diff --git a/notebooks/live_coding_11_NLP_3_tfifd_and_machine_learning.ipynb b/notebooks/live_coding_11_NLP_3_tfifd_and_machine_learning.ipynb
index d90a212..a3afbfb 100644
--- a/notebooks/live_coding_11_NLP_3_tfifd_and_machine_learning.ipynb
+++ b/notebooks/live_coding_11_NLP_3_tfifd_and_machine_learning.ipynb
@@ -43,7 +43,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 7,
"id": "0953c3ec",
"metadata": {
"editable": true,
@@ -64,7 +64,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 8,
"id": "b07bb307",
"metadata": {
"editable": true,
@@ -158,7 +158,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 9,
"id": "58260b8c-a93d-438e-878f-c0ecc5e18516",
"metadata": {
"editable": true,
@@ -180,7 +180,8 @@
],
"source": [
"\"\"\"\n",
- "This code block downloads the data from zenodo and stores it in a local 'datasets' folder.\n",
+ "This code block downloads the data from zenodo and stores it in\n",
+ "a local 'datasets' folder.\n",
"\"\"\"\n",
"\n",
"import requests\n",
@@ -226,7 +227,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 10,
"id": "c6cabdf7",
"metadata": {},
"outputs": [
@@ -251,6 +252,7 @@
" \n",
" \n",
" | \n",
+ " S.No. | \n",
" Review | \n",
" Rating | \n",
"
\n",
@@ -258,27 +260,32 @@
"
\n",
" \n",
" 0 | \n",
+ " 1 | \n",
" nice hotel expensive parking got good deal sta... | \n",
" 4 | \n",
"
\n",
" \n",
" 1 | \n",
+ " 2 | \n",
" ok nothing special charge diamond member hilto... | \n",
" 2 | \n",
"
\n",
" \n",
" 2 | \n",
+ " 3 | \n",
" nice rooms not 4* experience hotel monaco seat... | \n",
" 3 | \n",
"
\n",
" \n",
" 3 | \n",
- " unique, great stay, wonderful time hotel monac... | \n",
+ " 4 | \n",
+ " unique \\tgreat stay \\twonderful time hotel mon... | \n",
" 5 | \n",
"
\n",
" \n",
" 4 | \n",
- " great stay great stay, went seahawk game aweso... | \n",
+ " 5 | \n",
+ " great stay great stay \\twent seahawk game awes... | \n",
" 5 | \n",
"
\n",
" \n",
@@ -286,28 +293,28 @@
""
],
"text/plain": [
- " Review Rating\n",
- "0 nice hotel expensive parking got good deal sta... 4\n",
- "1 ok nothing special charge diamond member hilto... 2\n",
- "2 nice rooms not 4* experience hotel monaco seat... 3\n",
- "3 unique, great stay, wonderful time hotel monac... 5\n",
- "4 great stay great stay, went seahawk game aweso... 5"
+ " S.No. Review Rating\n",
+ "0 1 nice hotel expensive parking got good deal sta... 4\n",
+ "1 2 ok nothing special charge diamond member hilto... 2\n",
+ "2 3 nice rooms not 4* experience hotel monaco seat... 3\n",
+ "3 4 unique \\tgreat stay \\twonderful time hotel mon... 5\n",
+ "4 5 great stay great stay \\twent seahawk game awes... 5"
]
},
- "execution_count": 3,
+ "execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"filename = \"../datasets/tripadvisor_hotel_reviews.csv\"\n",
- "data = pd.read_csv(filename)\n",
+ "data = pd.read_csv(filename, encoding=\"ansi\")\n",
"data.head()"
]
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 11,
"id": "eb8b6172",
"metadata": {},
"outputs": [
@@ -317,13 +324,14 @@
"text": [
"\n",
"RangeIndex: 20491 entries, 0 to 20490\n",
- "Data columns (total 2 columns):\n",
+ "Data columns (total 3 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
- " 0 Review 20491 non-null object\n",
- " 1 Rating 20491 non-null int64 \n",
- "dtypes: int64(1), object(1)\n",
- "memory usage: 320.3+ KB\n"
+ " 0 S.No. 20491 non-null int64 \n",
+ " 1 Review 20491 non-null object\n",
+ " 2 Rating 20491 non-null int64 \n",
+ "dtypes: int64(2), object(1)\n",
+ "memory usage: 480.4+ KB\n"
]
}
],
@@ -333,23 +341,34 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 12,
"id": "f2bc7712",
"metadata": {},
"outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\flori\\AppData\\Local\\Temp\\ipykernel_7500\\890204809.py:1: FutureWarning: \n",
+ "\n",
+ "Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n",
+ "\n",
+ " sb.countplot(data=data,\n"
+ ]
+ },
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Rating Distribution')"
]
},
- "execution_count": 5,
+ "execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHFCAYAAAAT5Oa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxAUlEQVR4nO3deVhV5d7/8c8OEFFxp8ggiUZJZg4NWopWas451GOlpvJomlmYHhx+DpVjikcr9STllKk5HOvpZDYoaaWUA4oWj2Vm1sHUI6gZggOC4vr90cO62mIOCCzwfr+ua19X+17fve7v2vt0/HSvQZdlWZYAAAAMdoPTDQAAADiNQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABFxnFi1aJJfLZb+8vb1VtWpVde/eXXv37i3wfmNjY/Xhhx/mG9+wYYNcLpc2bNhQ8KYLKG/uvFeZMmUUGBiopk2b6sUXX9Svv/6a7zN538++ffuuaq6/Ov5LudhczZs3V926da9qP5ezevVqjR8//qLbbr75ZvXp06dQ5wOuRwQi4Dq1cOFCbdmyRZ9//rmef/55ffTRR7r//vuVnp5eoP39VSC45557tGXLFt1zzz3X2HHBxcbGasuWLVq/fr0WLFig5s2b6+2331bt2rW1bNkyj9oOHTpoy5Ytqlq16lXPcbWBqKBzXa3Vq1drwoQJF922cuVKjRkzpkjnB64H3k43AKBo1K1bVw0bNpT0x6pEbm6uxo0bpw8//FBPPfVUoc1TsWJFNW7cuND2VxAREREePXTu3FnDhg1Tq1at1KdPH9WvX1/16tWTJAUGBiowMLBI+8nKylLZsmWLZa7Lufvuux2dHygtWCECDJEXjg4fPmyPnTlzRsOGDdNdd90lt9utypUrKzIyUqtWrfL4rMvl0qlTp7R48WL79FTz5s0lXfyUWZ8+fVShQgX9/PPPevjhh1WhQgWFhYVp2LBhys7O9tj3wYMH9fjjj8vf31833nijevbsqaSkJLlcLi1atKjAx1u5cmXNnTtX586d04wZM+zxi53G+vbbb9WxY0cFBQXJ19dXoaGh6tChgw4ePHjZ48/b39q1a9W3b18FBgaqXLlyys7OvuTpua+//lqNGzeWn5+fbrrpJo0ZM0a5ubn29r86Fblv3z6P76ZPnz5644037D7zXnlzXuyU2f79+9WrVy/7eGvXrq3XXntN58+fzzfPq6++qunTpys8PFwVKlRQZGSkEhMTr+KXAEoHVogAQ6SkpEiSbrvtNnssOztbv//+u4YPH66bbrpJOTk5+vzzz9WlSxctXLhQ//3f/y1J2rJlix566CG1aNHCPv1SsWLFS8539uxZde7cWf369dOwYcP01Vdf6eWXX5bb7dbYsWMlSadOnVKLFi30+++/a+rUqapZs6bi4+PVrVu3Qjnme++9V1WrVtVXX331lzWnTp1S69atFR4erjfeeEPBwcFKS0vT+vXrdeLEiSs+/r59+6pDhw5asmSJTp06JR8fn7+cMy0tTd27d9eoUaM0ceJEffrpp5o0aZLS09MVFxd3Vcc4ZswYnTp1Su+//762bNlij//VabqjR4+qSZMmysnJ0csvv6ybb75Zn3zyiYYPH65ffvlFb775pkf9G2+8odtvv10zZ86053v44YeVkpIit9t9Vb0CJRmBCLhO5ebm6ty5czpz5ow2bdqkSZMm6cEHH1Tnzp3tGrfbrYULF3p8pmXLlkpPT9fMmTPtQNS4cWPdcMMNCgwMvOLTYzk5OZowYYKeeOIJSVLLli21fft2LV++3A5Eixcv1s8//6w1a9aoXbt2kqQ2bdro9OnTmjt3bqF8D9WrV9fOnTv/cvuPP/6oY8eOacGCBXrkkUfs8a5du9r/fCXH37Jlyyvu+dixY1q1apX9W7Rp00ZZWVmaPXu2RowYoerVq1/RfiTp1ltvVXBwsN3n5UyfPl3/+c9/tHXrVt13332SpLZt2yo3N1dz5sxRTEyMR2j29/fXJ598Ii8vL0lSaGio7rvvPq1Zs0bdu3e/4j6Bko5TZsB1qnHjxvLx8ZG/v7/atWunSpUqadWqVfL29vzvoP/5n/9R06ZNVaFCBXl7e8vHx0cLFizQ7t27r2l+l8ulTp06eYzVr1/f486vhIQEu78/e/LJJ69p7j+zLOuS22vWrKlKlSpp5MiRmjNnjn744YcCzfPYY49dca2/v79HMJWkHj166Pz585dczSoMX375pe644w47DOXp06ePLMvSl19+6THeoUMHOwxJf/yGki56Bx9QmhGIgOvUO++8o6SkJH355ZcaMGCAdu/enS9ofPDBB+ratatuuukmLV26VFu2bFFSUpL69u2rM2fOXNP85cqVU9myZT3GfH19PfZ77Ngxe3Xjzy42VlD79+9XaGjoX253u91KSEjQXXfdpRdeeEF16tRRaGioxo0bp7Nnz17xPFdzJ9nFji8kJETSH99JUTp27NhFe837ji6cPyAgwOO9r6+vpD8uHAeuJ5wyA65TtWvXti+kbtGihXJzc/XWW2/p/fff1+OPPy5JWrp0qcLDw/Xuu+/K5XLZn73wwueiEhAQoG3btuUbT0tLK5T9b9u2TWlpaerXr98l6+rVq6cVK1bIsizt3LlTixYt0sSJE+Xn56dRo0Zd0Vx//v4u588XtufJO+a8AJIXJi/8LX777bcrnudiAgIClJqamm/80KFDkqQqVapc0/6B0ooVIsAQ06ZNU6VKlTR27Fj7bqK8hxn++Q/ztLS0fHeZSX+sDBT2qkCzZs104sQJrVmzxmN8xYoV17zv33//Xc8++6x8fHw0ZMiQK/qMy+XSnXfeqRkzZujGG2/UN998Y28rzOM/ceKEPvroI4+x5cuX64YbbtCDDz4o6Y+7wyTlu/7pws/l9SZd2apNy5Yt9cMPP3gcm/THiqLL5VKLFi2u+DiA6wkrRIAhKlWqpNGjR2vEiBFavny5evXqpY4dO+qDDz5QdHS0Hn/8cR04cEAvv/yyqlatmu+p1vXq1dOGDRv08ccfq2rVqvL391etWrWuqafevXtrxowZ6tWrlyZNmqSaNWtqzZo1+uyzzyRJN9xwZf/NtnfvXiUmJur8+fM6duyYtm7dqgULFigzM1PvvPOO6tSp85ef/eSTT/Tmm2/q0Ucf1S233CLLsvTBBx/o+PHjat26dZEcf0BAgJ577jnt379ft912m1avXq358+frueeesy+oDgkJUatWrTRlyhRVqlRJNWrU0BdffKEPPvgg3/7ynrE0depUtW/fXl5eXqpfv77KlCmTr3bIkCF655131KFDB02cOFE1atTQp59+qjfffFPPPfecxwXVgFEsANeVhQsXWpKspKSkfNuysrKs6tWrWxEREda5c+csy7Ksv//979bNN99s+fr6WrVr17bmz59vjRs3zrrw/x6Sk5Otpk2bWuXKlbMkWc2aNbMsy7LWr19vSbLWr19v1/bu3dsqX758vvkvtt/9+/dbXbp0sSpUqGD5+/tbjz32mLV69WpLkrVq1apLHmve3Hkvb29vKyAgwIqMjLReeOEFa9++fX/5/aSkpFiWZVk//vij9eSTT1q33nqr5efnZ7ndbuu+++6zFi1adEXHf6nv+8K5LMuymjVrZtWpU8fasGGD1bBhQ8vX19eqWrWq9cILL1hnz571+Hxqaqr1+OOPW5UrV7bcbrfVq1cva/v27ZYka+HChXZddna29fTTT1uBgYGWy+XymLNGjRpW7969Pfb766+/Wj169LACAgIsHx8fq1atWtYrr7xi5ebm2jUpKSmWJOuVV17Jd1ySrHHjxuUbB0ozl2Vd5hYMAChmsbGxeumll7R//35Vq1bN6XYAGIBTZgAclfcgwttvv11nz57Vl19+qddff129evUiDAEoNgQiAI4qV66cZsyYoX379ik7O1vVq1fXyJEj9dJLLzndGgCDcMoMAAAYj9vuAQCA8QhEAADAeAQiAABgPC6qvkLnz5/XoUOH5O/vf1WP6AcAAM6xLEsnTpxQaGjoJR/2SiC6QocOHVJYWJjTbQAAgAI4cODAJR/lQSC6Qv7+/pL++EIrVqzocDcAAOBKZGZmKiwszP5z/K8QiK5Q3mmyihUrEogAAChlLne5CxdVAwAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIzn7XQDAACYauambk63UKrFNH230PbFChEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjOdoIDp37pxeeuklhYeHy8/PT7fccosmTpyo8+fP2zWWZWn8+PEKDQ2Vn5+fmjdvrl27dnnsJzs7W4MGDVKVKlVUvnx5de7cWQcPHvSoSU9PV1RUlNxut9xut6KionT8+PHiOEwAAFDCORqIpk6dqjlz5iguLk67d+/WtGnT9Morr2jWrFl2zbRp0zR9+nTFxcUpKSlJISEhat26tU6cOGHXxMTEaOXKlVqxYoU2btyokydPqmPHjsrNzbVrevTooeTkZMXHxys+Pl7JycmKiooq1uMFAAAlk8uyLMupyTt27Kjg4GAtWLDAHnvsscdUrlw5LVmyRJZlKTQ0VDExMRo5cqSkP1aDgoODNXXqVA0YMEAZGRkKDAzUkiVL1K1bN0nSoUOHFBYWptWrV6tt27bavXu37rjjDiUmJqpRo0aSpMTEREVGRurHH39UrVq1LttrZmam3G63MjIyVLFixSL4NgAAppm5qZvTLZRqMU3fvWzNlf757egK0f33368vvvhCP/30kyTpf//3f7Vx40Y9/PDDkqSUlBSlpaWpTZs29md8fX3VrFkzbd68WZK0Y8cOnT171qMmNDRUdevWtWu2bNkit9tthyFJaty4sdxut10DAADM5e3k5CNHjlRGRoZuv/12eXl5KTc3V5MnT9aTTz4pSUpLS5MkBQcHe3wuODhYv/76q11TpkwZVapUKV9N3ufT0tIUFBSUb/6goCC75kLZ2dnKzs6232dmZhbwKAEAQEnn6ArRu+++q6VLl2r58uX65ptvtHjxYr366qtavHixR53L5fJ4b1lWvrELXVhzsfpL7WfKlCn2Bdhut1thYWFXelgAAKCUcTQQ/b//9/80atQode/eXfXq1VNUVJSGDBmiKVOmSJJCQkIkKd8qzpEjR+xVo5CQEOXk5Cg9Pf2SNYcPH843/9GjR/OtPuUZPXq0MjIy7NeBAweu7WABAECJ5WggOn36tG64wbMFLy8v+7b78PBwhYSEaN26dfb2nJwcJSQkqEmTJpKkBg0ayMfHx6MmNTVV33//vV0TGRmpjIwMbdu2za7ZunWrMjIy7JoL+fr6qmLFih4vAABwfXL0GqJOnTpp8uTJql69uurUqaNvv/1W06dPV9++fSX9cZorJiZGsbGxioiIUEREhGJjY1WuXDn16NFDkuR2u9WvXz8NGzZMAQEBqly5soYPH6569eqpVatWkqTatWurXbt26t+/v+bOnStJeuaZZ9SxY8crusMMAABc3xwNRLNmzdKYMWMUHR2tI0eOKDQ0VAMGDNDYsWPtmhEjRigrK0vR0dFKT09Xo0aNtHbtWvn7+9s1M2bMkLe3t7p27aqsrCy1bNlSixYtkpeXl12zbNkyDR482L4brXPnzoqLiyu+gwUAACWWo88hKk14DhEAoLDxHKJrc908hwgAAKAkIBABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8RwPRP/5z3/Uq1cvBQQEqFy5crrrrru0Y8cOe7tlWRo/frxCQ0Pl5+en5s2ba9euXR77yM7O1qBBg1SlShWVL19enTt31sGDBz1q0tPTFRUVJbfbLbfbraioKB0/frw4DhEAAJRwjgai9PR0NW3aVD4+PlqzZo1++OEHvfbaa7rxxhvtmmnTpmn69OmKi4tTUlKSQkJC1Lp1a504ccKuiYmJ0cqVK7VixQpt3LhRJ0+eVMeOHZWbm2vX9OjRQ8nJyYqPj1d8fLySk5MVFRVVnIcLAABKKJdlWZZTk48aNUqbNm3S119/fdHtlmUpNDRUMTExGjlypKQ/VoOCg4M1depUDRgwQBkZGQoMDNSSJUvUrVs3SdKhQ4cUFham1atXq23bttq9e7fuuOMOJSYmqlGjRpKkxMRERUZG6scff1StWrUu22tmZqbcbrcyMjJUsWLFQvoGAAAmm7mpm9MtlGoxTd+9bM2V/vntXZiNXa2PPvpIbdu21RNPPKGEhATddNNNio6OVv/+/SVJKSkpSktLU5s2bezP+Pr6qlmzZtq8ebMGDBigHTt26OzZsx41oaGhqlu3rjZv3qy2bdtqy5YtcrvddhiSpMaNG8vtdmvz5s0XDUTZ2dnKzs6232dmZhbFVwAAxa7NitFOt1Cqre0+xekWUAQcPWX273//W7Nnz1ZERIQ+++wzPfvssxo8eLDeeecdSVJaWpokKTg42ONzwcHB9ra0tDSVKVNGlSpVumRNUFBQvvmDgoLsmgtNmTLFvt7I7XYrLCzs2g4WAACUWI4GovPnz+uee+5RbGys7r77bg0YMED9+/fX7NmzPepcLpfHe8uy8o1d6MKai9Vfaj+jR49WRkaG/Tpw4MCVHhYAAChlHA1EVatW1R133OExVrt2be3fv1+SFBISIkn5VnGOHDlirxqFhIQoJydH6enpl6w5fPhwvvmPHj2ab/Upj6+vrypWrOjxAgAA1ydHA1HTpk21Z88ej7GffvpJNWrUkCSFh4crJCRE69ats7fn5OQoISFBTZo0kSQ1aNBAPj4+HjWpqan6/vvv7ZrIyEhlZGRo27Ztds3WrVuVkZFh1wAAAHM5elH1kCFD1KRJE8XGxqpr167atm2b5s2bp3nz5kn64zRXTEyMYmNjFRERoYiICMXGxqpcuXLq0aOHJMntdqtfv34aNmyYAgICVLlyZQ0fPlz16tVTq1atJP2x6tSuXTv1799fc+fOlSQ988wz6tix4xXdYQYAAK5vjgaie++9VytXrtTo0aM1ceJEhYeHa+bMmerZs6ddM2LECGVlZSk6Olrp6elq1KiR1q5dK39/f7tmxowZ8vb2VteuXZWVlaWWLVtq0aJF8vLysmuWLVumwYMH23ejde7cWXFxccV3sAAAoMRy9DlEpQnPIQJwveC2+2tTmLfd8xyia1OYzyFy/K/uAAAAcBqBCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMF6BAtFDDz2k48eP5xvPzMzUQw89dK09AQAAFKsCBaINGzYoJycn3/iZM2f09ddfX3NTAAAAxcn7aop37txp//MPP/ygtLQ0+31ubq7i4+N10003FV53AAAAxeCqAtFdd90ll8sll8t10VNjfn5+mjVrVqE1BwAAUByuKhClpKTIsizdcsst2rZtmwIDA+1tZcqUUVBQkLy8vAq9SQAAgKJ0VYGoRo0akqTz588XSTMAAABOuKpA9Gc//fSTNmzYoCNHjuQLSGPHjr3mxgAAAIpLgQLR/Pnz9dxzz6lKlSoKCQmRy+Wyt7lcLgIRAAAoVQoUiCZNmqTJkydr5MiRhd0PAABAsSvQc4jS09P1xBNPFHYvAAAAjihQIHriiSe0du3awu4FAADAEQU6ZVazZk2NGTNGiYmJqlevnnx8fDy2Dx48uFCaAwAAKA4FCkTz5s1ThQoVlJCQoISEBI9tLpeLQAQAAEqVAgWilJSUwu4DAADAMQW6hggAAOB6UqAVor59+15y+9tvv12gZgAAAJxQoECUnp7u8f7s2bP6/vvvdfz48Yv+pa8AAAAlWYEC0cqVK/ONnT9/XtHR0brllluuuSkAAIDiVGjXEN1www0aMmSIZsyYUVi7BAAAKBaFelH1L7/8onPnzhXmLgEAAIpcgU6ZDR061OO9ZVlKTU3Vp59+qt69exdKYwAAAMWlQIHo22+/9Xh/ww03KDAwUK+99tpl70ADAAAoaQoUiNavX1/YfQAAADimQIEoz9GjR7Vnzx65XC7ddtttCgwMLKy+AAAAik2BLqo+deqU+vbtq6pVq+rBBx/UAw88oNDQUPXr10+nT58u7B4BAACKVIEC0dChQ5WQkKCPP/5Yx48f1/Hjx7Vq1SolJCRo2LBhhd0jAABAkSrQKbN//etfev/999W8eXN77OGHH5afn5+6du2q2bNnF1Z/AAAARa5AK0SnT59WcHBwvvGgoCBOmQEAgFKnQIEoMjJS48aN05kzZ+yxrKwsTZgwQZGRkYXWHAAAQHEo0CmzmTNnqn379qpWrZruvPNOuVwuJScny9fXV2vXri3sHgEAAIpUgQJRvXr1tHfvXi1dulQ//vijLMtS9+7d1bNnT/n5+RV2jwAAAEWqQIFoypQpCg4OVv/+/T3G3377bR09elQjR44slOYAAACKQ4GuIZo7d65uv/32fON16tTRnDlzrrkpAACA4lSgQJSWlqaqVavmGw8MDFRqauo1NwUAAFCcChSIwsLCtGnTpnzjmzZtUmho6DU3BQAAUJwKdA3R008/rZiYGJ09e1YPPfSQJOmLL77QiBEjeFI1AAAodQoUiEaMGKHff/9d0dHRysnJkSSVLVtWI0eO1OjRowu1QQAAgKJWoEDkcrk0depUjRkzRrt375afn58iIiLk6+tb2P0BAAAUuQIFojwVKlTQvffeW1i9AAAAOKJAF1UDAABcTwhEAADAeAQiAABgvBITiKZMmSKXy6WYmBh7zLIsjR8/XqGhofLz81Pz5s21a9cuj89lZ2dr0KBBqlKlisqXL6/OnTvr4MGDHjXp6emKioqS2+2W2+1WVFSUjh8/XgxHBQAASoMSEYiSkpI0b9481a9f32N82rRpmj59uuLi4pSUlKSQkBC1bt1aJ06csGtiYmK0cuVKrVixQhs3btTJkyfVsWNH5ebm2jU9evRQcnKy4uPjFR8fr+TkZEVFRRXb8QEAgJLN8UB08uRJ9ezZU/Pnz1elSpXsccuyNHPmTL344ovq0qWL6tatq8WLF+v06dNavny5JCkjI0MLFizQa6+9platWunuu+/W0qVL9d133+nzzz+XJO3evVvx8fF66623FBkZqcjISM2fP1+ffPKJ9uzZ48gxAwCAksXxQDRw4EB16NBBrVq18hhPSUlRWlqa2rRpY4/5+vqqWbNm2rx5syRpx44dOnv2rEdNaGio6tata9ds2bJFbrdbjRo1smsaN24st9tt11xMdna2MjMzPV4AAOD6dE3PIbpWK1as0DfffKOkpKR829LS0iRJwcHBHuPBwcH69ddf7ZoyZcp4rCzl1eR9Pi0tTUFBQfn2HxQUZNdczJQpUzRhwoSrOyAAAFAqObZCdODAAf3tb3/T0qVLVbZs2b+sc7lcHu8ty8o3dqELay5Wf7n9jB49WhkZGfbrwIEDl5wTAACUXo4Foh07dujIkSNq0KCBvL295e3trYSEBL3++uvy9va2V4YuXMU5cuSIvS0kJEQ5OTlKT0+/ZM3hw4fzzX/06NF8q09/5uvrq4oVK3q8AADA9cmxQNSyZUt99913Sk5Otl8NGzZUz549lZycrFtuuUUhISFat26d/ZmcnBwlJCSoSZMmkqQGDRrIx8fHoyY1NVXff/+9XRMZGamMjAxt27bNrtm6dasyMjLsGgAAYDbHriHy9/dX3bp1PcbKly+vgIAAezwmJkaxsbGKiIhQRESEYmNjVa5cOfXo0UOS5Ha71a9fPw0bNkwBAQGqXLmyhg8frnr16tkXadeuXVvt2rVT//79NXfuXEnSM888o44dO6pWrVrFeMQAAKCkcvSi6ssZMWKEsrKyFB0drfT0dDVq1Ehr166Vv7+/XTNjxgx5e3ura9euysrKUsuWLbVo0SJ5eXnZNcuWLdPgwYPtu9E6d+6suLi4Yj8eAABQMrksy7KcbqI0yMzMlNvtVkZGBtcTASjV2qwY7XQLpdra7lMKbV8zN3UrtH2ZKKbpu5etudI/vx1/DhEAAIDTCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA43k73QAAM9w1abzTLZRayS+Nd7oF4LrHChEAADAegQgAABjP0UA0ZcoU3XvvvfL391dQUJAeffRR7dmzx6PGsiyNHz9eoaGh8vPzU/PmzbVr1y6PmuzsbA0aNEhVqlRR+fLl1blzZx08eNCjJj09XVFRUXK73XK73YqKitLx48eL+hABAEAp4GggSkhI0MCBA5WYmKh169bp3LlzatOmjU6dOmXXTJs2TdOnT1dcXJySkpIUEhKi1q1b68SJE3ZNTEyMVq5cqRUrVmjjxo06efKkOnbsqNzcXLumR48eSk5OVnx8vOLj45WcnKyoqKhiPV4AAFAyOXpRdXx8vMf7hQsXKigoSDt27NCDDz4oy7I0c+ZMvfjii+rSpYskafHixQoODtby5cs1YMAAZWRkaMGCBVqyZIlatWolSVq6dKnCwsL0+eefq23bttq9e7fi4+OVmJioRo0aSZLmz5+vyMhI7dmzR7Vq1SreAwcAACVKibqGKCMjQ5JUuXJlSVJKSorS0tLUpk0bu8bX11fNmjXT5s2bJUk7duzQ2bNnPWpCQ0NVt25du2bLli1yu912GJKkxo0by+122zUXys7OVmZmpscLAABcn0pMILIsS0OHDtX999+vunXrSpLS0tIkScHBwR61wcHB9ra0tDSVKVNGlSpVumRNUFBQvjmDgoLsmgtNmTLFvt7I7XYrLCzs2g4QAACUWCUmED3//PPauXOn/vnPf+bb5nK5PN5blpVv7EIX1lys/lL7GT16tDIyMuzXgQMHruQwAABAKVQiAtGgQYP00Ucfaf369apWrZo9HhISIkn5VnGOHDlirxqFhIQoJydH6enpl6w5fPhwvnmPHj2ab/Upj6+vrypWrOjxAgAA1ydHA5FlWXr++ef1wQcf6Msvv1R4eLjH9vDwcIWEhGjdunX2WE5OjhISEtSkSRNJUoMGDeTj4+NRk5qaqu+//96uiYyMVEZGhrZt22bXbN26VRkZGXYNAAAwl6N3mQ0cOFDLly/XqlWr5O/vb68Eud1u+fn5yeVyKSYmRrGxsYqIiFBERIRiY2NVrlw59ejRw67t16+fhg0bpoCAAFWuXFnDhw9XvXr17LvOateurXbt2ql///6aO3euJOmZZ55Rx44ducMMAAA4G4hmz54tSWrevLnH+MKFC9WnTx9J0ogRI5SVlaXo6Gilp6erUaNGWrt2rfz9/e36GTNmyNvbW127dlVWVpZatmypRYsWycvLy65ZtmyZBg8ebN+N1rlzZ8XFxRXtAQIAgFLB0UBkWdZla1wul8aPH6/x48f/ZU3ZsmU1a9YszZo16y9rKleurKVLlxakTQAAcJ0rERdVAwAAOMnRFSKgqD0w4GWnWyi1vp47xukWAKDYsEIEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHj8bfdFoGPLF5xuodT65ItYp1sAABiIFSIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADCeUYHozTffVHh4uMqWLasGDRro66+/drolAABQAhgTiN59913FxMToxRdf1LfffqsHHnhA7du31/79+51uDQAAOMyYQDR9+nT169dPTz/9tGrXrq2ZM2cqLCxMs2fPdro1AADgMCMCUU5Ojnbs2KE2bdp4jLdp00abN292qCsAAFBSeDvdQHH47bfflJubq+DgYI/x4OBgpaWlXfQz2dnZys7Ott9nZGRIkjIzMy8739lz2ZetwcVdyfd7Nc7lnCnU/ZmksH+L3DP8e1FQhf7vxWl+i2tRmL/HmVNnC21fJrqS3yKvxrKsS9YZEYjyuFwuj/eWZeUbyzNlyhRNmDAh33hYWFiR9IY/uN3TnW4B/8e9KNbpFvB/3JP/7nQL+BN3vxlOt4D/M1orr7j2xIkTcrvdf7ndiEBUpUoVeXl55VsNOnLkSL5VozyjR4/W0KFD7ffnz5/X77//roCAgL8MUSVdZmamwsLCdODAAVWsWNHpdozH71Fy8FuUHPwWJcf18ltYlqUTJ04oNDT0knVGBKIyZcqoQYMGWrdunf7rv/7LHl+3bp0eeeSRi37G19dXvr6+HmM33nhjUbZZbCpWrFiq/8d9veH3KDn4LUoOfouS43r4LS61MpTHiEAkSUOHDlVUVJQaNmyoyMhIzZs3T/v379ezzz7rdGsAAMBhxgSibt266dixY5o4caJSU1NVt25drV69WjVq1HC6NQAA4DBjApEkRUdHKzo62uk2HOPr66tx48blOxUIZ/B7lBz8FiUHv0XJYdpv4bIudx8aAADAdc6IBzMCAABcCoEIAAAYj0AEAACMRyACAADGIxAZ4quvvlKnTp0UGhoql8ulDz/80OmWjDRlyhTde++98vf3V1BQkB599FHt2bPH6baMNHv2bNWvX99+6FxkZKTWrFnjdFvQH/+euFwuxcTEON2KkcaPHy+Xy+XxCgkJcbqtIkcgMsSpU6d05513Ki4uzulWjJaQkKCBAwcqMTFR69at07lz59SmTRudOnXK6daMU61aNf3973/X9u3btX37dj300EN65JFHtGvXLqdbM1pSUpLmzZun+vXrO92K0erUqaPU1FT79d133zndUpEz6jlEJmvfvr3at2/vdBvGi4+P93i/cOFCBQUFaceOHXrwwQcd6spMnTp18ng/efJkzZ49W4mJiapTp45DXZnt5MmT6tmzp+bPn69JkyY53Y7RvL29jVgV+jNWiAAHZWRkSJIqV67scCdmy83N1YoVK3Tq1ClFRkY63Y6xBg4cqA4dOqhVq1ZOt2K8vXv3KjQ0VOHh4erevbv+/e9/O91SkWOFCHCIZVkaOnSo7r//ftWtW9fpdoz03XffKTIyUmfOnFGFChW0cuVK3XHHHU63ZaQVK1bom2++UVJSktOtGK9Ro0Z65513dNttt+nw4cOaNGmSmjRpol27dikgIMDp9ooMgQhwyPPPP6+dO3dq48aNTrdirFq1aik5OVnHjx/Xv/71L/Xu3VsJCQmEomJ24MAB/e1vf9PatWtVtmxZp9sx3p8vr6hXr54iIyN16623avHixRo6dKiDnRUtAhHggEGDBumjjz7SV199pWrVqjndjrHKlCmjmjVrSpIaNmyopKQk/eMf/9DcuXMd7swsO3bs0JEjR9SgQQN7LDc3V1999ZXi4uKUnZ0tLy8vBzs0W/ny5VWvXj3t3bvX6VaKFIEIKEaWZWnQoEFauXKlNmzYoPDwcKdbwp9YlqXs7Gyn2zBOy5Yt893F9NRTT+n222/XyJEjCUMOy87O1u7du/XAAw843UqRIhAZ4uTJk/r555/t9ykpKUpOTlblypVVvXp1Bzszy8CBA7V8+XKtWrVK/v7+SktLkyS53W75+fk53J1ZXnjhBbVv315hYWE6ceKEVqxYoQ0bNuS7ExBFz9/fP991dOXLl1dAQADX1zlg+PDh6tSpk6pXr64jR45o0qRJyszMVO/evZ1urUgRiAyxfft2tWjRwn6fdx64d+/eWrRokUNdmWf27NmSpObNm3uML1y4UH369Cn+hgx2+PBhRUVFKTU1VW63W/Xr11d8fLxat27tdGuAow4ePKgnn3xSv/32mwIDA9W4cWMlJiaqRo0aTrdWpFyWZVlONwEAAOAknkMEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgA/s++ffvkcrmUnJzsdCsAihmBCECp06dPH7lcLrlcLnl7e6t69ep67rnnlJ6eflX7ePTRRz3GwsLClJqayl8XARiIQASgVGrXrp1SU1O1b98+vfXWW/r4448VHR19Tfv08vJSSEiIvL35W40A0xCIAJRKvr6+CgkJUbVq1dSmTRt169ZNa9eulSTl5uaqX79+Cg8Pl5+fn2rVqqV//OMf9mfHjx+vxYsXa9WqVfZK04YNG/KdMtuwYYNcLpe++OILNWzYUOXKlVOTJk20Z88ej14mTZqkoKAg+fv76+mnn9aoUaN01113FddXAaAQEIgAlHr//ve/FR8fLx8fH0nS+fPnVa1aNb333nv64YcfNHbsWL3wwgt67733JP3xt3l37drVXmVKTU1VkyZN/nL/L774ol577TVt375d3t7e6tu3r71t2bJlmjx5sqZOnaodO3aoevXq9l/iC6D0YF0YQKn0ySefqEKFCsrNzdWZM2ckSdOnT5ck+fj4aMKECXZteHi4Nm/erPfee09du3ZVhQoV5Ofnp+zsbIWEhFx2rsmTJ6tZs2aSpFGjRqlDhw46c+aMypYtq1mzZqlfv3566qmnJEljx47V2rVrdfLkycI+ZABFiBUiAKVSixYtlJycrK1bt2rQoEFq27atBg0aZG+fM2eOGjZsqMDAQFWoUEHz58/X/v37CzRX/fr17X+uWrWqJOnIkSOSpD179ui+++7zqL/wPYCSj0AEoFQqX768atasqfr16+v1119Xdna2vSr03nvvaciQIerbt6/Wrl2r5ORkPfXUU8rJySnQXHmn4iTJ5XJJ+uO03IVjeSzLKtA8AJxDIAJwXRg3bpxeffVVHTp0SF9//bWaNGmi6Oho3X333apZs6Z++eUXj/oyZcooNzf3muetVauWtm3b5jG2ffv2a94vgOJFIAJwXWjevLnq1Kmj2NhY1axZU9u3b9dnn32mn376SWPGjFFSUpJH/c0336ydO3dqz549+u2333T27NkCzTto0CAtWLBAixcv1t69ezVp0iTt3Lkz36oRgJKNQATgujF06FDNnz9fjz76qLp06aJu3bqpUaNGOnbsWL5nFPXv31+1atWyrzPatGlTgebs2bOnRo8ereHDh+uee+5RSkqK+vTpo7JlyxbGIQEoJi6Lk90AUKhat26tkJAQLVmyxOlWAFwhbrsHgGtw+vRpzZkzR23btpWXl5f++c9/6vPPP9e6deucbg3AVWCFCACuQVZWljp16qRvvvlG2dnZqlWrll566SV16dLF6dYAXAUCEQAAMB4XVQMAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4/1/Ue35xFMxVB4AAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxoElEQVR4nO3de3zP9f//8ft7m53MNsfNWCwq5lSIlpK0j5GUQqklSnzSRiPC91NOpaFPyemDSub3iSKlRGGRKebQpFCJmii2dWBz2rC9fn98v14X7yaH2fbaPG/Xy+V9uXg9n4/36/V4vd9qd6/TXJZlWQIAADCYh9MNAAAAOI1ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AE4LKNGTNGLpfL6TYuWrt27dSuXbtS2ZbL5dKYMWPs5TOf1e+//14q269bt6769OlTKtsCyjMCEXAFSkpKksvlsl9eXl6qVauW+vTpo19//bVI6zx+/LjGjBmjtWvXFm+zl6lPnz5u+xoQEKCrr75a3bt313vvvaeCgoJi2c6GDRs0ZswYHT58uFjWV5zKcm9AeeHldAMASs64ceMUERGh3Nxcbdy4UUlJSfriiy+0Y8cO+fr6XtK6jh8/rrFjx0pSoaMrzz77rEaMGFFcbV8yHx8fvfHGG5KkEydO6Oeff9ZHH32k7t27q127dvrwww8VGBho169ateqSt7FhwwaNHTtWffr0UXBw8EW/78SJE/LyKtn/1Z6vt127dsnDg3/7AhdCIAKuYJ06dVLLli0lSY8//riqVaumiRMnaunSpbr//vuLbTteXl4l/kP/Qtt/+OGH3cZeeOEFTZgwQSNHjlS/fv20cOFCe87b27tE+ykoKNDJkyfl6+t7ycGzuPn4+Di6faC84J8NgEFuvfVWSdKPP/5oj508eVKjRo1SixYtFBQUpIoVK+rWW2/VZ599Ztfs3btX1atXlySNHTvWPj115tqYc11D5HK5FB8frw8++ECNGzeWj4+PGjVqpBUrVhTqa+3atWrZsqV8fX1Vr149zZ49u1iuSxoxYoQ6dOigd999Vz/88IM9fq5riKZNm6ZGjRrJ399flStXVsuWLbVgwQJ7/4YNGyZJioiIsPd/7969bvs6f/58NWrUSD4+PvZ+/vUaojN+//133X///QoMDFTVqlX11FNPKTc3157fu3evXC6XkpKSCr33r5/9+Xo71zVEP/30k3r06KEqVarI399fN910k5YvX+5Ws3btWrlcLi1atEjjx49X7dq15evrqzvuuEN79uz5288cKK84QgQY5MwPycqVK9tjOTk5euONN/Tggw+qX79+OnLkiObMmaOYmBht3rxZ119/vapXr66ZM2dqwIABuvfee3XfffdJkpo2bXre7X3xxRd6//339eSTT6pSpUqaOnWqunXrpn379qlq1aqSpK+++kodO3ZUzZo1NXbsWOXn52vcuHF2ALtcvXr10qpVq5ScnKxrr732nDWvv/66Bg0apO7du9vB5JtvvtGmTZv00EMP6b777tMPP/ygt99+W5MnT1a1atUkya3HNWvWaNGiRYqPj1e1atVUt27d8/Z1//33q27dukpMTNTGjRs1depUHTp0SP/v//2/S9q/i+ntbJmZmbr55pt1/PhxDRo0SFWrVtW8efN09913a/Hixbr33nvd6idMmCAPDw8NHTpU2dnZmjRpkmJjY7Vp06ZL6hMo8ywAV5y5c+dakqxPP/3U+u2336z9+/dbixcvtqpXr275+PhY+/fvt2tPnz5t5eXlub3/0KFDVkhIiPXYY4/ZY7/99pslyRo9enSh7Y0ePdr66/9OJFne3t7Wnj177LGvv/7akmRNmzbNHuvSpYvl7+9v/frrr/bY7t27LS8vr0LrPJfevXtbFStW/Nv5r776ypJkDR482B677bbbrNtuu81evueee6xGjRqddzsvvfSSJclKT08vNCfJ8vDwsHbu3HnOubM/szOf1d133+1W9+STT1qSrK+//tqyLMtKT0+3JFlz58694DrP11udOnWs3r1728sJCQmWJOvzzz+3x44cOWJFRERYdevWtfLz8y3LsqzPPvvMkmQ1bNjQ7e/HlClTLEnW9u3bC20LKM84ZQZcwaKjo1W9enWFh4ere/fuqlixopYuXaratWvbNZ6envY1NQUFBfrzzz91+vRptWzZUlu3br3s7derV89ebtq0qQIDA/XTTz9JkvLz8/Xpp5+qa9euCgsLs+vq16+vTp06Xda2zwgICJAkHTly5G9rgoOD9csvv2jLli1F3s5tt92myMjIi66Pi4tzWx44cKAk6eOPPy5yDxfj448/VqtWrXTLLbfYYwEBAerfv7/27t2rb7/91q3+0Ucfdbvm6sxp1zPfIXClIBABV7AZM2YoOTlZixcv1p133qnff//9nBfZzps3T02bNpWvr6+qVq2q6tWra/ny5crOzr6s7V911VWFxipXrqxDhw5JkrKysnTixAnVr1+/UN25xori6NGjkqRKlSr9bc3w4cMVEBCgVq1a6ZprrlFcXJzWr19/SduJiIi4pPprrrnGbblevXry8PCwT2uWlJ9//lnXXXddofGGDRva82f763d45nTrme8QuFIQiIArWKtWrRQdHa1u3bpp6dKlaty4sR566CE7JEjSW2+9pT59+qhevXqaM2eOVqxYoeTkZLVv3/6yn+Hj6el5znHLsi5rvZdix44dks4fsBo2bKhdu3bpnXfe0S233KL33ntPt9xyi0aPHn3R2/Hz87usPs91Ufq55OfnX9Z2LlVZ+A6B0kAgAgzh6empxMREHThwQNOnT7fHFy9erKuvvlrvv/++evXqpZiYGEVHR7vd8ST9/Q/oy1GjRg35+vqe866l4rqT6b///a9cLpf+8Y9/nLeuYsWKeuCBBzR37lzt27dPnTt31vjx4+3Pobj3f/fu3W7Le/bsUUFBgX0x9pkjMX992OJfj+Bcam916tTRrl27Co1///339jxgIgIRYJB27dqpVatWevXVV+0f9GeOAJz9L/5NmzYpNTXV7b3+/v6SCv+Avhyenp6Kjo7WBx98oAMHDtjje/bs0SeffHLZ658wYYJWrVqlBx54oNApqrP98ccfbsve3t6KjIyUZVk6deqUpP8NTFLx7f+MGTPclqdNmyZJ9rVTgYGBqlatmtatW+dW95///KfQui6ltzvvvFObN292+36PHTum1157TXXr1r2k66CAKwm33QOGGTZsmHr06KGkpCQ98cQTuuuuu/T+++/r3nvvVefOnZWenq5Zs2YpMjLS7dSan5+fIiMjtXDhQl177bWqUqWKGjdurMaNG19WP2PGjNGqVavUpk0bDRgwQPn5+Zo+fboaN26sbdu2XdQ6Tp8+rbfeekuSlJubq59//llLly7VN998o9tvv12vvfbaed/foUMHhYaGqk2bNgoJCdF3332n6dOnq3Pnzva1Ry1atJAk/etf/1LPnj1VoUIFdenSxQ4jlyo9PV133323OnbsqNTUVL311lt66KGH1KxZM7vm8ccf14QJE/T444+rZcuWWrdundvzlM64lN5GjBiht99+W506ddKgQYNUpUoVzZs3T+np6Xrvvfd4qjXM5exNbgBKwpnb7rds2VJoLj8/36pXr55Vr1496/Tp01ZBQYH14osvWnXq1LF8fHysG264wVq2bJnVu3dvq06dOm7v3bBhg9WiRQvL29vb7dbvv7vtPi4urtD2/3obuGVZ1urVq60bbrjB8vb2turVq2e98cYb1tNPP235+vpecF979+5tSbJf/v7+Vt26da1u3bpZixcvtm8jP9tfb7ufPXu21bZtW6tq1aqWj4+PVa9ePWvYsGFWdna22/uef/55q1atWpaHh4fbbe5/t69n5s512/23335rde/e3apUqZJVuXJlKz4+3jpx4oTbe48fP2717dvXCgoKsipVqmTdf//9VlZW1jkff/B3vZ3r8/7xxx+t7t27W8HBwZavr6/VqlUra9myZW41Z267f/fdd93Gz/c4AKA8c1kWV8YBKHu6du2qnTt3FrrWBgBKAsdGATjuxIkTbsu7d+/Wxx9/XOjXawBASeEIEQDH1axZU3369NHVV1+tn3/+WTNnzlReXp6++uqr814MDQDFhYuqATiuY8eOevvtt5WRkSEfHx9FRUXpxRdfJAwBKDUcIQIAAMbjGiIAAGA8AhEAADAe1xBdhIKCAh04cECVKlUqkV9fAAAAip9lWTpy5IjCwsIu+NBRAtFFOHDggMLDw51uAwAAFMH+/ftVu3bt89YQiC7CmUf379+/X4GBgQ53AwAALkZOTo7Cw8Ptn+PnQyC6CGdOkwUGBhKIAAAoZy7mchcuqgYAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYz8vpBgAAMNWr6x9wuoVyK6HNwmJdH0eIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8RwNRfn6+nnvuOUVERMjPz0/16tXT888/L8uy7BrLsjRq1CjVrFlTfn5+io6O1u7du93W8+effyo2NlaBgYEKDg5W3759dfToUbeab775Rrfeeqt8fX0VHh6uSZMmlco+AgCAss/RQDRx4kTNnDlT06dP13fffaeJEydq0qRJmjZtml0zadIkTZ06VbNmzdKmTZtUsWJFxcTEKDc3166JjY3Vzp07lZycrGXLlmndunXq37+/PZ+Tk6MOHTqoTp06SktL00svvaQxY8botddeK9X9BQAAZZPLOvtwTCm76667FBISojlz5thj3bp1k5+fn9566y1ZlqWwsDA9/fTTGjp0qCQpOztbISEhSkpKUs+ePfXdd98pMjJSW7ZsUcuWLSVJK1as0J133qlffvlFYWFhmjlzpv71r38pIyND3t7ekqQRI0bogw8+0Pfff3/BPnNychQUFKTs7GwFBgaWwCcBADDRq+sfcLqFciuhzcIL1lzKz29HjxDdfPPNWr16tX744QdJ0tdff60vvvhCnTp1kiSlp6crIyND0dHR9nuCgoLUunVrpaamSpJSU1MVHBxshyFJio6OloeHhzZt2mTXtG3b1g5DkhQTE6Ndu3bp0KFDJb6fAACgbPNycuMjRoxQTk6OGjRoIE9PT+Xn52v8+PGKjY2VJGVkZEiSQkJC3N4XEhJiz2VkZKhGjRpu815eXqpSpYpbTURERKF1nJmrXLmy21xeXp7y8vLs5ZycnMvdVQAAUIY5eoRo0aJFmj9/vhYsWKCtW7dq3rx5+ve//6158+Y52ZYSExMVFBRkv8LDwx3tBwAAlCxHA9GwYcM0YsQI9ezZU02aNFGvXr00ePBgJSYmSpJCQ0MlSZmZmW7vy8zMtOdCQ0OVlZXlNn/69Gn9+eefbjXnWsfZ2zjbyJEjlZ2dbb/2799fDHsLAADKKkcD0fHjx+Xh4d6Cp6enCgoKJEkREREKDQ3V6tWr7fmcnBxt2rRJUVFRkqSoqCgdPnxYaWlpds2aNWtUUFCg1q1b2zXr1q3TqVOn7Jrk5GRdd911hU6XSZKPj48CAwPdXgAA4MrlaCDq0qWLxo8fr+XLl2vv3r1asmSJXnnlFd17772SJJfLpYSEBL3wwgtaunSptm/frkceeURhYWHq2rWrJKlhw4bq2LGj+vXrp82bN2v9+vWKj49Xz549FRYWJkl66KGH5O3trb59+2rnzp1auHChpkyZoiFDhji16wAAoAxx9KLqadOm6bnnntOTTz6prKwshYWF6Z///KdGjRpl1zzzzDM6duyY+vfvr8OHD+uWW27RihUr5Ovra9fMnz9f8fHxuuOOO+Th4aFu3bpp6tSp9nxQUJBWrVqluLg4tWjRQtWqVdOoUaPcnlUEAADM5ehziMoLnkMEACgJPIeo6K6o5xABAACUBQQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMJ7jgejXX3/Vww8/rKpVq8rPz09NmjTRl19+ac9blqVRo0apZs2a8vPzU3R0tHbv3u22jj///FOxsbEKDAxUcHCw+vbtq6NHj7rVfPPNN7r11lvl6+ur8PBwTZo0qVT2DwAAlH2OBqJDhw6pTZs2qlChgj755BN9++23evnll1W5cmW7ZtKkSZo6dapmzZqlTZs2qWLFioqJiVFubq5dExsbq507dyo5OVnLli3TunXr1L9/f3s+JydHHTp0UJ06dZSWlqaXXnpJY8aM0WuvvVaq+wsAAMoml2VZllMbHzFihNavX6/PP//8nPOWZSksLExPP/20hg4dKknKzs5WSEiIkpKS1LNnT3333XeKjIzUli1b1LJlS0nSihUrdOedd+qXX35RWFiYZs6cqX/961/KyMiQt7e3ve0PPvhA33///QX7zMnJUVBQkLKzsxUYGFhMew8AMN2r6x9wuoVyK6HNwgvWXMrPb6/iaqwoli5dqpiYGPXo0UMpKSmqVauWnnzySfXr10+SlJ6eroyMDEVHR9vvCQoKUuvWrZWamqqePXsqNTVVwcHBdhiSpOjoaHl4eGjTpk269957lZqaqrZt29phSJJiYmI0ceJEHTp0yO2IlCTl5eUpLy/PXs7JySmpjwAASl2Hd0Y63UK5tapnotMtoIQ4esrsp59+0syZM3XNNddo5cqVGjBggAYNGqR58+ZJkjIyMiRJISEhbu8LCQmx5zIyMlSjRg23eS8vL1WpUsWt5lzrOHsbZ0tMTFRQUJD9Cg8PL4a9BQAAZZWjgaigoEDNmzfXiy++qBtuuEH9+/dXv379NGvWLCfb0siRI5WdnW2/9u/f72g/AACgZDkaiGrWrKnIyEi3sYYNG2rfvn2SpNDQUElSZmamW01mZqY9FxoaqqysLLf506dP688//3SrOdc6zt7G2Xx8fBQYGOj2AgAAVy5HA1GbNm20a9cut7EffvhBderUkSRFREQoNDRUq1evtudzcnK0adMmRUVFSZKioqJ0+PBhpaWl2TVr1qxRQUGBWrdubdesW7dOp06dsmuSk5N13XXXFbp+CAAAmMfRQDR48GBt3LhRL774ovbs2aMFCxbotddeU1xcnCTJ5XIpISFBL7zwgpYuXart27frkUceUVhYmLp27Srpf48odezYUf369dPmzZu1fv16xcfHq2fPngoLC5MkPfTQQ/L29lbfvn21c+dOLVy4UFOmTNGQIUOc2nUAAFCGOHqX2Y033qglS5Zo5MiRGjdunCIiIvTqq68qNjbWrnnmmWd07Ngx9e/fX4cPH9Ytt9yiFStWyNfX166ZP3++4uPjdccdd8jDw0PdunXT1KlT7fmgoCCtWrVKcXFxatGihapVq6ZRo0a5PasIAACYy9HnEJUXPIcIwJWE2+6Lrrhvu+c5REVX3M8hcvxXdwAAADiNQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABivSIGoffv2Onz4cKHxnJwctW/f/nJ7AgAAKFVFCkRr167VyZMnC43n5ubq888/v+ymAAAASpPXpRR/88039p+//fZbZWRk2Mv5+flasWKFatWqVXzdAQAAlIJLCkTXX3+9XC6XXC7XOU+N+fn5adq0acXWHAAAQGm4pECUnp4uy7J09dVXa/Pmzapevbo95+3trRo1asjT07PYmwQAAChJlxSI6tSpI0kqKCgokWYAAACccEmB6Gy7d+/WZ599pqysrEIBadSoUZfdGAAAQGkpUiB6/fXXNWDAAFWrVk2hoaFyuVz2nMvlIhABAIBypUiB6IUXXtD48eM1fPjw4u4HAACg1BXpOUSHDh1Sjx49irsXAAAARxQpEPXo0UOrVq0q7l4AAAAcUaRTZvXr19dzzz2njRs3qkmTJqpQoYLb/KBBg4qlOQAAgNJQpED02muvKSAgQCkpKUpJSXGbc7lcBCIAAFCuFCkQpaenF3cfAAAAjinSNUQAAABXkiIdIXrsscfOO//mm28WqRkAAAAnFCkQHTp0yG351KlT2rFjhw4fPnzOX/oKAABQlhUpEC1ZsqTQWEFBgQYMGKB69epddlMAAAClqdiuIfLw8NCQIUM0efLk4lolAABAqSjWi6p//PFHnT59ujhXCQAAUOKKdMpsyJAhbsuWZengwYNavny5evfuXSyNAQAAlJYiBaKvvvrKbdnDw0PVq1fXyy+/fME70AAAAMqaIgWizz77rLj7AAAAcEyRAtEZv/32m3bt2iVJuu6661S9evViaQoAAKA0Femi6mPHjumxxx5TzZo11bZtW7Vt21ZhYWHq27evjh8/Xtw9AgAAlKgiBaIhQ4YoJSVFH330kQ4fPqzDhw/rww8/VEpKip5++uni7hEAAKBEFemU2XvvvafFixerXbt29tidd94pPz8/3X///Zo5c2Zx9QcAAFDiinSE6Pjx4woJCSk0XqNGDU6ZAQCAcqdIgSgqKkqjR49Wbm6uPXbixAmNHTtWUVFRxdYcAABAaSjSKbNXX31VHTt2VO3atdWsWTNJ0tdffy0fHx+tWrWqWBsEAAAoaUUKRE2aNNHu3bs1f/58ff/995KkBx98ULGxsfLz8yvWBgEAAEpakQJRYmKiQkJC1K9fP7fxN998U7/99puGDx9eLM0BAACUhiJdQzR79mw1aNCg0HijRo00a9asy24KAACgNBUpEGVkZKhmzZqFxqtXr66DBw9edlMAAAClqUiBKDw8XOvXry80vn79eoWFhV12UwAAAKWpSNcQ9evXTwkJCTp16pTat28vSVq9erWeeeYZnlQNAADKnSIFomHDhumPP/7Qk08+qZMnT0qSfH19NXz4cI0cObJYGwQAAChpRQpELpdLEydO1HPPPafvvvtOfn5+uuaaa+Tj41Pc/QEAAJS4IgWiMwICAnTjjTcWVy8AAACOKNJF1QAAAFcSAhEAADAegQgAABivzASiCRMmyOVyKSEhwR7Lzc1VXFycqlatqoCAAHXr1k2ZmZlu79u3b586d+4sf39/1ahRQ8OGDdPp06fdatauXavmzZvLx8dH9evXV1JSUinsEQAAKC/KRCDasmWLZs+eraZNm7qNDx48WB999JHeffddpaSk6MCBA7rvvvvs+fz8fHXu3FknT57Uhg0bNG/ePCUlJWnUqFF2TXp6ujp37qzbb79d27ZtU0JCgh5//HGtXLmy1PYPAACUbY4HoqNHjyo2Nlavv/66KleubI9nZ2drzpw5euWVV9S+fXu1aNFCc+fO1YYNG7Rx40ZJ0qpVq/Ttt9/qrbfe0vXXX69OnTrp+eef14wZM+znI82aNUsRERF6+eWX1bBhQ8XHx6t79+6aPHmyI/sLAADKHscDUVxcnDp37qzo6Gi38bS0NJ06dcptvEGDBrrqqquUmpoqSUpNTVWTJk0UEhJi18TExCgnJ0c7d+60a/667piYGHsd55KXl6ecnBy3FwAAuHJd1nOILtc777yjrVu3asuWLYXmMjIy5O3treDgYLfxkJAQZWRk2DVnh6Ez82fmzleTk5OjEydOyM/Pr9C2ExMTNXbs2CLvFwAAKF8cO0K0f/9+PfXUU5o/f758fX2dauOcRo4cqezsbPu1f/9+p1sCAAAlyLFAlJaWpqysLDVv3lxeXl7y8vJSSkqKpk6dKi8vL4WEhOjkyZM6fPiw2/syMzMVGhoqSQoNDS1019mZ5QvVBAYGnvPokCT5+PgoMDDQ7QUAAK5cjgWiO+64Q9u3b9e2bdvsV8uWLRUbG2v/uUKFClq9erX9nl27dmnfvn2KioqSJEVFRWn79u3Kysqya5KTkxUYGKjIyEi75ux1nKk5sw4AAADHriGqVKmSGjdu7DZWsWJFVa1a1R7v27evhgwZoipVqigwMFADBw5UVFSUbrrpJklShw4dFBkZqV69emnSpEnKyMjQs88+q7i4OPsXzT7xxBOaPn26nnnmGT322GNas2aNFi1apOXLl5fuDgMAgDLL0YuqL2Ty5Mny8PBQt27dlJeXp5iYGP3nP/+x5z09PbVs2TINGDBAUVFRqlixonr37q1x48bZNREREVq+fLkGDx6sKVOmqHbt2nrjjTcUExPjxC4BAIAyyGVZluV0E2VdTk6OgoKClJ2dzfVEAMq9Du+MdLqFcmtVz8RiXd+r6x8o1vWZJKHNwgvWXMrPb8efQwQAAOA0AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeF5ONwDADNe/MMbpFsqtbc+OcboF4IrHESIAAGA8AhEAADCeo4EoMTFRN954oypVqqQaNWqoa9eu2rVrl1tNbm6u4uLiVLVqVQUEBKhbt27KzMx0q9m3b586d+4sf39/1ahRQ8OGDdPp06fdatauXavmzZvLx8dH9evXV1JSUknvHgAAKCccDUQpKSmKi4vTxo0blZycrFOnTqlDhw46duyYXTN48GB99NFHevfdd5WSkqIDBw7ovvvus+fz8/PVuXNnnTx5Uhs2bNC8efOUlJSkUaNG2TXp6enq3Lmzbr/9dm3btk0JCQl6/PHHtXLlylLdXwAAUDY5elH1ihUr3JaTkpJUo0YNpaWlqW3btsrOztacOXO0YMECtW/fXpI0d+5cNWzYUBs3btRNN92kVatW6dtvv9Wnn36qkJAQXX/99Xr++ec1fPhwjRkzRt7e3po1a5YiIiL08ssvS5IaNmyoL774QpMnT1ZMTEyp7zcAAChbytQ1RNnZ2ZKkKlWqSJLS0tJ06tQpRUdH2zUNGjTQVVddpdTUVElSamqqmjRpopCQELsmJiZGOTk52rlzp11z9jrO1JxZx1/l5eUpJyfH7QUAAK5cZSYQFRQUKCEhQW3atFHjxo0lSRkZGfL29lZwcLBbbUhIiDIyMuyas8PQmfkzc+erycnJ0YkTJwr1kpiYqKCgIPsVHh5eLPsIAADKpjITiOLi4rRjxw698847TreikSNHKjs7237t37/f6ZYAAEAJKhMPZoyPj9eyZcu0bt061a5d2x4PDQ3VyZMndfjwYbejRJmZmQoNDbVrNm/e7La+M3ehnV3z1zvTMjMzFRgYKD8/v0L9+Pj4yMfHp1j2DQAAlH2OHiGyLEvx8fFasmSJ1qxZo4iICLf5Fi1aqEKFClq9erU9tmvXLu3bt09RUVGSpKioKG3fvl1ZWVl2TXJysgIDAxUZGWnXnL2OMzVn1gEAAMzm6BGiuLg4LViwQB9++KEqVapkX/MTFBQkPz8/BQUFqW/fvhoyZIiqVKmiwMBADRw4UFFRUbrpppskSR06dFBkZKR69eqlSZMmKSMjQ88++6zi4uLsozxPPPGEpk+frmeeeUaPPfaY1qxZo0WLFmn58uWO7TsAACg7HD1CNHPmTGVnZ6tdu3aqWbOm/Vq4cKFdM3nyZN11113q1q2b2rZtq9DQUL3//vv2vKenp5YtWyZPT09FRUXp4Ycf1iOPPKJx48bZNREREVq+fLmSk5PVrFkzvfzyy3rjjTe45R4AAEhy+AiRZVkXrPH19dWMGTM0Y8aMv62pU6eOPv744/Oup127dvrqq68uuUcAAHDlKzN3mQEAADilTNxlBpSUW//5vNMtlFufz37O6RYAoNRwhAgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8fht98Xsrjv+x+kWyrVlq190ugUAgIE4QgQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYjEAEAAOMRiAAAgPEIRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAAIDxCEQAAMB4BCIAAGA8AhEAADAegQgAABiPQAQAAIxHIAIAAMYzKhDNmDFDdevWla+vr1q3bq3Nmzc73RIAACgDjAlECxcu1JAhQzR69Ght3bpVzZo1U0xMjLKyspxuDQAAOMyYQPTKK6+oX79+evTRRxUZGalZs2bJ399fb775ptOtAQAAhxkRiE6ePKm0tDRFR0fbYx4eHoqOjlZqaqqDnQEAgLLAy+kGSsPvv/+u/Px8hYSEuI2HhITo+++/L1Sfl5envLw8ezk7O1uSlJOTc8FtnTqdd8Ea/L2L+YwvxemTucW6PpMU93eRn8t/G0VV7P9dHOe7KKri/i5yj50q1vWZ5GK+izM1lmVdsNaIQHSpEhMTNXbs2ELj4eHhDnRjlqCgV5xuAf8nKOlFp1vA/wkaP8HpFvB/gvpOdroF/J+RWnLRtUeOHFFQUNB5a4wIRNWqVZOnp6cyMzPdxjMzMxUaGlqofuTIkRoyZIi9XFBQoD///FNVq1aVy+Uq8X5LSk5OjsLDw7V//34FBgY63Y7R+C7KDr6LsoXvo+y4Er4Ly7J05MgRhYWFXbDWiEDk7e2tFi1aaPXq1eratauk/w05q1evVnx8fKF6Hx8f+fj4uI0FBweXQqelIzAwsNz+5b7S8F2UHXwXZQvfR9lR3r+LCx0ZOsOIQCRJQ4YMUe/evdWyZUu1atVKr776qo4dO6ZHH33U6dYAAIDDjAlEDzzwgH777TeNGjVKGRkZuv7667VixYpCF1oDAADzGBOIJCk+Pv6cp8hM4ePjo9GjRxc6HYjSx3dRdvBdlC18H2WHad+Fy7qYe9EAAACuYEY8mBEAAOB8CEQAAMB4BCIAAGA8AhEAADAegcgA69atU5cuXRQWFiaXy6UPPvjA6ZaMlZiYqBtvvFGVKlVSjRo11LVrV+3atcvptow0c+ZMNW3a1H7oXFRUlD755BOn24KkCRMmyOVyKSEhwelWjDNmzBi5XC63V4MGDZxuq1QQiAxw7NgxNWvWTDNmzHC6FeOlpKQoLi5OGzduVHJysk6dOqUOHTro2LFjTrdmnNq1a2vChAlKS0vTl19+qfbt2+uee+7Rzp07nW7NaFu2bNHs2bPVtGlTp1sxVqNGjXTw4EH79cUXXzjdUqkw6jlEpurUqZM6derkdBuQtGLFCrflpKQk1ahRQ2lpaWrbtq1DXZmpS5cubsvjx4/XzJkztXHjRjVq1Mihrsx29OhRxcbG6vXXX9cLL7zgdDvG8vLyOufv+bzScYQIcFB2drYkqUqVKg53Yrb8/Hy98847OnbsmKKiopxux1hxcXHq3LmzoqOjnW7FaLt371ZYWJiuvvpqxcbGat++fU63VCo4QgQ4pKCgQAkJCWrTpo0aN27sdDtG2r59u6KiopSbm6uAgAAtWbJEkZGRTrdlpHfeeUdbt27Vli1bnG7FaK1bt1ZSUpKuu+46HTx4UGPHjtWtt96qHTt2qFKlSk63V6IIRIBD4uLitGPHDmPOz5dF1113nbZt26bs7GwtXrxYvXv3VkpKCqGolO3fv19PPfWUkpOT5evr63Q7Rjv78oqmTZuqdevWqlOnjhYtWqS+ffs62FnJIxABDoiPj9eyZcu0bt061a5d2+l2jOXt7a369etLklq0aKEtW7ZoypQpmj17tsOdmSUtLU1ZWVlq3ry5PZafn69169Zp+vTpysvLk6enp4Mdmis4OFjXXnut9uzZ43QrJY5ABJQiy7I0cOBALVmyRGvXrlVERITTLeEsBQUFysvLc7oN49xxxx3avn2729ijjz6qBg0aaPjw4YQhBx09elQ//vijevXq5XQrJY5AZICjR4+6pfv09HRt27ZNVapU0VVXXeVgZ+aJi4vTggUL9OGHH6pSpUrKyMiQJAUFBcnPz8/h7swycuRIderUSVdddZWOHDmiBQsWaO3atVq5cqXTrRmnUqVKha6jq1ixoqpWrcr1daVs6NCh6tKli+rUqaMDBw5o9OjR8vT01IMPPuh0ayWOQGSAL7/8Urfffru9PGTIEElS7969lZSU5FBXZpo5c6YkqV27dm7jc+fOVZ8+fUq/IYNlZWXpkUce0cGDBxUUFKSmTZtq5cqV+sc//uF0a4BjfvnlFz344IP6448/VL16dd1yyy3auHGjqlev7nRrJc5lWZbldBMAAABO4jlEAADAeAQiAABgPAIRAAAwHoEIAAAYj0AEAACMRyACAADGIxABAADjEYgAQNLatWvlcrl0+PBhp1sB4AACEYBypU+fPnK5XHK5XKpQoYIiIiL0zDPPKDc396LX0a5dOyUkJLiN3XzzzfZTqwGYh1/dAaDc6dixo+bOnatTp04pLS1NvXv3lsvl0sSJE4u8Tm9vb4WGhhZjlwDKE44QASh3fHx8FBoaqvDwcHXt2lXR0dFKTk6WJP3xxx968MEHVatWLfn7+6tJkyZ6++237ff26dNHKSkpmjJlin2kae/evYVOmSUlJSk4OFgrV65Uw4YNFRAQoI4dO+rgwYP2uk6fPq1BgwYpODhYVatW1fDhw9W7d2917dq1ND8OAMWAQASgXNuxY4c2bNggb29vSVJubq5atGih5cuXa8eOHerfv7969eqlzZs3S5KmTJmiqKgo9evXTwcPHtTBgwcVHh5+znUfP35c//73v/Xf//5X69at0759+zR06FB7fuLEiZo/f77mzp2r9evXKycnRx988EGJ7zOA4scpMwDlzrJlyxQQEKDTp08rLy9PHh4emj59uiSpVq1abqFl4MCBWrlypRYtWqRWrVopKChI3t7e8vf3v+ApslOnTmnWrFmqV6+eJCk+Pl7jxo2z56dNm6aRI0fq3nvvlSRNnz5dH3/8cXHvLoBSQCACUO7cfvvtmjlzpo4dO6bJkyfLy8tL3bp1kyTl5+frxRdf1KJFi/Trr7/q5MmTysvLk7+//yVvx9/f3w5DklSzZk1lZWVJkrKzs5WZmalWrVrZ856enmrRooUKCgoucw8BlDZOmQEodypWrKj69eurWbNmevPNN7Vp0ybNmTNHkvTSSy9pypQpGj58uD777DNt27ZNMTExOnny5CVvp0KFCm7LLpdLlmUVyz4AKFsIRADKNQ8PD/3P//yPnn32WZ04cULr16/XPffco4cffljNmjXT1VdfrR9++MHtPd7e3srPz7+s7QYFBSkkJERbtmyxx/Lz87V169bLWi8AZxCIAJR7PXr0kKenp2bMmKFrrrlGycnJ2rBhg7777jv985//VGZmplt93bp1tWnTJu3du1e///57kU9xDRw4UImJifrwww+1a9cuPfXUUzp06JBcLldx7BaAUkQgAlDueXl5KT4+XpMmTdLTTz+t5s2bKyYmRu3atVNoaGih2+CHDh0qT09PRUZGqnr16tq3b1+Rtjt8+HA9+OCDeuSRRxQVFaWAgADFxMTI19e3GPYKQGlyWZwQB4BiUVBQoIYNG+r+++/X888/73Q7AC4Bd5kBQBH9/PPPWrVqlW677Tbl5eVp+vTpSk9P10MPPeR0awAuEafMAKCIPDw8lJSUpBtvvFFt2rTR9u3b9emnn6phw4ZOtwbgEnHKDAAAGI8jRAAAwHgEIgAAYDwCEQAAMB6BCAAAGI9ABAAAjEcgAgAAxiMQAQAA4xGIAACA8QhEAADAeP8fN7EbmAo+BF0AAAAASUVORK5CYII=",
"text/plain": [
"