv0mSovA)=vTJU)PSP4|YgaZzk-=LWeDwDA`9%li`beZwfV4H7+5J(XgUv2iNH-Iv z;uDCkBr#M9A*--VRDl8a;bEKEojV(wJ6+2#)pj$E=^Ec5h1qoW&zyruOt@ET=PD4I z3{-^`BSK&k#PyyY=9c^WVm>iZgvw@T6{b~4k)og_(ocx8l8%dmpBz$>;j{!UfHfcoFV!sRn`UFpDXk=SV+1rm{IuT(^M(Q)bi5nkQ6ISgoMaeLb?i!2&TWECz%}PdjC;bED8c!H|=0qb1EL21n(^ zpUl)dL7@tb6j-yb?#Sws9iEH2Ka^unQ4(Pz06BjBTok}eFc?Mhw3}ajjSIG{+ylYt zff(Y<*QHq)Xhgs?_ZniIiMh&izbQF-#zC_1oihL1*X$p{s}g4Z{BlK&oHbuaU`|=0 zLh>!7FrU?Hb?=%4?thM>6MEywuHU*4M~%wutF$DQpo1{JXubrMl8cluQ}YFoum;Vfm>rJ5*!o<^`4&|-5*Z7Uxj0_P;XSw>34lVM)vDo z*S*}EtZb?`ouuHzMQn7vTq`UpHBC5!h185>SW9)>;dt@-L^)fCH$CINW*3l)Otp1) zyCURi4%g(-6dO*8t+mymOF7&X=<0d6=`?VSs!0S}EPMO%x0>I9vA%!<@9X?CTizAk z*2NGP{uIs2GiXUQV#9I0-T>OCrpei87_f;A?BKYYLI$--GM0Y~S?n$&qZ$hQokTsH zQnl&86b;5f_`bOZ6EHE63)8f`$+kNz`yc|p!trr;NkRd2$z!@L`;L!$Qw`S;9{}(7 zOVs?3aa)J$&K8bXmVW?r9w>DJuE9mV1?0cjLD{aAB1}j$4I}uSCP@GC8B!WJ5!u*q zL2aw`<)kN3FKaxWC+%pSw1rvH=YP^$OiesqP5AjdmkK*}rhrx;6#n~sOk4>FTJNz; zk11;~`wU{dSJ);#aWLO}f_xpAe{dViUoOfQjXR@!aZ{aX3ENo9- z-|H2p=6f8pu%2m35b2MWeui-y)g?%Ok{3q*#ebXr9Jck|vfV!tF9celAtvtJX;Y5V z48d^UmW}>A>P9NTCZO((rqb_?W0dHl!=7rWx?vG1-jdL7W%9g^tcB+YklD*VLC22K zJByLi#k4y+!e8$8UsbWuti_14Z|l@#<_pnU@_-fd>WC~#B2$q`+JQ$Gb4v;?(8mruNVYB41>&*6xXUD`i>(5$_(6cFG43WDG(`QmHCF zy60j>qpl+hRo050ZJb9z`gm;1%j*LQnG1@4uzJ*adR?!W<|C8#sn(83^76V&9#g47 z0u`v+JYGcNfIC*F)$WgVCYtS#?=xamZ-0C*8SH{*J-TG9H9K)>ZSGv`;x426tt82a zLn50z+^n*zYk$M_KS4=Gup@xR{{a2la*-XVnMyG+F^S9;m^`<=(ikk3*v*fJR%|wF zkm%a(bl{~$Z)A5UF;u59ocph329asWtxZpHjyf_6Dfx4XiMShu5QmfYxBA~7QAKuc=ti}l zBU?^mQ!N3`n+BOx?bv{KWU6J~BJFz?*~uRNeXXm`$1?7}&GM-U)-9X9`gw%CFXsK1 zeORjK6s3z|n#a_KK~tf>+b=h$rFo#A?MdXyNNn2vT0ACx{(GNO)U+Q9G5*+LpNV|lQi)Z=RuKz9-(LkVClFDN~rk`01yn6-53PSfbz>?}R-Nz|;q!+X?H`TFNaznWa_W{aN# z94WPOa29wQfk-nx+pO|&1|hJSJYITsT!grpao3Hi8wsll2PMv+q}CNW3!8UZRd21#tn(tKgBAn??pnBS-sDZt^GVr!j7 zzkH=TC}3S!+DS}y7HK*iLyY_%)7jqQQSp3vZ$1U~fD@g0v5YX*`oZ?<#cnisISKK0 zTFIWc>T<(@eYIjvMGs@TZu@J{0c4>EtZSgs6U^87WH_R};?yuJ|5(r14IfedB3MjL z+p-rBBfO(~7>!txHb$vx2io^L#HyeM;|iZ?GXarhr*vHlq>ZewEIxs2kc@Laper%e zZV#F-D2De`d%lzd9b-sBk;PAky6r?~XDyq1b&of8#52bwvsRK~e_oo!+huMo~ zFcSE~G7L0i@z|_P1=O)Ib5?BE#Qe?h7qkZ?~$JlUKKtno+O%+)}U%$@m@@S*&{;T47P(nq9LEwlOJ z&Ys%+2yFN|sf}EXr#ladBAS|%xcRkKBK%!;(ra7+hYrU=Ufa_&KI$~o?YZJ|gH?0$lcC^r=0Q%Eu#Z_0Nmth?jIzd& za4bPjFWsFept9)c*^7x0kw~7E11M<-vIpnG@8Ix*p}&IKMVTR+_eXw!xS{r=aTASY zm}l9Phw2p&6G%3ERZ4z}mcsA{LV^WPU3yL-t#t-Y`tZ!r2)5;a%y$| z)OX$c?Ly{O;%1)#UIB9LZVe10;LLjYoLES(T}rxQ{TW!98$79U*Txqd_daR$;=y^N zK(9#eNKav%zIV+GBIFV#lHr3V$?#89LZ833u%U|_mKg!@&DrW-_oXLn$}b#~?IGK< zvp!L5GyHA^3%b}|B(1xLce!3q28sd(Vxgl_xj7gF_cy13J4;D>zdk?Mu)i0Fk0qbL zBn-wcRVJNA(R16cur++!e4mQnLlGK1Q|Dxrnux(gw3~a%Hjr9mGiwO3H85&=nF(*x z$ew##R5pOWYd2IS4C9Fg-STj2VehT!Uoq^UnRWm^B64!(DodvIbDwU)awEw{HeKNU zf7v7W+WiO5lO#)gVl4d_OO_ZtIVxy^oNOj7n;v9n{TTy9qh`~FP|?xA4=Dwj0Egqk zF7M57YYNnKlCw?2nKZQtS136sFe;s$FT!Kzk58*N^ElRgq-LhK;7(LP0hvW1zKM+= zckLZ0#6&iQSJ?)vp4hh!Dnr*EK}XgZl(0O-&&Bb|X2#(4anmynAHvD!zOkz`EY0~v zHWTUXNP&Q^ik|aC*^rQogf`dk-usAij zl0$o$0_}K{?Y;Gy09*CK7@Nl!2OQvZ0gb=gAO-_y`O=r>Gk#1$Hhj~=gzOp$4BFv2~SmMhfImZl=!BN^Nkgl zzz&%Fq0u0FhUttcOmwnCzLt&ZC>x{%~wHajK zyXW6Phfc-zOE$9--&ZSlT5G>ZjMI^M*P{p`W-G-Ln%;WXIcLdA>K`1;?$`1CU->uE6E)96E~C~xw2_1 zr;}IQDU(I`T#W#|@nk>Uq~z54kDc5Bwiq}Ym)*zjir}ehK8J?Fh9qKytgVgIF*#dL ze2Q}7&$sFc)6mH%v|bI6y?LB$tM7$O(8APtyqj|g!xR_8KFD+2!p6;7M4EW{6#t_B zi|S(MFg}pHSahq|Sxordaaq06?YJQhrCWP_HB=V*mp@T*a6`xIJ}4FSso)1{ zyo{rMrD5>)s*7Z(sb#PZ`PM z=;)nRp87n53NV1R9P~yg;*3zVl82HqmM?2ivvg`V28T`VC2kEqxa+XcmQ8wCBlRL@6*9oy@%-{C+IeW^=$I zet(}OB`_i<-UDo^7y-6AQ3{3i*qYyctjEX;cf^W6G4!4%vnC`Ahv_2eL?>wyI zbwR2F!Y`1d;Bic?P(LzrH(j}%sn$nCPSrk~kp;q+hjGgw_Y9V-6qPNwKUStZ-uLfo z;AEs;PLZbjSFMM>Mkc*uwP|~i0VPxXr(f`xjBo#mRP&-|bpLsKLmS_AOKaCD>0p5E zCxt$XJC>SJ?_b<7^qZQ4JJ-2d z+Rx6j?4z4+0E`laI9G36j9g4&(+Zt?h;>)~iC{56!?Gcd6(#0>l4M~2+XCdi{R_wA z!sz3`2#HE)RXM#vr!0lfJH@QnLeB@l+NSF@;5|))>!wSg(nQc?YkGf6MU6@}+C5 zS0$d_u1t_exAVU|S400Lo=|3xeM965-)|Ei#dWP2huL@dh+?`m7+X%|5|cO)G84}g z2IR8dO+IlclZ15zl$%bP24F)x7S)Pd(^F%DF@B2I!^N!%#aEu+M^&Twl&L_>tRcuA z(#~0up72zl-nxyvHBetQ+j)ubMq2KK3Q#@ zc5@`maN2hIUCdOZg~juT@cJZ$dbh3n+~!=}B=$eue*RB=T)B~@dB(khul|BH9E7~h z;O6L%Z{SA!<%mq`Ct05H@T(Z0G?lM%Jdf}0nmXiFWRi6?12PLy3T~7DpRepQG0fW9 zYv3T7QhF~04SMK7b1aK`l{25Yr2t9Y6gZI1Rck5|<9hsc{loYT-MC^G#GgUcqZHzc z3Gka0I7xsJKob(Yl;^tf99;V`^3hDWpBDt$w9{JZ?8&ztwUNNs&snkkcZQ|07Jy+u zZ>o3-I&HdiZ9GS4nn9btQuvuH%4>PPfT=oxK)0yj&9r`=4U#3}!_p`BQ7cnQ)Qo)w z>-&9tFX1m$BbG*~XGaj6!PeSqGn(LnO?X5D_#yA=NWL_;c2BKT7f9AtRaKo(?Yl)JdD&&mad z!Slp)a#aE+V__f#YPgfL@6DHAqH&Xyl90;i%IIeT$Aye08#MDay($ zA==j7+55nghQL8VFmd5%dc+ABlgu=6V4naB9`HW`*WvsYvU&BA>0e?ahHuG4#Xr@e z{h%T`DxnbLgCyeXG(Z-V@Xn+4HQnt?=2`N;aa6FpyOaKIiW2;Au$LVQ5e#GeV$|5D z2;x==0``d?3Nm6WwYq^To-?u{P=R~VM1LSI-u3OgUFZM@@~l>R&x&=+_oA$sf1=_9=kyRF4#f+Bxa0et_Mm=} ztBO!#R~O&%ladlWDvM*^?}`|cZy1M4V6|atYLNEe%B~2}ncd0l$F7}EsPnf|3 z8AoU52WX7aW!NNsb0@dbp4DL126Ec}ceyGv?zFj*AMMQP5p<_3Y>f*h9 zF@P6>1;#KR@87nj;dZKus1h3L=W1PDm_;z~_S_FL5}yCmpZv=zvgbvxU>E546iw*c zCxx~9bV!G1CH#c>J^yQF&{l`y1n=lVDBr_zF2VI-uU&jC=g{k|3h%hQ()K2M(UMkS z$x-)ncCU(eq!A(TKy|hTlot2%Q{|3B_xjE5sR%O7^1xVayv>=sbYv`6pU^gp2dA|9%@o@G)j!Ig$oLO5{)z%T5) ztBM2GQmzsXa_dviB3>+Gc_v4~Q*(*?0G%hNuy*$t7Z4)z2_KrV0-34G4Eqf-Q>84hd-qS48sxr(S@)$#;V+$|96l}72N zD_>I|+;ul6J^)fFoo!Akuiub|qT-2KorVtm+re|d0FYqPLEJ z#u<~tB8&IFlT{biDLNye2IQgb4LtNaiv?$rb`s6=toHLaeLn_hD26}=8u*)D% zOPwwL14Sq?{N(k$`kk>|quF~r_OYAGRwy-F=f#+@9Q!r6YC_ckmAlKX4Nl(K0gllv zF4rMS^8Zw#z-1Gu$nM}1MHKysJ!>8HGa{fWBqDmeK}B^gw{4*h_gcD!0Kup(FCq;Y zMb{iDz4-*LVAvmYjlR7d#T9Q8=Ldn+RdpB zr_L*Vi|p1K8&6;lcS?3_CM2iujV3%)^iu!AzU-yF)WU+f9f(D6dnRtz;|7IT=W?l- zbh%Fj)b3}dkNN_<9vvMsztsjKtjInvzVzPw8;K1bQeet$CEVG)i`46W1@MdZAei?O z^uMR%T3{TU(#5%}*pDx4TYg8qiLhMss-aIa$0DV_#fPcMUg-OTJ~nGJg}%^2cepei z%RPqgo3UiSfmlI`O+wQD6Cl<@S=N{!Amw^~!i=Wjijp2Lzo8s0md(F@z_nOvu$wcM zq;qa+di4)g8Wyaw%)`<@+s;;qK;XPKMv_aGs4?ORX13C5e63uA#AN~NL*;Tn8?j|v zo&uP3*e{`E0EX!7T(M8C*~X2yKb}^*oME4@eXT#VSvfst{3pXGWz)7b_@g6OxsDTE z9oS5#+(;?n(~W*uD7yY-cYmlwPyctNLAJ3*V?{+bX}FHov$ zH*8g|X@%9s{Fo&*#VM?}%{p_dV(UcrX0NDj-^A^*63nS!XDcEC?XSpqUMuk$Y=IkY zb5XsM7#ekHq^h7=VNB~aNoj_|OR;cQ-(?~NOu}k=?v{#CQ-4e3^~5YP*&mXs~lQ-L^#0hk9lM5a}Y!f7WvM0GYpW|vkqeL{FZN(w--nrc| za@k2HVFZTQ%}6v!$CX_RFhVv}KVl3R^%*UNbZUn{k}cV0rMrc4$>Z|mJsJT@Y=gW+ z*8%;;!X+fO@fRfxYVaqKm;y2LX`k_U*1zH5L)#`Lg+DnJq?#NUxg-n$`j#IaMu<~7 zaix8i@go-2%CT2sf`#Wn^_AY|<7Zx5*ve8UCBT*vd%lZd&IhnTZPmqU1 zn8BMB2R30nP@%l_GKKZQZOpH6WA3~jej}(W_&GHV1%M9yZUZm$%jgId;f33Ll82M? z(&Jt3Es_@Ne<4%=)%mJhc0l7vD)Wjhjp?B#pG0Y)CT})-w_G%?2t)1u*U%R zyd_buh??0#0@CItlBJVbycT$_*1gLLdT}6WCJvbr%A>Ec_PCyW42hl2u}PC_+se1k za-Bq*;QEyGqjYeyXMiV7eyuw2VZqDe1R@J|3XUVmj#rVt!8KW*Ik&Z-1KpBZ4Is2U^>N0`5B z2@LwyH&Z)4u-4t_J0D4MQ+#_+ku2+pRPQ8?W3X-{FcK(lE0KpBiOZC^Z@uOp^7MG9 z7#rOB0PV1d7W$g!E;{O~ccGh@&WE4g8bF0i<>)Uc_V<0wzrf`@G6;~ZY|g(;4&y)n zIBurd9^zo4Zr0eI18ELaCT^d}nQZ4XgLTh~d;aC>)Re#%)ld@?gdo8ZLOiK7LWP>_ z8zp9;dZD=Ctl4P9oWS3X*Mv8VL*KGLmV&(jhMwEV5iv-w=cRXvRiZaXcA#&4M2Sr6 z>hx+Xqj0U(0v4~oqL4358|Xk6Q^f1cktEQmCbXLOUEc2Y9}?E+J_I?wt3$(sE8&&{4u z!(P@~bKc#36E7Ht#WG9PvdPcn%oXWKRLG5$!2mC-#7z6A6bAEv*8Zc#`~tqC$>LrY=M$;vL8FTt0$xX!pl}eUgCc-g#2IOkY!Ia zS7{_QUjm;EndG04Zz0Y(WcJ+s(X@asFDfc!8Ky=FX{*3}5z8F|dMZX*v!%C!b6zd02nc;dr#Zn$E;-@ruVTq%LT` znrD6^_&AaTaHs*`yu`Jco;+o2HC8q00zOpFoW-*tDguj2@sb7LGKC70)>v2+=8q=q z7K9AkWHw^zBy!wpDohpM5_YSo7>jN{^yoblkiW`Q5_Qn1(D{2Yt&KI>0>1T!OYRlE zd2UofF+_bKTMoM{5(vfJbKO1``j<_nRSvC-MWzlYo#^wm8%P`=8>iuv`qG{aN`2yh zSI*-w2hvw(88qFtFEt*qcV68c!0i(|VW&3`6%4>eu!XSRnmx(-Xl8 zN`A;ZpyJ3hep#UddsT1+6u(1+xBurcTVG04*Nu|gixyrAyq*k3OIme_>9wv%qssMk z`d_EBajx9MuH4C3%+wp@cpe=+sEB8~d9+>tLGXK!9pQbF#gt8iaW1^@(1fUPF`p+N zX5`m`Q_P}?!e#{F%jIW`2k2?h^xxlaFOTj5YK(8fZ8-b*N^AJgk);j?W|hP)B`GEa zWWk6kJe+1d%!Qehgh>W#+7DsE!bz-oaJ<^K4PXH z|39kUIw;HT`yLiVk(O?dMmhv(6p#)n$)mhZ&(F1ds zkD|gr;@~tl|LCwmxo~Rt(ig^*)}LSOoDqE>;%L^G#Ip9Um;t3YM!dAO8m&}KY!FYoJtLpkUj7*Swbl3cS=qDJT=so(-wHLMG-Mg|+J?scZnbmmC_B}%#@t`~ z^DlID(uZl@Pq$s!Y}_3mkBHo7U z>q$^3jnw15u023^Al{7htm1x{H%g2&#`%2GY{eYVcnROTn0=}U|5t3J1dVX|u7Me7 zrO~n#g_^b?z+A=EE>(~xTe03o#!Ejf@pKLhE4r|5*-WIpdl;$yc4i{T&ApmHEHY7a zqzklJjMIuNnZZG@8|3h};{Blb>q#{ytapO_$+5~<yl(pS(0IkALrp{^I=5;sFDY(HjdB^^hSmVc<{EMd&|+ z3Qj(&u6K!^0yY+6?A&I~Z*tM{8!Cc5@SL2jlY zGCAe0>Prxm(cq$xP2oAWiTorcHHT?G-!sPS#jK`aZ{y!9I|ninx~mQ-NZTJZWwF6r z5RQ3$BpS_7iRbT+@`29Vj%Oczz>kX~0SRwW(~)pd`K#7QQD5~wNmBwSn-AN5ZCOQB z9@kBe>X69?1O%^A$z1$(ok#CP1dp&5-qiF?IUrrm@4Cx(^aBSYK|R{}^xe~_kO&+Y z#7z@$2TWH$>9QnDoJy~t(R`QSjl(87antCm9`jSX;^6Mi4(;}$4xfLHt0gGtq14j| zsh%_#mfh$|Xz}zr<;{6PDob$i*j{oa5IlhO@+$p>4tkK;($k_0xLB3gE6O#Balxyv zh&S%2R`97!xy?V1B{rlmz6DNIPqla;smYM34g(pb*;|LK6^M3m#`7uK1Rzqx=2}f= z;12}Fx>(PkIu>v3&T@GR;qpw!$!DtyOfU4A;>r*WkCs7E76^noyY+?S)k`clHa<#9 zo^#XFT07N?&+eNiIP5Wml0x+t`HFV=beywEYc$BIbE++rkM0ojcR~-8RYa9^w?}CE z`cVq9eBk?Sc*4Z0#>zi=9)v$h-Mx-w`+s#;ezQ*^CR>yUb@T zFlDjF?fLb)c6WSjs_M~NXWKSC9pM@DFdvRax~)lDDI?#2ImD>_C6Z%9IK)DgdLSV) zGS(=w7LP8x;aZuWv_$PAYA&$Z#FjL-;ON~@1WNSyVAwkDswHdM(B^79=Ux1d3eQJc z&~THt4<})?>Zdqhvrnvd!1>3j!i%;Bx3&`fSDxtF=oH4&md9@^QyT5x$VWH4fkwA# z5s!9BM=JlJ=nI`cnEogg0gX;)xqwZzH&K+RC-9kS*Fn^K;SWvfPv?~vfG&7^OXYGt z7D@Ru2VSU__f;hIODNU%PH`Sr#+W{a{@~lnh=G2>RuJF;`J)M-l`xonq;~s_u>Dt9A8#^ln$$ z)APp?pi)Ev^F{%4dZ?tFzCq97LnTVn)iuX?#EU$VplAg|Twh;htZa)dq7NiyKcV*& z!tAy*T%n#RdG27k8Mqg9GA4V8>8fN}Y4toKwPkUYwU)O0- z5$4KgO4&}2s+6JjR)4~Ic;nheyWVA6I-ITkcn<%y%|ZEHs1WdV?TVsWp}Kl@7P#k! zt)t}YD&rb;D9Tl(mX8=ruxs;G;|^|WOJ})uhc8Q;U*6I34PeRnwTNI65~dr=fdTEK zEy4aXcSF|b38Lg6%v$oTNcG$QtiNcfrH>*L@>Xo~Mak!=NASt#eGK8^hhf3ZM~%>j z$t23JCJSUQ2}=^X0iPeH_HtcF;f@;^7SP0_;We*&UWWu^WyQwPB=0JJNdQxf-rhO0 zDX$VE^4oId<-xi+HVlCpRmR0=Fdn`4Pa46f=lw1G)gkZNV-fL+CFdRy?-c80O@13L zL^HIp8Hlzm(}fXQ9-*VdJP`tqMM+DVsK40cs6)(omOKbkE!4!u@F9#Jw?0fTesq5l z57YpV{1egi*@r_N)M@ckqdP{E_{3g;JsH~BaAbT~54&^d0(cCWW;C% zjS@ZPVM{}(gc<6e=lp?#ON#XPg~0Q&#m$hfhSVcDPA3*H66<>Pcw0v^H_RcMs2XKW zMp(_EeTvHHVT4KAqHZgwbcLfJPHr?22?8J@RqsF0pCx9p2XCtYa2O?nQ)+9661d8# zYBfK92I3(OfPA5ZK=Z=l8KT0erb{!fK3mj6#Z2aq2Vxy8uEAeY= z7?@!Owkuq3M^eB%DX?VJO(p(yjdho{aXds7lG{j)@}(~6$ETc``J^_D!}e-ZFeT!1 zyul4%DNT!n47^xTep*AHD3baKVWl89EB-AtxnqrKg$D!oU*Jo5rXdr}xOC6YArrj{ z)_WC2fJmPpitos$@a_{rX3$wIzJ%@gpvb4485g=j4i$|LFI2J>DZnsD(LGw$a~rNV ztfLV*5&-_~6wxG1r}dAx`cJPSsgb-O_f=mXa>i3hz+k>$+u2Qs*+uM?FLcODB3j`i ziPcq_;vJ#>uw1w|U#z9!1+*Pz(O-!h7&*>UHa&f-{~4{m$^CuSVfw)8$(v0h>trwA zmRRw^k%ip7{cp(pKZRb^qLC6EphYnMbZ|M+Rj}6F>K2GSo8h|7YmLgofN>?x0AIsipNG(q!MxWor5+L(VZJs#`;8vKMb0g`KeA3l@s`1LMr zTMqCBisd65?5m->T0B@LJ4blvFHe+n$zeSoUkadhwpeaUxsS{jQcnzvyO8_(>*lTY z7dWdk=O0kZTm1@5Ns`$$;6kd!yRY^H9e4FcQv-Z=Ux1PFI;M1eS|SQU|wz~=0X6BX^Q8>d-AvBTg{z`l-+?mMOie)ArkpsBK-vM zFR4*+7(sgY#cA`sZ04IByB%MtndzF1hrX52->uE=Pu4m$;^w%o)RTb9Ox+GOu(}li zBXM(ZpE8s>FO~)NH14Ynf>sWgIxdF929t^N>4L%-u*gkyF z7dfyUr9@k;4n1-FPsJED3hwr@!H?NCesskmHXkFJGw4UVm-hZD&kiQJzJVqa7(P5! zoQwmcwkh*aa;oe@lYy>X8&d_IV?W+2a+h~4__bwf@+o2$wYBzbR8NZReQ`<6yC;!{ zMIQsE89&AWDj5*jR`QICmEs!}QlTl06qT?$)m0 zY=K7)Rz-(^Ei`n^hlK@RC(u1ViW}F)boMeTPc= zzAtcNcao`m(to)Z0`7??az@cDF7VN=QZ{hOJXclPiL6Qd;@YCu`d3L*ace&Z?K?Bx z%2%-w9c==}4o9!_l-Vl!GwAK%-cLPy^;FMA6AD~LL<@>`i^+s^Qz8M)lnUX%r~2ki zF53U(8^Z#%O-O&Qt_Eh6_lwp-%5gG{nT4m69Q*WlbeY7$0?B@_zKeqXls*2R9L(-vh%elGeC+=d{27 z2|!yJG0LMG5a*c2pAF9+qj11jg3^<5S|_WR+g;Ck1?2C_36pewotLsbbOF}lz|!ix zc^a$UC&2X^2C9S92*>9q<1d~z_jU0gMvc}D42J?%Z;SPnb__7ZkSTVn)>Q8euCsZ~ zl@$-pl|{>-o{J%=TCm>TPdEMl;g+x;E8Ys)c()8LO;U9_Dq@3%)YP}=BebSpAuY}U zPYTi#7_y-$L%^n~whYw##G0RUWUZ5%e~8G*R(zB&?x00Vq>hYN^;Enb_Q2@{0zoII zGRXocnW9Q!9SxeIV_$MTED$*QN2cV@y@vvxY-sI(xcqX!qC_;;l6~^{RP!B!3nQXg zkJH{ME$X7w(->qskFaz8UXx4i^(dNaaG$5v_=MLp>d|Q<{7C~%1x+f%-vQ)IE4c?<7 z5C7g-Zi?z`I%2i6FJO(t2*}uI*e5UeS?6nb56J;bjNjy#PYkWwp+Gn+hk~7~KVs$X z4fxRrcVGbTHy~?+o*H>u)5{fLrALR1_c;Z3s{uOy8*MV^)mA;#wkoiVPA>v^NIHZJ z?y@*+Te^y5VbC#a>NxdW)ZKxeSHtL(M-a?BR=pfVNofZ@RK3IRqvN;X-vCz|pvx5; zEQFhuAf3Kf>QvI8#9&-rVaRFzx__qKPj=F1GI!+fqsJ_B3gsiJW1^VdY?)G+N6Fty zGdHYcyqk^1fVztBZ=dm4f2d2|c2D|Dw2*7VBgUh&fZ@v_$46FSo=`^DXW+f67y0g7 zGyc8YW{GDELU^;jK1j*>8#sou?()`*@}OYvlK!=GJCuVAhLas zZkw+fC%gIl6hlntR$2csxnC<{YrFLJ#pxsh1JG}AmpDpFsuf+{3m%8s`G38p!RSjU zp6(Mb*w&8l(zwW!8$QvO=5)1U#idBuL-9d?{H%6`7uRXR51>OyXs(XL7270evYIUHoL))E8 z#b9i69soq&7dd-TtC4e4BT7!?TWA?a6}j#Aso ze&%d5gRdT9j-G|jj09_cEB}L!@WrRaVRh&6uj959U0ewUCmZpH!EZCf5Huw}(CQ}= zWRllpc(SPl9FVG6Fu&C+9sk-xqKKWH1MtT1I2l@-E?ofW82QP+{vWxgiek>`@SRit zt>nK%^zc7dw-2wq+hKr=w>;KbRdYw$pl+v53geOlVW~;8tZv3J?Sw;n+=V853o1NF zh)3TAfevm2-)~UnnodM*8AM6~ha%hZFypxG8BTofEQ>WBpsW90s!~v6896wUiV6dh zhSP!+OdCEejMkp+JT00U`e~i#*&pd)&o>51JT$IYPvZRl^3^eu_~pNhvM;T%fK&2S zxQ|9#1@TV)M58|#b(4^(0xDJ^z6D`y~aXOq9o6dQ3I7mG^&- z0pDwH`u&46rs5Yna_wm@VDH}KX&p7b)gkEPb zB47(txH*3cx!edR{A=~F)cLDZYY~y^8~-|0NS)pFcbs@!*soev}^nR&wijYI?3oyV< zSAVuGE%YPZJ;=k6m3hD3%diZ|IuE_7cTN)ICN{uopEer=dQg=8;_lUJ*m&Z7mknn+&$s1Y2^L#m5pan))LdsIph znZ#rl1T{d`-hS_KNJ(Wj|Dj~>=>D?kk&y9|^c-hIBIYqzd7HY{op-vNgy(slkFguZ zrgArz5qbl7y!W>?3y2Zc)Ngycj#eB2=^@OD0emx9m^VB1;_ejN+TWWzBqjNXwU9p& zlCh1{ko*sV*P(jzJ`UT{;UwwNiPeL0VEgVet=Xu{s{N~dUOo^DrDoQi*ismUwJcut_aYF!@2D*cr`3eJd~ zHdwYqo99pSCB~%Grt$bf&nO~k)0VMYaNW45_}0eX252APy(%jzfvNAiLd{toi_CEZ zKt2%0FeBmLMb+?X_)@Jw9N7OtDh^nLE1YLt4kQq$simxGbGhMl0WFOCCX1vbuji1> znzk~_7f`uq1X!4vhUo=UYDu_BUwv?!z_YS)7Ao6`;R=tu07}jO^0iOa_?46S(P>r! zTjE>zEnyoy39lw8kYAyd5$6{&GVQAgwej~3Xv~z(EaIF6sQ}uCC^FT$_|A7Kz>0qE z&*B{J*W2@|s!SdWPjFG}&9f-DMC!?%<7VTC4*HTFCBQMMM)3O3U)+)&@|(8N#*A*m zk4a!JMY&`K^{65ZKgid3Akf^=_cX+2_;m_f!uj~3nXcChMsO*iK^vg7`sLM$wDV^x zShy#|=!&+CX?op$#e{mlx+!dKM`^A`JQ*MDWxsCfbg>)m7(Cpzo@R;6dZh@++EQG7$)dP4h4VgYWp*(Gpu} zkH4HxdXG+aOVADqoxND~>s5Za9z7t#g{qKMKh;|4Z~uev;i{~;(&f^g0T-n-0WX~E zTCudNS3>nPl*6c z?+QQ1M3;v|>&P!BSy94z-TaQGDsC)yaJze<6#%f#x`J(1%Sw*{QdxdwsIRol%#lO=TU%YQ1C#vHDvJQE%@P*!dM9F;vi(^XlCNQ@s*!M$Q#)8Fy1>-{X zxoV{egQ>haIugNdSrv&(+niRzk~$VF8G2z=H7x8XISxZGqPzr`uP&Re3|qybAWrmi zi8o(`WT!7rM_GCY))NwpWuo@#rthdC%f6OqJWx+w zdU%N(;QOuE@c!}}3?4gmP(Gb%)OTD@o?FyDG<70|l9f3^l+6ud@`>IhMLk#bck}R> zS(M=!!kLQ71bnyV9Mve8)Rek-uY+ohVcbuX4pV8iQgDHKB%^}lDJrq8@P$8k#skmA zngGxHf?#xt-P>BHi%+oV=#k+$h)(F}rfpCsNQA2LI47kAW7${qx7^XRk2mudx71o4 zqx>_F{v4SR7IVS9LRv_*636cS;_UNh_hm~q+U}G6u2AQh%DfGf9KCLb)u>KY95?rF z{=!q)Lo^vkRH##qFAb zwpRZS82*Bms!DB9{|0AgVHNFJj>RR0ka|Z+|Ir;ZWAKKke_FLfL=vma)lMzM=YCn} z#};;dKSdEZU1gS#d_3FQb3A`@p?HVxI%UfF`BCgqr9~Z*eN%~x6+e)?YIwX_Jab$9 z?b}RTQzwc;1ktp73u#5|tA5m+$&#C>9YPp5>8z~Q#`5y-(I zlak~$q*>2=UF2(eFL7FJRbpn(&0gX2($@RVqxMSANiaTyd1{e~oSeKn^XaYBCk{P7 ztKmSibbK$xuabTY(zm!mv!KP9Hv~>pErJ*(OvlX2ez@NIbJ+U|*d5gW3>$M@#|3 z@X87jh-qk8Q%dzxrx%9@+vx9N;&6>7^FL=+7}f`m%gL?Qv~W1@F=ozQc0@&Sxe3(V z+(VX7qZ4<(k~rV0H8&EB7wUAl?Y^z(XMX7G<<@5Q?DrZ_&OqMOD_fXZfpsEV>{15I#x^=7} z<*g;Hv9h{z=!Z=k<}c8H^thUv#^83t%g=9pN6dgURbr)Ccb711-#jfkHyw(PknGtU zArXxcer@*_oC5k1`y+fhnt!o}yy)K=@@OhKzwoSkM9J^#7o5Dex7S%4D%SDuT)N|S z@G^qhR{+CURh+yEYCFq080~}TcI;Vg@Mdk1oU9uVx-ySrJMHT>cbQ@gq;)A{oLb{V zzQp;XO{}J06RY0weuKHgipN{S^Sz-Sp2i2h&RSNMsj$^3yiP)Imi^nketc9@gGb9J z6qn(@FogJj9a(te0M!QCI>3U=0GNk?YCYgXx~b=(aKPDIW!%tJ^Xpfw^$yyor2g+0 zkJzl!q4CC$ovqlwK=I3*rya@T7hPl?aHGujq5G2KaJ{*1&2e?Qg!)(9k|8dQkn{D~ zoa#VjSj}FQfD%JU)uw^MzTAwkr+`Xz;)hQ@6MN!sNRO|3XBvZ>o7=-+PxUR%5>!hA zk6MSzk0RO=$_&YLTBgPgw~Sotw@9Lqn8fwwDk&NIQ5^3*0zyMkNmSqejD7hWUKHk1 ze@-3})UjzryI!rp<2LgZko2mmUQ&on)hN3>0yH;zVVas-twhFEwQ*+sq@UM#uhyjU zcmqffhxmiz#UBF;!s5ZOiZ)Fl45mwtHG3m`wymOE?qT5eK|6Se+p@rUC(w{ zr!J@A`m)@&BUqvx$RWzh8Hc}E7cX2n5C)PKw#TdU?)&N7;3TMf?6sGJ5d!Kb<_mMV zJeD@)G7FK7H09efBNF!^#-+v)e@8M<_om@z%QAPboZb|bn|=u_((o~#!!o-&q6k~ZKreh8wcf+h=>c_i$ieVWfK?JDlZqEX;R-!f3D7w8(;NJeutD)0-x3< zhTSX@fM4QX((3>gY@lV;@I+Y9XthKA#E8_)MNo`1E%uYaiGlYOmv01ayzJ%`Q)#>& zWQH@8B&8=1UBDmtnAO=9cKPLc^})+y8k?FK7((-;56_0UX@Z_-+P-!E_U2pN??V?{ z9ZjH4ZgKvVa&x=yBC~Td+pw+#Dn{yTO+-t7`ZM~=;|;uzWq(>eozK}>S4M+{(@-pJ z$}Bii$fSpBkzxcYRl`Zsb@}sgj0HyB;cq-2U8f;GHAO^3=3@UX-brFnGPa}+0!!>P zcW5UU=h4N@4;-5HEG54;yB~7rOfL3NZY$GH2jq764KaeGa7a%Dbnu#dFG)3okAHk~ z-t+ThZMdtxz;j8GWKi|xrw-X-_v|XxI&YD*THL4NUsxEhU;aP}9G&qv=+GgK?>8u4 zFW(dhcnJfH-U*1?1z@k-P%q~*FYCi&V_zC4 zuUx!lMV=||)R^w)f7@$nE#o7TG#^(Fw%b5FB^!Hm?d9SSHjb0B*Rx--E=iT&U}))r zq4puT9)ie(IV2#5A?Hu|_r5HS=_n5h0w>ee549F%6NVmB?6KN2g~kk-OsC&$gk<}) zkfN`%?f4&cU$xj5|1q~3f6nAsE#Y7ouZd`*a2MbCi81!{C7n5&Qwinr&fp8f0(`ct zCelxYr539yB}PsxenFG;;%6lHGX%_{zha#6xJJYVv+K@C*aCIqP*;1s&{)2gMi~1) zgu1s^h-;SPLHw%<$fc1PX;=v;$p|Q?)nxGsMp^mXq%ojPe>mAvKAD;Zmg!TR?Y>Az zIB%NQamhRW_A4o=D5s>z_ve9jm}f81$=U`u-s zP`J|>Ulkcog`^Zoma~^xsMaurr@25^^&WcL9~#u>k=a0)E>}Xoxtq@ZPDhVmY*@p! za%YN@1i!u<^sU4ic^*t)vxHu-V5ppABNm3wiex{~0JX>}aa{H^zK^ESCkpSwU=DXqSn zu1G;ubugCkV=QBVr^U^MgE==Q=Tycy$O5Tuv6{D%e7iUhg8SoYs!aJ-A2fwz@fX`l09$JlKSA8Oij(CHAIV+ne>}J z>p174thRQ1gkbS1)Dx}T!~N&U37w?W!o#3`w`gF9&l|8y!)Zx`C{OsKeyzl!A#Bd+!SB+?(`Jyj=6KQde!- z65b6zP5=evwME*!X;+BD_yXp6fsVu3t6h$Hr!0^xGkcWz+YQL^vJT0%`Zp6asH0%!M;N4s?d(G4xRco9jo^JrHJRjfXl`OS~yu`xxXwcno zv1?EE&y96kv{P1OAb`vQL{cOsBavs{#{W5lPzk&NPi}UzS z^x+xmPuNx%g*gs$s3f&)6<6pBE}|~IRYfXvZ0yg?1^$|dd6a&pg{>W3TXt8FrPbXw z#~&tG9>+-00|Oo5gw`~`VUV3MtmlWPAcK|NQ|?T*~Ln>zIKi4vS7rmMNav2cB0tK>?C`E-bB<5D*-Uif3*-9c;hX zno~2=aISUHq#{bo+|p}7B6x3%7bm+J_eXFZ?3|!X7QyL#REp~~FwLG?XKexbp z*{$1ltJRJeEbuU|WO{Jmak2E(+Mutl>CV>%sxthV}9Fh<2 zm_u1NHk9tp{`}Rij^@TTC!8t{`*v0*_{c48n%D4w)y3Wy3|0*?#RgZ#1P9+N6}gN- z<3T>b`R^OYVL^J14dzDeO+l0?PfUSVVDY$kmG%hDFqcRZm6g?73o~{dz#MZiHMQ<~ zQ!tBz<{`+S`Wl$g<2fwdOtdP<8R0@4(-h&|9JEH&nntn#6@6nrd#r5wvOz)CXQC>+WM754&2>7F(msx7L&!B$ALmf3)yPd6)as`jpbNtpC z7Zh*IQ(`yKYEF)4pXUaW-Fz|{Voz%Xo1gAr8O~ItS7d3*?bR|NUvOBtPDn*b)B`4m zyD8)--xF$9+Kc@Olh%*3q1GmH#5ZQENxzh^ie(rhw$J2Pb{svr-`Y%S2QkY4QvC*` zkxMo1%O4J^$cpSHl@R!Da(i!~gkcx=K>0N?jBo+*LbcQqZ~6GcQnS2t#f}1nh>@rGTSP~(2PM9Llz|O!POCVIvEp87 z*y*WLx|4pPwq$az_eajR_b&Szm!eqji^R`m)Qp_lJi_X>$*Uk08j_p4}n8U$d z=VSW6@PZ-iyH&Id+LWnLozl zH=3J(S&sBZu(?%%Mw{X}X|HiHUtIn}n$iptf2u{hFj_+6eRV)L>3e)O%Dl{g3Dbf2 z$fs<=Xh=HuR?qCQS>ie9rA(3^R)3XS?4g3XGSYD0EsE^E99j|OM5?acb%vGW2cxdQ ztioun(=Clg{g7Uqxa%vp^qia(L!a{Ua6&m_bPWbhnSjBhCYib4*jVqDJTksy&IBpr9``2P+BwDRDw-p^;A`DW1eXUyEeyjQF5@&Y$UuEzBAcX8U6fk; zT^DjRJ&7(rN~h<<5_9#Ny!1eMuwdN(X4Vk7aBra)(P?LAY;5^#oDkZEcj%&JIG4PH zmXLtnrt32>ARb-KR)&&Hc(H`T9eccnIomLeGJSjDaJB41H^dD;&&hh&-Opqf(TmTH zfhREEeY7IMpr&_n+^qz|QOGk|4?Hi3rK3itIFb^SDZ$8idD;;T`N&yc8L8f_#Wg`Z9h&U zvks?*GjAgnubO?3V4NS}D&5|9;ja$ql7ySjKZkif&o1#2Iq)O}>I;te8UJe*t}UYX zzXEP5==n&*#jWFcsvKH)m2!m>L6rA-`t0D@|A)+l>mZmzKHqJ<)^|>6R}Iw{u828A zIee&%@j#@W6Mgfnt_}eie-#XCf%>@RR2Cj3pPyKbA^2*(^EW&Wci2!?DFf|y%DUrO zY{nu!RUCMx)B!R#xZ|?6_^y#i^?UT7-abUkJ*oq)mm1af``_zf8Q(~KW7IZ}ih_N= zh-Y-V`5GU8`LY2?6P%|?)1W7KYcvxR=5jyS0^)5BQJ&0SN?~IsT+$X1SvNrhSCmNj zNlQcx(f1mVB&GGWVF)>+(0OURqGm**_T-K{56#Bq+{5n=JZAiLMLe4LLF;cvZ-qrX z4~JKVuzR5n)Z&82IK?3t-hoaP=NqQocPG1_RYBYU-V!Nyj{i-5DIJ_ST+D)7GtaYA z_8^$)wnO02UgPX}&{FF>Y(aeVLxiU!b4j>$v-hAnBrEY6= z&*OfsEHij)>`h6Na_8X!2_MN!6J$JhtcjzA_kNv*y1}V|Rk9rt5*YaIUtX5wRWoLH zJ#@FJ(UAP}rDqitQ+>ddRLh8-+$Go2kFI3N}S1r?x_*fru__`U6vs^F154#4eRJ%n|Y6YcH^mc z8tJ6~MSBX%reC&w4?Rc8qwjA~R#$fgabMy6igEAr0);`%KNz+?8&tXglgGL5Fg>?u zcJyfhU!i2ddjA<;_3RFZph*V#;y)}el!9;#c&DDJ#B8RR@j7unsDA#+=Jp+9D|K%T zBx(~=LNX|dDuj3_<&J5?x*dVEH4Dn^b5&$G%&1Nfx`~-ZFeTh7^WHDPv*cshhW}LMwwog~NLlN}{r}IGHj)J$86o8bOoF za{QeL#CQ43aIGEES06w-q_%d-?{w@`Iw`jG=KOH@9N=dEF5#@}PmP#)=I~B(aXJrU z9eWN(E`Q(cxwaV_xXnd^*LV8w^;1+!c1kQ80!sKD0UEt*T-1C3616+CzsDL4Gn|b_ zw_QmooO$*&46Ds-VJy_BM*_y|E++^Nel#=;%BDcW^9PJXDB+g!U^wBH{&Fj&a#3(* z{amYQDGnwnRJlDnhiBfyH68$(jhEWk1u6|qC$2(BY2a(vZTXj3TzR%b*QZ83Gj-|% z#zW--U5#DG!+u1#=sh^~xGRPw4vY(X9A&t;I1Dnzw2*7!O@o8Ew~TA7VLHuw~KbW1KmBa5H+kJWL` zB=`oVinNP!=_uLk@kY-ce2s=pkE@67T(4x8KPt=)Z$0o1_CLsZb# zCe>C_Z2e7|7g|@L4xsH(v4z36aZF)W4%rQcAEAqfupzpwow#DPTdA?{VIoq>I33Jj zs}Gvv0^0pK3x0_v4z*P0eWO1S#X(Gaji7_qAEKZ*ZVtjkzWs`&YfTy zK+c>kP+XhtcZNx{&yB~Kh2?URDACIaTYWTfiFN|h5n+5M; z|5iQf&UMR`-|p4eSSyWdAB3smtQ49LaS8h66E=5GJKZf$gsIf01S4{l($C}?#?dYC z;`V#*@2e|(A-*}cyPB#=TuLs_hJYE&Dmb5)U;a#yoH~}>0}GjjKF5;jd+0`-oOy-R z&LR#oC-6Cq9+z_hGbOZpQ+21AVE;2B84c$D3r~v#n|`=1o7CN)9j=Gm%^m3i7g=1A zLoH;O?I8gz9vh2-$<5`O_)8Hvl=XYH<9#OenH`NL4^yhAH9}0*Pa!JI?=dWv zW_B%5%Vy6ZTU2+lq~{e2KWi(LGadSz4Ix?K_y~XB$VNpxPpT$zGSqv#KvW3Gt}7r@ z@7%`X*_h{n0gHLkpoNLw{c?)^qW0FTCvV)^vUBcxa*wW{z9?*Vwzj}!-K+k%8m7id zi`tuAI8KWbHh@ML_Pc0r*8$U})cMg&6CIk7rjqZMr!}=cc0N?CqNVp?j&P>kIryEfJQU zK)0TUgSpPnbF%6Lh!Ebq53N8_P-6i_2HG%e&=vZBsRZnY=>BE@bzIHYWJH`tx5U~W z+{H|#5f^5uD9?`R z=2&rMWkzRb8J|#^G`4FJV_Rxcg-!l(3wjE2tyl{n;P5k9vnA4=;WZlE{HLG&%mFIe zUM3SNP7MbT88friEjvIDkWx#~=(S8d-0+7EGdF%7Y`RQryt5@zQ>${gBt?=730bRs zeE6=1y>PBuK~La!b(M1o(Ly0~-0$aCDs1tzDdUZ(zvX+49$EYe8??>H#~8OG4miK6 z`BEE=cia7xF<$@tMSuCU4o0=T8vU8ly_oIexG{|NY@OkRxe6~n_qo8FDe0r+7#%3| zjZU(BskR_?;oU_?xMHH0CzM(IO{m}Y#y+@ru*`9O|>Xch#@!-*r`O&AfeBNT3 zp`W{ahT)mB^C6#^J;Fyo;@+A@PH zK5ByISSD`e+1|sN+`g|!8o8ti>XO`3&v58hHYWB8?FtzAIgX5_%aPtz+tyi5TM+Xn zGYwYju6Br2TUlvFY#jgSUVAyuib;*vctIeNStdw9EO5yk!0eV0J6q9yb${M86QSfq z^6Ci^kRAv7YNnh@RYhs3)R-GjHMU(pLh1N=xZ!ddlMWJ5ZAY^pU=BrqYK*bItI498 zd#5xP@&tQ8Q!^LGS_J$=zBL6n|<@Bd%^seviC3 z8kJ3wa3lk9%CO{f_U#`7H5PXlMiRL-^+FRY0Bn`=3oPm$sMj8F0-wjR@l3ZvJJi^X zqxER&Y0c;lAH90ldo7tS^!-*nJjdy-W-bT;LJB~ipTq7$D{V*=pdHC#s^H$UINs*C z{h$lba&f2MPY|w%$Sz1AA`dpGbeNvI#fan>yr1)RgwA=6Lb$~XGdrS}G=&|jA&BJk z1=ZsRDh)LQhh-tp96zOJ28>t^;Tg!AZ$t@Ebt*F%BkvkumLT=@Bb^TMDkZyGVwFsz zEUv8)-&{C|%Qw`OBggNXyKg zLDm~FRqI;;U^vywVXu*riW|aEtefNZ36EuyFi)hMjz_q?m$6O45WCFaS#1S^jmtwks)dj`P>A4&6jq ztr=864Ez-{y37U|xvc*XCH~FY1KQKA>6&LeYLJ?Sk|eMKwNFSo08wq!@J)%1&^kie zVIDu+XkE{SlZ>&R_m^HJ2?l`1#7-~Ox5S!pM#M^7`oUou<8X?_vbTiRWXkGj=HD69 zBpJR6PO)O%sxyd_3h+s~)VB*h;+suSQ{%*ID7%N?jhnkgIoR6XwEi zw={3V>)PMkU306Zsyu8;^PI(GOKJui#zmj#v5!1Wh(Vm0DV&10p_(ZdWR~mbHGa|{ zv{x7h^!6jMyH;zk3K~kn0u@_)_8imPW*u`;C@Y7g5{95@l@2%nYy-x-qP@QgdzJT^Q<;JoUMm z?0Y-HA`V}pa=SZevp=hEeOM#Hg@%iKPRHM7%grth{X#=GpOjS2b;LX`2LtZ5`0oDp4uQgI^ z3uaFLpLpU@=k*|iR1Y4KZZ9kM0{_NF>p!z@pVt+6>pP_lsrDDXm3p?|wp-`s9+f&2 z^!lS{Gu2VH=|?2YR73Xor#wXGlR0 zYpr$Gn&_fYFZC8m@u?$`0hf!>DD>YYLqzm#X=&8ItLZ*6j9m?nliBpTRwCKvv>jp3v6DpO@ci zZ!p4G%sXxMYw=hE;yqI}gE-(c28#$7b9Y2Of)RQsBlh%cP(hd)aV#z8SaWq^H-lco zWIV|cgj6Ho=C<8_EWh&}m1g*l8vZD7?>BgwvFY3CnLjqJ(-BJKHHB@>U}wqbcHCs< z5l?UTb%Z*S(xrL5NCUVX0uHeq)f3Om4y}xN#?D8^LEFSEcJK-fUe4z$!U1>&hRZU7(N$Czw%a4YJJa8A7Qd!!tY8s8RPOh^+s+8ZM0)5N| zTe_#s*PlNh=%2r*_i5H1616vCwH&Yc;mPq~v=JS&MoJ>4MoD<{C9TdALEXKM&zFQ? zn;8h!kL*d>!!cjKN-QikQiz2Md934(toD2!e@rUiRXg1ccfJ7sv!*xC7(`Q{%OjlDtoshZqjeuz;^5~ZQH_J z?Kwc^9bWB*P_W)Xzq41}+z}m5^6O_C)U}xc1Usc2ih>V2{0@9(ktpWrdOlTlY0shQ zn3F%6tEx|Z35c7Y88RrJV!FnDUE(ka1^Xy+r0#yS(O-YU+&g2yEZS`ZOTOTDx*wxZ zjUfqrySWDQanYb;_#p>qbrmIs_1yx|<>Y>9k!o`E%~DYqknDM#{=m4sZL*3sD(l|| zdBWBTcC|%XvlPCh>gumI0r3Ubzz3h!0z)N)!Jk6EbfIcTnnm!4^^na~o?XJp!uo%A zJd+VD<@(&>{gf27*dkM(`JO>YLBU^Yf~u}Q(GoudS)V7)N>$!HBH@@m0lvYdNY2$5 zpJNpgRuG9Uv((ygT=~2d<+>hzSi;Mh;A0=RMJ2ZUHDp`r`BRQZK;8^45D>K%o1GqI z-b;dC+`MBtNFC7ViR*)?KdpP)RL{&_yfD#>$843r_ME43-*m)E)T-KAqq1iPMTm^s zZKw8aHa-k=fpvtHUy&ssT9B87W(UC;%EvElYt~M@|JmHOBYiwz*ac>0vF+e>m(y>( zp#`C)r!*~vf!u2|(r6 zGD@4Kvr~!;URN4$8#)~PcV_)4*5uQ-7=Bn`@U+iogo_w69v75QwUoJW+6%t&qHL4; zVJ?{9or_ZYpY?LXimJB+9LjB>H<@^Jjpyka;kO&I{a(jd0tgYy^6;DDUgxz z@YwuraQqccyAHH^$Rxf}4oGdy$p*LO(keplAp(Zd^wXgq?R&0A9mmEaj@mh7&0WqqD} z)rt!{J;A63ozKc#S=<)vfF`Z^`W_o@(F);tEcJ}IA$M|#;ZU^ph7yRYE zJi+s7h52yJL#z4aWmw6GaI_@DT{i^>y^ZodH>Ux^Jv*MV-t;gW*5*|3l zc{H@I`j-l+Jjc#|+^228ZBsdiINVOg!4j!eAVE_RWUvt_WcYK|63 z-{pjeaP{g7A0kaZ#P22p(R8S`Z4grMZ=rg>%m10O$}%(4u9EM@8iA87=wATM6&m3f zD!C~}Ly93FP$_&Mebw}^H(s^e-uMeh1vA@USb@{r!rvMC%};5(m(b6Et!7alG*ql) zic;|lp-z5DN%!O8egJ;9f^hpK`}P}0xxeD(De5EHAP>JWp(dw4h;RX9NYw!@^;v&P zBGOuL)|bPt=ho^SCHNEn04P4e{TT!99wi!}P%_j!cHBHxM;Pe{Cd$5-{tf@7S8rilQ@8hTiLGWTI7>y>Z;RfLuh9C;ZihRC}oCcN_ta6L4{0+aT^rt_jP+-$Cd4U8o z($CuzMN0p_kGn@|#0g+Ko|&ey zQV?0K7~nxT**fPX0MfT2T^o^p3>xl2CrDV(F=zz{X(}JNeGhewG>mi}FaJEhRQ3tJ zTc077J`X~BfXYp(SP##(X`SKW54JBjcX4`pXdh=7cTG;^lwFNZ)e^SNpPL9j>z+^Z zY@2lXR_wzAR5@G#2~!lCnZJPB{w2?9Vu-IVF(G?Ey82ez5)6OP>L%w6K3^a_TUY$= z>VLV|)794(+IGSQkeL>%qcsV(`aX5U+3Be-&(g5m0=!@avw&lp)vV4Ny|nXcFj#t#-;%NtnFBx{W;ONDWU6c< ziaNaF^)1d3w)J}m)o&qZ&`Epqt&UiZSm;IE2$$+jXRRMi-UD#- z^Wp+i;1}rb2Bip{4^G+1o%&ecRa$Oy?v*SgE;bfWQF=JgLiy(X&Ll~F{JRD>KCU}E zGn*gB+BAW_Q#Jqf(kkDKnAcbjb5nxnX2U3v#`fJV|1d_^aMa9Cu@-h zv?Z;?>Xa8J0MuHEaCf))%{%sN2_;wF_?{&HwDI%l)|qbyS;=iU%Seg%k^~rIA7YaX-N?n(z+L(L{aRB546AH#4$;FOCPJeU+Z4J9I_YjnK#|haeZa9GtJ>6reoJyDlQ*=a?(!7NDT=vBr`FQz(mKb zvOeT6l34ug1w`yC={Hu_^8eA0pjIb0vVe1+o_0ItMk{9mMflO$6Eokk zNt&DYO)KL-C-afw-w9WYKF#Sr7MAfnu_O27-y6|)KtNR9KV`*Mnfy9Xliu=MrsPNy zPuoYHsV@YLZNZ>h4xm@bjWgX9!eRGp!Q&y#_RuVASLt|eBQ5apJ!=%29(y2k4j}~0 z$GpU?#YJPWEM4ZB9F}Uh0qAcM0h(384fvi>w438e(Sv9x6wrtMo z*$S{0pZ-$L?{tXRx7C|EU<+ZYc?V!g?NZ#mX-7K7#;Py+w#|`x_aaogz1u;lv#Dk1 z+nawU`8gcS^dZ|Y5gl*mwtZVK95JPvM`$;mFCbZBeYlVHJUlz-%{)B)wtKL>LNHe^$>|T#0n1FHs#4?q1MWF!006>I7gkvk*kIDpF~8U7Nu_4H`uN}w>UDtG za9szCe*u5Bk}9_N35tsL?d!&TK^j9&|p@H}})&rp{hhgJk_t_%c%XxjZ~j5U#UtcM9KHXayNpKCpc2hy;F ziPP=Yy6$!9G$e991_o)bE%@$95c-;D@SD;&IjlI)yf{3a&hI*Li4t+H!ZkJh)9m|@ znE3OJ7da=r!~1Pd6ws|13G6sFrs%NMmSKo?I}95&{#7WqFLr?ikE+zH{k)%>`+3!V z%Y{=4;j|mpRSQrI&(Qzyxg#R*dV$*xU`b0WjPHo=*!~1T6IM1@S2*lEr#W;#vXb~{ z^!inmX1ZOQSLtj|evrUICS7_{-(+H!TKC0_NnD(W4m&*UF?<{*rlZ~#vH5=LM1$3_ zsWD+Ggt|kUkiO2CsV{Bhw4<6OuX^W6VyGuU^7igz3QyVk-H&ABW1~QyO~$}iP2zXM zcd4kB>`sY=Sg2in%|!Lo)f5cq3=H;QbSZ9JVIa5mpn_l&)zBa0HVtkaz}%d-`}@=; z*_fVIh1LT&s;}=nC|x5|Plr;S^k>(~A*h1Dj|Mbtx)ezOi3JV#u_Jh&GXH~|6s6z1 z85zudSbvOEnTtYL7TA{)9JK9FL-3(HyR+Tr*tU5W9er|N>C5;ZY`lT%v;0JSmHCF4 zg)KD!O|OH)sAsiy2}_&il-s9Q^n{FWxxAi4!))d|oO3DpQLaNsN`049`jVJ&ezs2p zmY{vcZ)h37iuw7nkU{s?F#)rHBWS_!cyPPsz#qrxhJX{kZ#63&KGtLW=l?^A@@T+ivks(>74%BRE z*uSDw7@wGkR5Am$Xj3%%PxY}C#dQ;78~36##44VUwDfF|W>EkEIpeqAM+ppDrCu>M zj5Q^F=vIB_Fj~sZ`243N;@52bjNCsV79N|n%w9)j;OYukJ6H)^#&liJOvG{}IPLb{ z5~hbP+or^b?62Yg0qz}Y(I~Ol;*@I(UE7nD6)9**k>T7pN5Lkh(O|!2aV-sd6MuA} zwg^CGP5ZvxPkZdkd3J?oIe|V^o*n*iWHeY@FeHPtqo-#YQtJLlTjFA(xd8=Wj+#*` zh2Yx>y}vEFg$J?e-;kK(Mu}&22+W3y_&kjkv>0WL4M|DjlEbK2A|rP45s$aa!?I3( zp%bEg>r%p`Ac4}`4)Ik`^yaQOQustrm2Cd~orBoPHBAq{vZBZ`0X`Lj zyKcU7za$1IUYQKAe(rg1+_k{ReukfrsvT^*i}BLi_9VVSrFB+$Wdw{=giMSvX=&|8 z>!Lt{1SDYr6WBaFfD;yH(sHwWXamr+0T1C}5LcOeE)<-i{Nwdjnb|p&;z|r@)Xv7Y6B_`2( z?_xff!r;&M9HHhYQC^6i0KY>m6Kj$JP!RnS$hC^Jp&+l(ho9S8{ND`^Pp|Sm&RE|* z_F+nu(R>6c?MTNdyM9!Sx0F%t)QF35fp_w6>^y(e$WXuofw)_Rb+DiZ z*|6gOr6t&rbi@Wt&e_@EB4!ZI$w&wh-ow^jqeHgqi*1;PN%5-Eb5_9ee@V+ zUD@{;7%q7PLTXjTR?=bTF$Og4s6XApjQr+X?I>jlI}f*R3g$w@gde6oMYSUJMGKu2@PA4Cxe6=9K9WO#zlGH=>rx8J2l=P4VQJjzQ@aZ&>ky$=M-p1y27tSeBcb~ikQ56s`vo}1*Y-qp&ngd-3 z9G{R;fW}_9&f}S z2nT9bynjy3^aHfKdj_`_OOZMs@i`6sqd=nA1h3jiDi^j$*MzX7|#>EpGzD;|>QB#CTMPhdNezolRm&)R`pPev&OfM#1()wnvee^Akg z!8^V3|4^lcSw5V_DL07W^~;OKyX4or!1iY%A)K$yH{$SkeD}5A;$Xf;4yk94Reh6@ z`|=yPn!K%#F#>@TXpO^Olxfb^v9q%dR#mvMOiX3YmH!~*tP z!IjI(=XaL8wz-?muJ1HG(C7vn#HryiWdDK+%xGAWjLpPL}4Sg(*psGzHL+HLfe8XQARK@kAUrl z{_x!rW2rIBnI=H30Q+32v1Ou|*z|T<`r^mOErjXwE#tML$c#s^PU-0vj-p6O4kzio*QYmUL%KfC(yLW4wEZq?pxvpHw7F7^+G&{VU1MB7QMfhLEu1?&F)&hn&WBB#4M zE^n4Ko#vIBr{64BmR;vJ$FsxP-m}*R48ZVc-c%bdlU{65k!uI-S*yy6QDo7OxM5dV zXwq{X^WMEqR(mJ(5i9MbpPiaZY^kz% z0xpy@cH+3dezg+f!HmsCzyhj}?6emGhw|wIYtd{SWjXm)H>+ZefzUmOubb*RvR6hD z6`ye^cnee~D1=;Cns2UlDZF=*EQ<`G!MI%wGkL1{Kpg0(=;3Akig;%xIgb>n$Dq=t zMNtynu)AOn9$~73@LPl(DL}8&ZR_buZtW;Ja0t@_gF#0Ijcc3urPRRqm9d2m#^%dk zGW=UMb`#ab(2v;ynVA*7znqkoZS*`B8tZSowb(K;C`w8=JuW!gcrB#{Rw7v~pY^7+ z<(RsTrcSMfTv56x&eH5wFPJU%S(oGiNsGDm!3 z$0{uYA}OazyP5z2g_IM7F;D+$Y$BRoj9PrFrR6cbnd*Hqm6?^rdr=t} zxYLN55Gt*-jHr)m@xJB@&;E&ykyCX4{mCKy`9PZT1m9m4wgvEF`|SM^O&9&JmG!?E zYrTtmC85 zDI>+#{#2{>6Ib=E^ct?o#%LIfhA?!!V(8hb<8apySen9%1w+kJ7~y<2BVM2z<0Fa$ zU<9$Ie?^O3??YI9tif^60b3(b`ceeSJ2rKFua3R;BlN8fOMxhx$y`&#`w%vXe-+#m zEpnPeFH#Zv>?W=){pKxZ`KsMqoxtUsG<+=4GwnsGuDjYQAKaO2 z1>IjZQCjk#vA<>QX0BsytGMkQFZ(Ne&X60_5vM&LgjQME%7pdnT(Onp1R%G-79uB6 z+dLC|Lw>AT$||4G%fr3mc zqR;j;yEL3MChKs%fCh;e4y24@Xq8^~07hAU1PLa@$|B5Yq`2^NvqM!k6;m`KOa&&Z z{7nUzh^tnYp6s1(>P4b=Z2L54l<3y6G}A0BQdwBwfS>2b0pN0+DtRTA4k#&6)_Y(Q z{qZ(*EMFZh#{=N4QR_m7BU4wKGiqT^ zQB)|c^#|J~?b?)p@@5Q;LLY1MK52u^6|DgpDk(FwK)~2Wii(Xcky#Ms!M*tkG+r%` zGCEYR?odxK(pS~4UtjG_8Z!diZY5tIH(li=kY(M1WFgY+23wQ&m4x3ZNJ_#W+Dj^> zEZ?}YgNdInfIZr#zaLa@$9xn-zU*%455Q>6o)$&z=Y-qQ(GmEX?%~6SzXt|HcbskO z))|}5`fVLH3#$)c@ay=i3q<H4q*^~NC~ z_3Wv;9@$lS-6kwUD4VX(A80eage%a~5et}VNbpVen1sroe zAPLi2X7@eAMp4&wCKgTK{Wjr!ww$0@@4~t{QEYy^F~*|T@a=hVLky{&+q?=6U`Pc0 z!QbYq6B{^zU5;S9(gpEUx3}Gy%9@2(9=nHA84s%`8_RWn#Ipt-)m|tsP$J5V`n5hpyCU&l}cOk zi)~9NTo%@|`_>0hD}&1zjuySXL+ql<H|CFK~t^(r; z(tkVaNx|--O#-5;76*B%`58d_SZK~4wdiz2o9PIvv?N77qNv5adiYh;{$dxOXXBd) z63!2QXeA-k{g0%4oPYZf<+ zoPxp?DxE%fWxG0H7Vd4Fn_znUyJ=+D{thbtmD4wKct@r*L0p2O@xt>%|Hs=}9|Y+( zSJt9Q*yNMZ9anibP$8y<7+ZvY`c@9P%%80qZmJ=?e^-H(A3rkNz0Xz#LvBT__Pe`>=^+Vv8^5KV9IQ|B z;*j56UItNLj_1n>o6WpF!e8UZ^_%A>!0oft4#YQ6n`f)(UG|hOUc3NMQG`~*EWYol zcu~{2#efJxCnhFF8lbs9BiKM#(-muizK;NS&?D*BM1}jIp+`9J%fafoxnI)p#cFyN zK4H&c>-*7(PoosbptvDsY?wLRID9WIy*fV!+`|?$*c*O)c4fE!Az3Dx{?jbcz+?rb z&>S0zCW!*$){JX?ge+p9dZt8#p+ljOqRd*a>C$Fa#QP4r{!m@_CG3@}vgiTUCu%XD z?3jgeo0jQQr3I2c^G=*S27z`@DjUU1*72!qD6u+N*>$-{vzPI={u!piT-VUqWsVuD zSknOwNAqgnwksUB(c_ioBhbLGrFrub5dov`pJE!}{lJS|y~epc!e#&xxg?xxmYsFPXgBI37cjn zOO4O2c75Rs6I5M5=o+>)+nAheQwKyKjmMdth@JY~7p6T#DB!KV7mQEi^Byrm^54w6 zbs={lD<_Bk{pZ4442VP>MSo%JM2W1($*$S+3G3vq&j|N-yhyh=LM$5qA-$timuwBo zt1~soaUVOIL``Oey9IK=b>94^Y&+YW`Vt!(3Ix^n$u6xIydF*vjagTb=af7;ok?uB zo|SmIwG8hzmcgOP1W667YIU%xi!1yzu|&UYzU#GD3wrMUBOznEQ5G0hDVUmGM0@sz z$NBu%CXq=T7gd)SED>K*WWL(wKk1l-qIGUx(qA!IO;3tI(le05@CRT(9-1r13pSkN zx2Y5Y+n?~RE`&_XCmd#+chCpq;=d7*)>HHjq*0lj?mfxNo4$Aiq7AYX&SyBYgc@y+ zGs|;!8YhW+m{wf2as(Z=PD3SU1|c*w^FgGF-WQoWK!@T8Br@?};sDI=_L`wI zUnUm9hMto%`s>%Pgx9-nSCf2JlPxQzRt{?^%kQ2% zh6fzTpTc}dlOmoDUkIrr`~08KFtXypu2L2c!$qM6NLk-A*5K_@1*LSIq`nnYfzu3( zDPh{|cazsG^da3N7bQ+N+zZ>xF75;EIhe}H0-dab)huo5dL8R&N;!Kc=6R)9BkPa4 z27adVN7DE@0pq*@nT_{5ZYF5E zUMrgGoxA~r8q0W`g4?j#kIm)db+^0~ihCDlr>@szrLVniu%iolbCrI=4C?Y3H<&}Z zzNV*xEQsEky*6yH1}P0Gv!tx1o-LJIQ3Yh6D|b85CktEq$|kg8-qdrTj$(-4YJt=TV|%c?XI0e4AXV2{Orwrd`v!lX#93I>xAGtF0(N z_`^>inG>Cz2Vu>fnzVCO+T=WWO=}jwpof9qwlibH3SefCDPZN~mBKt@Xd|U)2dE?acluUeiQnX&f41Gluh_jlT@{tj=wp{%qhS_M44HyM(vE zrV!)4{54j~rMrVw6so=2BtUI#MUi$&C2m>m;JNM1ax}nXT+$7oK?RVbf(B3TdbE2L za5E*)48!Q~$4VYD4Wi`s;QCDbq+{x6a}_A2iGf{rrQwhgbSGcpSLO~|!TvU+Mk$hV z-5A7RSW%eu*|CeAXbAf>i`&~%R^d9X)~W8!TnTK20SRLgIl?M5i9AE<`1#;(KTN`D zSp+5_y?mNZFW6(j(%Z@b`a|iEK&0SvMn*>p|D|B@!h+H39}mL9!sOG0&y;5-ihYis z16a^?cQ%qzpzO2cQ{?{&Xe(X8Tlru6ywdSPZVqY-D$XL=75t6jds>u%WdW0|+23=h zq{EiI7Q@<)s?eMXhpT=}_Lv$SW2MQ|rA@2bnt62Y?`9*9-B%KO(-k5!(%GS{=_+eG zJfYK^U%~uE>&m}*2H}6LLTQAenoi%aJFZq;8#<{DLVUmGr$W{TyDo=(sR9PWnS|=m zdp})XayYI8ZqD+xT%E3E08fJ9l?OXOe-C!*sbgX&^YU;`cKLuO`($#vI8#m=_}PJN z7)Su{s9pdROjb)v3IZ}nKx*O3@7FB&UH+Api>H^XmNkcptQ>$)_R<35-kaWdRy5k@ z&m%H3GmZ5SpgylILc~@g^e>Gvuuk4SZC6$j>9F;^&_=PTnMao|H$RdgB8VO@w|@G} z9_E1k-PucjTFM0SQ&N?87Vi*I2e#u7U zL@6Bkz3WCCM*R?*!~|u^`h&M`zXUJg?rhcW!=LzKe~EcGTB*Kbg<7lqKZIDP*R8riu$G={T9%u(@g)9wB8R z1&*}6*7N2!vT^|?CQfsHf^VVBC&3ZQ;4~eqKeJ0P+x}Y_F`@5E^+8uCv8P9t+GC9l z`JbZDHuv!Ga86<2awB3ED*FDtQ$Npy-FD?f)n*NFFk6OOztq&xfwQ|0Q1U&YJnYkz z*e1_XDP9^gZ)gzRQUs#!Y#?IUvN~3ak3HN!LHYGdv`??w>ON%o=NftsGRDPBtAe|? zYW?`gmhQn^!3O#4k&?mX>}xjttH#c419Cu~3wW+8C7KZ(?6zu76V!#k+ZkRge7R_Z zjJcSNmI;+SFY4OU4uoVH;XYUSam~-n?BLt6JAx4&u~@gf@YNcsf0HPIRSR?|uR%!U z%%H^)zwy|$6v6!iI3Kw7aPtBhB;Y!-!DI~kTQ3_zMPEV|pnEO4BhNJ+j?mOUzil$L+h8t{1d3Y}5 zvSlz;X4-JJl8kI$&@k}k`0=jJj~{b!#ex?#U&n1eDEq@vSC)cuJ)d>xV<1D@91X4X z{%{&{qn_pIwo>UR!zlgbiGx&w+|;Zd4i$MJ%%ChE{a%uKHc0(QBdEo}Zy1o=)hO#v z02y0*Td|(gE%lYL-Bs&+f40TvQD7dQjSy?`d?%IGHEvFn>?-o#A@5{-&GBKeT#sBn zaLsa^8y;=SnHtJOz{NlWty#APAmRWck0eot-y=29AQjEVX$JV_uTQ10p?1WmST6w*4I+2_V3sSy;Lnwp4r*)_b0Z|N=i#g+z}uz z`J6*+w%$knpe|wa&i3NE$eF_epKV^fPL&JV`0sgEJ$ThT1nS$#_gZOqVygGY5|=cN z+5=g|3?&7DF}?xDuf9w!EjC)~Hn7YkdHM~+Vs60_)O>=&L0(^e#5$sAJpnAccw@^h+fQk9C~ z5LYnRuha~xs(Zo9tiN$Tiw0gkWkfBN(5IR6g5aW@=L4+k6dR2emX;lCnJMbZjR`CprEK@<#Q~nWR_vh zLc$BXG#2pwmOdk%HGB~klIvs1WM==)I~+Fb9jE#Lv0F{yJwPtF_N}_KB16^x?jKm8$}G!v1k7^eok03`0sW%gLp^YC$@% z9^b}&*~FGmeb4GN=m@V_RJdVV2U$|!`VWP;TJ|%_hd#9eTwb(G1~pQ@G5oCkT!~$m z9J1KLHQ28F4m8GgzSF`BelnGBSeQsN5`e1%9bow{oHt7I)gh{=&qbu5-gj0$`$q50 zitC7qL~r(-yr3_^v)g-v_g>)ofP^VRmtbytS5y(i_F?X?XO4fJZ|_nT@f_G^`er(0 zK5jA`5uVfC6yGyx9d*QAinfEE2f*$}$?Ap}Ho5suN`TTjGvegOtAqvv%%rry4i6R9 zW;=D1#u-~PtPm)c5LPWH@%OFRgeq$nmn$2wKd%pcJsB0^SY&ga_j0`7%f7gyR{N9H zUz3A9=rOArK(`zmE$e3-Nwlpf1i58Rf3*USRdoFLPzF%nM(@b~^F)69Ps27@@^t7a zKOWNQUDO!3t3%Uqc448H!~wCJ1k50?Er&;F7yV}WrvV3!5{-Sg1M<(E&EQw*Y5GFBryDdZiVmG9J_GE62@;r*H?R0{g-sEH@Hp%B}V^ga4uGeH9 z2{#HzvcfB3wlAiUTd1X3OOKYfR4WI^?dNH)afxY$AN{fxxHok%^H%urcDwktv5qe&HfxQh&WoSbSt9_A3D^v1dC@P2 zF><~V$i4mCT!}(Gw=HPHHcjt#h;L8Ys;t5FB}p?xI?@z8=`Su1m201aY6b-Rch~l} zg8*l{G&+=(JG}T|WOPS?VgYGZ5Of98s-gNVHL4A3orqDsO%9_K@ z;A`_WPhe1e>(WqiA$ZhAWlkT3QOeDze7Rbb6%O+jDc6@AB9*wWwGQT90ntQGn3BmZ z1*~NFZ#Ak@Y`=2yBYhAV-cCwfx{M~4*78cNb8zlYiWlhp0h44?*E3ya{kvPHeb?1D z9$4(^mVdr>9ade5cM?GoO`z6o|L4lhZO@xFCjM=YJ8nzzZT{kbwBOtowkoVN8}%)B-Q!|3@lqupthf1bDrsXa8;lvtU5z0^Pe{utgd z^ej)#=H+UtPd(FlsE6%Oi_w^CGEp>Fr-?-<@!ba=9BdAPQ$j;iuz+uZTI&BJaZ){S zu|155w}f2DLGpxwAaAh)(jg!1Da2QGmGJ1k$p1zs{b0V{vI&nfu)x*f;wm7=PHaccU|Ir*xAi zXSVTx2JwQY?o;!b6S8V!GBg&P$#RDc_2Ct1~zMfO$HnP4_ogUvi6yFFJ5% ze;r!XoR)$3n^;l(js<7+z3oQ19Cve2YY6aJ95zVaB>`DiC_rB}+s=Y9E3IkHJO-Zd zuCg&&>k?r6{O9ER!{3c}ccWO_Ro^;u3Y=76c>qc04?w27-JTtLWj`3N0R?>b|D}MV zCUms@UZR-w%NhXVmaF8hnM2K&el&+~js~Kw-zn-S(5+@EO@=d{yr$bbo6FZPoFA(s zV7^1*iSXESqkO@Yk?mzH(w|RQ?N-_?_l96cNw+ zNH4~3ZWiu`QrNm_uBNtp?=unhM~Mq!VA7X`p^LCbHDUk9;UfJ&w=tmL+x^eEk^8^~ zIl3?eHc35CcbZse&|TriN0s?s=+N-NnlA$~BoGY0nO$l@Mcd+NrOmwdB2cn!47BVe zacI3q;3b+Q8l_3n)E-kR-_}hnZ@y zYUTzRljs#%ko5W_R#pL*|KfRAUv1EviDvPZt&qf()$qL6Sm{D<5n4XNA0DDf;nMFH zy!wVOBE3g3agb(y|M@^o+G}&>v~Y)?AJ^r1)ZXbnS^@6+rMbL^z{U!={0FYnAGyip z58!HqGCTcCdsupP91!t044^00zHxKe0a{qAl3T&vl~3QoPsv;xAmQ$NrdKJjakt5_ zzZ6D7RpSqF0iIY58$XGDx4;q{3M)1d_I?^iJ(nTaWKQ$W}r&)prp`c4*mL_5zL zKre3cl2@Laa}3)n(I6xrHyp0X`rI_C&t=sXXeCR4nmHD&)yKnd)Sc8Y5LNC(;qReTg{_u7=w=UU7z32TH`B1FdZOn^1pjJS=cO87;Ir2 zYwPI_)~a;uto4i2c_2CxhE`pROxW(*E`5(vEOQLyLtohwt3LUuM3ZzfZEH6lwj7ZA3uta_2WNb)#HL-o~l1c0-tW&2k z{DUmkg-?BWe#A<2jMF#vyJ`<#cyjH1R-H73(-%1rMtvlxb_b~{(Wq$qJF^}B?Odmk zyW$HOy!!R+;*5rX&$`~fM7<_@%4nSf8*D5qxobA~ZgTb&PzZV(2rF&XrLD7=|8gbg z!yEbUWM==%KdAyu4(MsXW)NI+^ZqUoa$crr5aMJ(r3H%NQy-ZcosNxz~rw&S~rK4-}oeRwCmFFS}CZ>W`bwH;oA+ zlDNwpB#k*MvB%o`__9Ll_MITK`qo_g^WVFn^%K1RdjI@4BH^a3KouVzAx=eJC3lDy zHSl9Ml+Md^0u7X~?rB|VTDwcw6l(Hq5A7Y~mJxZatX5^dH7h+if(?ud?m01h1@=db zExp&2E39^W!&XF9)q5g@*d+FdzwCR}VTT~bU~zD-T*MuxQ9zo#O-1i`JC-^ddHIGq z2_J*ZRf1@0nHfPvT$s(3qqX{7e#;3_u@a*;Xw-pl{rUc{)8^#SpY)w|^9%A+F`B=y!GQ0;J z;$KXHF?dTX&Hb7JMBk*lBY#~4>m10;SLDzNq&_jRvA<&&%<_wD&scwwxrIKUi&`3v zlZQK9aM}`LuP>%@m~WpWv4)5rd_$fiSSO9gc#V98IoL-RRK!)Vu8Z;bu^cRT6WPvBAWD-PR#&k?Q5_RE?l9&KO4w1i9w6T)U%CHJUgVjEPsGIe@|=j% z7ctz1RNc)RXg_o!<&PsW>>kA3NBj$d_~-}`HhN#n)F-s-2ACWXn}mc$Q{Dtht$sH2 z2d%w5BgGxQDQYiJz{@O9{ot(cKE0#O$5BPbfBTNW!h%y}(In$?YiUm_0wt?PoEvBa z2qO70R(;{Vp*!s}1V06To(}BA#;MBD8dPiuAQuo2L=Q;awiKZi&tSo?ly1H*&dW7-tp9^g=M?5FWZK^3^f_T1MGv*IT*`Lhs zryEmFLNs;mR?S$o6!o~Q7mYF^!zeuN{PVO7XWgml(5FZ4{Q^JlZmke5X`GVeAK~4_ zDa&$C#!s=P5Hdifb^P8^=v+}{wf$lNR)>IKJG!LV^uIr#Aop8Zr{T-2GNb*;NW|&& z^_kaIg1W&hVjb51goI@w9O2V@)~U8LXMVW@4eO8U*14buq6A^$<-p>GJT^`B7B-Pr zP=&9=4M^R*>+Mb&pho^`+N#v(%IU9umWwE2^e?mK!-LOF7OM26Uw#9u=aKuttDYCx zU&utIHCMi7QDiOz!%x1kU`fHdVx(d*&6PTUfTHPuxv!FaA@lU?{0DHB?qCS8`p|?~ zPRky~Dxz3ZI36=czVxg4Ko;=SeCw~DuDyy<;$vcjV!BG6ZC%jY>r^Jhl|3#2q|&PGVZL zj#%9g5&8bARFGmD>2X5hVXN5>qgzx}7qfavoVCjSn<~oVd0#0-V&O4<%H>L4{2P8x=BTcK0Dph+kJCZi6UvNVT}@aVS5r?B z1nX@^=A~f47z$XXhc`=M@hlKh7~!3C%!xep%CG+Cra>_opZ`7CbDM|#Y`*?%WJm7IV=UIofj{WTIe%?tlLNT_ z_?q5{-(2H~he!ftpe50sbyD5^-7nEk^gS?%)0`-Uwviu}k38D_nA2N^yieK#*}ZazdI7{~s34+g$Veh&zvvmz?!n)a^l zZVw9sPQ(_V6z(c~3AwjBC_+k4#tmq=>%9=SS+3Ny&pD>c8G*dX=5y7Ni}kTy zI-za+ECV=CwLZUMM#LDGm$Ecze8ymHWX{;p!n=99t|x;Ih2W92E%f z%?4fgWM{aY3G}Z{!J|cXVIMYpxUAbouqZJ1Dc?PL%tkd=(8=QTa}z z;^wtTFkX}FSJL4Lk>rmv@?hR4B;~`~Xmn+NvMg6yh}{KICD=tcx{X&#pyPJ#pM_>+ zrf4LSe;mqr7lyR9K|^NV)-b8pb!Ck#LaMi~&aXHuRPJ`=-ssR8JP3QKfV%~^1z9nS z=IOWz`ii=nz#=7qG&=#4ACSoC;Zc3c%NtkyegR_EW&&PSdo)&&h@SrzSB)FmvW|(R z0?SkKrf}ndQb>C>m$6r3u2htGY8cG60>tsegW=F>Q`y52MwI?_5VNZeR({T?b|mg>aMukqtGI<<<6RQ z>L!vFPAll0OM9 z+0Bj?ryANXiUfH75kt&lYyMR4(80p*VD?z)_%B>&89D)bMR_?%t~O+Q7tlXlp)$uG z|A5*;`wtp>O}fmNKFsNj2hq3V zdmrsQlR5h1LNJcvVqP1QF#e|?527+&?UT2&j)VO$N-gx+voUo~psiI1w=f8T!Y79f zQCDc`mF>(}k28>${D0`xOnsW>YIe0Yxeq%3TOEC8x3oh*cdj59`!si_TkV{vHZu5*8vfHVeA-dGO@O^JGtI*-EF4p=-BIFk+rTW$o**k z^(9EsaXC(o^Z8#aJpr9Y$1DlU$*0i)0U?U(VTVE&bQ+k~c>UMTMl}Tz1y-YOPYWK-ljqur2%MQF)Oytz*7{H{RxA%~Utd*Rpm8)dej}i&XP?Fm;Q8Skau<1E z;-UBaS251r&*nf%5A+U8Z;lE~EY`SVnU-fg?v;M;=Hh-)Y@>y+sRaH1On-ge8X=H) z?EZ})$?MAv*3g>bZ?A}-Wy**61G%S7s1F)9{`PdqVZUWNrc&ca*XalsjJUS%oxJ<5 z@==k)vNvS{1= zA9BkGQLX+g97$k4#-DCZ+9E2dVaVL8I;}D^Jjf=xCcSacVTtSb;m>9P|B8IGJDPuP zpVfk>>8H$(9*H3TQ7CbaIho?;mTy}zbz?0MS4VG7m$qvB;wWWJGUG|$`y(+HH7SKb|J_qa(IXa?26 ziTJ09SqJyOdchm@`NJbbUm1~BetaPq&SE5aSw=(8L6kPbJbqF=1cUUQn^EAD>C1Ce^fD#UYAl{8amVW}_p-mnUQ93MT=`r~)<8xr=!L6jy`D1I4Y^yj_Z!^#Bb2ThiKq@jtp{Rf2u~$B6&kpa{ znkgY+zu$u-j}%3KX&k`RgaW1T+_y+KH)1(vZOTktm+LCg0-_&PU3eIJ`Bg1>#nOl6 zn!10wXJlO1R*XGgYhyR~cNC1vx9kTXEDs^Wke_3V$}Y_ZI2Y4FKF)pqK?S(k5NlxrmjyC&Jf6hm-1 zpqca^8iK^AP0^0~79V1PVC_Ej{2vj$6VY+g#+3qDf8m@DFD&R+$lv_JD#2d!7*u(D zLA|q3HOOARrrKJagu5C!T;hDQraGa&A5?&!rIjDlQm-+^OfUGBWbB2lmb*>AIV{rYG8pB#>=8*pqk@ z+M6pHI?OP7GU;h>NlNT-ulr9KM`_x{i%@2+#K{wMZafw;NB4UVh1Q><58mh6ogPvQ zM}tCZr@g$#;=PY@Ezuv=E-?li&8rTC@vRLVn%yNZIa5~931>5{*8&-ikAnQH0tu~` z;o&3c`oDjF5V)X7gaGu5|D!C26E4*c0`K6Q%TOm(yl~<;Fjg0^s~^b24-U)ca&UEU z)Ge81=6dLKgzSEfN#RcQ9||P9cUVOk8F7Y&azm~zEZmSF*w(hc9Ere)uYW0_DutZ1 zH-~L^`y;LmeK)Tl^|HD%>Cwp}e@F!s#*rZJCGaPZ-x`oqf?ZgYg=_P0V zOF@aQU`f&YYY{&=W34WkicBRfLmggZENLG7g?gbD`kp_pwl^0YJmuzKV!W=|z`-d5 zvYgdSmzPrh$0HjAWOzYF5bUA0j(Q?5(yoYKX*lEttBX0VCPTCD<1%dIcC|SlX=+mO zRsjk!ws!(aX)I{`vZ)&B?V(0SsbF;xRk(h=U#@a*SfyZlo06}_W+o!ovLm1*!@MJlPm%fl2TmlZa}5>JF7rIP;l%bw%+Z^7m8>I?dn+4%MM zNcrD=`RkAAyHEf7tN-q%U(4&icuL&*#nsTzJJs+YGcOFO6POHCXZFmjP>-2Q=~al# z;cK7&+@(Nxf16s4@6Yi(wf5L7EBH%q zN!epjn*SV=J$-G*KQA<+gQ9uE%se#eocOXn9M&=)`n>1R%N@e?e>{3-!ddzcpTY;R z+Izw;5ASx-XnxQkzdiGG+UF;dr=DH<99u?NIsY(%pHHLu+qZR<)YSn$dLH@)xpLYE zJ*`OH!p3%$?U6DY^4fp?2lwWiZGXP!K;E2Z-%8*7;J@>d9&FK0w&iplm4i>=Z8eJxm6dw0r!{EqEIs%R(kLI+nI!3WeL;L(>$oP`*6Uz*n4&;7xt&% z@TX3JC0^Ql=0_56LhU=Vje@Bu_do40sqtU&EMWD!6Emu-{cl9K3edB#DNX!d{gK;t z9!#&SR3cYCY=(~#c1l(M1-EgWoa^C$cC;iaNV$)-H1=1x&yVL6AjeBrstC-gg(;E( zR2MRCJvaP<6IG&?&C``-h*g>Wyss+TV+jf#dE2;D(%wy#SI{db+~^flmooHleOSD_ zvngm*QfwPBr;ygIF3_T&Uq;2PR+{p~;_)BgxV_s@s0jTksUTp=krx%{Pc9GKU#Psj z{}Fy5QcIxXt4*2J2~@TPF-5h#$fkiaqRg4J6m{T>WkCRQX=Tz5Mfy?H)YQbu=b??EegrSDuKdv@nrv}5&Ckwc#G z%3dyGt;vbNkr*o{x#(QHSSMdF-%AXXpCaL0XI?S0eJVjrT*jsUee~swqxV0s)1bQ! zN?9f~Mu|{AatXFrc#&hc`ITfn<0q|Ce8;nryas$8l2m;cF4@}J#!6YGh@^O*&{vt& z0RBr&zxQyMJ#>C>_cD{fVsb`QP%_I{8%*l!U~Y$*o7C21TpuoQebt|;OhHD$(AYRu zokvwx5Y#katt(MT9>nsR-m^gK&^54;j?>1X^h+4y>>ktCh$LabB5e8Y&>kJACSh&scb}1&)T8Rw;eiCV#VNLTyRH`84 zmR1;O7Q@-nZnCF{_uTy-E}5_JA7OI6OkEoh(Z);^5Y+5a13VEHy8^{uCeGYV``{V# zSB?dEd1UgOywQ~M?z&ipAA`PvMXzFa38ThjKQpQ znc>?fqIZQsCwtv!oO}|ly3}*!)nC>jBnm{7$aq$IO{bWFxD!Hj!9bNufyU7|tIbce z1bpu3og4he!bsY$ur*oPm7)BjC0+)Y#og(;iSmk5z{GV*6Wlg=x$8bxLMcoN;a=%V zyd5zm%xu@!`ueaVGSEpvjhWZd#=~-H-33+_x6b;^jX3p{W?gegpGD?}5B#EAQ6_K+*`AbBzI@%!~q&5T!Q28 z^FTJa`~B_3FmqAAgjyby3XD$c%wX-rlPPVtE)%=aHXSKl3}P_!bai!YqA$sS{(`Gr z{R>`g%!A?jPUJFJQe%&y>N_UFJp1X`gaTnj7c(*vr9Uus+B3*P`v}z7l zokk4V=%8N_gMvmypfJI0sMYPG(6CDnenss>!Z{!+FhDP?Hd_^o{ zRnuGEL>W6hd6)j1)4hw>qGt(_?E>^Ad} ziyCdH*SJUP==WR9m3gX2ue3wq8#!k)oJ(>ox3YvjYTaXun3{Sam~-mWcrPi}43|%z zmUr%RDj~n%m2qQE;p||k(mJvXR~gf(GOg!oFXi9;nGt8%^mO-;w#tVSM+27!cb6-U zXQs`eSo0{8!do9*^271uaFr;~wjIkguaHhuaMg=DW8nsULM?6ABaJ0Y%c7nilx&K* zVHuAb@D*p$t6af%B!3L%!rmybG%L%S(&B&Eac#F{j!xVe+5p}UIwcmGPyN8b(;t&j z5*IJ$XnZ-t0Diyg2akN&LfY>k6|@r@gk@st>bEr68!u~bkY7cw^p#Rb_c1MZGC{f) zxBfFNVhp;D_~TSa(3MidtKxk> zTxmShW1>q^dv0x>Xg4>~=rf*$mG)iudHwqJk!GunIr`~D)fTMUViqV2Zd2S?9(MnB zfh*(f+Y`-kQbh2k2>E&pY+f_WZsZYtsd?aHwGFOaEBfl#Ex??xVpUFTurDcz8|Qxc zsz6B+TA`vhsJ`qPc~FIO1Uk0WI)p#ggU3fNeoA}O!H7^Lf`sww^m;(+|tG__GAwFOAf%@P)sveZ;` z;N7nYG5Ho%bb4E_y8mi>YO8IWMJ#$b1bqqYU^`fIWY{Vu@~fn6>R((*l$T^qmgsAS z@fmrA2kuwS0axJivZcI+V;p=$@CW{T7zgZLV`F0%FR{T_XKl*+ykLSt(I)m4x)&i4 z5nWhm)DOfAhb!mPw|U44iX?j&=qb_CeVJEpowy$)@BgLW?xADXUD#AXPh%hzCjS}&$*i~ z`i*+X-N8>!DuC$==fFG2SLOU3|LQEk(J36Il~KdMgOwE(N%eQ*+qQvP-iEPWiU9gCiv|BdL}6B~3g43JT{ z(|r9?@{T4mn4UQWHA-mMPnfSi;yQw6G0+IAhzQ{4Ysjy}sZGLqZwBL0a_i$`m4$EW zi(43Tb8|wCaBrN?2AB|x6FSUgNu_Fhps&zcePh&WW226!>r_+|t5tI7L3ssSB)qHU{@_@MU$UNX2WA;uh8hD&D)ia;W zy~q!JmIp(ia5}5!!?tp_jTNdLKroXEH`}q6_^83!5RvZ@x2e^DKYV^X;=%}70dPPq zt*l-InIa-HbFs$}ySMz__uE({vodbLv#_r2d`*z^84gp}O81Mj zc<8#G2XMsp4y;V^MLh@elvKQrZ15v=P9gp%E|&3m2BVs z4qV?EWg`lB>3E^6tgObi44r^$PQspdDqiuMyk*BozUka{$owU;knp~XP0l!SxuMja zNpQWG5yYnes7hR4A{G2J=xvUPi5cB#wfr|wpx*cfh_0XZtmoiSc{x5lUJ6qU3+PPG zLLK$T>1VJ2WKU{^w?Jcd66oPqPW4|aJ9$OHbzm)Y;x?n#h|xvK#-qR$Tz5r-M~k|X zb8MqFR>H)fK+-Sd?R4JPLk=cI6c<-6k@S+wtI4SH77wP{1DxP*v4>X&B+ z#EZcpbJ}Tnj}@L&gF3S29^Wsh?vXa;#a3 zV9sDr2I6EbQknhKHn_c0PvLPQu-}875l}qBO4Xmibro2p>Oj>EqRRXgn42=NJU!_B zKG=dAOkNPDtud4dz9+ypuG6W8O@T0kljt-5RRL5$Xz`jD#C##&!{{&ZU;W+l24H&1 z9lKqy*u7nqi(O`hVlha=z$NFt{=;7EprmOuSOpbrx0bUF9m?|ee|+%x`RzEsfC|Qd zA5MwkMPOQF=j0&q03rg@FS%GuT^Zy-zoLL-oIMauUGR%tf5+xkj>ei{ghB*-GX?)h zj9i)`QFWlO0%ino_`vuwK++VL5n|eEvvwzS+hI}8@b$jo%?&Q}h= z11=m5SEfVv+Ac6BZEnk%`GKvR*uvmpWavQ%R0<<9P%=>qQC*}E4T1)4rJt|Kh7x|I zfL${H)D{;@1C6YoHUaqj;-2>$x=kV2y+|-Xa#nWi$^{mvqHE2{UHm#cV*I%Wx5KJ#Op{D3_yfhYM?$c!#|Tw`7~aBaCifI&uz*Yz^e+i)Z*qd;?;MToG9ybulBbWpRX<92w%bFp}SOZ#`)&);vh&V zCnu*!OOL9K_$SY4pjz>UrH`$E-((TY55@L(x}-N5d4WqMsff8jKpTD?JerkTuWg*| z#@Y%@_y9LrMjSo6t+y6G*CdYo@JkS|=pzH%w+`ehi;5=tP`c6O+)7aR%Vp+^Aw zU2X{HKT>sN=`TTUHF0rqoO1R&L{hr2K%$&hBB@|;wM|S+03t;`d-kjv)|LCJZbrEO4Gopz)@DPt%(2Vuh%-x9g*l!Si5YoPB=22`MKPw1Lw- zR68CdoaQNJ4QNINNDC28tPH6D(L?6yIb`$`!Hasj=FWC(utTC7gMg3Yb zUFFWC7kqMJ^Hd@c>{${xLL|Qd!8`H8BMx`4q$5Wt%bHEi%|}!Sa2o^{(*fo|ZbWqj zJZ6%R;$&g1+fuI`HIcG5=Bf4Ln@51R1q*@ZAY0KTPwJ}CdfNqfIZ6mIjK;Y)BcbUT zxw*OY3I#AsPy{WNB=@AG0oKrbTb0*ze;{)TXj)XnQX_~IjEn=~jw6y*F3v9u+O^G% zHkbIX%sH0_fcGBXP-FDFw?j4sF4>8=W+Y``oM)N=!N4Z2S)X!655;wtc;)2gwjhBl z5(@x~b{~LT0%ETZ95|r3)MMig_<*|5uCH%m(rZjDw{I5)G(rUY;SN7Dw%Bc@pJSXS z4Sfr0o0L{jY*O2H)*ipNeY~w!5PPEBJOL;cRvjMvonredf`2o$_Q$dNT*#ZCE!+Fq zkvFf|ws;}`vYih4@c;diAmMv}>yf}3iHShc#uYc!6eBJJPGEsfR%R`^vdR<1wz37i z(?W8Ax>q9vRHYp{GKCr!XzlY@)Vh75GfewLSgi_x29TC6Z$*-X-!zi_=oN}%uWSs! zwm8C}1hBSdWfc&9&G*U;an-(W45rJZ$}ZE5J`fOhmvXsN zZ!u&Vj%!Q9xbNbV%{+S(A_CV_Wi-gn%y# zir%rYdFI84-xz~&CML)^x=j`}yn`=HbmcYwUS$fNKJc_c$Y8yWe-EqLz0>GMr?VhH zqIgC3yQVl7^1qDO;Q_6+dD+bn$C>b@r1d4C_l|SQA1;4d0Cb^3EsK zP*eQ)iumAS-_4%fg`}Jef$oMm>ec^18-qjuh;oii>^2w?z*g|>_q&hCkARLJ9NkZx z1I3}^Q6l=SG;C^$PzA)BkWibJb$bHsl-+D+XdUAZo&!q{jpVpp(IC%s@DA!Ux=z=UH zReXM58N_8T1XPufaGbTVF5|yE75*=E^mgylM^ zxz&jRBrk$E3e)obN+!y4vIp^Ph_5^{3lnhi=;qZI5RCIqA9=j->>M`$)ABv}>LJ|7 z!$#dSQ;#xc?`m+yC8`e@}-0k^4aZ*Tf8BaRguZm&&zNBMD>yYhTpU$p8D+

G-76DvlYG?e;YX`r^EZr zQ%$WmX_ubb3>Awmfb}UK7!;KB5dDg4_4ywf%O}WN2uHcbm(}Ebn}}0SFyRNoZMM!$i^@xfo(_zqS%>$Gk8U+Xho3anptOWVBO>z0odL->6L z2pren8SxWTp!(ug{tmCh6qO+!f-mQTn+hU>e$gP||3<|uB!yw}^^WyA{f#=ec%dV% z+($rqj@VbuZHPZ2n9*ji2jlgU4%wvLjc$_%em(f(XwHfp_SHx+=ShEYN6G`COm&1Y z5f`rw^c`Tqg+izP120Q@B);`?eI+?xW~Qz1Zq;rKuU8{1Md83Odg@&_TdiN(-)3}D zEG{#e7;Zu`Vt;7d#HY977EfOeEy}g)a7Xy-3|!}dkwwW!jt5^HWbxo)L{Mj6p-aR- z3m3_*#l(aHeJ4C_fy2eHuXfqaA#9BV*=U=5Bf(DwU^m@2$HC(>54&|q1y96S|I1*? zC9j-pYV;;(5T_b<$6S3CV3=9r61iXM>tfKflzVWHS@N zGohM+-jfok>kynE)b4&%wy0Qn>nr+W7#K6bU@YK`;8Ssyc!ZiUcBaqF*+BD2gh01qeq0nYt;NikI>$en7>_jpW!j>kC1eV><@3p{Hqd7Ys!J7dabciSb!e?8x+C^ zoP+u>4J)75aIS>IQpQE^t?e+r^C0{-JtFe_{ThraLRtCalvU5q_UpmS>-Qv~A5)W9 ze1gHq5@7$TbpDIMN#Es|*t12v*^viyW|*{N1CM*RIMYEuh71#~#XX5YeXo-@%$Z^+6VJy+_E z(w);{A9YA|v=pA{j>4=N@<3UA z0R3bA1{`I6e#l&z#Vfhor|Gw-avQPV^pbX5D(g>d=FWj{$O@V6BJg#j92l<05XrKq z@}W#5XJELl*6}Gx!82-LLcvw;%fxQ?^$uR;!He$8i!CQSc5aSE?`W@~m!v@Te`6Wo z(+1PT`1Hjmf{xu`X{#%@gcI@jHOe{-_le9d0fyaE>bA|PBpZ5L{Tp>MSiESVz`jh+ zUnehD$9+vUb{=+_T^a*k-Zn-^GINqBO)7> zT^xSp=Zm=GPoNZtgLs`VfTIM}4e8Qi49RS9uGQ!L=IgX5N$m#jzNTX7EjOpj5Eu+V z?d_%yiTW^h^untJQ@qfc{=tup`|&~Y<@p=&?8n2Y(LIJwrA$YLZ$NwIe%cZ;{x*lo zAUV%|9}8C?O9*7?R=@kNhf`ArM>}8GSz0ZTcrE$6X2ln%vgV0MdqFMZ1|ujauXnV` zhhQ>?N@UFmAP7~!(++H&dyT}AAnd~&$^YbhEO%~YrIOy+C-FNhJV9w(Y`dnGat7>S zh@e8qBMDR);YGEmo7-tM3p{{#Z*F5xrASEKR#&o?s+w6IIi z8Jgs*9EL0Zt4nJY2EK9Zd%l+PWu4&t1Z={!6@lv!-^iiW7urT>MsC~Qi}aqqT2xpG z;jZ^zFVkRMSX+OmbphOUB&%>c8#{$_=fq!o%a!NakX9 zujm~}z#u>(*fI;ly>q^Wciehdq^}=h0hD)Q4NpFaMDHiwPmWc+l|~pp6fzdRd+Ih0>J)i zJ@(zEx_qW-;*J*=>&^~n^yVi}diryj_th`c9`>+_hCmKq#+=Wd((FR-A2B-&ZQQAB zZrOWBJ*xCYOsZ?X9}Otosk++ zJ8rOJU3=Vhx;=9EduG>OHXR>_yq0Pvrtkx4uDY+2Uh-u3`-IipM%Lf-j*>9F1i%p; zH#XsRzZ@T_^ot|YXx6YvMpw5jGsya5D88#TDwa0)JaF+}!N4C$Cj8d|6EpPZu5B=- z;wPZNuA2=zR=3cE$8tgbUOaDhB~Ya)IghsZ+Tk1TDi8wK2D7bp?8V6B`2(z$Ziv#W z5j}W~(jQz69Ti{&TGLFh4>mP*B z#8~k5OK9!-w>?a!FH(cOu{rKi-+lwT3%AO$dV^)xYGJa>!wV!f5k5B;>1pcSRwmj# z@7*0@f7@+sB0?l4PwrveOqY@Eu1-1hB$RK*`GN!v?ZcKm_dZ^{AjK zN@!s$+cgXH;}bT-9MV@B;^=stEG3^y^YUnGJG^4#H2r&T@Ev=fqST0-Y!4SP8bLJl zDoh11B@5QU*~&))72CAIr%q7>g1SYQ0O9&Qk|^M9?q>m0SP$Z`~hUIT&zpRn0sckPARB2zmh1fKfOtTC^?umnRy9|m$sa)lA{&Ym%Z zB`TN5qG4(&p@G!T2WnZs&Altu1A|EQxtC(wH)2*z8L9{+R~((3!Y0d+uCYbPKk{!WAgb zBC(LWUM&RC&hbe*d;1irDL=r-eN@m6jK4Z#?w)|n2&!&TBR!~h?FSxd39}j|)gOsp zrPlmZ{b(CtI!f@r#W~4AJo#uKV>LwAWAl`A|J-%L983H3OK8rXsP|f4N;zrba3L zBz40cSA0R1Rp)j>t*>&AW;m54HHe$anO z7j_C!Fax>5L=(nce(HYBg~2DV1tD?(GYGsEF3LXvR?6=_p}&vt!{at12_TOEN$IT6 z)3+iJ6@iNeG8yM2W8lml_6q$t_uIfg8U)#?1J`VzPno$>GO;uyCc~Q64b`*2nJtBx z25+-;^1o`i)@#I_@2aZz!@jVJL_)5q64C|S|LJ&a(ELlwDL6>L%KM_VWi5t8BX)_L%notbl)!?5iMoBA&B5 z<2MXOP=1d;Tm1KY*S=!bE#CV1Vb98u1cIRlfRYCX_e$t^G_=p^X(_3Xv2`8%D@cD_ za#Eb!C?-bhIrDUDa5mP2!Bj>d9%6FHWiE`0vhh{0nyC4o+#0MC_uWzgyl%#eQ7vQo zG@>Ne;JX1#joA;iv+#X!uk;`BoP)Jp2`|}j;s!U#KXu)y;ep{0)dgB%(r5roHjwb{ zvCYr?=%2P!=~{j-P9R9&jF+{XHQU+=Z$1wZn`aKbV5s8YO|>aQK#E%)$jboYcoijm zE7!pM^AH82w1)>(M78sYYp1&-)(^5CvDO^tx+)k>*DK3;S!|rO!5C^UcQIefa7jev zB1bv`r%N?St30Zs-n~zwzzFd!#bi9u>m0=tXTi)*g|pI1=}eUN0ThT@yHmVMF53}! z00j;WguM6Ela+P)&yR`}mBFi(MS5wr(CEi;qg|+qXhsyGOF9JdQ4@sT9Jz9N&*2K} z__UO#ieZ>du8O=R0N*%`WvtFc(L?z_sP!p8nDoP}q5uCv6YAWD|DYAUmY%>Dg-RLe z@v{d)&+nMMuh91Y*MN|1gr#$508Zk!hxH%*l?id%_QaooLZjnW%rY*vXq$AO25tXO z?384W>t2e6PTS5grJ#3Yn~y8KrWe6Fh{Cd7H2v9$*^>pFU$Fu|_&-0x4UpG7uwpQN zn*V-B#7m!0zkgw3gCP$Z>{nPYKYxL0gkhR9Lfi8^gyz+7@k9yCd|pwpgnyetosw#zPn2BW=Szku_=KL`?EhckES-P^M} zNI1AJt)?Qi={ejbeMXTEU^5Gndb~0VQYVqXMe;h~0}^JoXcI*J)hmJ`8bFVV<+@h+ zX>W;GtorXdqkDLSY(M@2o5_$Wn!V(e{Czce^rIqnAUWym-*NCx=LTDNDH~G#MbbXm zDZNlsm{CY=9IqX3@KF9ws#r`PLdNBDXp8cd$qq#23Uq7Zv;6Z%$2DljojSaZT&mu! z+FX&fE$P=_Y671rv}G^aVI8wz)X!(hisc4_Ba-$!R}?Pq4(x70qKi=H9NVNe1KuK> zlp^A*rsltOpjHze-@k8jWyF+!vT5i_b1Ev<7tqGIH z&xz~=^;o~-VGq9OXxlpUW`j}R%=BFGOBxV5(`)@TyryVL7-MI)PGNSHiU+gD;9}Kx zfHCL`+40T({g_KeWaLbF>ewns8;Zo+-^@ zQ>}ol{yMNRNpfH*_E$1`k$Es+#8R0;Dyg z5czEtX7^orcyogihj;`SC!$D@05#Mf;S)>jbwMpXyj7KaLQFg4KWTA`v$LC}nO66( zuU=vBZd$dVX8$}Zo%Y{W0!c^q`9rpF<9_m-WGp}2I4L6~G~+Z^s>41phb;n$w1jEb z^&^qr!_k+i6fQhVbf8;^(?$Ukk8fIVXUnl2E{g=6oBk6-!y>v=vLJ~chIm4b7B(C1@GONdYL8+|mC_TziQc{Wu zl3jw}!!k-f*R4u)<~@LUu!BJB>y*r{zAD9Q??mAxGPB~&e56$@$pC~a2kF_{zyT*^;~0>aX)TP$NaX=|}cgErcvmNQ!N>0poqez^aRIHUK*|*P&9# zu@R`D(FokcGA&d%Df6)mo~vm83=P(!Bs^ckSumf@r|Oj{AGf4ad;G)g?Y0zUH}GWk z_;gPb8ft9+{hombc%bgaDZytBM6zAtDx$T_$29E=(7>He1xL`}Q|<>G=O9P!6(ZJw zw&X<{#aWN0+2J_8O?F_SG3HL=iY)l#s2mue4(>$*a8_SE{AF#01L?u{n;n4=;fB_g z^T#{^L`X1S7k`7Gn&5odQEzLI)}4Tq94G){6UM4htFxL z80&q0!Z@IX0N-`gBuZqPah+oT#qUop03{7wy2ZyFNft~U1J8k`53BP4H>yA z>eTX@`I&H%_w$KKh#nq$4@6*9{!5kR$7^I}#OJ^t8uaEox8%z>raO8jhu9D9vS5uaB zzXHk*VRFulh5Dp=C;ijBd_xm&us#K-!Ja36Z1`ayxhnDojW}GDQei_8dzfgOiZbt_ zg767Z-zF^beZWAD6^a8dm^s_{%!;> z!ahSh>c_bh_i^dxy7n2vt-g6v=pWL0UYE+GRb>si=@fB_vcb#YRgS5T9Y*FFR7P)N zp6-cm1nAi2=2HC*i_bz7oq}?GLlHT}poEF&B<8Ha)Dwc&Er8C=+d9ESqv;dbb(nV5 zpD61pW2XZJ)=qwveyuOED_QYx++*{NRlX);g&_X>7oIdcp7j!achNK&Q(p}{0n9U- z{&A#-xrdN%4GoESzPv(vo%kY!jInh=q_o=^imH`+5ERDU0Ohsw438jK-1Sr z3&?HoD<4l^7W_kSWv(LLg<`QuZBh!t0_1@nE zsydh9RiaVE^ke@a{6mgWzIC32hHPW@sKOv*SA+e!MQmQi^@i;;Ug%3 zjaRjJp4UW^Akc|}qkd)P2&{6CI@PtP_J055~fF*nAxsbQ7o5L5D-oy1ABNXk09 zEIKSasKEahPI*Zghpy8AISwi%G&Zxy=GANofIyXg+Vts*;XI80L2XJOl?fsm07*}O z?6$$PrvI>f5d^@Ewmdhh#z)fi-~ZtHFCpch<4>vT0_@q~Tr7yz?LQF7@rJiGl$7a) zAoyADby5a2qy*$_cbGKu`l+Hl8M0LT2RY6Uyg)GpEAQk?blXK3q=(rpGZ5>r-bO2e z_O77NNrVTHmWQ$%t?QFSyi&DU&SF&07keq0cUq}{-%7pw0J|L;{rqy2;pL7t{q&+& z-INOSbHh+5?MRTq?IKDja5P^SiIAk~r=Gufp)T6BsD;zxSbaf<$`eDa5ou9hglm~g z7bhZn+d)f3L`;)S1VaN!{-HsRBYFPln~=MBeK~cJTge7du3{$XyDx=^bxT!?L%*GCVQNP8wpQ6e?m36t15f& zy9skT_i?4Ujf~EUwlZ@!$h_r`2^81~Zpg?ytB(btcHUh>I&KXbjenj@KB>=Dc14z1 zOwEdFV9nhRh^)a2&%6`{G?n`G283#;(Nwagpg=nWG%d#fXj9m9NqR(bPKctM4Iej@ z{mn8%=_mXMC<=v3Chz)@{y5!Q>&l=;prg*4LuC~213|QQezP29=&8j zZTt%DiqwCjcL8hkEhnHP-)3&pBs{!P;6_w(v9{NSb&O6iq@cqnW}x}07OF%Ye0ie4 zs){06jlgxzK0-O;EACr#GM$)38E?klsto=@x8_LOCLU+2-^-QC^Gp`JtM18lS`+GW zEiR4&U@rrXL%^E6cz)PntrcCqAOKr8W6 z+#FT2_&sQ0DHMts=Z(!h|RN(_ols(=h+r0?-6C5rQE+}@Mgf{&NRd4j?Um^ zMTK<{uV3M8lrnM`u08Ha`B*KLz1iB;;<9fCczsnp#!9a`R{i=Si?d@pNys@?aH2=UTSdn9xwkUGIgOHe)^iR<6TjGQRd(TZGI<67Y`?@yjB9H*##4{shOnQC~) zrr`cbnKtlv$y>?#D3kJF0VzknW=GbGysSe_At2Y*f^x@Ns*Sc)Bn-nX7&jA#!F+E>O%B{c<44<>pJMXwoNT zpERvJoAZg(ejsB#;H(%=>|lK&y!@b`BQLqYAs?8^`Ww8U&tyeHtil}p%Q7C^iAibo z+ZdQPtAu=Zp2E21Q=j7$l9fFw5`8mOg!-a_{dCV{2_k$F=O;@v6Um{x)z#O_F$EPG zGy6PQG@@XKXpzj zubR^1qd4<_Uj5$Rnw00nPEdb(@Cu9g*&{8W&h997JV)#(c10Gn#;`~8`ojsPgWo;K zF?1mHdHI%daZ#?W1KRVMKVQ^=ZS ziy`t9Ud{lWroU9-BLPqyKE9$!5||2;IMdVtl)lb+HbVn(n$-m!j&%jbW<#ag)SKs6 zx+igQ8!MqWQ4chWb?FV(eS~3GKYF8}urbLC$ntzEyPu3rh0-^)_Ek@!NYZF1s-ud0 zS<)zSEJ9*lOp-n9dB_Xooj{;MS*&MFG!}B$FB#x}4MqIyHYng#YL4BRSBQHW1u%6P z4x7&Z{z0G?g{bI!Aa`^!c|Hqeva}@2{pkXlz=mf}&hoYu<6xDaZpuX}E~ju?o${rW zfs8vZ1zM}L8Jeqj9|40TQlE4+$W`_@+}zF+L&P4_86Et%DQ_tCuoY&*gi1VV3QgN(S42s7^-rNJhvN zfaj_|s}q>vy5A|OSI~CYxK&k~)Y|et1bt;x8Q*3Jnw4cZSJ804c0z^>t*y0bb=6Q` z@5ROaM6kVE=S!F_p$2hzT3&4=S)*ZtD#Mm}tIYm!>5{i>@d*vbAZRlej<$@67w?WL z+vd*D9XeU9WmJKJC3v<{Lnz5bn<4B2!x;*0#45!HkzM{TDq!Hh`1r!e;9AQ)(ZasK z!%Sl?xY?)0?a&!SOf5D1?0fi|0bKRSCpO}f@as>*ob+-T2c|<9q>{oO4c%?e>Rsnr zgrt@AU*i)~BlW!O+%W6J<5B3WH!W$tnO6J`AVl;Et+~szJydme^*MyYrL7#S@j?!0 z$}T~YR)vBPUKKBr&JfugqB^4D`C7oNr5E}gN6sDF+Z!`Yl>g=iQYU~BR!>k1A4Fcl zN(I%J#c&fzmoUQWhzGCx`IH6uxbh172z@Gz_1M8qtzsETQyQ}kO+-VCHzxa*!9GNv zxk(_V5H07~_}$}zB!zP{T>CS4Yx43lo&;#Z4es=LSaD*>sAv;X*owUp%;D0;_9$pv zgU79sD@c!Mod4Fth<1wk@V|vsCe$hr{hoj?*QtQcf)fbsfi0kI)-n3)TNL|38CY1L zpmx}DF6cDr2-;P)SQx5@{zQeNK2z1!1~JqMGO{J}4U+@-Zjf-XH_Mb1TnmA@?N2vN z{X-?|tq(&V530_DH!R8{ zq6<8n{M+(N5s1>3vPO^=5xnYPdZTNY?R3Q`6BUS%f>6L)3Ihq@pN(7DM|&ilCW`Q> zIfY6(?HdYV0F4x(urg8KH52WPc9#zNP^<|oHUc(69q!I3BA));3~cLTRq)o<7&emy z&f_Mb!PIP5r4a=Q$w+Iq!|}qGk9hWuYeFtr(Qgo3m=$bTFn3W=Z8$PAc!&9F+~Dl+ zps$C)@WEfqDV)>EVzH&b`I{{!e#;Vn~J)g!C9c6z3gW85xF@ zo9S5U>S0wZQu4=*u8sQ_^Pd4f7LNlyiNVF82c5ten?mtAXe&=av7J)s^Jjon9iJ_l zM4#Em)~JzLIm{Y~68v^tJ1}kr%@@sL0;5)~Cj1uPXO z3T15<(Y8Y>;vyRaL@J*j4*<&l5{H&jBx-~#L`dj93`>0i}Gp{Yew8TX!HEnXSR z3@k-7a+!Do0|^MQb0{d6)t;VpGHxE?P}qRDvDTp*9xn1TYpmWT9o)DZhOE@o1T$s7 zuj~@iX;qc<*N1%66ZgWVa*#yHU4oS3-MMG*anqK0P z`P)WcJM8KTu;X6riPWq`L?Ku-W3?D8EZl&6aD%hqMTI1DB|o_qPFtFon8K8PzN_^1 zTO`{;zV6C2oODorB)A}uPayn-h>(7~PlL`thO>>CJUQD4TZ%wC+pK9CL?nrdAYsS|2N%iJ2#?PgAO5! zH$zEjOrIXuH*G<2wn0IL%1MlEW$QYNRu2TBR3PzjZ8zruy*Udip6uI6} zr3mNG>QoFIq(gv24=K@MV%n(DR0~bMGNM3%qJW?MbIsIzph*sEpLiE}*>Ba!(U_sJ zzc+=MBU7&!6;(O33@AMesIYKT2~iDV`U!=rCWV-I(`!r)i( zC-x7-NlS-q-8zT{I5i>Q3MLF7En?Ey!&d4L?U}%I=zzf&WWdMx1k!}$e^d)W`@-m? zP&%^1o#O8Ih(z9xJz^R#NrbPMLmsyk=Z3Kpf@OqcQ9}pNvb8~U7Ph6nI2;9Ka zvziHVxGV}Im6W5?SR)}8?z5b(oIiW;EX?~Od^XOu)#;sQNf|#Grd?5~N|8L$v($jB z?OjO>6GLcc)D0urOq2P56(~VwKRuj`oEj@6uDlC-dVbF2UV&LYdy8!uS16F>lU%Yb zjo*ZC+mN3*AE$-gxvPc>yEm0%Z)U@=s^h``g7pL`o78W;WS-MXfKeSZTK~=Os6M5> zup0P$Rcam3BQ#~if(V$nN%yeXY84ySp*gd>QLrlOI;&FJR_}O<4@Fq#4L=*mt)#|| zY+W{QCyk)j9=T$%_HMrTsehlcuBvd*jK*ipIqX#oC1v|<4!)C8nY(cGHBrL1kD^Mk zGlw2A%XWp6puK$;Z5Ti?as(2cR5!kVhVbbQ^zg&@(TrX^yK=L;B|~)Aw0n8|kBQrHF0A%G??76`-F3d-%F6zNRevd$f>gw^MwyvdC&iVO z0TEcO+N*ATwADE5@A;;GfMNtVX@4~L;y9es5k4=JGSq!nR;Qw2nVdUQQYRM>EMhjE zePJ?qBo5$_$kPd-C(fCS)=@Jid-;IQn_5t+qvbUto$*%=6a3zbO+AU~#uxr06TCJv zWLE0Dc&xJWmG-p4!`pwdu(&kU^Is7t$0;cHUCLuSplQAl2O@NfTkgs=(!j`j!#tFKe~iwsYn{_l|}V9C#bh3brK`6**CQ+1$%5dpqrs%Xx1h zrxs?$-`yIaDhk?cIe|)*B=2A1cB>LF<8W{}wqVEj6ZD(cY8EAA%mcymE;D02v?6oMneg*X@~I{V_1-x4L+kdEDCH?17Aio{BBF($)5& z<2B>8fO&7-aVF15ougifA8E!)Juq|R6p?@7v&}2wTKkuEw0~-vJ@N4ACPUjJA3<}* zpR}`v_7YqrsBaPA44yN=)Xa* zad`z2@jiY!)osH+EVkF14n5WN{fuNoKvmS6Ev4+v_fHtK4JLHgc9_46O&j}1%Pkx{ zs&d=^rrMH_c36iDBrL9Rug-_`?drc)H298Her*XGhLoU-c*o>>+~Vz0pJ-zxkR5GL zmK}YjOIw?T7!DCpMF#i5Dn->9QTeo-v{y}>+?Ap-LMHcHwc7epE5fLF7px-oK==6f z%NKk6;zQ5YIb9VJ3?SO0J6_y1UT&<8IQ9wF*AUN;w|?J0Xvxhf5}Q7cG0p}=1tQ+f zU@YP;DVMfIO!KQ_;-G4%5qy$%TWVpw@&_Lx*N}d4_3QbnwLgxY5DN%Y=x%NGFS#3K zPsbRb?&dUp=`@}IENJoPC?#^VOecRKBtFmyzFyk`F^uCsmdmOw5`vGcMa?srh~q&C z3=!l`7!Fa0Y3y)FZl`)5@!nJC{lYG%<|m5t(TPLN`%a~gA2W|%7Sq@bUTeCTCmX6P zieXzT1Lgh@@a&}i1 zYnT5p-8dDJ0;?uuHeDVcummax$O*PkaiiuGb@%_A1s<89= z2~z_V^@GU?PqmGmnGvt#tupx)1yNpBUPfx{8!_RaBa-7s&qEfudQMiU`a!d_Edbqw7eN( z1@Jc1dmOWa_-LuGL4EI%bq{jN6i67$3+BJpb1wY4b-z?j#Uv=-gv3+|72(3!r|!Ew zY-B3KJ6ul~6noiC7E3-m5pXJR!5FJJFt|M{vsnx<@EXJ6=4MIf)JhRpmfx`{98;oN zJ|!YHu`h3}%NcA~sQrPL>h}D3WUHZa$!)d4rGM>RN*HPbj-FEy0Y(A^itc zv($H=91|1UZ_g22@qbEq%va@mG%e3xRt(LOwA74p=nIiGo}e^7fj_l_k!e z4g7Gs>B+S?ds-xg5O52=d1jK)b1W$%W1k+JtK&YoHZ_$M7sWM1CY3iqUo!Y%rGYZK5wspV zjM9imEq+dbxF`+#D5EpzT4q>zLo6dpJ~%|aWJ?OnVF@T0AKsQ+fc8yjtmPYwn{bw> zSp9oMWMv{43?1cJHFOr1QsBb)D^CmOLxZfoxs`L;Y}6YPj>?-r>GjA#mIh7htJ=p) z*jtm5U0pY!Zj;{i)~IjcaX{q#$IE}?k{v#J+dG5J)s-Qfh-8NUrVJ=5(u>{|%1&n| zf%#@FaI)#XH!6s1PZqcik5D)p)QW3Sfw{=xVWa6=YKIXJecxIUNp#Y_V~PqxPCnM= zH~S$q4LUTQC8hu2$e4sQ=J#pkY#Zg(yrUyX+MqKw{_)U)YKeRz@R1-$`DbGjnm?Tu z#l=PhOHEB{;uLfOg~wb)&U%Yqs|z36;X)VUko79TDBeG-klc*{BgBRwc)ed1UsYb23Fb`{q&Ir;hK zlfOAj4c}0{&9JogPK{sT`$9-M!H+d-ct!I)tXUBsE@7?*sQg)em5j3iF=N;57AmTu z0JiH$(N+Rw$$aCqw6H&`F(}IUE5VzEv`9{^WWCxry^py_?3{bfn~;b`JIY7uwDuKE z`^8D#XknL;W$=<(@Pco2tRBwyEO3WA@Qo50!xygaIqQ0;Nob?nCc#u}XqR)$sKAmn z^8Nkm`=t7ROUB>&WXYvF?Qba=A9Eny43Af3Pq=@*?$I?$FM!ZfM191eL~PjzpE*|R zep7xy#ZYFj)($=10wxsywmWKmDWMfE*3mPcq+ zSNuFKsJw3RV0Zh~fzRdz0g=us)4044G!d*$rrBqCJZvg$3;k~;l!K$nrS&&B`Ij|h z>M6Pi^nbg^OW2#42-5KpOl<~3{DQl>lF%tHPgYuF>WljUUtFxCT|p38&@uBHV`H;r zuW_pmc*rugwrm-+F*of&q%N#9gnUB%!LPN5nNPIv6`#&mCqayBYia6UxrIbJ*Fjd> z=1qYY)$baoqpH;UVSlKn^BD29Ku|{ie?t>w`QYwJO17E&Efs!W=;?Ry`<$+1-;1%| zE`sk}Fkajk>wCviZ#*bvuC-eSREmW2$#s|?kCqYon7@|1ZwWdh>KrfD zcQV`f(d7f#tvb0J#SE_wLSRh2nng0KHyvG(gA;JLljdxoIyiN0yT@{vf`5Y)Fx5FA zukYZkB_|G}=Jb2#)ET>mf62$~dHHDf*}K^wi&(mMG@2si#3CU?C(KS<%bISl|SIj-$6lg=JIdy*u%~!%{-Q1^*S)k2$G{nDuyLl$f^D7-zd5=KpFwTc%`l&V86u=Js9c z?g;b`Se=B8LH*7VC`iT!;#M{qo} zg;uI+x5Lux-1c%mozbuB9KKJ7_u1&%U7efVN@1Aa@^dA{8Y#)eSuEnCh($?8c{{9? zl@T7Uxv6OmG@>JTPhh-fKj3`&v+R~N-inAjGYkbs(t7{LO!3Ugd)nAk+2snsoFPm$ zPjL<-c_bquvUYT~t+W()sl!t4RYL6H87T~>jUEpq$zK;@Q)-B|byGiAjb6_y?*BQj zJdwXTi&5ywM0%3wa^~NBaWQ|+YVE&xdS}XsIzz0)wfbkEbN4-afrUpR>IWe-n!Y^Z z{>F&-j#aTR&eC@{UKx6VvpD*U*@k9k`iws%*ijxgtfVPp;0*iq-+fkuBc-NBVT%G* z1YIWKey5iwhO)Mm;UxN`SmcmKt=m&70pa|LiV!dY+2aB0;*Dju;r^t6$ZLHqnu*a>cP~fyG*g=^+E57#FWVtMfgw1cH;_Cp#x-13nIYD zI1!u5XN6W(fTzg*fyI!)%w^tp0wZDEL`-tf*u7A*+h$q#Gwv7`HtzA%kA=_|%ed`? zKuFPMl{YYYrto4raK4Rn<8HTzGjx*)acivZ^m_HZxIeY(5*Ho?Lw&pKQU9~rTmsWi zRa-?7=}5`Rwau7^6E8W?EQ?@+?1P(eEq&R>1eD_yZ#%nO zUfy`>STcM!GCLc{o-Z;ga14HCaG~;6UF}JFnZ6BnS=DcRN?d?aW5C)ZJ!+;cJ2Obur~iASGunb7LxyNO#kAp!Mk4H*#!R&!4H4( z@tW+RUvOU_NhQRfeEltdu+ddW~P&XJ= zprZk+so`7{cKV82%4kb%rc$5XNoPX(%5o`E8(X}_oeiCRn!zh9!yE^P@B6e+S|QM(dcYlJ*#D#q`QS9gT`=L{9g2X}JgK zQUp{xuOpy^$O3GLNigVj?=qfY4yCc?sytWe(Z2S+q0Ti^IE*)UyIOPb!}dlS^@$wZ z!nSU;r2YkG%BrR=ZBBKB{Udr=tH<_2EccS;Il~z-%lavinR51lbV3U!g$;k~&u42p z3qpEk4)yi9O3T_-)zLk#!pTu%vF6Z4llvPxZj0>f(>PEnegAB!qz+q%ijl;)U8tBx zB)H&1E8_{^{RjkO_~?JVe!Vp1w*Nm|on=&(UDT}&knWO}Mx?tDX=w!MlJ1la>F#c% zySp1{knZm8hO_bgPK@)1F&xhim1p1gUTdyv&Q%4^ge%$eHL3Psm*^8sT|^^FPAYYVPMmlO(sjkR%KfyRyUxzyt(H+%*`VTU;d)){Z7bZ|ZGGfOZ`fxu$(MHzzf3 zVNY~t>ZvuRxSuEu|J=LNoAABS<9&0mLv!@vUkEom%|DGo=2B^+@$RbBc8#G0UpF=< zZ#2)Rk}>`y!8vxu4wt4NG3W&*RoTZO*P1ZlUM83}SX-4E25}~}s4PR6i3rxgHNc{* z{?j6CGK?%&_m<1+x2TS;sk2L@GKwVDDERUXwxP_AZn6ah2eC(N`ur!R43Vu=zRJzv z(QD)nRAW4p+(vn*&@Fw`B!itja~@ch*5Py~){?vDsol5_@LS@+ee>aWLfOJ!t(8GP(6)&tGDk{B>1T4t zqlO*#=pkNPYzeJ>viEdHW&~20;4#g{+%!TESXV6ED9=JWe@WrnfMk>O#Lb9PKt(h# zG%%LK$eK|e<2^F9HGqQs@-#STglf8Q%)2F$8=2wc9f;$wuQyQr?aTCh&p6YTb*lY3 zKmpPfYW^qM=!obMC+e!AD`VXfdQ7rhgjIB^ZWHh^&$T}?e-evFsyiOLNF1S=boA5rKful-p_~8` zDOkPwbUSn^(pNgX0vr}S&Yqknj`%v*5G_cLW6plTbiXL;N}NgG{0iCaW+m_t(JCc; zl1V)b<)tD&H{`#9{QXj5@aO$sA*la#FDR_jSn}oJ4X$Gs zpjW9Iok`1JZsj#AFTVxHUpH9{vkqRz`gh%o*z;3|Y!=tfa1GG9wnke6>u;Rbg{-TP z+mq?Nm8d8w-bwGqr8HQa68HcYy;%A0ec!nI-vYySFbgeNg}G9IOM!v$l~gpSN>NW? zW{bDYDrvqZ0AB{zJ}cN_x!UPEK&L+b0n9xYOU{S6c$3~lWKD_~RGYMHWa??wJ6ujo z$|DO{2gAxjk;xwoC2`fn?Hn zLVq^-d-cHj!LnO1?LSrhZ@sazT@LXd%}<6MJQbi6;rr%(!|Dc2$lUo z(9tw@?|8ai`2M&1*Y}q@kqL)!bZdWqDi0wtIam(-97;@*oaqUf7>@5ABh<4Rp!sgf zil56gidEU18<%Lj2|7MmSx#J&+;F+pAXqXF>wLmzE4`DfL;ivS(ibH%f`q(PhWUp# zmO{+j2G>Hgs}PP&E0$jYPDaFR5tCEZaFH^?J!}n>D?LoM&HhmhO>~J*+X`PR-|+Lj z!pNEBF$}oX0J?PpW**uNzVlfpySayG3+-h#4tpQ5E3tp*{H(DkHMfa&(fpnHlZJ>0 z^+8{e20(xpsyUY!FO1BSJscSs0$e|#^I#uMt*vIl7oTCnX`G-@0IRNDMGb&{!ABcA z`jI$@Ms+TBo#_3|8%`HTQsyBgjyWaSu%{z6ht_zcO_+yktfZuv#_V+DWjE&NwnvyZ zJNw77?e+grAK;gd4TXrO1?;V?H`jvb^rwoHU9KCK$*8G|x{o#7 zA1|YmJGE{y!+5{!_8@v7gX?=|#QV zK5+c9qw*oSn!!H?FyUG&OIK93h1JH#Uxl+_tRz~$J)4>y?I@zWWZ`Dsl>CwE9+_m4 zMnU}MW;V=f@%eLGxl7+k%cB`n>m7!n3f#})2+r9l$}5``O@NS`Sf;!sY?#$fl_0b0 z(Uce4iA8b5xdSIKwmLWB>a3-#(}s-wiVd}DV)2if<*l>^E{eX*UuQZ&8XwRUVX3GR)PnbF_#%(5i~hJnqKhh4hPy*mTPvi$SN|6m-?#t*;f zS|1{D&Fk8qpZUGsjg@NhNu_cJbgsSv3!)PE9(Sb$MMT){Tcj-sIjl)pRR_c+6iYQi zsO{5oGymtCi8vIC5|(?>zkBW6=D3I#Rf#A>wnDxjnTVH?H*GPOEA$3y=a71otoM9T zP{Pwt@8C5e)zAGZw4}d25a`LmHjliVn=2cYpa;=zlE~0z$k=a)w+P?2|y1qD6 z^ds>v_FK&54A`N`s5`mvAqJNd&c^I_J z)CISQL8gVLMx%oTIb+`BXx`#D$L{hYNN!qca0+G|POZ5aM!>GROUR9dQO)guxb<1S z%1k|22IHaX`!rr?TQWv-%!K?Wim=Jbl)^mHM5X-59aomBlefd_j_T<@G?_z>r(1@)#jqEMG((Q>s z0cJx4@iGI8%z=FaTv2Y1cc+D#kAc&g?kQ}`E>Vgajy`7dHK)CNPZ9C)@2`#)2LzCK zY^NT%!8-eC!JPrQIzykFWkm_ck&x$Gq;`?1a7lrnG3#A1_W1oax}b zQI)~(P9=glEh8+K3oyBiOzNNrEVDDCskC429OrZJl66<@0VBDMt$w%0w?Ygxi_MLR zAg3IYIuG!Jbm!aCY+Ttp^-Q~QE(}0JdlCdal#h=`pIR7x;fwkNG;5_n)EdXqjTxVa zT>>#-AfOOJnoo;96~)gSgZ>8_A9KFlFluD*Ib&aj>>`eqEV}zjtA)*bW{KCul`yH; zEa1TPlOlktU-k6I1kwIgJurcJ(cF=#K{*AjwbJHcy4Vnt_WZC-%DPLYX*0yaeez3t zyUg)izkgt$G1LDIf0)ij`6b@`tx;)h)G5r$@Hj1Ta}2WvuigXgDr=vh;8#ImvAUe< z$c23T%uFx__wivNCC6DCB+*7{B@E4{aB!NhbPr-JVE)bH- zoC|u?TMcFQO6DpDY21g*;)js29o?edc%}vv1YQeMR$6BdMv$O_93yf@ zIX;ux(dlbbJj+pI%|fqa=_HbuNo7kAV2EE+27VC~6fAUqo~mtu{MEa@IzZP7|GgZ- zlR(-6a|D=aSC9&yY)Ld;2SZ5gxH8zafO;n0WyC&qNZkNO2VQ&Mtam|@hyw% zy;pM;GaGBtYHn(*-4*mX=Cgk7x>Uk1`BGWNn%9rI$M{=g4(S6 z5P{naa=A7n;f=SCmMk=%0?F@(n;UQo`bP9bT(jXy=D&{P`7fStbN-%AnqM=P@^!;v)tNIm+p z*2}#?>t#w+(I_hST(U&|pAuw?spA23wLnX7hzK%c>cT;4cb9bY_utA8G(P0&%gIjV_sq5`7;3l z!P1@`IQx9{k5}^veD1v03pPmLZeWxmF-iaYVP|vZP^Nt6_0!BVo4hYl8-{*nkLmUR zjExNHx>fd2$Js8wL^efvi4)_=fXaX!y@7zN)|Dw`sVsYHBqA%WQx>2}sAbR(>_o** zWi%~FEo>UIF@=(xzOh4UV=L`{`Y4uQq%>O<0Unz9+J6f}YZtfn!sS%!?MQO335XjE z-#R+7=<3zKOihJ+yh-_ilY4ZsmBeX_IdE&^Bup`b{SW0}9mgNaDU3NMpU>O|q2)N* z!+1KDjh4TI#xk4LtbF`rGi@qSHd(N%%h2Q48#Eu^>3Sn3^ zWBL2&lhvD_#_YvM&Vw=-Y4=G;h~;2@J1dWp`Fsq_77s17>lR=B6QM`YFw04OahCy2 zSXMj<374iz2jK4wt%;`LTlVZ7m&w^PcG%4hm4vMl1{}lASVSuoE+DCm9Babe2x_?Q*?Ky(QD|P9xj{kRN7%3R05_iejyLe7P!qL7y z{xjOk%)0UA0#`R(s6+V$?g-)F_hWl@x3{-Vw_8aEGv!`QP22=-H`+N;Dg9T6^Ii(_ zKw1s~WJJ8W3*n{TmF&+A%96K)44~h8H9@WB&8GbeWwRx}jZR9{<~uSQQ9>Pz&ivtW zlLLe4GUEF5lKAXVGuRD*tEE^8E&}IkP7as4#6|G-#}#6D;Ppc|m#d}>+G+NAs;I%x z>{^IXRB?2?SWhP4X`bb%>bqMVr2b{GvZIR0VluQ^G*R-5`!yV zuu9&i=-Q>)b(S#!pKGvAtqg#Yn*(~!u$}-PW5+`+{9aA{%id16Q99bFk63i{=LAsM ztBv4PX`9Ga&NI_kvAU)3CgXE9W%=R9s}Wpj|MEnC{A7Y$^%Gwz#dsTWc*ZoLm~r{y zXv1P;!uoR3muBX6MHNMdm5tI#xa;2Wko8qso~Am@s$Hk^ae|M`v?LynF{!zvs6Q#q zkg%MbZd+j9xjGHejte?u%k$&iuMu1Ivs$8*OWrBwoBOop!3)+Vfs74K@C57hzzaCo zD;Q<%_bfAAApDq3`lr|VWbI3CheLYCa#*cFR2q!r6chwHAJzNKn>QBEvMMVptGV57 zl2TCEfW?S1nwrwGvM8SvOF+&hpRg>thTE-PPcZg4g29WR?VByG{pdu(?0Wh`2ic|@ zqs*PJZjoN=7lYi<#?K}3*fw7T1V6LjoSz4liSME)yoTO!El)X2GbdQ{_?q-6Xf2iF zqx)!gt_;wD;OX@$PR|^VvplQCrK*vwqrh&L=TSL*5Nuk&n{-#yO|3px?&|j@QQu)a zjT=UTuB)r~tV5*ZfUb=h>bJXI>#_22lJ}kf}$#9;)H&__H6OwGPs{v-qr8z zJ4Dm>ZLX(6B;|P|REG)2h6O#Dt%{Tm3hTbM*&;!QTJWJzNUR6=66EjM5Vr=6klS6R z9kvE5gO&}FDQof8Qae;UrLV-UEEvTxP4F4kwHyjptfq%C>q?y5Am zd0+}@@4QcSVl{p5^2E`#+J=iJO}Sao`e04Dl)u_hM+d}mG($6?Z!9Ivm{WKS$>SFS z`Nb>NAeWl53(O;JCYjeK<%$TmMhFFHuTJsf6npCqu z(D-dzHqkt~Exxfy`wxb_J_SW=*C0u{i*Z z;%vJ0sd}=tQH|E^={&8{Y@QVr4bAa(GY*?x>vLn+`PIAyNDr$0!I&^pt^+kTHg>oq zVj!b={5yk~*;U#Z_w-cu6+527q8ci{bogNQc3ei^8Q8DFPlmE z!{n#aEs^h9&Y9tNRm}ZZ`jTi{#1v}O+$tqC^LCtlZWw_ROIFmO!v_6!is$S-Fj z)#Xg=>2}1u=HB_^$B*3i2bDBWLx*;o)t3Pp3$ck&&G8yt(6I#>P~y zN}JALb$UY&N8N_8fXxkQtR1DwN1uNQ-~aAvx_Uj=A8cEh))!d1C1}V7^;$DHsgI3~`R0!a4y7R| zCU!(nxLek7F?R96adSsiaZx~vO&{_a7Ue4?I``(k% zJzF=`R`gOVw_9O9LHoSKcai&2{@jHY)XclnNW9N#85Mt# z$I#H4ySi46ogZ&kYAL5P1J2}6QuvQgx~Ea%B|wx?)D~@=pj}tzprwWGsM+|bF74i! zE49b_FxcS`(0csyFcza--TbShlWA#w?B}0RwlWgllzQhQ z7@u!kbS~3+{pf5!)Br{tk_X@AllPpQ$2Ue8NKq`{9qjH5 zx20>)%~%^9v&&D3$=_A8G-VUgMyv06 zqdn%1^{7sKZOK_(eaY=A`T=oq%mDZV`}$5{ayhfJ57R_ZF1R^Wrd^`8;xvpm3ri)2 zo=PY|_$@71Ro_uP-B1tgnoRnFYqnnv6U(j5ub>9%g`5eLecc5Ydo1=bGYfj|@A;nd zHxmbj9tt;9Cq9m;p`0@;dA~l?`1uiLCbs57ylLCNJWE=B@b&b3laZNu z3tj`(8b7$&a?{-Qo?U?ou&pWxs^v~V1~koj{$pt&70g7ffAYT6oDr=)bCC9{*sRHb zl{vJl78nmsd+E&2jQLkz@-vDL zvRLSTmcXCRP3Vha^uNN<2bu7m9?80>T#k#3Au#B_iK2kKTrr{$O30?o*uJOp%^%m9 zVcAjtUHKFzt69a(v9w8*ZHT+IEyLJ7Z2j#C54Z}3Jl;wX)!4tW zO$cuUNDyc!W`7NUkCbsj6kFQUQ{SDZ%V`?%_b@OTN3F}xb{Q5(0 zY@d)@y&EZ7y3w?+Z@YT{oo-q^Bn($6YgVyZ$C%QbHg!JMzNF`sPTA9{YM$RqKvzj- zjW`(r{kXJXv7!jC6=u-FV zD;bzPQAI<%Lr?&Ar=ZD9MlmNsbe~g}dB?NnzK0A`Wk0Y#O42vu!lltu2FImDU3Flo znaAc0355tbPxGoH(!1YUB;(Qj)wmqZ$H*}zY&HANf$G0W^~lR}sA>dtE$6?W-CuLn zpM6Cd&r!bZE7vn!r*gACK*0;WipeKu3UY&DJ@tBPf4*0!u35{BFjWMzKJOf7b$&iw zuHUt;?lu@&W^ZwgrzpF!m9!YbJJ#6sJ*SzJRM5H?pH(=x?8Uffk0mndedEwcp2L6{ zG>oC>;2-2QTS*d6-`>MC;*ElqsZ-ewwoKbUrA6(R*qlF!e20ymt;3^|GW+Hy_x9xP|3 zx@v{s)?qD;%f2dbaA*SrKv8W~|I!#+c`Cmo_B~5KNWL{MaotDpb&+oq{`OA#+WD1V zXBVA$@!Aqp)-Tt)Ih>a$hAjzPDZ;(*YdM^0Hc77_+Q6)qmeXb|yYH^}FJ8_U|2%Yh zU0r;Vc>~O^o12?Ta?$4XP_DYIM3aYS%@!99lc^&9NK()~1Ox?TmXw5&h=i`#H8Lbf zEVy1TE;#KMtGf{x2tXgTXO_Z3Zi^e-CSH?*samQVXYihJ0DnXbUV)UL06+iw{+e_- z#T+h#mBM*YW=q~x!G_U<&uqkgircAeH*A7IT8u1uC*0jIm->ReX6I$qR?+7rHGdN) z9Px{8(bNj2iXbXjfWW*$w-y!XnYhVpf-_0H1 zE$nVM>EUX#-WDzI?=xfeu=ssF5SJ#w+RAj34Xy6?&}ATz#0%@&%_6p7N`rqy%uiKM z)_sMMr(u2|Yysa$bgX9y?pv^^JJjM75tUPlxQ{H#Ak%Fq{kL^4*&6z>tQR*axi?6kJ8hPygP-agjk?{8eEf$uz znq5Mk2^jVNIt`Xir9QK^g-n?&VR5?xG0Q8RNJHK}yA#vm!T9^D?$3pr`MtI+&wl&) z5icd-*|;pIec)|AyO*81;cU{xmi_u!Y+p=tnXQHio@hM#$6{rW5#8G863*eNuLj&!XsY?S#u&z$gO!mpSt zQaZ0gs%P4&o6MX{0|}w9AbvW5f zZ&(=BR*bX5Hqv;pnV7R`Lqa}0{lSYpTTv!icjinXj!u~kp!@1P5P>3CFGVyty)Gru zp(cw+z;-lYVg2D=&sUQtk`ujS>^-(!bS+;%o4H@6$ZF>CMx?b1$!#n=tEOA)Gd2Xt z-Vj!OlT9wRkdgEJ)OVC-ha(+QOe~p5RCburY(pGPb>_Ds%_%qZG5jLId8<8Wa;`ke z$vN$V3EvU%Bl8NGyxDQ7G@1ONjU(vK;9Vr&Xxh9kRo<3)3Zf>etBta$h7$fO@F`bn zV!dPLB$P|7=~}}uNT(1rb;U0AE$P#rL-~c6?zc$Z!pZ_f9X#l_%gBZst6a;F zQo3{6NKstgUDp}B8%FQc0>AZO`^>BcnhH^*jWiP{cz+m&<}v1Y8e z+4ap!3>cOv8R1<{r9xlV1nwjj$R==m;c(y-7V0G>m3&rMz40pvmGwmJ z63zR1vx8R5$7kri5D_Xmrae!V#$8&0h-2258uydz_0b{DeNOBiu+q?C9n5<9n_>aD zeN@jsEB|F=NNiZ}(#)6qG1PZtD?6!a;n=xEuyY~UYuPB+WLX7-rBw9R=c)bE4=5m5 z4W?ALJt*MqmDmj0;mjeuQKVlPeLQD*GR%^Ce6ekNGJ4a4m!LNY1&|eGYGp&v7>G1lp>&ds0UO-<0R8Ed$Y$(~m#Ebd5$&O2Qq603T^3?WXl(nfxYFNJTv+I%^O< zu{cK-Ve+G*9Ku_AHui%92*)Q98ZJT^Oa?qr-Hw zXUjSdYmH)Ik2FoNM^?$E>LI}PllC5U1q%tn`?O(SC=|n=*^QzMWJhlpNY>Bk*3x0}^hp{^kcA`L}es`{yStuo?lCKzs$_g$q$A)cw~g z5H0z7)3c`RI+9H$AS82-eMyNpU!qx^up?3caS{b;AiFL)GK#PrWoxl#Rq zqd~{+{AIM=i^QrvnBS=`i{XdF`_=-r{-Q{%&(pV2E>K7fm`rz`uuD`mRfT3I$4ra( z1V>9*7U5l1&juQ#{fLB21nj>*S7A#s9W6H{{dgQXxfPbEsV-sBV6fh&u(w%_u(urQ z*P5##Q*Tjgl}t8jQ&s6JKf9$&byEQwgb(aqWY_1PCJm@PSSY*J9>BP%d9-TbUU-N- zMVP3+K@Kw}^7UfYiK3AnP8>`mpYgHOF0 zCuUH@z_wzmHA|2&)M>#!Ws91S6ongH7aUzMyprCllVPsmO5p~mfll=ghA;qr-J$vq z()LESkQm(P?Of8|-?(pVq$KjQpwF7Y=nuNGa(dR@JL=OlG=&^Y337FCsXV^nJOO=} zwbL;X_*^!kHUT&a0E?+BHO2$@ix-o!{DxW2&*#V2vORWO0LLAp#pyo1^C+r#!jX)! z%v(hlHGIwg~W4@Fw^N1B+Mi*IQ4 zQ&9d++8A<<*k?I!oWw;FlbbyWdF*)xVzNm|cR;GLhevA;kp*oR7_%?EetQa!Cm5}m zJ%}frXawh^1`mj;&*LwTt=-`)$#@uHss4il((0;K4b??h0m-HV0mIUG*M9aw22U^U z9ZQoYW4!-`@?itk%QO-69IVpmkl#$9J}c~w7`@4)BV9-Lc{2vO?}JlVBct|^_=y+w zMTsHua^{t&vA-~I zULap3|69oZ)Zee~HB;ec1YW&<^-4^TUtUmGDZV^#cdw9V!6Eaq$jn?7`s;atZ5Y_J zQ)Vc85;m_0ldX6eh`|`Afz#JZn8fZnhn(D~YI^(?9a6)!I=1o1n!&CpPArOBPhtizgAQqs72a@pdLW4`r^V}a$f=OzS|u%(%f7s;;yf|iN^Z)wwS3E0y-48)&85Xdy6hKEG@8AXLN~FH|REk(kos#xRcin z&t1aF^TJkuG7-3gM_itit(3Wl>BtqrXzU5wqqWmt9yS$c6wi97m z6(rbYv!%yANVxwYr=T{jpMJeB{fME6%*PozLnwt%_61-$T5Tb|Gt)0NW{uLW!`jBW zbwn(1>$!x-`(op>VGg27XtB|X5m}EoJ5XpKipOOXn4u|p(q`1Y1+ghuR&iqv4i84H zVw9&tB5ef%%wNrjm?|Hy1h&0K?DluKG*JYypKbDUd;{X9YzM4e`3%T=o9r6h*DN3A zoRwYo_jM<^yCm6!WK^hLqgq*U@;%oF-5)WP%=gD2poND}(7Bk{3~l)a_@0;doy>|S zml_fV0!osUZ1(1U*^HF5%5;Bpo|0;>MF$vcK+p;q*L)crv7 zmiF9q9e5bxxbhn7_Lc=iTZn_ajMj&2pwK-Wik8jqEJ^9-STz&6a|b6`)U+pjbcqt% zPO(pRxr~VjXQmL*-x^$+oq`3kdU0rRY~blt>W4ro_dY%VLOAkwB~e!u9G2Qev4ahm ziPWN;Kv7z0_KrrO4(WJx%h1=*1%e*;VCa`LiViI3#s;4GF-o zeRd||KhqF!mryyn>;kpFv{<*G&kLU>=>5HY^T;foSQnFeC!R)%a;5UX;j%MGbnShw zC~<|YX64~j_7>yQjc_1TE>rGKsyU_6a#ry_Z*tEJyChz@eEQo-w2~ZJcbz!8X+Erw zw2?C(UzYDq4H!w1z?t4T!p$hRy=Y(fxOu@7$C{*lAD(8RG?+&fjBg?!8%*k4yR^4f zT+5jXU2$raJiHXcEIY0>`2JJD9J1zRCm|=$Z(?hY5nNey0d!A$3eDvXNG4 zRQB`*Vi8(R#C9E%ulNnbewo9d zNZ3lgjYsc*s^UZ9*z@oi-EXYql$#sMQRd8&pDP6R`jhPQEiHHv{1tb=cE(MsS7CSX zHY>Y+wq;S`6p_uZ84JZEpO|`B7=Rc(abL2BQ;`h3k2Ccc0gxX8i)ZBr2f?rQ`GB_t3nR>Db43M-wMue8f{ny9FTv3%()6j zn~`&m%K%1Rx_Lc&*Y-{9q2dI2KViVhN2C46XLk`Sdr4J6jZaP9 z6A~c&ZqLk#sALRegAH+keFX`L$$Q)7Jq?F~0tQMM)95ZnH_oShSsMajx$fp&w0lmh!i z>|K_#;*c_>_6!pRtaXL*n|w&!V&R+82rKZKmIkA5%>b7M`r|BXR4~QlmxVSu)B71 z$Cyt9doxsvMKzE#B-9%2>4I_fK)gC|l?p*L5AuYPiEGW!ugUe++!NT>qU!k93U6)~|`?f>wQ$V9MS?Q#(jb>o1qY}7gIgcI2D-GsA72kQOGW1#b3tB6AO zu)6tje|140v#FnoBxj+K+Wx|ylYt@$YYPLJOQI*uSwh*-#6!h^TAK$y`}0igc}GFx zG6qgpm9?BCVo~YZ3Kz!_WvXH$4~-g{fI}^%HFR%1puYj2ipVTtT(SPay72ir>aW() zEq&FyP#oBou@j3($yUeYC#Aa4?%nYfJ6uc#R#mNsFc9c!q_lc72MZ*MJF9hW5KOh1 z_RQRMdTvC{f{@dE4Xs*TShw1|+1%4Vw7t&<5-c}#=|Frqyi=Eb8AI1kO`gAAR5fqA zdIjVnv3`}&gB3DfIbx!yAXu_vb*D)uzks3LvZe{1cRm`J-;-vYKrYTK(>8-CQ;xPq z>d;wtL)jg&Z9EVITW1i<9Bs~PgvW!k3P9K{t7;|Ri@Bmy5E>+drC*PG`k9u2466jT z@dLsx!vZT)$dDkv21{p2c?3Lw}j{u^<3<8vPKWYZHJKmc}$e#EDcE?+4#^bm*-o(yLo^}J$r|`H^iw|j6 z1m*baoP0ZjZ){EF&%a%t<6m1GLrWq}+z6+gdhuNp z5N^(y5OFV*b<~0O!TBnl!%6g>jYvP&KlFO{m_2GucaUPdGtu#N{8K>RB@wpvwZXLM_ZXlsnCB1%2T)!UrZrM)k zub33#0y$vXdT@(_->+U$C?ZtbM+0=j7V=*`)SSd*qWcJgIYKH2KlR(M_!i%t2W{-S zy+|*wZ(Qb^enzm=)?7-xS{|X^jN&n|f?{SpjcCKLtZ!tREpDtRwphk}LRsD@aGe(f0d#QlcP%+fHaf&A5=Tsc+lcql)ryuc6!W`p!}kY@!&N2Wl&mP zLO>y=%j*vH`%%3w3rVV>EVPl!Fo1kt=n4)S&&EI@1z@)crrtl8)iM8` zv$3)D$plc@`-l@sUgFwn*smdr>g_(LL%gg@8<3z`sRU46kj#^%IuC=G!l7ba7Y`b#T;SJsEtN!thHwRN1RR8? zM$oeG*4QRO4JsTK+3*hu=i z%y#i5E4`U^^y`bx?7$`Q7Akpr^J8J`Mak&Rcapzxv_3`D+?ljSESya&R$HbS-Z{oE zf+C4XR2@a@IPv003%~zIy_7bPA3|-(8wdkJI1awvVt+~t+mrv4R--lK=Iy`z^h;g? zvusXCcEuNWK`<#fSv2v_sGG4(b@5miex-p|MmiW%Q__s!RX{M8wbPmb7Pf58Ca4f#bP>?w^<16)HIctGk7BI%#A z{4?4zglIwRvNeeGuBiATJya2lVs^Fw_WXk zJ=W7h#lTpBWv6K#C(p3pbwP^g_E~VLBf>rj^t(*2l~(81bkz?EY-of)u>G#f_5PZP zyUFpc8Ymp~_eWFv1;>j3ApWL6rY)fNDq9{o1SW-DD$1Zgy+0e|3X`x*&h528ydiuG zg@baa_3&_2n`AN0TqXp83ush1(Vl+4S2sbtX$N_mAPr#o;~1f4 z=pU`BJ6@;*G;C{!N5^A2`4h4?NxX}Ptx``7b`SDFu$})H6Daa!6FAU8Jf`*OH`I7U zMd>rTnGHnjdQJh&oNautrn%gEHG=@VcNO)oMerrXzRPAzVhN#l^(gs-E)Q~9z=I*{ z6pev&SzrzdUmYKy9_OkFawM#xs`H4HkM~x?Y|Io0K+Kxng;!pIHUilIXPjCFRPuS9 z6|1pvo31B=P7_eaZ0kQyv0EuS)Pb!~9#gzDWCiH9gp$jd1+XT<+*0p^@sr$d%%3aK zzB;z63Mjx(9!E*{gDGCSK2ru^E*KQ=_jK)D?3x2`?R?1@A>xpi6z1yC#;zcKcYQKi zt%q>=4;V^62fO`hYASK374TS!RH6qatZ;V4$eGly<|TtYA(%h_x2%7ocp(qBJa;D zE}xZ#EwEWRgXdteOrDjG6p1)9(Q;$+;PLoS5g;K$N`v^iQ)iqzz9udeR8F$|Ula4e z;=XBA-MmA%iu%?M_1_}4Wn6z~Dw8*w-94V4bFbWmkM;yv&0x{z8k`c!S=ewLzr8NW zAJ3~leu`x??#vrC4+AB;B|G}21rp(AK}F^#>wY~eF{2u##oy)1a|l=({Im5mC!M4=_KcC&_r1FD2CEKL2N*J zL3((3K2IYEB&$0W&MYp@qfd>Cf1d)Bv&VZ?jo_sCo$R{0^Ly(8ftQ?u{s3~7(v3~X z(x^+Bc{8AuHuFQ!PEPD?QyZ{ZN>GQ2resS+#PcPvH&uWQGai z9AEPuCBCz+(dI(qvA|?t%KZVN_2~}`|BFE7Xxp!E257ia(lHUB>~j%ah6ALf=r1!m zA9OARL{a7CMT^RKzI50dpfpl7jzg$BXQaHn3ZOK^E0aD@_`y|WA=hEf=5nH5^7%g4 z=JuRb;~m$}*m}v{gWc3tb&ni=M@e>01Hso~Z-j_|@%mHg#ER|LZ3&fm<(uMc6}0)^ zk}=}4T3Zr%)WrrhAHz@$;I$zUFj*eaFpiq1yVLo3r=7ybZcYR`OS;)a2L^3r<>iOK zragY#y4e>goxzdWNN(Vk2&BX|sL@MkM@53PQ_~M#ADQki9qyqTdFa~>R1#0`S*Gh$ z7oI%f8iY-uNE|Oy+jqO#kf)(kRHuK? zjlbL-8Z)FY<@g#n=|HlxsKmwDlq!p%ishcy-e_5`{WBA?gp>G$75JBYDpjgG?J3b@ znOtOc(`RJT1B-3U9utppYA32&{wy`q>wWE{iY!)5*{+J(HRn`WW=8OZFRwNj&J4B4wNt4EZ_?gj_w-{XV8u%UvUQ2q?Rps7IeDzTFzP zJTv{<4}ix(9HGz}Y>_m@00Oph8dPj6AxCz^Ef?uiPFhP}r<*@Xa}Axpj5OhwDkB8X zr@b{5h|8Jav;;elG6qlZI0;dR@fyW^HTwepHW?O2KIZXef$?* zLgW38x>#+a$1Eua8zxe<5xWyg)nV~x_3|51nmzn?@Da+jw9qY=_-%=m#Ci3!DkNO0 zAds0Jyf7jo6X$U+s_vF$hpz|_Vjl(U$7dL%Mt@$Aqg0hvAxZ9j++IxDQ_<{XgMp>l zhKCj!&TRo96yOwV#}A!k5>9@5v63#1Dw=Wj?0n+jbHWAXx-CYBoG{>|9Msqz!_gjl zPmBj$LPu_~mzbt7IAwnBkG$=&qkl*8FXZn=;K1wQaF{LszMJm!Doi9Ss56E&D6t3% z(6VtAi_Tn2B$gF6nMz z(J7&HH=KuW?|sfVfAELH7;C+8-}9OCnz^NB&z>OjwrSXNcMKr$d>6414-cO_i~5b= z#ZEP+pmI;%_116*))^y~hy!mouY5A>gB^lgPsDzwQih7eep*?zSRl(kBP~TC)UNzkD#oH zLs5YUxG^UxXmb<&K}QpjRDadF;n54j)aDKX#)W47bB?N4NI=N7DT0XEVM4Q5N2s#% z-q);z9Q$NR*_K%_HMxBCS`<*KDX|z*G!$ox((p?KHsUfOD_^raE1UY~Rom+P zhf$knYA5#3WR>a;?sNQ%FpPY_@rJ~sB8E@4x2{YvCdu(3RnE&bdWcA>%p!vo zeP{C8x92&^CtYOi8R6?wTvOUR05A;=W8UefrHL%?=iWf79lXRgnjcWu&)%))Q;?LH zd6BtU9cfS$s(MvCP)o|;oAvXb7gW%VN-Fyd$wZf1>i5xpWMP1hVEY|7h-f>74YXMu z#S0k>s=Z`W9k+L6v9f!ttd4hkfe(xWWKOs0Q0yX za7??nU%wp881IZnedJ!~2R!5z9dse0e%lbxrV(GM=Wa401rbRFHxEc~OUXqU-#Vmj z8j{960u-8~cuQk&&ucNUllEgV5Dy*8Hdcj@&s84obd-a?(*;av$nQP)UX%v(4*ACd z+E{Je7S!mHO2m>yDWE`+nC|?3)8N+pk=rIH~U+C>35w+)9UlLw7}pBfJzzInL-zPaiSCH zvzs=jVOyXT=~GE*Mx*|MTgl6bZ$HaikgB$FLJU?I)AG0RdPtU*+W`me!gopb{xhSJ z)gY_I$ZxQf_eYMW=h>~G7h}A+wPeWS+am9=a7FI@+rO!Hp89AS z=`8B?p@TUrIGXJj0bEs$Go^qHr=_o@cYfg z#1vg74P@UmRLk;cJnS6NungwMQ<>KJDFx8{C`)*lnC=d$5L}C*rUr?!cb%m)N}o|9 zr-5`xR>xhWCA5Q$e<_d zA#T-<@HJ_pQd1M8^GV9pvjD=-Pd2>c4y*osgopc|7R1Y(pl?G+=s!u)HHS*2a%J#u zd&m!+uUH@%WE%w~)r~jv&fp%N{x+m>hkJz(2tK2$-bnbj@4>L3f%(wOc-An7XH`Sz z9V8AR+n)8jebj-ub?o-$>ba{)kjf|`vZeFtQjDg?V!eL6pJ<49RnAR|?J#iteyRSg zjv7;@gW_q-^XG)iSCxM)GMp~AQbSvB2g=?adm@9(>? zd<3OM?uHP}=3QLEI{Gf#kW}T;39ahUQEOx@Z=a1U&AJ~S_6MX;sU%x6*ZAn1t#^e! z-5*^mJT1FsM?AMGZ+1S~4G;rtJ9aHZteGd>6K*s>^Sw(BDw*`@~q{PJWN)|(r zO?QTtFj42pt@Pb4#ragfgT(B)TlWSmbW582tWB6PFc2m_Yh@MpidHX04I#Jc9M?3k z_)q4%aG@vbG-`ywVcU`2fG5w3n>{0&iR!(#S6K~18xz!dt3DZvFF4i%%%=T{XbD?a zS42!H%bVL{Ur4QMRh>uzjNIcv`jIc#q>=c^4vc{+^5XD%BXrztTTB5Y4!18qV}RHH zaw#E0IoE>NAO~o?pcyPIJ=SZryHSBo_22`z$Hhf2=OABJ?chxQjx67Q>n+dIW8IS^ z#v;_6K!Zc9rD1`aosPLiHFfk(>pts4fczjYgV)A}#yWb>SD zjored_A}fy>WB=6=B(VU{%xLP(xt1dq>a*XouSmIWtH}` z1sabhZ?!JxT{~~N?3co+zKLN6W+2ElQEa@r$LZnK?qfRq_{__lIBfahcut>-%}oxcDg>*&;o-GnQ)mg&@J1gh@+K3q>PXZm0u4x?#M|2RRB6F z*Pf;?2^K!*JNAS{NB#cw!=ID4DJ$YZC$kZbvoSp(WgtrCaPxIS;fP{S02P%)N~SI@ z_G5Y2;tO~llzU`*83HcqxK!XumN!%#Kf*gJh>P~i-5jNEt57d{VDb9z&Te#|fU2$Gm(uE(nHR+W#4sx1z!R4-{%Ydyx%fR7>E{=x2A@=;GOmb3hY*J?NdUfJF^E0j|< z9Nkw3{oV_1^2hw5+lx`J2bu)NA_1QKZ-?X}$iHLZYbb2{DcnL1gMi^{7OgC`Xd4ve z)D0#?c=kfARu>w%ls*ligHh9221_m_u<6=&#xJqxHHw;(l<=9`WQAI1+L9Z)gzJ~o zpCCc#<5Zjpv2hG*R6)jph0V`fVq;DM=ss|;+PsyF>KoIRDH8d|-IkJ=dX#e)jjg|` zJvqfYsO|g3D_zF#C=*!Nw+J2j?~{at7!-}rgXV8pQ{1F5WMzpfJHGQ6WBwKx*XbmZ zn<}@So~ZyZi>V?>Zj=QEE~3ammo*v^Dbbc}U_OKB)~%m@TS71~+3kEY!s*^>9OgA= z+ECD2?GE~b#Vt!O+hXuO+>EP>He4&RRjBgTVd=5?aOg&vu>2iOMf>7Sq#AVRvE`~0 z@_gSJ4IRgJw65g->qMmvcT6h~sxI~dfk zd6{y|P@sUl{DOc?2cpGEi1FTo`0|pFhNidNk;yy*qeCLs!iSj2W0j7McQpveWXBqx z#=OTWWEN{$zpYioFi5P{;y^Bb&QU_KMFAEVaAX_YIdOvEkAuUXZ_n4xS)+5eQ;rZc zfsesmamAqiU9`fQvTYT(>xEy@B$y#@(UZ#Gr&UAoW<^LCI`EVXE-mu~s?SU+e!)Mu zseJrhVtdp&(Fg8jlQ>E&Bve#Xkwmn%#rI4T$!jqY7}{X%2ie12_U=&)iv1u5m0;Ilhn>{g`#rvd5UX;r0?faoo&FBRGejr zJPoSyK#+A{5nYazt{)LU7B~kZppQD1W)Ipq4MhtCrRS~RRbjmdrk?j60vCbTUJ`q> zhiTven=R0hTE7aPRV#>HJzZ*%{-!@riK=4&2pK-l_y4oqwxMHWu5o=)1tn<}fF4>( z6PK($Q@D#yL?refQ4|!^?M?B3QlOzBSP@7R#}=d$(OMbMPmg`qcAh(j3eGPfeze+T+1(Sa9Y6a`#EDF4_3jN-5>@8-!oPq7uW z3CnvLf!M%5m1M!`l~8Lt4fYwXY5w26E_(cJ4-SmU+MC;;C8hVOXu?UWBIDp{PMw9L zViyLL=D>D*3NM79T22)%f*$m0FsI_)6=!=*du_h7DS>|7#^uj3Gt{^0 zD?yfm3LlZ7{^xYmR*2uD2*!ni*+TY?O&}$K02%s=qW)>bZyTJ*FLgx3o6Ukbg!Ce7 zHF(klDfoq=e5nB}JUH$bTs@H1sc10vhi19(V-b2HC6gt%J$U~{O+2hhO4#F%#$w7< zw#5CESK)v6vyM!Uzithfb@6>&SoPHAn`J$-rK>Wzr{7K6{Sa3ruT)@F&NjWNgUHI| zuU|^Wcgut+#pI^Tin`O3%z*<;4Zaz4XyO2$DccwQPq>V7vU>N4HVG zSSEEh5-yLWh?^`1$pwI_V_zh=sJ%fBio5oGzptprvPQrFYd1fAtDBa7#-0w&pl&*M zwKC4`_FrKCDoJy!&XyDSZERUTz|fZU;B|Vy0m^&VSx4M966~fxbw^TJ^h)&o^vF2f zFPMaa^GCb%TS(fkp|rHDiW*qq48ZCJj&YET?%>{Pvo`rMq8@iHd5p|Y+nOWO*_iEaPQU`bxTG2(6{|mj<5eH4`)a z7#cM^!3y$fy*V-sYn72HyIncX@Zn8W1l{PW@L1iTvEK$GRDEKbZoitM#p!FjY3BV!2f(N|{6 z@8e)NsIAq0I7>!246T%*zvAzBYDoiamnbN)01m}W)s?(Y%~%x-cCJ2bxsS*)8QVr+ARhV8xi8jwH-ldwXY{i6uu0 z{InjLI9XeWh~m2aT)UodG1p;B5h19 zA=R47Ve?8eZVErb@x|lRX?Ek`NvtUN%;h-;f>-(3jxf*w?Z=V|>FD(Ox1;%j^>Cw0 zTHftmTDToe2rJhIizWkXM(f(H$Ntntud26HB6XU`>PB0U-b6cJGz=^p4@Bp4_cl(= zOU@wslZyUid1dCQfnM|Hoo9a5%+vZ~!*E5gc|)4%b;q&)eQ{L#h_z!x!yo4P=f^8w z`!$y;-BTEf@7DV5Z0Q-HFhY)}MfWry{i2Pp=U3~gyt_gv_d=1nz~=R69ya#IgAqiM zh$jn1IFHX>t0zpc>DtxOb39~|Ur7q%f1-<9EA5YqTO*#m7eL%>{>U8-C>}|B5!7@) zZ?d0r%X|mu_+xw;NB2-Yv!W+ao);8PEo^0fe3$Yu#xbDH-m!Y8XcCsc=GU!;_C{hN z%WpftaP?Al(|Lj&SakFW>NNWeUx9B0Otd1KZC)7@&PTMm1N>2yXJ4O1y0?sDUpk02 zJY0(pIxBwGSJoE`+U0f9 z0$skeTIpdeCgq}{lGk9W@)F*3EL?wrkhR5DgRQTB^I9vLbK*uzIy?kiNK#TY0AK$A)z41Da592p& zKZ{V^78&~$6h#)zpJG9$yZlc}_+u4RZ3Z&ClO<0NtoA64@V@E!0ad~=p}!K?pkij_ z>(Rqd8FB}*!U~`}U4K#wAVLag!&;c4IY02f7-g>JC#atPzLDKvX)zWqtsu7E>ffP+ zP}M?O3cmsMLlfivqn?h-+nq(+CpCeDE?=*}%aUgJCVSkuZJ9{PZTC7bd)IxcZ0x9-(z0rIbkI%9 z2f@h7#Sappq7{&l?P@EN!y0!8?u9n9xg3s5tVW=Ya~SX>Cv{4JNE!*rr+6~!N8@0+ zl<_~z+r8u2QzfJq{|gT+Gw<@alsq|9%KrRzttTqdiyEWXjFaTv#Pj!JxPiNjQ5Rss`F1tdp zNiYf)=h$4X=WY(uG9L}Q7sA!S{a6kub?_#p3`b<{uGDeHB7)4;~zW(g{60Z zP-4~YRx|p$g!pSFbf&af*x{#7#-8tjbwDIP(73?Ub1CZaz6^(dF#>dn>(DDHPS%w> zs?1h%z`1CZSOBmWbX{{7MR8fL%eMlut>V=`&)$hyDiW>XGK}?S8~3)Oga}nw(lTp?cuD35^aS#W<6b_fRj+ka)2 ztL_8tx`v+0ky||p3b+%Ov+AC2#`D<&=Ybf@*kagpWyqyolJH`skBu;adkr*5nlfyta_nyu8I(WR0**fJbo&ng*iQmD{=TLpUq@(q$Ncd$e98^tBEMDK1QUo6_&9R-VOui5pv<-6=L&}Z(#s_yyHo4ski?C%? zr6w5#)?637qlDtA_tEip&!*{b+N3=3h_?y6cQhklt4Qg(#uHavUvN7Qdzz>!ONSa2 zJW47kV(hRPe_qcVgRYd+x{sgOuiWz|3ttO#WW($orE4Ke#MCSemZ= zkkhy~mk)y(iH(iWp-m@TjOv7pjrU{`vm@eB2M0s-fxTCOALD_KM4&ad#>g2Y(q~7b z3+kHnQ@TOX2mX$s?q}Owe*^w?3TG5zR-Bcn(KL*%3O)L*_gMCU5gMbPZ97-`ysx3( z39@745_t^1|9A(kMwcVD1Ba_atHI)RxID{@Ko7t_J#O3LGlJPRp2$l3_Nh!MpJz7% z9U6STFYr{s2LpbsMvk8*{JAgoI)1eOYaC_}o(WCm#)#n$p19&_23H@=KFPvUOR&iw zMNp#J!X96n=bc0K1183Z2>1A&CR_*hrZ2ZP~r{BYeN#H^~O#hSx4(<9Vu%cp0Il29bsgiNl-s@`D{W9(Umzn8bQ zTvY5OW&L8|VUEu$fO_J5g0cxrof5+&L9HJm^w2Fo(phCekxI^ah1P=&U&KAWh>YX-#oUOd6wBG~o;Y+$-$o)Wk zB;<08_!r5yF z1@5c>57l&A8V6YI#FJ`^A4tgfsD7VcK8Ou+BRT)2P9f6l+AZTyrZPJTwXlzvFtXD? zT-&)~!On2^^}2DVOIA7D%&$g2Nc!^hbPfSGW&KTJ;r0H*PS6zDS5!{SE7ss_o!Tf1 zoSh>em2<)9X-UCe%- zQsp|Zh0Rcu%()Z}k_xLU^+xmM$!2T<-Dm^5bMAUUMP)98veeqDV}&3W02V@*)>RL^ zPPk|s=?UOrNx6iS9-lM8PogWBF#5($VYhl5e_p&!z(*@w>wwT#6+?sIj!~RU0o^w!MA5@k>57=4#oo5riS22(&C~Qr}5RzFbsZPEl?zpQc!F@|fsq8p?qD5fB z-R+m3i^6R_Hb(LAw|LTuJ-nytPiN=6>`ph$vuIGs1zA0u&(IYC3usr-+#ml{4q;6Y z4t{drQSBTy><*N~Orj?j(Nl=j70=tnPMp8h#vSKR?(FM?xVILam@TFvMfV$4mRetG zzq zcdh-kt-m#G?MZFNAL}jUFbOGm{N#6NI@zh$0V9pIWYO|XAQmX-T} zh){%_o$t;^RN`u?)2(^b?uvua<{7cfEzI7RA zL+Ie`i6UnRe{l$&^M9+EXrTB55J>YC+!wx#+0GvCK>8$BQu^#J+2)F!$MJ*%tm!cw zp7bR}hTW+5q#!w}2(0&?6H+gq7kIC4s7hO(JIxqbhfM3FzI|mDg;uKmCXFi8M@vOa zym2;PTz}<1r&flk#rFN83yy?iYQ0dg{)<-MoIpe8oucH&*RPMUV#%oVg-}%9OTKBA z#_Iu}{0l8^jXaePrIX)f4Xy?@NA;#(3vdRj9kve^yb#17lOk zeg03QqY+kA0)!!fLZ^T_-8)ZvBJ@4Q1k$thd}RpYrAG9o6x3B1Rf)> zA;ia%H058QOkZldL`!aUUN1vRyf4MeEpP!kBPt#hEj*9az+b?e(h&yjFpOO;V76>q z-(WuoZe`i4j$UKAx)A>Q=@U3=IWKcwJ=4X>plZE6Xk2*mnScbjnckok#7QvxeW*>3 z*d-KzpD9`hcwVjP0nUaMk3j)nq(fL@wHf_xDBk*dWI{xs)p)kYWU}<_UBA_i+uJ01 z{$W!S>h7CcHISZj{n7`}icI(t<>)cT&1k$r0r={0CJ6P9k}hp6xjZu%BW_XHeD0$N z^0N{QZGJhUpj(4dUk^%;QRHQ6$FIdj8!@4;I>GGUr>IBWI*}$9L>q}iZOTVYO)Rkg zS~~(0?@b#-#%Ynxnl?E<=?C%QKihF9Cj1i&b=5E&>K)|dgsTssH8rs($K;VWdEd4K zM@0LP17nCd!$?ZaLQA`ih;#>>RtFATjc91|z3%V7A1|Vz-=YWQO!zuDOqeFZw29TJ z@44~wpz=^W(Cw70TPEmA0O*yp>5r=KTTdw3%5|{N2oRm?^`1aIn3AG*TJo6TA_n$F zy?d?kI6jtwi7?XC9Tw~nSgklLq7s#YjlQ8eT?iY;r?JOEsHk2mJT>dXg9R*hG7*NY zIi8bj8h^ZTVFgk3yC(vOCd@#+fykkAhU)j2i6f>Dx)9eZP2{tN$uFfIzX&_Sa2(;dUDAEmc*Ek3YZ{ zpd%hZm6Gc4p>43jwFZ!&K`N`z7@w!BETD*DS{BS=O~_Fuw+F3w+7Yq7L+=~xR7P)K z>brXSr0}qlX8J%Wh2VQEH$40vWeE+{OE%kp_^>}k=+KN2u)fXw2ft#$^N0p}V&zzv zOAYO9V?>@21m!aSZW=u(zG>na8-7wuP&u_qcInUytpuVa6xmv0b?Dmj@b7Ll#gJ1(MC@%Wpvr?00DHH=DLx% z^xDa>O+@8zR$N`(&Dmf2a>$H(_tmTW>+9D<$GSNqwdyJu_t04SS5_LQ8>uebs?F)? zD?cTY^DJ?3K?Iq@cJ&zT4Jw>D7QZQ$e`%U{GHr>#D0aK;McWN}d%llZBHH0G(~V%~Tby@} zfu$m@7i?K?;>Q6z{gM)nj@Dxo+w;y>zs{Gtx&y8o_=d>m{vcs5mIlQqnfBO1Zr9(k zMr9L{!xqV3Dyc)xX**ip)OYlbq_GDl4sP_II+v!SoX+WLvEPJjD8$R##uzujaCxN= zqAe|zx6Vu${-~qVK$bViP3`TSJ0$abBNtF(M0(;z2I3;m55>WFb_be*_ea8!3s5%1 zEX&XFjWRAX8?`F4u%96eI6p0M8*HHGxA46bhPJbKJ$$(>I|nv? zdAXA$G2u*@sQ;vD5SiddUUaApl}{HNO|vFUINpUU8hM3G#KxW&7+>8nIbJB(ovFC2 zrHH7bb2*JXKDZsUdbOW4=2%dDc-TLpM-S2yY8pa_4kkYc7uhfu#^rFuAcrlXLhKu4 zTlWCfMxyunGs zdSWO}D%<4f3cmfzHfx8m>;$lf#XB-ygh1ILb}a!e=eJ^a=l3vn_7Cs@X^VqK)nBl1%=G``Tt4;DC{_B(O!_Me!Fj_LO2W`P|dq29_<-5O>KSFdfp zCkX3Kvu!@0$3XkMy(Uc=uy)^lAnDOz+C#=U(g`WDELg#wiG4ir2--MT&t^cs@3y?4 z%*vUgB(-o3RDzsnQb#6uBIWh+d|_uqGFE-8eLz8t-pQ2^N8Kse@y{(xiB8ISo6S>c z?ADZ!KW;9*M62XtbL1;6LAk)sm|o{%w=+myLRP6ay)^chy@k)Sus!&0MQ+QmD={%e z-YY`o%ZFdE;wQCEaDr2MZ)DrdI|6ot`F~aFc$*~#6m^-c`DQe2dP$>xPCZ-X7cCqY zcAc-me|YnJg3@F*)?e?0qhR_M9bF?OQMXfCY$j5cGelTkKEUj&o<`Jf-B-A0>Uc-6WA~myvpuCWRH{8vl`)s;zR*X?sR~N142s#*%_nW0mZK z68LN26cQA8c+XiP9(->Vy>vU&Rg}clP%iP_^9t!E1Sy1A=d7Y0Br5|>)?U3X@%4X~p=lsGLb;9cNZ;jb896Mo)$tj}HM=7c^ z4hx~zdUs{V?AxJKz($;VUALU;sb+b}VK_=*4i^U?6bz!lpeb;VEnEcFG>d}L6EFN9 zR92f>`KOj+fpWC|^`}|>o6QMCAGJC5f2Pl|gYG5pnO*`)a68y`8A-#agQa&pu`o@? zwT;a-qiVYCj=YIt_f>zpq)A`e}BhM40N2G-EbaAwzIaR%*f*bg2$`twv~X7+PO zV+Z&g>9P=!w>)q^2L8es@_x%(m#?g{_$pFc@O^@0;{{)KW8?NNP*)+m&z6q1`wIb?2&Rpx6px4edm$@}zg6xa5NA{{o1 zKajuXU*!FDd(TYs4h&YcPTG`Mg?0L`$Eyi@B&H;h3_G6Q_?a5u`7J(XD+MX40ed%!< z6pRz>`p~O8dvKS&Y*FIiBj^Pd_pe;<02%3j*r@sh4jZLf%Sb5Dz!8u#_zRZdv(chcIUY#vpR?^J`dz`0walN6;~>WELzU@f5B; z)IRN*k@)-i|AyXtHoM9!Hx+`QQf>YnZp&^7671vL5VrJnCTcM*T0ghn(UAlkb7JBq5oW}L1=mb+7Q42f1)kmiLM*5b| zv_80{532|iAqH6-tOxjKDI2h`EL$&Z8j7|he(ChD>;WA-ff{FC0#~itqlDu-crNk1 zjMC~Cc+BPH*7{m1PLzzDbVfCMO-lYjVi6L>>||O_u}b+QP5)?kPfxEH>b(99+Tr2B zou2xT!HUORollA&yt&tJnHbF`8virof=T!Oc-DpLgQzH*kC@p;x1Wv0=2z@KsTJFj zCAjYY`eb)sXp%x9)!#v&0M!}@tzbW+key6N{~Z<;6&OO)UuWxGJ(+2v%CS?dW^`qK zP%Tfn{4QCgJzxmRqX|Jln1n*Lki`zJVOD{}j{3cinsU9o;QaQV!S-4@cFQB{a$W(^ z#JrpMb4k^PTAl1Jw{t8>)SLbciS43_Oplhjied59jF|nq?+i7JdlT@b+j*B|MW(!NC*)_ZwDdXjlOe|j59w+_e1cECX+z-aU^da7~q2DP<06msMq zLVhh{b5sZUp>BXy6}mBqf~HnBUUlr`FoDYK2T5u8ph-b4rl^akTNOA2wHsMZ?vOHF zVi*pC_)Art{r4%?vzOpfW45MJ|9JHI@G$&oJ3H=@B|KC_)T`1D36x85CIpRIh7*Kl zF`*sweT!gCO6SlF4Lbz~iv4z6vE!~X7Z_MQe&N`4u#3VP!|z*O9+W^A7SqH5U!N0k z8ioCK;+S!^IqsjGO;@g1&fS2b4KRz}O&Z7_@X8)-zQK%o67<4^_APiTRo0{OC7hQV z`jxwk&`DkP=vbcRnYBxC1r+@2!gh09>xJpz+TTY2(4tD0jh;Wk66cfX+HLzPBp^S` z0$_C|=Ix6||6U}BemrmHuF)|*LC{CURuh+0n&zAFp9{rX7T?r*u*e&ywEoalqJ%rB^RG z*A_f?MM1-6V$)3SJ=jww+pZrzKW5VdBnFM00A-)P;a_EiT!80lWE$oG_4H-vgkPbLvaG0dmGIM>GA;Z2cGGw zfBhsQYYbk)^t(;3s_uAZF#j^yy6Aj}5P4?|XYZ`XVzf(RDIu3<2?`x31*R$+puH^8 zwUR7HhAb_OW>l#@tOk-XrJm^eaIf*72p%k|_I!7ip<1gCIn(hJru(W=Z-fTxXOtli zCZx87o!94|sLZpd_mkFFpQ(=?vl}c6fA5yW7>K>z4YgO1Qo4z|F}>K1yfeYw?N@PF z-8A-bN$w4Vz5Ax~g<;Q(>I1lQxZ0M6LVBjTw&AyKtMy1<`;0~w1w!;ntsFTk?Ej9g zsv68yl$ijh&HXiGy=pe)VIv|k2c3w*64vN&ketlsU#s^-f+i371jahGt6`<{na+sE z!4IM5Q#?z@+j|)wu=z_$h9X~&swtua_B;{@Wr&J?8#11+Y0~~&Oi3F}RJF04A0-9xV&uDyL4EP8D(6kDL{mt8_YFbHm zVBle@t{Co5%T_p?W&J965qoNw4_8=4M~`(n$D0vWp`o5{5u0R6+OH-7v;v5p>*=nU z^V9BMuI>j0wz?>*PDg*|bT2dXI&b1RUtlNV>MyD@w-hN&p!X!-@O^mu zS&aK^=fTtl8kbQ?O?6&tk6ezk_NWMdY~QWOvzi#U?k8VqD2e6>#{M7Z$M8?5Tj0JW z#yZl+=!R0{d$tF!9V*?}nI*Z`ks3djoLvqY4C?-J;a77hcQ@V;%EM=mj))u^iHEy? z0?z199xch1BqhZ0Xz;t9p1hpY%gRt{4HaST--?eH6vT3C@~m$iI0ct|8G8g7*F)}) zw~NyGZXWy1{{15Zo^BGZ@5qf4MO5LZdZtB6qaBQ)hiUJQeOLksWXa*92xPYpq;yCd zCNlBH$1_dK)d*S%054{oH|XUE@TCXd=D%ddcxXc#Bd_pmOH{_-rQp-qqEmXM2zX3?!4T+B^4MUW z84)xlQD;4KsV11=3C99xn&(^JgRinCg>5G3WB$;&KH0^d!?Yh{I$~Lod{8W|QX3YK5TvU09LPrG=97N^p}89$0tX5FLi1u|z1iJS*gIf&H>4 z_;#UvN!F!dYM?dQ^elv^qvxEI@R!Qe9obi35~I{!${C-2$ejH_=F_>4z1`3tljufY z>gR+o-oD%%s%q=h^f=PTu4_2zxAe#g4VdZ}u^sPNYIe5vKnZP^bGB{Z^G)|B0!C89VZ`8_iN@~{&$7-;sSMB6Tz z(t`OmNJi`By*6By?*$LhEZ2-;hF)q@tjn`gum?w2`!Rv)^Yr-Fy?1}@>#_%;^iXl8 zfVf^*JxKom^_5IdOQgTHLyN3F-yFA~XmP%-*a9&gJZ4AnxtO@DP4A@3os)ir2eRH) zAQA=togqE(AUD<=unb!KVxib4q%gT=BsbZKdaNCj{&6&Tynl7-Z+f7rzz*e)b9aQm5EgCSv0RSD1>@e5l-4 zKKWkag`VDDWP^erGqj|kT*-wFw%(fNGBBWv*;93uySs`9D`m*Vm@+g|u^rIHxxCWi;+9D-5qc4%@ z^TL4sTtv8Q{fI~AG=Ana*1HjmyrxGlEv#nJjxlA|Dd7lJn=cVL={Jc_)=8wz5O(at z>GjEb*H3!=ZXZ7FUA}|_lT8{y6(mK`p_SaWW8p<&xZP&t_byyQ`Jbyw0cZWkIVe8+9gY~S*_s9Lf>p%2d{cOhp=PC{3;B)CJcLW;jS(5+ysaAfWp^qO4C-|7-HW_P6j(_3LLN#8Qk8-t*+z&^?IP+!u?DNC%fveXJ4OuFv5Pq zihQSOb$?op>wnk4e;Yb@5MevL?`q%Oi+?T8`p?g!DYA|sJ#wi)|I{LbmdNO#5T#s8 z9q!YqKmPdB&6@W5Y6KD*rq@A(!Y=Q4OwIa6pabGl-t{X*LxM4)%2m^TGgp0=(%^~v z)B<^Efu%IuX^Fmqr*GJ@a2}{AcI_g*X_8JRrpiyrd^Fhp0hVX7f334S;8hcWC{^ED zb}U&AZKL;3>~zMCIs~aFg*o$<<6Xr{p0xBwhRXB%BRZfjDQjC(5O-nWzs;aFG5LBv z#&LBJcXCfIO95*6LQ16{9*-*-Ds*O&u_GVTii8|$qd;j_%N{QPxs5PddE~0T&F;ds z@?RC{P0yi!!5F-BGlSK4DdWm1JAu@3>u~o(^N)&gXTQ7!P1cEIc=%{A3=b0!%nq_` zin~!_a560&**1@+q>$2E)vh6H^FlRruVv#5UwSarH2{-Dk4qh>6=y zpV(C478mA$<|myQ1YUKPntOLnT36Cw@-Wbveafpa412lk>A=<}-z`cDhZ%V7qP!S% zyCGY-Lx8WMEX8K=q+Ke#BD9}cxpQH-OshT&uw>|ukujVHESp=TJl>H>i~P3QP|8Kv zLE@hAwJcOLETkhIgV;HwY_3F6Q9)K!mwEfaF^xk|7#OJA+p*t`k2#sC%<;thezGxs z_SSp@sDW+g4-cDIwqOSK2+BwlFD@uG%y<#b9|``$>-dNm32ihmYjLYxa3g7-zO!xo z-COlgm;I1s$6wRtewt}M(Ao90z|o;P-W7=i#7v|92~7!?lNHU?94Zv9=%OyW3?zGn z?xlzRTg6tGc5ZG25{c7?fiMAI_#Vn=A-NQhKH7BdnoiW)q2g+}jM2MZ%1^2_Cj7!T zj#iTjS;DIsc0b;K`!ZeYablb#Z&^xTu<|k$A}gsjZ3HA*&r}-k+{d^`YaCjjLqFZm zF>%Dovn5)8%q-5jbWSG^%fl8pE2RMg0pP5&Y;RY)*9EOct){r=5H@b;%Gkp*W;dV36m*3M4th*!!O>P*q?&48eG z2A_p+lC#U@vHl<6QFRPw9nRQvOY*r z$X2r&2nS;Cz97W}0qq?O1Z$HTijwkIo1u;`30co8E|H{ot5R`odjYUdI2=+=C?zt% z^yTXFpHb@_-o%TXs^=SZhlG*rn+*1lfN80`yp^lC;TEi41)g^= z)(%QhE7Qhqd4B8QweA4ZTH{S@wQ|pOG+)=G)Gpdnw5^x>hRiV#&Xm6j=aJ-IxNzYZ*hr?rok37d--3pw=kxvyQM6|Z}I(fwK@9enl zz@&_OK8!!SN}zN-J_SNa+fz$~NQkUCE*RCjO=q}WL&Nj15#z)2vg0a7|MvFz^%xv1 zZA^Ohs)^66Bl*SxB<#s8yzeDMcRwXFvdHf-j81pim%TxCVQf_bQpMSi#n`4OV_mKk z+t%`>d&@6~Gfd)#pMTHmurPr(U8Bt+LCtpvJEwYvc~Mdc2V@kB9<9`wn-@bv8Hu=m zFRz=M{}`TG{+^SzUN*=1-B}0VUl(S*=1SlfTJXR9v)wFQ3#Bk&sf_<&fMSg7v${Pg zn)>HZHPeE8?*3j>)s&G_@3oV|4!c1eZDjNlVkfDmJTbYLS==Z}sLE`k9m&r;_3;RT z6w;f;4krx~?k4lzDrv!=qoSDDES;gjrhZVi^*%rBM0JZ(E9^qmK#VkZhra{gCiDnA z(#|_~1%uBNw2yTFw<2&|8C*(X$!VF_5i<_ z9Z;h~znM)fS99}%T*9Ziy|%kCI|Bh&Zij;XCHoV71n|s9Bs@qxc3Uvvu-w0N?j)-0 z?AYSqpQU8~{21KCK9DVQIka5RxF^3XFa^zI(#ozcI9 zc(vom$WQE19A=)lcC>d=;HuF;5mSZ^KvZI@-`zVTVONE945g(mFuo`h#n@?R(%BOJ z3fiVXrU^Y$>*wG~iIA;il*;T$F)X?n0{rKh8JjjYYs57rR}!79!Dk;wcC2J{rq2R> zk~6Rw&T1si7)YjkR1aoLyV`fdnUpDcP?^pzgUm7TkHI?S#SEdqS`w&%Ef@^ zB(j?wJhPC_grctO3HNyJCvA?j>E^?IPm!x!i~f3m!zD--EVb4|tIwpr;<$*%|rXr~dem+W!S?`!fn! zr*34MTaW0NEs`>DX1n8)c_F~u>i4!^R9`(iyXyK!25YlHv5Cn~E9c&~NP~ROUOi+| z_BE`=CW_GhChjYo! zN9fYCF87Khx80CBk6Ovj;o0%{Ys1*ve{beN{qvCSVJ^MtkR)n_4rBDxps2>G^Ah+ zj(j&N27l^fmO{z{jpsQics)-{Kf<+ybT`MKvD?BM6-RBPK0=f=sSO(Um)*A3!|J|y zZx5~u)c1#baeF=MvO}}ofAo9vPEn{a}!sU z(G(nL52a_(O0Cogqr2k=dOg$xY3|rW{=w!|7 z@C}J2OV<5kPkC^%J(1l_ab%-}J0|ZI0yAm8n zxS^63+j7O*6A{)J0ZUowjG@PqeSR9LyMf=iUrRa?HeG+49@>1dx-XF8ab4axV#cdv zC7(QE>|okpAFf850v-w2n*9vmtf_$=NUE|IpbGAx zHlrW1TQC-!t#qw1432YMa|UKQROPnC4ZFS8%Y?umjy=iz3!`6QHqx7S)7cif24brn z_6*Hwl`CAJ)wi1Th_)sl<24yHp z7{CEbJSN1X`T%yScLkn48!ZBYJ;x^21kRyWOZyNVnv4d*AP>Af4{K!l+jBE-BZIz% zr#?g$r+M4G0wRBO@v2G@Eq;YhLRgfwNm%UYNiI=VvnCnmtb!~OIGJG|dc1t2IE0^a z*v@8S6Ke~)7ONGQm*R%7ENQRh=D!_R8G=0P@Y3X;;j{t^b;hP|`j1Mo5Ia52^gqZq zUDwu8g0hhFu}xw@f=YpuKOxV(nRvs%J zjh|Wwc2tF@RgWZ09ai~eWx{rAjbjUpYuk~NkX9J4E#htc$-%9q;$qn$EwmbMFE8j6 z%9*f34*sj8;o7lZNccNcym*|}to`ZUH;r$uC)!7V?rb@ySxoC}IKh!ts39gD8(Hz8 z?N9uQZZr9;W{Fx2*jH~^sS!ibv`>l3)Jj4=#0&P2qEkYo{#q}{c*k-2L6(kMh?`u>vvBX?rp zKut(CAXhUA-B-i`_B=YeDDx|jE4x5W8A=-Z6{`_#VZ&K^Fi4-C>5*Ydpm&NsmU$Mm zP=$3Q(zvwrX%{27yZwW2I6N^L$;mzQydP+TqSqE9U1gv!2Ub4$TrnI}LPTqi7^tg0 zDwA(GiTJd~ymXszqeG{hzZ0We9ANTUT$0;syg0b?2bva5=ZW3tk+I!2XUsJ31|c)G zENYKNcHH;m)cuDG7&R%|r}}_wt!UHOo5b>#UgyuwDBnuc3R-?X z5Rxz$S@~d0#Uz4Kby_SS`{_#P)r9ZoB5p z%u)h!-pk6iIUDH@SexL59WmSWxiH`MfZl4;<%94+T0EWB@etJGx!)Sa>B*EDD*W>- zLGt-s|9%`R^sDJ8!6@!Ve;CXQAxfkBPiPTegCAm~weOEOKPh9tOP)h^T6x0L9A2)4 zr!Lhc#TIb9{XNaP6?k(Vkze6Ua0y+nZ1etho&5A5X&iU3(F=_$b&WAmy}3@GryMk| z_|TyYoLDnpb%?>N(b?`RHOJA#vS>@asr8*iCEPA}GCTcPCwfMzi~tIX!de|7ChRs3 zRHcWMo6oDZ|T-fN5D=lcq2yku5Yx-{_3Uj=T<)ThG9AFH2rjP>C;6^xdB+~J`F=U5-{z?LHZZ2 zgaQ|kHvKZ*@j@zdk! zzF`JkJgc~$C~x6zQTz>bRjq;d+nZaZdU{|x0$6Uy-dag0Bvpa1agaqVOjwybgmASPnW0H1!wBmsYXYu_sh*eW7meUt7Fbc))BB zFpBECr>`Nw@q8?0ry*s0R$LI(af#&p1)iqR;`aC8eeu)DHqei@NT5vUr?Yb^&L6tm z=OK4*Wayabw`1_~alLV!s|(60#Kf#JkFyt07}64%&VVW?)0*67lZ=`T_?FdiZ|rZU zrbV}LDPmtu+Pvmwh-%Voi3dcR?LkgT`8qaxgWN%1;f@@;}o1Y(CfbPFM+`~|QF zMV)vJj0s#ffmVewui*Wc9m=nFe1&@FXJ>C^Q%!bDN|83ax&z?Q(5-=%3I>ZK-~a?V zdi$-60U$ny8hqXGaBgP>f<3t~oH^^x5pl`)m2+De2hh<5yzEkn$Mj!2*HPto|Jb}&_ zFq}t1QOLwmCR300U}!HG-}e+h)=49dW?9^Omb*Zzi>d!~ug9ERwcf{e>A?7_O^Ex4 zs|QQXY>~&&(`jVK8!(M`c$65gTlevbs#w?hP0$&QDWQ}8=I=tMn6OjbD88-w_(vT3 zA>{CF=rz`_3m$?B#@F&cGC%mbylubDE!<&K(9GUCYNQY^Mkd>dJ>8!+jdA}t2OYUBZ{TBt>>Ms^%X!A4Q{fTaz?S}& z@|95L*c2KZ0OEUk%0PE&8U{v_+x3bjr>%?q(}P66on!J5@XIuF?0BS1-L>>5$iK9( zpok=3(XapG1<6jX>!dz&Xv>C2_CWy{yYFq>Fwo7v z$8+>*_&j!gV|zBPAoN;`19w<+^!u*qT2vcm)-_a{tg7+8)i(Ln+i_qVMymZ(vzj?N z!H9ddtI_nM95&*UFU|`CFwJxL$Jd)EA;K++k2_->2_g0 zFN_S|WR^$&@ZA?r&2+@qlO|$LTHKHG8=pGb+c)YX3%<}G9P{j}3krSN?`@o)<;Scc ze&S30%Hy@689&h=5iBEr_4j7?xj>sOi#Zdh3!mG>Qto=g89kbUP3C#@vN@+N_I|BR zQrz75ggqEvm6}Sr8ap#`QyF4f``NYCb18WVX8qss*soD z=JHWda+(Hz{PfnY zCh^od67^eqH`cJ`a&I3lT#Dos2;02G^k8=!6t}6XDc~7;E4(IQPwmA`kDS^P+TFy? znjqZ;F=vQ`O|f-xM29m?HG`bXMMpd7oTS&i z^UF#+b@Te9+MunWGw%GYJe|b1qGD4l$ays-Ro?ymt6fAZn{3t> zQ5^;5p57vPQ=cNnI#iSRe>7@Mvi0^$cH$^vY)z`Fh;A#$*4b}MiK4`h6r7(8aHQ38rathbYE%}U!=W0m?jJ5F zPi;EWALn|5&;c+GvNZ70YU_i#o0ngIDzW#9Eu{XvZ(`b^_#C`0KG*7A|51=)F5C|Z zUAM0J#}vy}QUgyzC@eb>D_fx`LE2jD)W9)8wp*ewJ;MuiI(vKMt#1tmHb8o4Tx+oV z9k1&p=yt7xSZnGjni16uHPHyaNXEMuG-GjmWC90E0t{%Ndsts}{Pt4*{G$GKrr(!u z^{e@1NEk@MZp^(dTW&*xEMm=HZZFSa2AWL8F&fh7hZQQj4vV)AAp1Z}3Oejbhzo4Z ze{p?TYsa87`{yilS4bWRsbDHIax3{NXgz}+cW_^gF$31`u`3?wVQWk33o-n4 zAoj*`4M!fi1-$_@^iR5qD*FqwBD?uij4|IdQsV7eKPOcgRJ%Kxy2}4tMd>McA!l0; z!^u-ug7}RbpOtf|nT@_>#!<=1W*i#sjuw#lEg%8htKo`eJb_@rx=Rn_th`ZYS@Mpv z@Oq*=+gxJ!$I2UQ?AzPHxa`VHSW`SpKiR$hIeSZ}N*q^L20!UeP|E(@3{yQW)ez=& zx9Utkw1nR_0`buKblznu>o#GSSP2pF0`LUU-h0A%9^P!e5{ZB$7b7g?SayD~A7+1cAmxH$9(BqSE-GM8qyW0ELC|RC%b`UKU~KeJOja zjs=qvq+JEC0b47#k+%1X@}S^10}O-^WxHHUQ%4dcuX4k*;yq(A(5+gF76W~WTd$j0 zANQYIh5!?*JP12!PYymn+e%5syHl-a|KmGs zP0@<#ypyQ>1m+hO@Z|e7=KCNIw%_LW>e*4+(Wrw^audoP5iXn*%uJC|^d zToTW+L41Rel%+qpecU2I_;-5rr(Im;$tD=uNX6>g0<~~MA^rO{x!~&BHd`#TzP`7z z8GESql?&Z1mGwhL3M@XC=BXQ=ZfQjVfLEoy4^XOf++Hct}?(Kcc>VKW#v#Wr~UHdrf+!+Q&P`or@=rSKwTG@$6E714d1O zVD)aQJsPpHOQMhvP8*(@*dN=liRk{MSI>b~#j2yR53R4xR2|opx_zH0V%J_bNA8Bw z72jSL1R=jFQF7G#G!^bR{`Cte+|Et>qRNB&-_odTp+;rpnAw(Y-hchX<}2WZnXkz% z%AnHfvFn0minm~xQW686l9q%uQ&araGQ!KgV|XCdwPs*A7`NAx2e9E#_-&!gu~)DTVuP`js9!gT_$ZY|vF! zN%rHk-&%VaQks0UG2}oGxh42&aUFVZ^v(&iaL^qQbb(tw=JKBJ*YqpcJ;6>9z0@fWbVb<@o~1$kst%hxKe6 zFT+UxM^D11mMyO!+L_O&3;~M-U`hav%`hhid$9B2I6ql#)pqC=HyFh`5;htsUM zF(KCm>ISX``oXcr3#|@UxtZv;pl_5fM^7G_ycI4|f@-ebUEU~7v!iGQKWN#+AUaQWH1pCS?J$W};a zAAGY!`bizNSJU>}(X*(N`cFMT;s&CN$ymeNOD8NQAD4HcnS;lTIT=}7X77x%O5}Pm zz}+=rUJJ~D$ESiSGj3Jt&C}n?{UGZFB@&dIdD1S7KYIJCdkEFE3=Jc!YGzp{p$z`+ zW~OpGNg3Q;z!AA+`DQ2(!V{hvl4EsE;^vMTZT)Y75VG5L=Hb3&SqfjyUIFczCJC+9?uDN7Y>z$7|kXL;>oc(;W z(DA_*-^j7op*fCceY`?<$$;@?e>F5C_kb+UV&Jx~#03Mx$Z1vdyS(wXefP%i)kk$R zStm@)N}<1dx>~Ej#O{Be)9)KhV9M={3z3WhmWfM zubAlQ@oVKFuFreiFJG19BPp^pjtIEDrD}cto|(Jky;{=~bz>JA$9mbuE>;fLMw!7d z3Jm(d?x}!^p0P-QucnJuy5D@!vWBS20KbvVDrw`)eG{7hsdc!?{;iH@w2efF^T+*f zl9D;SUYs{4sKQf=8S^3c$NXg(c*A=?n^RkkEp#CtF{Gqf5aLFpSQ-z68|+zXHRhZ~ z8NvSYQ#--~#69d9sn~xPGFj-k9mWStbrt#>Oscx;s8kH4PX(H2+lft<&lpp}zii|8A zzJAH}WGRmO`5wpr?;gitM{cmGCy}<3CGL`vsa78OC|`Zkscz$Ca`gpG8s>P%X*l2m&s#cY-z z;V^Gf(wJ4mSL^-1gjK`)mYUaCYjoCKBo9~(-Rz&MDYlXnu4KO2a@A-W@0qXWMZ~`H z9(w7QC5{2(>VQD0(&y}rptTn9-l7V1w+}m2K7})*idQGik{(h|G0YWQ(X-k{`FKH< z41qjy6uT9GvaQy!kOyR)M>tkF1E)skzrn$xynENLPV%Lq2Luyr73K&)XcmRgp$4q+ zdiQ}}+buh@FHFE{ar(OU_72}~M#!d7%)sD|QXE(vKUeARAHf29ny}j2pK$S!=_I$` zW#0daJ5~Gujcv)N$bpH$LQ4P##C7K1HWbo#!*3YzvtMN{7HqKda1SUBX^7vrq4kTp z^AtSH6j8pG{v&_oR=^4dD9X!&`ChVw2=Ez%Qj$(ik~sRAhnv5`Xx(a=DaD*J1-;k# zwV{bpfCs8~;12AM)A!F9)pi(+o4mQz5{1lH_Y6bMTx{BAMnqB5Z~PB{RQ~sz!RsnH zVC;3)d1J?5(nyto_?kO&!*8Q!^*%ifsyPz0W{;MFd%OkcYpklge&-dLHEzYwIAocv zJZtlhPJNn+B=iIpNF7*FXntr*9wg46K!h>EQpk&d&ZfV$Ba`)#2t)GDH8y6$WFlvl z?ITQEaF4!`l?OkXYN_Do+w5a7B@VHiF!+dJvhlliZ2Pvopvz|Sg4`k zp&Vw*fZ$Q_PQ6O$+5cm6%FRgQ*VN>vG0wuLwUeJ{1Z2}zs`(~*TdpJtlIAYT2M z=`=|+du#lc)5!|WbfNmj6vxIZW6jR>o4lByo>u)gZTb8jbR8yJ$2j+q)D&5Z7=5n` zN~@CD^UOnZSZR^wqu@MZJX&5TTOrxdAo=DlB?rYXdLI9dtyXDewc#mD)BjG9XW&u- znVg~_NSDv+NC88#aF-$s^{Ha^z8d8e85}(ES@Z9`3Zj3_+|Xm)IOcv)WpaZt-q?2< zL4Z0vU$i_LYx;uV<{Hlb@J$bS^Z zC-ZH5F6p>{e20Z7o9bc`S8&p1x&w}Wz%#eG9G8~P9?Dg%|C-y%z5?V~>A9!KDX zwUF-ZzdgI52tt|paciNMn(2A95Cs3WLl3)J;3p0T?N>G37|Qo-p@WBxC@SigjG8T%;m0@l`0(#FG@OCLwoTm|!CAw!mx2)vj)a9D zQ&nqCcQ#S#Ig4TQs>ZLu&Z|ZyanbCnum>@PP(!InBZ@-w6`Nhioo6`GnuK|PMRE}N ztec#u@Dvj1jXxB&TEQZi#puFWW3ZK~;s#R3#kKkGxX!Vw*GlXpn;KbIgwIh7s_!ri zfo(xizK^w7;`{gh*6XJ3r^3lXkBTUZf}jQ9&wYJV(U}k@K2OK=avk4QaK}IM723{{ zFN%Ud;ITt?aG>L#saK@cliYNx@e_6P=0=*Ve=}CVeNd#?SiOaeI1H(`o6MEyGXPk- zVFZMXh;mqv(yS?|rp~vv-Baq7cjra1Avci6W-@hl^xvK;Y#vMT(B(AQ?8=D75 zZEiA{z1*OoBl4VF4vX{`>w?JO6Ll@-S%DVhamjV`i)9H+F~LS3`Lt+YHH|81czj?- z-rT|;4e5gd$c4ZpuJ=3wvtV=1E+)BDrKy$i z9vhA~4Cn>^D5Oo-1h1^Wpu7EaX+iEf>qdOQz_>Vm^*5_f*BJp&BG{m>@u)lk(m^z4 z@lydi^5moyH-SfKcjsr!A5ekDadFlF0M6~b{pPK{n-7zoj|uu)c=-ND$*3!3_4%QP zx`OA)Jtzl?TM2;gLrD&~c_s4Z{FU8CAY|xQw3pz0bx*MtL|IhZ_MYcC3im;D+zhX8 z?McAC@5ak>LKf)s9X%s8zm2lXyy4-~o3(5#Y4=KLMX55QY^urJ1=1GJ1Equy29WCR z%=9FtNLW~)50a1ePVarVm4~Mnp>VmpSv3b&}RYzqhlxSA{m>14$PL<%UvyCf!`#}@9!XbeCr1p zH@lnPZ-D^r)=12=N$}l}LHL^FIQMJA^G4Yg;D>)cy5*sC=VGBZHatpK%fAxk{2+d> zSOor1FT>G)75Qb}s%CX-0}2<8dYk6XPO3G4a3toCQEe2?)Rq>kkxqW2;IMSji&8=t+ti+9ts1T3y8-U83L0hd2{@oY8YZ=3{1`ZcL0C-8m6Fut;yr9J3r?VGGn5(9T7aD~dT zu5?vN0ymhU;8QTj`6Mrl1?Jsmf#gZgUN?Uvs9-FYSd#<^ZOw5Dwg$$7Q7nJjRX&9m zOnfY>Q=DzNS-EE3%3UOgxSGKp={FmXHQ7OKI&L0-6H^iI^D|#I8vSi~FSXYr`B8Dc z8zC}*w}eQyAUgqf0DVqr7pDjq2_&*I=@(K{@W`pyJ9L30y0+TPl3CY6MT_yLYwvx5RigtOvEL`EiBJ8$Dt0EtR1~8gu$u z@q`|&w_iI!wy2>{jm4__2NEv!*!bWsy6d@Bkg^1Wgw@>rHL6y)1)=tJmoKncfNm>)aMR4BX!aQO zAMNUSh~4GLZ~L8|(`J?q!xa(?Q$=a)sR#loX0*x0t&$UhQ9qqdNHzr*YoTvzzkjzA zyc-_w!@h%Tqk|S7Lkf8n^-p6uHwzHpm{Xl81t>O*Xp64K9G29_%oqWSJNMg_?CkZmGcX?ii}uC4R!! zn;Yv!;c?y+Si^p?%}bFU3i#fEYrjQ?uP;NIq7W9J4Ux@=A8fh)lS^L+Fi3#M-)g}? ze@B+d*81vO- z4F)6$^;dk92&)lnBjvYZ$=$bQ_CZ=~-OjD~G6||H8Lf#PZ|UbVkVP>jIRIMkXFyC& zXO}+*KO}27m{?P@{K@|I@iksE3YEN6>s1P-9QnMO;8UwUwz4KIM-7SPX**Z69k27% ziLFI#t&NU#@Zm}`Z*5!A&+s+d`TwXgmt6wzK9c)sd}l6qFEU%drE z6&$B;NY@#nMi_9sBJc0z<*!_tzG#~olvi{8D3JlcgTy_Kh2>*kqBwY2*VWLAkCXtd zalaSE_AzLI$5d*{YP-ENIjyC^jGnXHv%E%hO#qbnGiv4E6aD8bF~kwSVZQ_cd}T$_ z8Pjf2b)4Q_2n_=V03T7*}VBNF9E2Y5BrQyvwx< znwHDjde&5c(w_Buf_}H8e(y~9;*IO~S+T2~qRc*kdI{XG^-khP-nG+vG!2&`SgC$+ zhT7QhG5L09wwA>((O4;qlmVX}0hn0RpYVfGQ|);1bx|>r=A1(oT_}REvH3#64#u-v z(hn*SP1oAT%Lbk&L8)_%$I=fG#meM2f9PHiicdV-DYhRvDO#Is;hLfBi81S*fjCas z-90+b*Rc(RFcKKBfG2Y#l|f+hlJImxMI~h02;fC8E7_zo-J)kYR-?eBOM(5NMOIY1 z7{YhU(hldDsjSj`w_L8JHk2VCZ^+~Ox&y3-dp1sSI~4^nwcFLWRi}RYHf}8=BRf5f zvk=vcQeSU(m;_&m{XEsLz0{UXV+rj}y<%@)KH6lE#OreMeNU%cU7QbL!42DchklG7 ztHoa!3$1I(O*KNU?kZ_B(06rvl||iDs24c6g~GU6**!sSz=xB3{Gh?Uk8Mx2=du{O zA?TvDr-+0|#1x8_(vyGiQH=_idN1ibHTyTlaXHKI@fW05y=oKs8>nKTdxEcXJ(Y-m zpXyUHa3COOGB)gP|CCL719rLPL`FV8;I~}=WGArVJ*Pyj?<50_>Az6G*JO+2WSd!R zh3Nvw|NC)G)q$N*7l4@6x%-uxDn2p{JGT4$o}AHz*Cp$uiayPhS*oz6*1o;=Wnni*Ywio(F6naJ5L+%bFQ0?n+m7;R?u-794{`Ey&OYx!HFFMgB>FV`67bN)Wbip_7!{k>>@4y($Ynvr?p;Qy}DMt3~1@f z0L-k;{D>}r?oD0LzvJTnvK+uN@{NP@$w7v2L&Kx+&sfT~g1x^MGynjo`)WQ{{hUj` z!kIN(*{CX%Tc)VDOR5;-wKv;JNeBE3zcN>5RV*)vJ~FUu@Ep(!VId+BmN=fY9Sgo| zc#V+haWtWQKLUF=+f0e;=BI)l#`X^Q!je8=0*$J-e^X9MpkkCiL?N-j6xeCg+6q)%HhuaB4l=SYklC{3@ z%u=`DAu82%J9W=|h7{N_{$j_e6oyaIEa42^{y$S=6;b%ZW=^t$sGSDG-Z;jTqpR31RL#KcpXB&g8!FngIcDLJ}3toCQ zI(qyQa-TjmE08b%pzk$iN{KVRuu65?DgECaFVSx&2A7m1y4I^!qyz0~wUnl$H{MBd zCNhjq#F5;=%B;6a{Ta(4T%^Tg{f@5LC18UEt_Ii=4quBaanBMK=R5pcZ&BMyFkNWh zeVbTzcUJWJuRn29GHV~omn8=K)2uhk%?L3x{LF*HPPJ~;ErYhD=BNGmSfJ_QC))D( zHP%>V7Lyu|BwBP5c4h~$Q$9c!zDBFcLI0N)7b5@vJ$DIBE=tIrGGihll9HR}gpxSC z1?Sy*riKjv#!({X#l1{J#H2HcLswN8kFLYEH?9j#d7&~vZXXuJ(F}uC-Z~zn%`&|A z2m#W^vkSi&1rTTeCf$~4&^BV{kpDKN?|qr*&S}6x_`SvJcW25Ww8Jo2ZjW2Nn7hic z(Z2w!LUT=;t26>k)D1>w)KTuKAd7>WW8*;)oG7IwuXL?!TP+ICigl|<(sIbaj#T-) zLz7gOcfTLa3@#k*o5f&QdOvnuZ?676it-94#P=JR`s`X~n^`N0u9ad^m(Lcb|LRPz z#JtL*e&V_y@1jgRD$Ce|Y!>X#I97>;Heq{y!6q;swRHIY^Id0Cd&F&KSd&tI*EAuy zvi#Z}_J1dY;KDsO!?}lP=iI&wa$OOaLX;MHa6uU}=L-2R4})25WXRZENd5J^^HhMuy>F8{UCSv6$;%R?Ao7V#Y- zd9zGT*r^BSj`ca1@;q32IltfPXGaH~XI#G7stPmhaQl^J&8tKE8nc+-rfOB0!h8o+ zHyHOFcZ{EoKcdHQ2JL;+WBp6ItsC7%u1;JUpQZt_M;6CWe^ZPvB&31up~O2VHg+^{ zj6CWm$cd}h_W#Njr348+l<&+Kb$$h1;D2SRzz%p&(az97EQkcg)^+A7y*0*1OnZ3L zP4`23S8Zff;L3rc(F6850SaFK1LL0}iu;%xi1aokc7zH-k`k7u+RQ&Q6!E-NyzYFt zr3#5V;nQ$hrL;2TX)2?S$`xu&tkOx9rnw~!qEA~{?^{Wn)qMME?iVNgT4@y^E_>W(EdP=^d_>Vmj$!a>$>;0(yi4r_AREArGf#1Kxb8cEdOy zF}9i$DbmyVmee{(nUkLesVE5{Bp9WgRotVR}%!y zsa{F+A7krrKd-%$m&H`R!J)%b`*ULd+2{^>@p#8czfRyH|3^fBpVXYS(zut&@Ltmc z)<+C*!1wy5jCm*^(77>R)Ed*~hH)yHhL9ZZF?w-&rk1`FfwouaQ_}v%*w`^%OpbQN zSFkCe@46j7ZM8`7*LeHc+!HDI!y>mWO_#()BS^l437b!z%$_yslG<#KcQ|FHN-5`T zx51_ydjbO{xJMn=&cOq(hd$n_HotZU#*pT=-J65Ix2JU=e%S3v5iqSsph`ffaR+i< zM3M4i8;x@2@&k5e|5|k(^rxAmmGip|Ai)AWR{yUk)lqT76E7Xxs@>x9c(+^g7#Mzl zZi9kqc#G=YW^x`w&T)UgYs1(qWqWNwC+>H))fS-}6R`J>+R;TK_Rq~vvIow{sU0rv zUuO47H(^frwAp`@L6ljsUqK|pZUWbMwZs??v>ycCHi&vEV&uEF&~lZSbExGZX6^TyJOG@?(`>(kENeNydV(x?D znzfZ9+es)ZnRomPv0GY2R0460JG5L26o=BMu|tLn*gy(UKjoTG*!y`BW2^XnqhrOY z9a^}x2$_Ph7w<}q4%nVuRM}&XMiz3fiLwn7GQCJlP4U77t*YHjP|4-dyiG`d$Kd6h z=faIN^g(hMI^WFvVB@IavKZa1#0SM)~H)Ncg+ys{FB0 z{(_HHc$z>SVMe>~o>#HwZq0pkkcIv;$W1A#2J+JBYB7TeMSzTC8r!m}smTEVAqU zyg4=pfATZ9#lhi;F}BE@c`<4vS+*5rTRHo zcW7Uo91yS?5yeLOIV3Zkq1K~5e6UoXrH9GqT{WmM>fIx-)+`xyGx0Aeirck0lc#R> z)vg;nQI02GJ2!L?PZUFCx49F~uuI8=cJ4zrYIR!$&8rKE27%_mb8x8kqsz4a8ZG(I z`k7RcY!FxDf^4n0;?S@4KvXTzoXR@!vd#11&nInklo{3((<&=^_vEIfoY^mg# z2_u={ylhiEx0Sn6XQ#`K+#eayxfN5T>5M{H!jtP}dCaUwIL__rHQ)+Z5hwUxTQ(Yr zaEpN;3gFqOQBx!2Z#BY~;}tT#%QxJUq`;b{|E8ivkWXV4G;Hj-JDFSm$nKyjSz{c= z5^}baxQ_PgA3}b8zwRcW_J*b|?Zn+ZTb~7q25)ps&boXjaff3-M4QlE-ya}yDuJv@o;kdFsLMtp7XzaP_uL!I zFzjud%n0YxqlKxeKX~tQnT$t|pGYliU)BmWMS<*St4r4dJmkQhtEoD|TV$@JjJ`PV8R<#ChQcl1TW`;_A0aQ#jUn8YxKh>% zRB#g~5{PS0P_lzfF8^b?nI0L5Y}QpbdVA{x^`Gz%NVL+0o|(GJk^przoY2zrzY?}W z=si=F*AGAl9>Hb@9?n|xxUg;!Y~Zb@xzGB#6ts)RCy1aCg!2oWIq~%f*UN@*VILBk zpWPcgyAWKoY?hvQ$q=>_CkLL^HBrzKrEsviyVu`uQ)QFoO)V&|X^v|^ZCs zN^UFce0JbHqom+?%k2B~9+O;fQ7W)Q_fy%J6S1QkUx95Dx=IpaNhrB0JWV+FvtY~q zG=2bxj$U&_M7OJjc^F0?&wiQQqrBdcyXkrW!W5vpFiBmi{KwEhO#DDbDX|L_2iX)O zDkf5VhBH`B3V|-=g>IFK6*D}CF3LPSs!wV?x0iCP3v}lV?2vM<{*6u{ju<=Xt?xVu z9Rwf9m#&yY$?M#T!CNrldIDC)85dY}=a*H0+aQN~vGVkyZ`ehSt)k@(X_JpZ&;89y z*?g+1a(4u{5s#BmcxX9)xm0>L{{D_Ag8e7l1$cPQ3~yDFH9_<-enV@PDZ)QnVv47E zc^|LbIehC^MlroQ$@$?rl@$iNtl3zXK>!HS#X#90na8%MJJ??B2rz`AisAIGDjWz( zw4u7b1nDe>9_t?vdF2exmfmmnptiV*cswHjeW+XA|Tww*2U8vME!;)oOGhN_m#=3QSM9 zAqR;skgInxd@vI>yWgDrx#D&N0C%%eJqgw>{R1~L=Xl@gQRDcdm&cFEaU-_k>vnrZ zCDSLN8ReSq&L=;pg6SdAjxeh`l1}WY469_BA?{-syVnrw>+lW_SF}?@u2ea@CF}1D znv>aMPiKBgj|cH5hJ-txhofblJrh)IKjPN>h>d>EbIXoe0DDLzHsN9P{3`a~UNnC{VjKQUR)9|h z+3JV>vQXxD?VE~xnrSRty*=T>D+{M66Ev+BDRu*Rg%c_5pT$F(G6k#g2i zhi_O^^u=&MRybzGCK#-u?E!&7ECWxbsa17+4%(cUy$Zl~rrH}>OK+fgnCQ_N=ij_} z|BR;sCV!CbcESb-?q@}LB}lbAJL@GHLdw~Rgn{hV@F$f(fGOi9;7x51$03t@=>Plo zH#MJN=T~exqI=QcXvmnS2x>uzdMM(AG0cYvMyN*`YYW>H3CNBdcb-MJz)V0(Y0{s? z(Vkm>qv^7Bs%7t#=i1mj?iosf6BYn`whNHv?Dw z??OWf`-=Rp_uwS3M-fyl$R$0mW+jx=&YhN4LB3^CYi$il#Y(DPx}@yBdM0%;wS`2+ zC{ks!{qkZpqk4%$8`I;*MG8Myz9A=N(WoFX`bWye7c*jJi%i?qeiA(d{WU9|`L=$9 zGxJou z>yLrW9-W7}Z?0~;myOgGY-M_B>O?mpIN`9p*wPSv^aTnLz;+^gSF zi9i+6VqmAn7^mluIf}OVPr<v}fEmma*K zR*yl#ABPtMFfBn;wxm%mJ4cEg?YR>tSaM53NYLR$%yma*U>`?r(q=n z_Pp{CR;ux%bsOnIbjM(#-wN2A2K7u8uqM z!|%QtP+zQnJN$`_U5LIAvzrlFU%Ycsz=fCO%1OzQ;!c@6NIo8!ksLP;3MGCh3=rL%>dG6yHwa7@be}662OqKy? z&^FI>46Ft#g}F(i;DW9sHJ^ckS6h(FKk(@(1bZ^iweL(a=g2@3i$^f!GDhE){AQjgMs`18IJd5hDT0hbU_!kEv%C&4(%GxKds zFFP-SyA{KmN56Qop*pZ6M^GrsutAD|A3)*9d_1sREaTYAu|Ag%Gq<5k3(-<1?p`8nm}%Wy_VO5`@s{o^zysQ%rks)N-kaj7FExmCzK zwya;bP%*$0rAm)VVJ@7JJ?(s~sZG^nr!mVrz=yl$wU?TiZ?HP7Zzs2#Kd8J`Qk%O$ z`aS9+p}4;GRPozX$Wd9Dyxzk6-EDrmoL*+pQRIiRyu5>Jn*UDhb&~%*Ksa(UO-8$! zJOhr=A6#1J4GKH~UxMgyipLAXo)9;zqeWB!JpeY_ zIM*Ik0n4dE6C9xQ%TdCCT55R3nRv(cYQ6PNH%Q@If8ru_ZX3+I>_4ISF@j4`kBa(B z8bjXD;-qe)1>wac$B{-hE)RhlX(Wrjp>*;)tovT2rw+C-FcD5Pi3kQsA8foMzWzT{ zy=7FEYa6Y-6p#`@=~h5Oy1S)Ix*O^4M!G>z>5hk#?k?$+cnRxmlqvN&%%pS z@HZQ$2sa-~X8p&gIPn9G-!cFBwtuM>3(B|Vj(};i3Goe@dg<4}v8(UII*a$t7e5d% zF^}gRn4)=|XRC84yXIphr^^tEh4%W`|43~gpX zR}QoYS6%B2Afyl*Zov3Rhb0%LUoP)5V5MX|8%BNhxUB!lT6a)>NnDbI98I;Vpy0aH zEP>s+Lu;=KqRQMrSvn)_f&sTAJTN;*GsW^nN@+Ffu!ABohL_dV;?~*uZU?sVcl_6k z014M}Jt2x{&WRnQJt#8$6_z~4aDyS8#Fp~AN?YfiuD?-g162agZvi@aHW6J9`wBOZ zWCe$HG0aNLL{NyzL?PHT4o1G zb6*b7uMKL3F;U*Po~Wq&b}GeA(tF8_7GzT21s*gXcr7YG5PcJ4b?5uz z_0ioTa%r~o|A`{{1yr{PnzSbX-lHmcbe8X87R*0atS!xLC`Qdp?mkZrr|E=Cq4S7c zvOz6eQ=m~BQ}~e1Z0@5|7V=dOQ|y2}m{Y+s0Z;_CZ5tbtz8&-jbtzAL9D>;Dyuq&( zJ(jn`J7oGbtB!*HE>AahNGB^yNJ8k7uncCtJK2bj9Sm^1ejX*}vkilB!Ui-J_`pRl zQ~RsuIiT039FYZp;>2}V61Sh9n(VtQ}>3YOs2MAwPrVdg0PguoH)@$(p) zvYslBbC`t8lI=Ny9I?`9O`+WYexjGE8NF zEUERg1bdi~`!w#+J}#|qfVDXK+f1N{xVaIUHh&}IKd*Hy@|BI>(^_;ZOouJ(*EsS~ z%?8u+;?}5Dw9nM=LadU5U?_Yd%#XC>idwO-&`!I1dN;w|k(AB?Bb#sW^PgJlI5X7K z-PAeZyI*W+9WZ{i0mC<2ZuJ8E0@a*h785){eagk!7SEOz#ToaIT)FP7UA;?B&G=G7 zX&SMitqjA}{2Kz#XgqYnp_|e8UxH560W+5OGf*ZxOt^CdcCBYsPYCpnj4Qzl%RU`KT**RTxsBjF4j@{8me_ma@OnPP0Y9(mbYdJcOi>c#F zKUs$j-%Ujq|Jk#NSj5+Ce7K3>Xs5i^!(}M(;LB(!r&ootyk7fDn;!={-s-@~P~6^^ z4tAC%p1L@uYn9)erv2bLxTL`bp5R{uIjr9s^fEWK6sqdFNQimY!6HGGUfK0Rukikd zbVQ>F-5AsMyM3ty**M=hl+NHajjB4qNchut6$MEw$rqt=|3n7#v&yZ=q=wI^+l&k5 zHw%OEy(qk7MPAI=)K^@_g2cHd=$Y${-AD)|F$xMz*D5>{5I7khJrG6*k)gA096~>R z;3Bb1wO(QzC3*!zi9{nlS$F=K&b}CCZb}wo5XG|8?8D3BAL{PCogRi+n|VyYA_VA9 z>53lw6om}6$SpD>Kc2b0k!(QXh@^@G%Azv2Ldq|HahcouLBr@mYrRdHwK;73zwO}6 z103v8<|Wtgr+zU!HrOJ}tovVenB1*P+~FRn(P)IfE6p@vOZJ3my=L*(l3qDb5R%cJ zQ11L_VeuA{v6y=IkqrxI#Q-nHr$$AunjIt_+*z~l)Eof39#m?spd_wtGYJCqbkXez zM#aa?7;WI~srZ^XCFGx4#{n=L+&Li#sWz>Io*g#Jv-r%SdAq8Kujg7h*L4VR@_?OD zgEnY>%uw_*ONtBQ4YMmEnSP3n4+#)j#E{C0MjXS4YC9y$zr9-w1tg}nx1j?cW8$}v9$#rB z_Nz;5We*_5YOaAE%Y8C7rxLKzb7#P4R!MpFU*5*?H7S?RLmnZ+Dg_#I&98xSFzM2c zYd2zQabcz^{0~FAVt3c6rTr_Io;A?M#}?aUDK={4a2X7QQkOZW zVzcA*AKi~vAe8xu({lb0&1Vns)}ok| zoI-5#mnvR2@6aD1b=+qsV)`Q)I{qG50{|KKI_HP0Wte^E-tj}UN9}iY~UszP4 zp`rrlP$QYUe>*2GjC%*!bOhFUI}w*O9tzS;2Pmz5wpT%~sSS~IIv1d3~L24Qb|$gh5nheQV69l1FCyGw{*w9$kX z7qS^u7JcG54H*QZQ-E~*87J9v>=!WvsZ}#=XsrO6S=*12dKVT73SHm&RzU`WKl=Zp zjQz*5sG{6@Ui{#quP%OJiHwkzEL=pnocHN9$m4k)Q?%3na~#P{+_#f++mCbBgm7`8p_|Sn|^KIJIm5n?B67WR>lbMW)@pOeMiH%2gr}`DIOz%!%Yfy4H_FSPQ z2q35{P4%^y5&nIssQfH$sVH8%kOX4)bgG3k%S+MZ-T`8g)0w>8rI=$Kj?hBdx#WG) zQ8ws?>YC1pIDCs&&vq2B(KkevPs*<#SuhG$*ope6YWEZ(#p@Ea7bpfr0xxW;3!dLk zv^fuKMq~7I444m7FCW$h6BqS-Pp3>r81x_SZ9#-Osf4JTbt$&2syR6OnH?$HF%4i) zlmp?ABPL5@$rz0z(q)phOf|wC4y~BbR%J$;LteXp`4LE^1O@Zx?`I~4<2d}itoqw? z>3HISH=hoCBh10lehhgN4V?`6EaO$>**!gc`g4q`VP!Yzh zRQ0uZ`GX^u0{lNR{u-n|rn3^{gG3n0-6^J4#;$`=Nb!E5|FxwP4`Zlkjs6vQ>)*pA zz^G!ya`^$OgrYe`8o*!ssvwIe!D+#w%6`8)%m2nV80eY*_!pb5j{G(QA+anfZ>v7k zz<|ZdiYWLT;uk5~xH8zR-M%^Lm}Kc#nu$VXezz=^<*Z^}d1w38NWtqGBgRL|-)w%J zZ4Mg$1w&1##gBroAxJll|K05c3vE|;9kti94ZWl;OVE-%arts?!N?ftc@BF1tjQfr z+4(xhh78Wf_QCTwQ;U4uW5%ny_O%#5?dWorcp086Xo*^khA(ca(b-QOER0$}asF^r z+nTYva}n^YVqypBzt8i%hRC*xxntABgB!kLI5>im5Yf8_sXFvh8#F4-3O73ryfg(3 zHw}3VwFZnJR4AuQ)34fEoE~$_o6$PnH^H*^MRI7rW@R&#MgzWmLBxS`#BOxEP^R{{ zO2WC7#@fIh?ymX7eZ8!xGIj5Ld*L5bNP=yN6j><>Cy#GqGSFwR9pLc%-5F=s{jg=T zp0fSvydX4U?9!0S>D|*dhp0@1J^=Z+u2MK0R-N5U9#OEo<@FbG6ea%`^vi>MgzVEv z%>8U>JKQt5nEk9!iH>%$l~rEnaGc1<5;u#pSd~i)vh$JFnOth}g zr^j_wPh_S#2E^u9Z1s4SieK_&(mJWeZKIg|Xm)(m^u6nDM&f?H{Y~@-zAImBR8j-s zm@h;FVmH$lc}TzwrO%E{NEV|SSHBkb%70cnT0A!?b4xjWk#XACq9v@fZ7;vaJ4*Bhn`3>luG4oyn$f3_Dr4w~o8YJ4Xnr7KPDOOC4dya+`% zi9}o~TS<^j?TY6?zDVdtIKcN5j~E4jxv7W*&GZ=})fBl%0)L1vKU2~yH};A~L-E!K ze1QAJvxEp)eezvMB0IDZr_?(lNIF0+_x5zp4{G|pCTMogZ*k>?VBJT8H+8$KNY-0$ z-6wGTSG>`}W_L+Mj}Jq2ZNbD#860RNCNhJ_AL#d( zg~jq=V8_{CIs!Kw4@~B_iD5eKl5Oy=M&f{_;a3|kKi91IR%x+i{z(=k3i?}Mg%=VM zPK|Ek1W+EmS(Y_Veo+5}qQ9G*{GQHVHv9w3B+?O3pJ_0zz)#x2EQgj+9@(|~%ZbMQ z(tv=RV#*YMBhUkXasL~(vmsv3?9Sup(1G0edt;eqen;Y~#=|0(t)nLMU-I)7iCZ7A z63$$0rnPi9ue_c2O^-!VxF&m+o^<9W(wpFjcUpoV?b~X&PZI;n1ODPf>ER z2Kzdi?9dNKT0Xxl49#&~%HuH5k6jn4;E2v`A!k`1SPc*oYLS`MX8%_Qptn8O45)4|EM?*z$YPk%cU=%mc7-+}ct zNFC&~x%!?&=pPd0c?2FMRh{zHtIprG?(Q_n%FkiVF~2^Zbs(#-$N<7KsLO)3n}GNk zP(V@$xd#IR+ef^oZUbfo!oUfIZ^P0Al>-Sz3yrDso(@~xT)m+V3duJ?Gx#rhg z_kSGmpOTtV=v#lf>)P`=IJ(Vo7vtLN*|QC(pQc(j)SzmQWTyeO9*}wrP?_M^$UUJ% zZKVmtf925$-6JPhE99(E8HtAA@qe}nt^j6-dOh^Np*A0AUW3DbQR>}yEjq`>h5P~A zKGxTojd;ZGjPD6NuiguHvm-40&jeNW#=+KFi4&mQ^W_c7>Wh-Ft66E)K2JSZe<1hV zXOdgv?qRQ*odUPYO>V>>%mmvhN{yuFwHeb5#O#Zgf}xt$8O3GzwIkh_vqG`-njh(J z;?hdT4KF3-l|bwy`hY^S?*Jsa*?i?t`UvYyCd(L5h1^Q!5>9U52nNg(4qN76Ml)X)MN(1w<1&-jaz#F7l$Dv> z`llHj&f7X4FlAGA*PB}v1CT!lfSU{&lkRCNf4qDKXczR=#KL-9afL<_CY+FOYyAI7 zK%iqLxGKe7!{;J6f?M-|{{8x%xBC30jBGkYe`u()M3p%}k>--W&rdFH?M!0&fUAP$ zEW4_56nQCE|()AyU&k5AbG{r>x)+pFBpN_<_%_A zuUK7or->abv}Ro%>Sp%5&b&PI;Hch02J1mfHR8w*9ajHIk-`2FC?=k_S2b5lEMc!2 z7d-LUFbBT(W>iZ`QJ7tv#WdRtDcVpt)R`jy0Pdq(Nz9n{~S9~v8Pp8#@ zzW~{CIbf%N9sFmpy@VkK$9(-pm%D>ZI2CS?3L~2*Z_^BcB;zef0rz*MVK8nws=38S zHfzh7SDP_nMj*r?qGZn$Pe}>qD#K;5K!07FlWLcmxh@NeWl=gAz##&-cKbkWgx;H*=|QK7Nsu1lO#Ae;FS~{`iK76sPIWkM&mUTlq|1m*;?$?lRry&algVR@|S9_>+ zadgNnL@b2A^FT_$)Nd?6AHokb`Pb)jJwh11m*#N;UC{LFFdp1B4vR^vDa~M5!l(RS z2-|v^6TAYlvWRkc<~c?cjfXQ6Z18LFlP z@xCo?y=bHk&5R(pirB}pdxZhXOY&WUbOz;ZM)<QIyd4<}<#fAV$0gZMn2`XhY8DnAxpD zUW=8r`Uq38dFzoOr$Eu~X)4C`L?m%Pj|87h;b#zh6V^n~W<>xd93?gL=R2r_9j!+Q z2%iOUF(iiaPQr|T$1BS26uQg7OuTflKK1#A{)r}9ZVhT3u)v-l*&M?9goV3A{e6c> z`P#X%^3w}O7dzw5cPCiQWB8b6zpv-;d59nIAFnPw>F~1IJWBAqUTZ_kSN}wJ^@f-i zKBeM=kOxj_{cNgKpzAi3q_9^r#Se;z7WtL+{U7Bpq`rwGiz+3@H+bZhhXrcwsOfi4 z`>7tD7#lOKr8Aw<6*HFa-U}k+zkeB)FM;;CN?A}yh+|#VgKzY<#=QE=80Cp_`Fjk< zY_ zF0D&ta)1yvwBX`Vw@t!dyQITUc^4|+yPbe@eB%g+NS>#mcD%?Kum^+QH;-4HoKBK2 z$-Ga0+@_g15~J0*;Ic|?)wW*PE(@^Y;-+aH-G13iy%gSCR0E zq+2?+y@Xbe1z^EXMx zAtZpr(vkg@O$zyVZvXlq#t5}F5MQjxpV^ZWWM!^g&h5!7hmQDo(zB*W=k?PSQ>%{so?F~(6>Oi`j6-VKNXdROMa3KAwJatk5|zj? zf@GrtW|Wbc9~5R+E{<3-%u^J~`Ig2+D`Nm^%pZ`XeqbZ~jF&!8O=0QD6nXvi{D6wq z_yZ-P02z4_v?P>i;cm>Qw5?l?x zek@Y*JoT^jQ+pMoXtt*+E|E2F(^(ErnW$EYgdBzOWfm7FJxkoy`@FGe3jtf+Qp-Lx z)oHJI`amWz!PiHxYdO)ll=lY_Q_h4!OoJ@X;0vIxwuem;tO)Lsy6uhkp zhL|sq*MzI>c@b%5pFy8kH`#SvGl^^GdguGqED8Lp_ek7!sS<(EpONwV55x1uu$SuU zqAT6%l}$~zg@M8zyc4&b8kVGNDtToL=STs6x<&m8?V(74gxpC;UmCQIvx%KrGS*w_ zTi0e$i8`ZW5HsgUj>SZocn=*qvNs@3V^3lC{T5I?kFWSko(jWgONe|*5T?iDr|KK- zmw{#@O5(MqE2Lf68wyDYk{wb~YPBUFAe%{%M@|{|6c0jTBCSt8raDC*YX11s~*68BdJgP6UBSgX*E2umc6U&Y-Qrg(8Z9J`s zO3#)G~vXMjFKExRC0Q$|Fx|GH^4U6U{BqvKkG<~fj4ZwY_k}1rphQ?*U2%y4&jEc)99rVR1Gd`%o_E=!hBcK3LcG*!<%o39g+x&BH-1TD zNHF--(9ng;tdL}IX9nWjKt|@A5E!ey<{tsS0TBx=9YYG0;(iL3 z$lWDf-UFJR2)K+$*r9%NR@Z1x4@WA%Wi(wTxVbEd&h3(V0(fJJhtv3rYkb+O+1W>JX*V$X zZ+)DsBie3=$$SL-J69f-$8Lb#2LobanIE=|D_w|Gri8L4D1m{8SO(nZfV%>~_qP8# z=VATc;}NgpJyLA9%Z`V*KH5Z_5N=|nwHM+O*Ia(9v{au{q43>MEjeGdWs#}D=bas~ z@m|xP=SV%Fe@y##cWd-Al%MZwYGR^MT=dQ%jN9G^p>7C zycrTwboc}ps^oN(gF_C#Gw?jFH2x7&RdJD0= z%X}nVK;nV3_=MgNO2-U>4r?0@$D@~SFYMPEWK;bp(tiq{5*#8UAzRd4sGwpYCkzF( z@p#mLWw9k&_O+1{>jV`4<-~C6rizu}%RRK4In~Sz zm_PYk+U?uo^n4-_vf=4TcQ5q0%uRY#+HCxRZ7TYY!JtvoJ`=wjA653AD6w%hp7+(* zSocw62t%AjVPNLjq6ZWIliT*>?KALv^M6I+OF>d!%L&wR;tyO_Y$7|u5cmV*Pnr(= z4aARS2dk!pW2C6WCB{%X_PeXbzJa2ZA$F88hD;-BIvWR99|h&<;P}+Q{AYfTf@eKV=gfVSfV{s@|CVsm~%Q-gGp~b@YXs2aA=h3abyI1 zC2sUbKc;cp#q{#3g&A6t(`?k&8iNTdq~om^bk-Oc9T}-bBeY6c=%MbQl#v!GP`r8X%~$OWSE+6?LIkvFY*W9jb|h!C z+K`I}4%oVsTXnZaeBwkP9x&9Z?f~@M*%ivge=W!>74HtxsgwNt%)yD4asAnx6sCxyM0L!97P4f+hQKJMU<`jjc)5yRCAB*Mr?%ZLuGT z7ClPwfT3+7Lvp9Vjz72X`0-AZL|9Oe)#DOYbK7$Iy~BD4nSsK4v;da>x;p^rhBfJp zq8ZFx+sZ8ukmWIOw zn%T4i5-vF0`(~dN+l@D4`ZS#FS^FAQnSH#sLl5(?b1n4`#=gs2ayp_Z&e&P*rR>Xi zq22gvUo+_2tFF{vy8AV`+%luIsz&1q4cQ!J?e@k`5YLJUT`pL8=em{m)?j@H-;$aA z-Z=++E9ZIs`cV1~y3Ie=jcWXkBJsp6cMrmi5WC+V)YxRR^~0&-racpML(a};uP^M@ z?h~ZT47a-OX`k(9ZBqrKb7gE*TIA-ccG z8&9A$DsMZeh1a~e5PJzz2`Wc|H{uc}@6fZKbGK}K_Eze*%sK5kJ{#pQT6`H_-j*M& zYTM2Zm^7d8sJonfY$SeOGKl>@CD1t*$y7tMfZ({;K6Tx2YUkc1%i-_db)VLzAfznZ zucZPrm4yE&D-Peb^M9!uG9Gt(@?r*821Ko4Yc1zx33YfWWG_;e|0pVW4=7a$1x>;$ zkGFgS-*^<8s?{T8l|yCI!DQ#FDr4o;h=bI~P=)xC$b*@q~ z|7w7DlIuZ9=maMZr}+=*-ojl^Yu04)we2kZ9OlKG0r*frb-2$iJ(7nnt$c+_KxLz5 zr7^tc#s`XLmtFRPPoTPPKPfU3m6uAFgO3h&sZT;jBn@Gg;kym6OKAu@%^ z%lH?f<8`k7%D9>;JyO#h$7cDH==;Y2VIOqa&k4sMSk$Uk_v$6|e)Eph7DW-`xim#W z#KNo(jpo0zdQ+vgC&7XOkq&*%=_3&WheP%gt|`gc4$PsiL3wDXjMpOIIX#bPcLD+> zw7l!1Ws-;IiNjpcQxN4@lt&f8e)K<0cO)!R^t*~92nj{HYH0&1O5o5Sg$7f_5Nia+ z)S>G!s!_+(g!prT)uICuGgen4JinD=_i6D>3PqU_jVYA{x=E)QAeuG$V(F}#_F6#E z9#Y-5ow+x&bC)j+03oBtDm;64DfzBpWq2q0#!>{3SxdBiWwWg=({D|p0-CNQVU6eFP z*Xnc-D_LoZwBWi(CWwmDxqTBX-!;4zlOK=4#vEV*n<6hL zUbo~Ro)s}-@DeiEe>mvq!m*qc?)RIUuI_!-AN%KT(i{cP5H|proI%fsa=G;1j6``< zoixu>Mkc*9*|oU!YvM7btAR<7=6bq~XY?>X+dRac%XGpoZDZYE?_0jqa#9|c2JNA@ zk7Cri0Qy|!#(K-R3Cc?hZ2U|Ao@mudm(oUIgXab4`N#ir_Mv@V&J+{=z`xY-{R3C@ z4DoW$R`YW$c5oTo+y>(#D2U>5Syz8C<*uY`FqQ=xnxYRBd2zblP84rN-0t^}Qy+vJ zk?tWIw@6hv_@h%#sq_Qc1rOT}_lxAdLq_F#Ely)?u6`=YG$L@@6@Iz4sI-HSxeU@j z3aluHcWd?1#{7!BHj1%&;OZwa4$V`mx0Rmpe>F3*3fZ^)u~BWIcD}WzeyAxc5sH{B za|8_r@bJh5iAU@JenHv4y#$EfrDBPhGan@c(Os9a?kVp71~9W z_SrVRgXp`1ILVJA0E$sM>rRUNCL`g9Jf1VP6()p`}pk0-pCgavZ zG$5;tq1LFfdAmpIddNv#*{Urg8bl$UkB_y)tA5cO=oiFFA04~)?Ec+-#5+^Z`m#YXsG7@JiLvgjZiQ<^dUhPRq3Qqf0K9E#;iQE_OwsxS50dvcuk zVFmu}x#K-cqz$~fm~>LE8>380%<*beYwV&f$ijJ}PZAzL9#@VxtxmBf1>ln^O$3!o zqz5mkJ{$KMa~x|gf58)<+uqR^iIWE7^!F{xd-vFjMxH937K!Dj@C0{Mv8FD@L7ZGY zAy6vXz={fUHcMNVqEzW)w!)YVa{bCeNsdsR*KRoD!_6!l#zFJiTvSW3{^Wx#@%xGYn|{J(Mi+2t z#I_7