-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_model.py
243 lines (200 loc) · 9.59 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#!/usr/bin/env python
# Do *not* edit this script. Changes will be discarded so that we can process the models consistently.
# This file contains functions for evaluating models for the Challenge. You can run it as follows:
#
# python evaluate_model.py -d data -o outputs -s scores.csv
#
# where 'data' is a folder containing files with the reference signals and labels for the data, 'outputs' is a folder containing
# files with the outputs from your models, and 'scores.csv' (optional) is a collection of scores for the model outputs.
#
# Each data or output file must have the format described on the Challenge webpage. The scores for the algorithm outputs are also
# described on the Challenge webpage.
import argparse
import numpy as np
import os
import os.path
import sys
from tqdm import tqdm
from helper_code import *
# Parse arguments.
def get_parser():
description = 'Evaluate the Challenge models.'
parser = argparse.ArgumentParser(description=description)
parser.add_argument('-d', '--folder_ref', type=str, required=True)
parser.add_argument('-o', '--folder_est', type=str, required=True)
parser.add_argument('-n', '--no_shift', action='store_true')
parser.add_argument('-x', '--extra_scores', action='store_true')
parser.add_argument('-s', '--score_file', type=str, required=False)
return parser
# Evaluate the models.
def evaluate_model(folder_ref, folder_est, no_shift=False, extra_scores=False):
# Find the records.
records = find_records(folder_ref)
num_records = len(records)
if num_records == 0:
raise FileNotFoundError('No records found.')
# Compute the digitization metrics.
records_completed_digitization = list()
snr = dict()
snr_median = dict()
ks_metric = dict()
asci_metric = dict()
weighted_absolute_difference_metric = dict()
# Iterate over the records.
for record in tqdm(records):
# Load the signals, if available.
record_ref = os.path.join(folder_ref, record)
signal_ref, fields_ref = load_signals(record_ref)
if signal_ref is not None:
channels_ref = fields_ref['sig_name']
num_channels_ref = fields_ref['n_sig']
num_samples_ref = fields_ref['sig_len']
sampling_frequency_ref = fields_ref['fs']
units_ref = fields_ref['units']
record_est = os.path.join(folder_est, record)
signal_est, fields_est = load_signals(record_est)
if signal_est is not None:
channels_est = fields_est['sig_name']
num_channels_est = fields_est['n_sig']
num_samples_est = fields_est['sig_len']
sampling_frequency_est = fields_est['fs']
units_est = fields_est['units']
records_completed_digitization.append(record)
# Check that the reference and and digitized signals match as expected.
assert(sampling_frequency_ref == sampling_frequency_est)
assert(units_ref == units_est)
# Check that the units for all of the channels are mV.
assert(len(set(units_ref)) == 1 and sorted(set(units_ref))[0] == 'mV')
# Reorder the channels in the digitzed signal to match the channels in the reference signal.
signal_est = reorder_signal(signal_est, channels_est, channels_ref)
else:
signal_est = np.nan*np.ones(np.shape(signal_ref))
# Compute the metrics.
channels = channels_ref
num_channels = num_channels_ref
sampling_frequency = sampling_frequency_ref
# Set limits on how far the signal can be shifted, and the number of quantization levels when shifting the signals.
max_hz_shift = np.round(0.5*sampling_frequency)
max_vt_shift = 1.0
num_quant_levels = 2**8
# Shift the digitied signals to better align with the reference signals.
signal_ref_collection = list()
signal_est_collection = list()
for j, channel in enumerate(channels):
signal_ref_collection.append(signal_ref[:, j])
# Align the signals.
if not no_shift:
signal_shifted, shift_hz, shift_vt = align_signals(signal_ref[:, j], signal_est[:, j], num_quant_levels=num_quant_levels)
if abs(shift_hz) <= max_hz_shift and abs(shift_vt) <= max_vt_shift:
signal_est_collection.append(signal_shifted)
else:
signal_est_collection.append(signal_est[:, j])
else:
signal_est_collection.append(signal_est[:, j])
# Compute the SNRs and, optionally, additional metrics.
for j, channel in enumerate(channels):
value, p_signal, p_noise = compute_snr(signal_ref_collection[j], signal_est_collection[j])
snr[(record, channel)] = value
if extra_scores:
value = compute_snr(signal_ref_collection[j], signal_est_collection[j], noise_median=True)
snr_median[(record, channel)] = value
value = compute_ks_metric(signal_ref_collection[j], signal_est_collection[j])
ks_metric[(record, channel)] = value
value = compute_asci_metric(signal_ref_collection[j], signal_est_collection[j])
asci_metric[(record, channel)] = value
value = compute_weighted_absolute_difference(signal_ref_collection[j], signal_est_collection[j], sampling_frequency)
weighted_absolute_difference_metric[(record, channel)] = value
# Compute the metrics.
if len(records_completed_digitization) > 0:
snr = np.array(list(snr.values()))
if not np.all(np.isnan(snr)):
mean_snr = np.nanmean(snr)
else:
mean_snr = float('nan')
if extra_scores:
snr_median = np.array(list(snr_median.values()))
if not np.all(np.isnan(snr_median)):
mean_snr_median = np.nanmean(snr_median)
else:
mean_snr_median = float('nan')
ks_metric = np.array(list(ks_metric.values()))
if not np.all(np.isnan(ks_metric)):
mean_ks_metric = np.nanmean(ks_metric)
else:
mean_ks_metric = float('nan')
asci_metric = np.array(list(asci_metric.values()))
if not np.all(np.isnan(asci_metric)):
mean_asci_metric = np.nanmean(asci_metric)
else:
mean_asci_metric = float('nan')
weighted_absolute_difference_metric = np.array(list(weighted_absolute_difference_metric.values()))
if not np.all(np.isnan(weighted_absolute_difference_metric)):
mean_weighted_absolute_difference_metric = np.nanmean(weighted_absolute_difference_metric)
else:
mean_weighted_absolute_difference_metric = float('nan')
else:
mean_snr_median = float('nan')
mean_ks_metric = float('nan')
mean_asci_metric = float('nan')
mean_weighted_absolute_difference_metric = float('nan')
else:
mean_snr = float('nan')
mean_snr_median = float('nan')
mean_ks_metric = float('nan')
mean_asci_metric = float('nan')
mean_weighted_absolute_difference_metric = float('nan')
# Compute the classification metrics.
records_completed_classification = list()
labels_ref = list()
labels_est = list()
# Iterate over the records.
for record in records:
# Load the labels, if available.
record_ref = os.path.join(folder_ref, record)
try:
label_ref = load_labels(record_ref)
except:
label_ref = list()
if any(label for label in label_ref):
record_est = os.path.join(folder_est, record)
try:
label_est = load_labels(record_est)
except:
label_est = list()
if any(label for label in label_est):
records_completed_classification.append(record)
labels_ref.append(label_ref)
labels_est.append(label_est)
# Compute the metrics.
if len(records_completed_classification) > 0:
f_measure, _, _ = compute_f_measure(labels_ref, labels_est)
else:
f_measure = float('nan')
# Return the results.
return mean_snr, mean_snr_median, mean_ks_metric, mean_asci_metric, mean_weighted_absolute_difference_metric, f_measure
# Run the code.
def run(args):
# Compute the scores for the model outputs.
scores = evaluate_model(args.folder_ref, args.folder_est, args.no_shift, args.extra_scores)
# Unpack the scores.
snr, snr_median, ks_metric, asci_metric, mean_weighted_absolute_difference_metric, f_measure = scores
# Construct a string with scores.
if not args.extra_scores:
output_string = \
f'SNR: {snr:.3f}\n' + \
f'F-measure: {f_measure:.3f}\n'
else:
output_string = \
f'SNR: {snr:.3f}\n' + \
f'SNR median: {snr_median:.3f}\n' \
f'KS metric: {ks_metric:.3f}\n' + \
f'ASCI metric: {asci_metric:.3f}\n' \
f'Weighted absolute difference metric: {mean_weighted_absolute_difference_metric:.3f}\n' \
f'F-measure: {f_measure:.3f}\n'
# Output the scores to screen and/or a file.
if args.score_file:
save_text(args.score_file, output_string)
else:
print(output_string)
if __name__ == '__main__':
run(get_parser().parse_args(sys.argv[1:]))