-
-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathmodel_test_utils.py
238 lines (183 loc) · 8.66 KB
/
model_test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from typing import Any, Optional
import pytest
import flair
from flair.data import Dictionary, Sentence
from flair.embeddings import TransformerEmbeddings
from flair.models import FewshotClassifier
from flair.nn import Model
from flair.trainers import ModelTrainer
class BaseModelTest:
model_cls: type[Model]
pretrained_model: Optional[str] = None
empty_sentence = Sentence(" ")
train_label_type: str
multiclass_prediction_labels: list[str]
model_args: dict[str, Any] = {}
training_args: dict[str, Any] = {}
finetune_instead_of_train: bool = False
@pytest.fixture()
def embeddings(self):
pytest.skip("This test requires the `embeddings` fixture to be defined")
@pytest.fixture()
def corpus(self, tasks_base_path):
pytest.skip("This test requires the `corpus` fixture to be defined")
@pytest.fixture()
def multi_class_corpus(self, tasks_base_path):
pytest.skip("This test requires the `multi_class_corpus` fixture to be defined")
@pytest.fixture()
def multi_corpus(self, tasks_base_path):
pytest.skip("This test requires the `multi_corpus` fixture to be defined")
@pytest.fixture()
def example_sentence(self):
return Sentence("I love Berlin")
@pytest.fixture()
def train_test_sentence(self):
return Sentence("Berlin is a really nice city.")
@pytest.fixture()
def labeled_sentence(self):
pytest.skip("This test requires the `labeled_sentence` fixture to be defined")
@pytest.fixture()
def multiclass_train_test_sentence(self):
pytest.skip("This test requires the `multiclass_train_test_sentence` fixture to be defined")
def transform_corpus(self, model, corpus):
return corpus
def assert_training_example(self, predicted_training_example):
pass
def build_model(self, embeddings, label_dict, **kwargs):
model_args = dict(self.model_args)
for k in kwargs:
if k in model_args:
del model_args[k]
return self.model_cls(
embeddings=embeddings,
label_dictionary=label_dict,
label_type=self.train_label_type,
**model_args,
**kwargs,
)
def has_embedding(self, sentence):
return sentence.get_embedding().cpu().numpy().size > 0
@pytest.fixture()
def loaded_pretrained_model(self):
if self.pretrained_model is None:
pytest.skip("For this test `pretrained_model` needs to be set.")
return self.model_cls.load(self.pretrained_model)
@pytest.mark.integration()
def test_load_use_model(self, example_sentence, loaded_pretrained_model):
loaded_pretrained_model.predict(example_sentence)
loaded_pretrained_model.predict([example_sentence, self.empty_sentence])
loaded_pretrained_model.predict([self.empty_sentence])
del loaded_pretrained_model
example_sentence.clear_embeddings()
self.empty_sentence.clear_embeddings()
@pytest.mark.integration()
def test_train_load_use_model(self, results_base_path, corpus, embeddings, example_sentence, train_test_sentence):
flair.set_seed(123)
label_dict = corpus.make_label_dictionary(label_type=self.train_label_type)
model = self.build_model(embeddings, label_dict)
corpus = self.transform_corpus(model, corpus)
trainer = ModelTrainer(model, corpus)
if self.finetune_instead_of_train:
trainer.fine_tune(results_base_path, shuffle=False, **self.training_args)
else:
trainer.train(results_base_path, shuffle=False, **self.training_args)
model.predict(train_test_sentence)
self.assert_training_example(train_test_sentence)
for label in train_test_sentence.get_labels(self.train_label_type):
assert label.value is not None
assert 0.0 <= label.score <= 1.0
assert isinstance(label.score, float)
del trainer, model, corpus
loaded_model = self.model_cls.load(results_base_path / "final-model.pt")
loaded_model.predict(example_sentence)
loaded_model.predict([example_sentence, self.empty_sentence])
loaded_model.predict([self.empty_sentence])
del loaded_model
@pytest.mark.integration()
def test_train_load_use_model_multi_corpus(
self, results_base_path, multi_corpus, embeddings, example_sentence, train_test_sentence
):
flair.set_seed(123)
label_dict = multi_corpus.make_label_dictionary(label_type=self.train_label_type)
model = self.build_model(embeddings, label_dict)
corpus = self.transform_corpus(model, multi_corpus)
trainer = ModelTrainer(model, corpus)
if self.finetune_instead_of_train:
trainer.fine_tune(results_base_path, shuffle=False, **self.training_args)
else:
trainer.train(results_base_path, shuffle=False, **self.training_args)
model.predict(train_test_sentence)
self.assert_training_example(train_test_sentence)
for label in train_test_sentence.get_labels(self.train_label_type):
assert label.value is not None
assert 0.0 <= label.score <= 1.0
assert isinstance(label.score, float)
del trainer, model, corpus
loaded_model = self.model_cls.load(results_base_path / "final-model.pt")
loaded_model.predict(example_sentence)
loaded_model.predict([example_sentence, self.empty_sentence])
loaded_model.predict([self.empty_sentence])
del loaded_model
def test_forward_loss(self, labeled_sentence, embeddings):
label_dict = Dictionary()
for label in labeled_sentence.get_labels(self.train_label_type):
label_dict.add_item(label.value)
model = self.build_model(embeddings, label_dict)
loss, count = model.forward_loss([labeled_sentence])
assert loss.size() == ()
assert count == len(labeled_sentence.get_labels(self.train_label_type))
def test_load_use_model_keep_embedding(self, example_sentence, loaded_pretrained_model):
assert not self.has_embedding(example_sentence)
loaded_pretrained_model.predict(example_sentence, embedding_storage_mode="cpu")
assert self.has_embedding(example_sentence)
del loaded_pretrained_model
def test_train_load_use_model_multi_label(
self, results_base_path, multi_class_corpus, embeddings, example_sentence, multiclass_train_test_sentence
):
flair.set_seed(123)
label_dict = multi_class_corpus.make_label_dictionary(label_type=self.train_label_type)
model = self.build_model(embeddings, label_dict, multi_label=True)
corpus = self.transform_corpus(model, multi_class_corpus)
trainer = ModelTrainer(model, corpus)
trainer.train(
results_base_path,
mini_batch_size=1,
max_epochs=5,
shuffle=False,
train_with_test=True,
train_with_dev=True,
)
model.predict(multiclass_train_test_sentence)
sentence = Sentence("apple tv")
model.predict(sentence)
for label in self.multiclass_prediction_labels:
assert label in [label.value for label in sentence.get_labels(self.train_label_type)], label
for label in sentence.labels:
print(label)
assert label.value is not None
assert 0.0 <= label.score <= 1.0
assert isinstance(label.score, float)
del trainer, model, multi_class_corpus
loaded_model = self.model_cls.load(results_base_path / "final-model.pt")
loaded_model.predict(example_sentence)
loaded_model.predict([example_sentence, self.empty_sentence])
loaded_model.predict([self.empty_sentence])
def test_context_is_set_correctly(self):
sentences = [
Sentence("this is a very very very long sentence"),
Sentence("this is a shorter sentence"),
Sentence(""),
Sentence("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"),
Sentence("b"),
]
embedding = TransformerEmbeddings("distilbert-base-cased", use_context=True)
label_dictionary = Dictionary()
model = self.build_model(embedding, label_dictionary)
if isinstance(model, FewshotClassifier):
model.add_and_switch_to_new_task("test", ["a", "b"], "label")
model.predict(sentences)
for first, second in zip(sentences[:-1], sentences[1:]):
assert first.next_sentence() == second
assert first == second.previous_sentence()
assert sentences[0].previous_sentence() is None
assert sentences[-1].next_sentence() is None