-
Notifications
You must be signed in to change notification settings - Fork 46
/
demo.py
42 lines (38 loc) · 1 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import cv2 as cv
import numpy as np
import torch
from torchvision import transforms
data_transforms = {
'train': transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
]),
'val': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
transformer = data_transforms['train']
if __name__ == "__main__":
img = cv.imread('images/0_fn_0.jpg')
img = transforms.ToPILImage()(img)
arr = np.array(img)
print(arr)
print(np.max(arr))
print(np.min(arr))
print(np.mean(arr))
print(np.std(arr))
arr = arr.astype(np.float)
arr = (arr - 127.5) / 128
print(arr)
print(np.max(arr))
print(np.min(arr))
print(np.mean(arr))
print(np.std(arr))
img = transformer(img)
print(img)
print(torch.max(img))
print(torch.min(img))
print(torch.mean(img))
print(torch.std(img))