-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcnn.py
40 lines (33 loc) · 1.3 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from keras.models import Sequential, Model
from keras.utils import plot_model
from keras.layers import Conv2D, AveragePooling2D, Dense, Flatten, Activation, Dropout, Input, MaxPooling2D
from keras.layers.normalization import BatchNormalization
import keras_metrics
from keras.callbacks import EarlyStopping
#import output.plots as display
import tensorflow as tf
from keras import backend as K
from nn import NN
class CNN(NN):
"""
Class for the convolutional network initialization
"""
def __init__(self, channels, time_samples, param):
"""
Initializes the convolutional neural network
:param channels: number of the channels
:param time_samples: number of the time samples
:param param: configuration object
"""
self.model = Sequential()
self.model.add(Conv2D(6, (3, 3), activation='elu', input_shape=(channels, time_samples, 1)))
self.model.add(BatchNormalization())
self.model.add(Dropout(0.5))
self.model.add(AveragePooling2D(pool_size=(1, 8)))
self.model.add(Flatten())
self.model.add(Dense(100, activation='elu'))
self.model.add(BatchNormalization())
self.model.add(Dropout(0.5))
self.model.add(Dense(2, activation='softmax'))
self.param = param
self.compile()