-
-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathtest_trainer.py
168 lines (131 loc) · 4.88 KB
/
test_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import pytest
from torch.optim import Adam
import flair
from flair.data import Sentence
from flair.datasets import ClassificationCorpus
from flair.embeddings import DocumentPoolEmbeddings, FlairEmbeddings, WordEmbeddings
from flair.models import SequenceTagger, TextClassifier
from flair.trainers import ModelTrainer
turian_embeddings = WordEmbeddings("turian")
@pytest.mark.integration()
def test_text_classifier_multi(results_base_path, tasks_base_path):
flair.set_seed(123)
flair_embeddings = FlairEmbeddings("news-forward-fast")
corpus = ClassificationCorpus(
tasks_base_path / "trivial" / "trivial_text_classification_single",
label_type="city",
)
label_dict = corpus.make_label_dictionary(label_type="city")
model: TextClassifier = TextClassifier(
embeddings=DocumentPoolEmbeddings([flair_embeddings], fine_tune_mode="linear"),
label_dictionary=label_dict,
label_type="city",
)
trainer = ModelTrainer(model, corpus)
trainer.train(results_base_path, mini_batch_size=2, max_epochs=1, shuffle=True)
del model
train_log_file = results_base_path / "training.log"
assert train_log_file.exists()
lines = train_log_file.read_text(encoding="utf-8").split("\n")
expected_substrings = [
"compute on device: ",
"Corpus: ",
"- learning_rate: ",
"patience",
"embedding storage:",
"epoch 1 - iter",
"EPOCH 1 done: loss",
"Results:",
]
for expected_substring in expected_substrings:
assert any(expected_substring in line for line in lines), expected_substring
@pytest.mark.integration()
def test_train_load_use_tagger_large(results_base_path, tasks_base_path):
corpus = flair.datasets.UD_ENGLISH().downsample(0.01)
tag_dictionary = corpus.make_label_dictionary("pos")
tagger: SequenceTagger = SequenceTagger(
hidden_size=64,
embeddings=turian_embeddings,
tag_dictionary=tag_dictionary,
tag_type="pos",
use_crf=False,
)
# initialize trainer
trainer: ModelTrainer = ModelTrainer(tagger, corpus)
trainer.train(
results_base_path,
learning_rate=0.1,
mini_batch_size=32,
max_epochs=2,
shuffle=False,
)
del trainer, tagger, tag_dictionary, corpus
loaded_model: SequenceTagger = SequenceTagger.load(results_base_path / "final-model.pt")
sentence = Sentence("I love Berlin")
sentence_empty = Sentence(" ")
loaded_model.predict(sentence)
loaded_model.predict([sentence, sentence_empty])
loaded_model.predict([sentence_empty])
del loaded_model
@pytest.mark.integration()
def test_train_load_use_tagger_adam(results_base_path, tasks_base_path):
corpus = flair.datasets.ColumnCorpus(data_folder=tasks_base_path / "fashion", column_format={0: "text", 3: "ner"})
tag_dictionary = corpus.make_label_dictionary("ner", add_unk=False)
tagger: SequenceTagger = SequenceTagger(
hidden_size=64,
embeddings=turian_embeddings,
tag_dictionary=tag_dictionary,
tag_type="ner",
use_crf=False,
)
# initialize trainer
trainer: ModelTrainer = ModelTrainer(tagger, corpus)
trainer.train(
results_base_path,
learning_rate=0.1,
mini_batch_size=2,
max_epochs=2,
shuffle=False,
optimizer=Adam,
)
del trainer, tagger, tag_dictionary, corpus
loaded_model: SequenceTagger = SequenceTagger.load(results_base_path / "final-model.pt")
sentence = Sentence("I love Berlin")
sentence_empty = Sentence(" ")
loaded_model.predict(sentence)
loaded_model.predict([sentence, sentence_empty])
loaded_model.predict([sentence_empty])
del loaded_model
def test_missing_validation_split(results_base_path, tasks_base_path):
corpus = flair.datasets.ColumnCorpus(
data_folder=tasks_base_path / "fewshot_conll",
train_file="1shot.txt",
sample_missing_splits=False,
column_format={0: "text", 1: "ner"},
)
tag_dictionary = corpus.make_label_dictionary("ner", add_unk=True)
tagger: SequenceTagger = SequenceTagger(
hidden_size=64,
embeddings=turian_embeddings,
tag_dictionary=tag_dictionary,
tag_type="ner",
use_crf=False,
)
# initialize trainer
trainer: ModelTrainer = ModelTrainer(tagger, corpus)
trainer.train(
results_base_path,
learning_rate=0.1,
mini_batch_size=2,
max_epochs=2,
shuffle=False,
optimizer=Adam,
)
del trainer, tagger, tag_dictionary, corpus
loaded_model: SequenceTagger = SequenceTagger.load(results_base_path / "final-model.pt")
sentence = Sentence("I love Berlin")
sentence_empty = Sentence(" ")
loaded_model.predict(sentence)
loaded_model.predict([sentence, sentence_empty])
loaded_model.predict([sentence_empty])
del loaded_model