This project presents an optimized approach for calculating the position wave functions of a Fock state of a quantum harmonic oscillator, with applications in Photonic Quantum Computing simulations. Leveraging Numba [1] and Cython [2], this approach outperforms the Mr Mustard package [3, 4] in computing a single wave function value at a single position and at multiple positions.\n\n\u2728 Advantages
\n\n\n- Highly Efficient: This package includes two fixed-point modules focused on speed. One is implemented using Numba, an open-source Just-in-Time (JIT) compiler, and the other module is implemented in Cython, a programming language that combines the ease of use of Python with the speed of C.
\n- Highly Accurate: The functions in this package have precision next to the precision of Wolfram Mathematica and MATLAB. In addition, there is a module for calculating wave functions with arbitrary precision using the mpmath package.
\n- Past response cache: This package provides a caching module designed to enhance the performance of functions that take multiple positions of a NumPy array as input. This module stores previously computed results by leveraging Python's functools.lru_cache, eliminating the need for redundant calculations. This caching module is inspired by the caching module from Mr. Mustard, a package from the photonic quantum computing company Xanadu.
\n
\n\n\ud83d\udee0\ufe0f Setup
\n\nTo use this package, simply run the following command in the command line:
\n\n\n
pip install fast-wave\n
\n
\n\n\ud83c\udfa8 Examples
\n\nThe functions psi_n_multiple_fock_multiple_position
calculate the values of the wavefunction $\\psi_{0 \u2192 n} ( X_m )$ for multiple Fock states ($n$) and multiple positions ($X_{m}$).
\n\nInputs:
\n\n\nn
: An integer specifying the maximum Fock state ($n$). \nX_m
: A 1D numpy
array with m
positions, representing the input values where $\\psi_{0 \u2192 n}$ will be evaluated. For example, np.array([1.0, 2.0])
has dimension $(m,)$, where $m=2$ in this case. \n
\n\nOutputs:
\n\n\nnumpy
Matrix: The output has dimensions $(n+1) \u00d7 m$, where:\n\n- $n+1$: Corresponds to the Fock states $[0, 1, ..., n]$.
\n- $m$: Represents the positions given in
X_m
. \n
\n
\n\nDemonstration:
\n\nUsing the provided inputs:
\n\n\n
>>> import fast_wave.wavefunction_numba as wn\nFunctionality Test Passed: True\n>>> import fast_wave.wavefunction_cython as wc\n>>> import numpy as np\n>>> wn.psi_n_multiple_fock_multiple_position(1,np.array([1.0 ,2.0])) \narray([[0.45558067, 0.10165379],\n [0.64428837, 0.28752033]])\n>>> wc.psi_n_multiple_fock_multiple_position(1,np.array([1.0 ,2.0]))\narray([[0.45558067, 0.10165379],\n [0.64428837, 0.28752033]])\n
\n
\n\nExplanation of the Output:
\n\n\n- For
n=1
and X_m = np.array([1.0, 2.0])
: \n- The output matrix has dimensions $(n+1) \u00d7 m = 2 \u00d7 2$.
\n- The first row contains $\\psi_{0}(x_1)$ and $\\psi_{0}(x_2)$.
\n- The second row contains $\\psi_{1}(x_1)$ and $\\psi_{1}(x_2)$.
\n
\n\nThere are other examples in the examples folder: Speed Tests: Numba & Cython; Precision Tests: mpmath. In the first one there is a comparison with the Mr Mustard package.
\n\n\ud83c\udf0a The Wavefunction
\n\nThe wavefunction, $\\Psi(y,t)$, is a fundamental concept in quantum mechanics that describes the quantum state of a particle or system. Its absolute square, $|\\Psi(y,t)|^2$, represents the probability density of finding the particle at position $\\mathbf{y}$ and time $\\mathbf{t}$. Due to the normalization property: $\\int_{-\\infty}^{\\infty} |\\Psi(y,t)|^2 dy = 1$ it's guaranteed that for a given time $\\mathbf{t}$, the total probability of finding the particle somewhere in space is unity [5].
\n\nSchr\u00f6dinger Equation
\n\nThe wavefunction is the solution to the Schr\u00f6dinger equation, a fundamental equation in quantum mechanics:
\n\n$$\n-\\Bigg({\\hbar^{2} \\over 2m}\\Bigg) {\\partial^2 \\Psi(y,t) \\over \\partial y^{2}} + \\Bigg({m\\omega^2 y^2 \\over 2}\\Bigg) \\Psi(y,t) = \\mathbf{i}\\hbar \\, {\\partial \\Psi(y,t) \\over \\partial t} \\quad \\mathbf{(1)}\n$$
\n\nwhere $\\mathbf{\\hbar}$ is the reduced Planck constant, $\\mathbf{m}$ is the mass of the particle, and $\\mathbf{\\omega}$ is the angular frequency of the harmonic potential. The symbol $\\mathbf{i}$ represents the imaginary unit. When seeking the solution to this equation, we separated the variables as follows: $\\Psi(y,t) = \\psi(y)f(t)$, and we find as a result for $f(t)$ [5]:
\n\n$$ f(t) = C \\, e^{-iEt/\\hbar} \\quad \\mathbf{(2)}$$
\n\nwhere $\\mathbf{C}$ may be considered an arbitrary complex constant and $\\mathbf{E}$, the system separation constant can be interpreted as the system's energy. Substituting into the wavefunction we have [5]:
\n\n$$ \\Psi(y,t) = C \\, e^{-iEt/\\hbar} \\, \\psi(y) \\quad \\mathbf{(3)}$$
\n\nThe term $e^{-iEt/\\hbar}$ is called the phase factor of $\\Psi(y,t)$. In order to find $\\psi(y)$ we then solve the time-independent Schr\u00f6ndiger equation [5]:
\n\n$$\n-\\Bigg({\\hbar^{2} \\over 2m }\\Bigg) \\psi''(y) + \\Bigg({m\\omega^2 y^2 \\over 2 }\\Bigg) \\psi(y) = E \\, \\psi(y) \\quad \\mathbf{(4)}\n$$
\n\nQuantum Harmonic Oscillator
\n\nBy solving equation (4), we obtain a family of energy eigenfunctions defined as follows [5]:
\n\n$$\n\\psi_n(y) = \\Bigg({ m\\omega \\over \\pi\\hbar }\\Bigg)^{1/4} \\Bigg({ 1 \\over \\sqrt{2^n n!}}\\Bigg) H_n\\Bigg(\\sqrt{m\\omega \\over \\hbar }y\\Bigg) \\, e^{-m\\omega y^2/2\\hbar} , \\quad n \\in \\mathbb{N}_{0} \\quad \\mathbf{(5)}\n$$
\n\nwhere $\\mathbf{n}$ represents a non-negative integer corresponding to the different energy states of the system, with energies given by $E_n = [n + (1/2)]\\hbar \\omega$. The term $H_n$ denotes the Hermite polynomial of degree $\\mathbf{n}$; thus, for each energy state $\\mathbf{n}$, there is an associated Hermite polynomial of degree $\\mathbf{n}$ within its eigenfunction [5]:
\n\n
\n\n\n
\n
\n Wavefunctions and energies for different $\\mathbf{n}$ values. [6]
\n \n\n
\n\nThe energy eigenfunction for an energy state $\\mathbf{n}$ is the wavefunction for an energy state $\\mathbf{n}$ of a Quantum Harmonic Oscillator. From this definition, we can then represent the wave function $\\Psi(x,t)$ as a series expansion of its family of energy eigenfunctions ${\\psi_{n}(x)}$ [5]:
\n\n$$\n\\Psi(y,t) = \\sum_{n=0}^{\\infty} c_{n} \\, \\psi_{n}(y) \\, e^{-\\mathbf{i}E_{n}t/\\hbar} \\quad \\mathbf{(6)}\n$$
\n\nwhere $\\mathbf{c_{n}}$ are complex constants that determine the contribution of each eigenfunction $\\psi_{n}(y)$ to the total wavefunction $\\Psi(y,t)$. These coefficients are chosen to ensure that the wavefunction satisfies the initial condition of the problem ($t=0$) [5].
\n\nFock states
\n\nWhen defining the dimensionless variable $x = \\Big(m\\omega/\\hbar\\Big)^{1/2}y$, referred to as the reduced coordinate, it follows that $dy = \\Big(\\hbar/m\\omega\\Big)^{1/2}dx$. As a result, we can write [7]:
\n\n$\\displaystyle\\int_{-\\infty}^{+\\infty} |\\psi(y)|^{2} dy = 1 \\implies \\int_{-\\infty}^{+\\infty}\\Bigg[\\Bigg({m\\omega \\over \\pi\\hbar }\\Bigg)^{1/2} \\Bigg({1 \\over 2^n n!}\\Bigg) H_n^{2}\\Bigg(\\sqrt{ m\\omega \\over \\hbar}y\\Bigg) e^{-m\\omega y^2/\\hbar} \\Bigg] dy \\implies$
\n\n$\\displaystyle\\int_{-\\infty}^{+\\infty} \\Bigg[ \\Bigg({m\\omega \\over \\pi\\hbar } \\Bigg)^{1/2} \\Bigg( { 1 \\over 2^n n! } \\Bigg) H_{n}^{2}(x) \\, e^{-x^{2}}\\Bigg]\\Bigg[{ \\hbar \\over \\omega m }\\Bigg]^{1/2}dx = 1 \\implies \\int_{-\\infty}^{+\\infty} \\Bigg[ \\Bigg({ 1 \\over 2^n n!\\sqrt{\\pi} } \\Bigg) H_{n}^{2}(x) \\, e^{-x^{2}}\\Bigg]dx = 1 \\implies$
\n\n$\\displaystyle\\int_{-\\infty}^{+\\infty} \\, \\Bigg| \\Bigg( {1 \\over 2^n n!\\sqrt{\\pi} } \\Bigg)^{1/2} H_{n}(x) \\, e^{-x^{2}/2} \\Bigg|^{2}dx = 1 \\implies \\int_{-\\infty}^{+\\infty} |\\psi(x)|^{2} dx = 1\\implies$
\n\n$$\\psi_{n}(x) = \\Bigg( {1 \\over 2^n n!\\sqrt{\\pi} }\\Bigg)^{1/2} H_{n}(x) \\quad e^{-x^{2}/2} \\quad \\mathbf{(7)}$$
\n\nThis demonstrates that the wavefunction of a Quantum Harmonic Oscillator can be represented in a more dimensionless form, known as the Hermite function, it is also sometimes referred to as the Gauss Hermite function (equation $\\mathbf{7}$) [8]. A more simplified form for this type of function is this: $\\psi_{n}(x) = \\mathcal{N_{n}} \\, H_{n}(x) \\, e^{-x^{2}/2}$, where $\\mathcal{N_{n}} = [1 /(2^n n!\\sqrt{\\pi})]^{1/2}$ is referred to as the normalization constant [9].
\n\nThis type of representation for the wavefunction enables the modeling of wave functions for Fock states, which are energy eigenstates with a well-defined number of particles. When the particles are considered photons, $\\mathbf{n}$, the degree of the Hermite polynomial, also represents the number of photons. Consequently, the Fock states ($\\ket{n}$) become eigenstates of the photon number operator $\\hat{n}$, such that $\\hat{n}\\ket{n}=n\\ket{n}$. Moreover, the energy states now correspond to the energy levels of an optical system containing $n$-photons [10].
\n\n$\\ket{\\psi_{n}} = \\displaystyle{1 \\over \\sqrt{n!} }(a^{\\dagger})^{n}\\ket{\\psi_{0}} \\implies \\psi_{n}(q) = { 1 \\over \\sqrt{n!} }{ 1 \\over \\sqrt{2^n} }\\Bigg(q - {\\partial \\over \\partial q }\\Bigg)^{n}\\psi_{0}(q) \\implies $
\n\n$\\psi_{n}(q) = \\displaystyle{1 \\over \\sqrt{n!}}{1 \\over \\sqrt{2^n} } H_{n}(q) \\psi_{0}(q) \\implies \\psi_{n}(q) = \\displaystyle{1 \\over \\sqrt{n!} }{1 \\over \\sqrt{2^n} } H_{n}(q) \\Big(\\pi^{-1/4}\\Big) e^{-q^{2}/2} \\implies$
\n\n$$\\psi_{n}(q) = \\displaystyle\\Bigg({1 \\over 2^n n!\\sqrt{\\pi} }\\Bigg)^{1/2} H_{n}(q) \\quad e^{-q^{2}/2} \\quad \\mathbf{(8)}$$
\n\nwhere $\\mathbf{q}$ is interpreted as the normalized field amplitude associated with the position quadrature ($\\hat{q}$\u200b) and has a dimensionless character similar to $\\mathbf{x}$ [10].
\n\nThe wavefunction $\\mathbf{n}$ of a Fock state is the projection of the state $\\ket{n}$, and as we can observe, the wavefunctions of a Fock state for $n$-photon systems can be interpreted as a family of dimensionless energy eigenfunctions (Hermite functions), similar to those shown by equation $\\mathbf{(7)}$ [10].
\n\n\ud83d\udd01 The Wavefunction Recurrence
\n\nIn essence, Mr Mustard's strategy is to use the Renormalized Hermite Polynomial [3, 4] for the computation of the wavefunction of a quantum harmonic oscillator. Below, we show the recurrence for calculating the Renormalized Hermite Polynomial, as well as the method for calculating it using the traditional Hermite polynomial:
\n\n$$H_{n+1}^{re}(x) = \\displaystyle{2 \\over \\sqrt{n+1} }\\Big[xH_{n}^{re}(x) - H_{n-1}^{re}(x)\\sqrt{n-1}\\Big] \\quad \\mathbf{(8)} $$
\n\n$$H_{n}^{re}(x) = \\displaystyle{H_{n}(x) \\over \\sqrt{n!}} \\quad \\mathbf{(10)} $$
\n\nWhen we use this polynomial in calculating the wavefunction of a Quantum Harmonic Oscillator, the equation is as follows:
\n\n$$\\psi_{n}(x) = \\displaystyle\\Bigg({1 \\over 2^n\\sqrt{\\pi} }\\Bigg)^{1/2}H_{n}^{re}(x) \\quad e^{-{x^2 \\over 2 }} \\quad \\mathbf{(11)} $$
\n\nIn this package, we implemented a recurrence based on the recursive solution to the wavefunction of the Quantum Harmonic Oscillator presented in the work of Jos\u00e9 Maria P\u00e9rez-Jord\u00e1 [11]. The recurrence we implemented was for $\\psi_{n+1}$, which we obtained from the recursive definition of the Hermite polynomial [12], as suggested by Jos\u00e9 Maria P\u00e9rez-Jord\u00e1 in his article:
\n\n$H_{n+1}(x) = 2xH_{n}(x) - 2nH_{n-1}(x) \\implies $
\n\n$\\Bigg( \\displaystyle{e^{-x^2 / 2} \\over \\sqrt{2^{n-1}(n-1)!\\pi^{1/2}}}\\Bigg)H_{n+1}(x) = \\Bigg( \\displaystyle{e^{-x^2 / 2} \\over \\sqrt{2^{n-1}(n-1)!\\pi^{1/2}}}\\Bigg)2xH_{n}(x) -\\Bigg( \\displaystyle{e^{-x^2 / 2} \\over \\sqrt{2^{n-1}(n-1)!\\pi^{1/2}}}\\Bigg)2nH_{n-1}(x) \\implies$
\n\n$\\Bigg( \\displaystyle{e^{-x^{2}/2} \\over \\sqrt{2^{n-1}(n-1)!\\pi^{1/2}}}\\Bigg)H_{n+1}(x) = \\Bigg( \\displaystyle{e^{-x^{2}/2} \\over \\sqrt{2^{n-1}(n-1)!\\pi^{1/2}}}\\Bigg)2xH_{n}(x) -2n\\psi_{n-1}(x) \\implies $
\n\n$\\displaystyle{1 \\over \\sqrt{2n}}\\Bigg( \\displaystyle{e^{-x^2 / 2} \\over \\sqrt{2^{n-1}(n-1)!\\pi^{1/2}}}\\Bigg)H_{n+1}(x) = {1 \\over \\sqrt{2n} }\\Bigg( \\displaystyle{e^{-x^2 /2} \\over \\sqrt{2^{n-1}(n-1)!\\pi^{1/2}}}\\Bigg)2xH_{n}(x) -{2n \\over \\sqrt{2n}} \\, \\psi_{n-1}(x) \\implies$
\n\n$\\Bigg(\\displaystyle{e^{-x^2 / 2} \\over \\sqrt{2^n n!\\pi^{1/2}}}\\Bigg) H_{n+1}(x) = 2x\\psi_{n}(x) - {2n \\over \\sqrt{2n}} \\, \\psi_{n-1}(x) \\implies$
\n\n$\\displaystyle\\Bigg({1 \\over \\sqrt{2(n+1)} }\\Bigg)\\Bigg(\\displaystyle{e^{-x^2 / 2} \\over \\sqrt{2^n n!\\pi^{1/2}} }\\Bigg) H_{n+1}(x) = \\displaystyle\\Bigg({1 \\over \\sqrt{2(n+1)}}\\Bigg)2x\\psi_{n}(x) - \\displaystyle\\Bigg({1 \\over \\sqrt{2(n+1)}}\\Bigg) \\, {2n \\over \\sqrt{2n} } \\, \\psi_{n-1}(x) \\implies$
\n\n$$\\psi_{n+1}(x) = \\displaystyle\\Bigg(\\sqrt{2 \\over n+1}\\Bigg)x\\psi_{n}(x) -\\Bigg(\\sqrt{n \\over n+1}\\Bigg)\\psi_{n-1}(x) \\quad \\mathbf{(12)}$$
\n\nBesides the use of this recurrence in this package, the same authors implemented a version of it in a Cython module of QuTip: _distributions.pyx, to be used in the HarmonicOscillatorWaveFunction class from the distributions.py module.
\n\n\u26a1\ufe0fThe Numba Module - Hybrid Solution
\n\nWe use a hybrid solution with two algorithms for calculating the wave function for calculating a single Fock wave function's values at multiple positions (Single Fock and Multiple Position) (psi_n_single_fock_multiple_position
). For $n>60$ or more than 35 positions, we use the recurrence for the wave function. For $n\\le 60$ and at most 35 positions we use a precomputed matrix with the normalized coefficients of the Hermite polynomial as follows:
\n\n$$\\psi_{i}(x) = \\displaystyle{1 \\over \\sqrt{2^i i!\\pi^{1/2}}}H_{i}(x)e^{-x^{2}/2} = {1 \\over \\sqrt{2^{i}i!\\pi^{1/2}}}\\mathbf{C_{n}[i]} \\cdot \\mathbf{x^{p}} e^{-x^{2}/2} \\implies $$
\n\n$$\\psi_{i}(x) = \\mathbf{C^{s}_{n}[i]\\cdot x^{p}e^{-x^{2}/2} \\quad \\mathbf{(13)}}$$
\n\nwhere $\\mathbf{C^{s}_{n}[i]}$ is the row vector of normalized coefficients that multiply each power of $x$ up to $x^n$. The entire matrix $\\mathbf{C^s_n}$ of such rows is precomputed up to degree $n=60$. $\\mathbf{x^{p}}$ is a column vector of powers up to n, with zeros in places where the coefficient is zero; for example, for $i=3$, $\\mathbf{x^{p}} = [x^{3}, 0.0, x^{1}, 0.0]^T$. This hybrid algorithm is also used in Single Fock and Single Position (psi_n_single_fock_single_position
) problems, though it offers no computational advantage in these cases. Additionally, there is an argument named CS_matrix for these Single Fock functions, set to True to enable the use of this matrix. In other words, you can use only the recurrence relation for the wave function at any value. The use of this coefficient matrix is limited to values up to 60 (determined empirically), as beyond this point, the function may encounter precision errors, resulting in incoherent outputs [13].
\n\n\u26a1\ufe0f The Numba Module - Arguments
\n\nFor this algorithm to perform as efficiently as possible, Numba's Just-in-Time compilation is used in conjunction with lru_cache (Least Recently Used - Cache Management). The following arguments were used in the @nb.jit decorator:
\n\n\n- nopython=True: This argument forces the Numba compiler to operate in \"nopython\" mode, which means that all the code within the function must be compilable to pure machine code without falling back to the Python interpreter. This results in significant performance improvements by eliminating the overhead of the Python interpreter.
\n- looplift=True: This argument allows Numba to \"lift\" loops out of \"nopython\" mode. That is, if there are loops in the code that cannot be compiled in \"nopython\" mode, Numba will try to move them outside of the compiled part and execute them as normal Python code.
\n- nogil=True: This argument releases the Python Global Interpreter Lock (GIL) while the function is executing. It is useful for allowing the Numba-compiled code to run in parallel with other Python threads, increasing performance in multi-threaded programs.
\n- boundscheck=False: Disables array bounds checking. Normally, Numba checks if array indices are within valid bounds. Disabling this check can increase performance but may result in undefined behavior if there are out-of-bounds accesses.
\n- cache=True: Enables caching of the compiled function. The first time the function is compiled, Numba stores the compiled version in a cache. On subsequent executions, Numba can reuse the compiled version from the cache instead of recompiling the function, reducing the function's startup time.
\n
\n\n\u2699\ufe0f The Cython Module
\n\nThe Cython module includes compiled files for Linux (.so) and Windows (.pyd), which allows it to be used in Google Colab (Linux). Additionally, this module supports three versions of Python 3: 3.10, 3.11, and 3.12. All these files are placed in the package folder upon installation. The source code of the Cython module is available in the repository in .pyx format. In the functions of the Cython module, some decorators are used to increase speed:
\n\n\n- @cython.nogil: This decorator allows a Cython function to release the Global Interpreter Lock (GIL), making it possible to execute that block of code concurrently in multiple threads.
\n- @cython.cfunc: This decorator tells Cython to treat the function as a C function, meaning it can be called from other Cython or C code, not just Python. The function will have C-level calling conventions.
\n- @cython.locals(...): Declares local variable types to optimize performance.
\n- @cython.boundscheck(False): Disables bounds checking for arrays/lists to boost speed, but at the cost of safety.
\n
\n\n\ud83d\udcd6 References
\n\nOur journey through the quantum realm is inspired by the following:
\n\n\n- Lam, S. K., Pitrou, A., & Seibert, S. (2015). _Numba: A LLVM-based Python JIT compiler_. In _Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC_ (LLVM '15) (pp. 7-12). Association for Computing Machinery. https://doi.org/10.1145/2833157.2833162
\n- Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011). Cython: The best of both worlds. Computing in Science & Engineering, 13(2), 31-39. https://doi.org/10.1109/MCSE.2010.118
\n- Yao, Y., Miatto, F., & Quesada, N. (2024). _Riemannian optimization of photonic quantum circuits in phase and Fock space_ [Preprint]. arXiv:2209.06069. https://doi.org/10.21468/SciPostPhys.17.3.082
\n- Miatto, F. M., & Quesada, N. (2020). _Fast optimization of parametrized quantum optical circuits_ (Quantum, 4, 366). https://doi.org/10.22331/q-2020-11-30-366
\n- Bowers, P. L. (2020). Lectures on Quantum Mechanics: A Primer for Mathematicians. Cambridge University Press. ISBN: 1108429769 (9781108429764)
\n- Aerts, D., Beltran, L. Quantum Structure in Cognition: Human Language as a Boson Gas of Entangled Words. Found Sci 25, 755\u2013802 (2020). https://doi.org/10.1007/s10699-019-09633-4
\n- Beiser, A. (2003). Concepts of Modern Physics. 6th ed. McGraw Hill. ISBN: 0072448482 (9780072448481)
\n- Celeghini, E., Gadella, M., & del Olmo, M. A. (2021). Hermite functions and Fourier series. Symmetry, 13(5), Article 853. https://doi.org/10.3390/sym13050853
\n- Schleich, W. P. (2001). Quantum optics in phase space. Wiley-VCH. ISBN: 352729435X (9783527294350)
\n- Leonhardt, U. (2010). Essential Quantum Optics: From Quantum Measurements to Black Holes. Cambridge: Cambridge University Press. ISBN: 0521869781 (9780521869782)
\n- P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, 39(1), 015402. https://doi.org/10.1088/1361-6404/aa9584
\n- Olver, F. W. J., & Maximon, L. C. (2010). NIST Handbook of Mathematical Functions. Cambridge University Press. ISBN: 0521192250 (9780521192255)
\n- Cordeiro, M., Bezerra, I. P., & Vasconcelos, H. H. M. (2024). Efficient computation of the wave function \u03c8n(x) using Hermite coefficient matrix in Python. In 7\u00ba Workshop Escola de Computa\u00e7\u00e3o e Informa\u00e7\u00e3o Qu\u00e2ntica (7\u00aa WECIQ) (pp. 56-60). CEFET/RJ.
\n
\n\n\ud83e\udd1d Contributing
\n\nContributions, whether filing an issue, proposing improvements, or submitting a pull request, are welcome! Please feel free to explore, ask questions, and share your ideas.
\n\n\ud83d\udcdc License
\n\nThis project is available under the BSD 3-Clause License. See the LICENSE file for more details.
\n\n\n\nIf you have any questions or want to reach out to the team, please send me an email at matheusgomescord@gmail.com.
\n"}, "fast_wave.caching": {"fullname": "fast_wave.caching", "modulename": "fast_wave.caching", "kind": "module", "doc": "\n"}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"fullname": "fast_wave.caching.int_array_cache_Numba_single_fock", "modulename": "fast_wave.caching", "qualname": "int_array_cache_Numba_single_fock", "kind": "function", "doc": "Cache decorator for functions that receive real multiple positions (numpy array) \nand is a problem Single Fock in the Numba module.
\n\nThis decorator caches function results to improve performance, particularly when fn
\nis called multiple times with the same arguments. The function to be decorated must accept \nan integer n
, a numpy array x_array
, and a boolean CS_matrix
. The numpy array is \nconverted to a tuple for caching purposes, as lru_cache
only accepts hashable types.
\n\nArguments:
\n\n\n- fn (callable): The function to be decorated, which takes three arguments:\n
\n- n (np.uint64): The state number.
\n- x_array (np.ndarray[np.float64]): Array representing the positions.
\n- CS_matrix (bool): A flag to indicate CS matrix.
\n
\n
\n\nReturns:
\n\n\n callable
: A wrapped version of fn with caching enabled, including methods to access cache information.
\n
\n\nReferences:
\n\n\n \n - This code is a modified version of the
tensor_int_cache
provided in Mr Mustard (link),\n which is released under Apache License, Version 2.0, with the following copyright notice: Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved. \n
\n
\n", "signature": "(fn):", "funcdef": "def"}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"fullname": "fast_wave.caching.int_array_cache_Numba_multiple_fock", "modulename": "fast_wave.caching", "qualname": "int_array_cache_Numba_multiple_fock", "kind": "function", "doc": "Cache decorator for functions that receive real multiple positions (numpy array) \nand is a problem Multiple Fock in the Numba module.
\n\nThis decorator caches function results to improve performance, particularly when fn
\nis called multiple times with the same arguments. The function to be decorated must accept \nan integer n
, a numpy array x_array
, and a boolean CS_matrix
. The numpy array is \nconverted to a tuple for caching purposes, as lru_cache
only accepts hashable types.
\n\nArguments:
\n\n\n- fn (callable): The function to be decorated, which takes two arguments:\n
\n- n (np.uint64): The state number.
\n- x_array (np.ndarray[np.float64]): Array representing the positions.
\n
\n
\n\nReturns:
\n\n\n callable
: A wrapped version of fn with caching enabled, including methods to access cache information.
\n
\n\nReferences:
\n\n\n \n - This code is a modified version of the
tensor_int_cache
provided in Mr Mustard (link),\n which is released under Apache License, Version 2.0, with the following copyright notice: Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved. \n
\n
\n", "signature": "(fn):", "funcdef": "def"}, "fast_wave.caching.int_array_cache_Cython": {"fullname": "fast_wave.caching.int_array_cache_Cython", "modulename": "fast_wave.caching", "qualname": "int_array_cache_Cython", "kind": "function", "doc": "Cache decorator for functions that receive real multiple positions (numpy array) \nin the Cython module.
\n\nThis decorator caches function results to improve performance, particularly when fn
\nis called multiple times with the same arguments. The function to be decorated must accept \nan integer n
and a numpy array x_array
. The numpy array is converted to a tuple for \ncaching purposes, as lru_cache
only accepts hashable types.
\n\nArguments:
\n\n\n- fn (callable): The function to be decorated, which takes two arguments:\n
\n- n (np.uint64): The state number.
\n- x_array (np.ndarray[np.float64]): Array representing the positions.
\n
\n
\n\nReturns:
\n\n\n callable
: A wrapped version of fn with caching enabled, including methods to access cache information.
\n
\n\nReferences:
\n\n\n \n - This code is a modified version of the
tensor_int_cache
provided in Mr Mustard (link),\n which is released under Apache License, Version 2.0, with the following copyright notice: Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved. \n
\n
\n", "signature": "(fn):", "funcdef": "def"}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"fullname": "fast_wave.caching.int_array_cache_Numba_complex_single_fock", "modulename": "fast_wave.caching", "qualname": "int_array_cache_Numba_complex_single_fock", "kind": "function", "doc": "Cache decorator for functions that receive complex multiple positions (numpy array) \nand is a problem Single Fock in the Numba module.
\n\nThis decorator caches function results to improve performance, particularly when fn
\nis called multiple times with the same arguments. The function to be decorated must accept \nan integer n
, a numpy array x_array
, and a boolean CS_matrix
. The numpy array is \nconverted to a tuple for caching purposes, as lru_cache
only accepts hashable types.
\n\nArguments:
\n\n\n- fn (callable): The function to be decorated, which takes three arguments:\n
\n- n (np.uint64): The state number.
\n- x_array (np.ndarray[np.complex128]): Array representing the positions.
\n- CS_matrix (bool): A flag to indicate CS matrix.
\n
\n
\n\nReturns:
\n\n\n callable
: A wrapped version of fn with caching enabled, including methods to access cache information.
\n
\n\nReferences:
\n\n\n \n - This code is a modified version of the
tensor_int_cache
provided in Mr Mustard (link),\n which is released under Apache License, Version 2.0, with the following copyright notice: Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved. \n
\n
\n", "signature": "(fn):", "funcdef": "def"}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"fullname": "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock", "modulename": "fast_wave.caching", "qualname": "int_array_cache_Numba_complex_multiple_fock", "kind": "function", "doc": "Cache decorator for functions that receive complex multiple positions (numpy array) \nin the Numba module.
\n\nThis decorator caches function results to improve performance, particularly when fn
\nis called multiple times with the same arguments. The function to be decorated must accept \nan integer n
, a numpy array x_array
, and a boolean CS_matrix
. The numpy array is \nconverted to a tuple for caching purposes, as lru_cache
only accepts hashable types.
\n\nArguments:
\n\n\n- fn (callable): The function to be decorated, which takes two arguments:\n
\n- n (np.uint64): The state number.
\n- x_array (np.ndarray[np.complex128]): Array representing the positions.
\n
\n
\n\nReturns:
\n\n\n callable
: A wrapped version of fn with caching enabled, including methods to access cache information.
\n
\n\nReferences:
\n\n\n \n - This code is a modified version of the
tensor_int_cache
provided in Mr Mustard (link),\n which is released under Apache License, Version 2.0, with the following copyright notice: Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved. \n
\n
\n", "signature": "(fn):", "funcdef": "def"}, "fast_wave.caching.int_array_cache_Cython_complex": {"fullname": "fast_wave.caching.int_array_cache_Cython_complex", "modulename": "fast_wave.caching", "qualname": "int_array_cache_Cython_complex", "kind": "function", "doc": "Cache decorator for functions that receive complex multiple positions (numpy array)\nand is a problem Single Fock in the Cython module.
\n\nThis decorator caches function results to improve performance, particularly when fn
\nis called multiple times with the same arguments. The function to be decorated must accept \nan integer n
and a numpy array x_array
. The numpy array is converted to a tuple for \ncaching purposes, as lru_cache
only accepts hashable types.
\n\nArguments:
\n\n\n- fn (callable): The function to be decorated. It must take two arguments:\n
\n- n (np.uint64): The state number.
\n- x_array (np.ndarray of dtype=np.complex128): The positions.
\n
\n
\n\nReturns:
\n\n\n callable
: A wrapped version of fn with caching enabled. This wrapped function also exposes the following methods for cache management.
\n
\n\nReferences:
\n\n\n \n - This code is a modified version of the
tensor_int_cache
provided in Mr Mustard (link),\n which is released under Apache License, Version 2.0, with the following copyright notice: Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved. \n
\n
\n", "signature": "(fn):", "funcdef": "def"}, "fast_wave.wavefunction_cython": {"fullname": "fast_wave.wavefunction_cython", "modulename": "fast_wave.wavefunction_cython", "kind": "module", "doc": "\n"}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"fullname": "fast_wave.wavefunction_cython.psi_n_single_fock_single_position", "modulename": "fast_wave.wavefunction_cython", "qualname": "psi_n_single_fock_single_position", "kind": "function", "doc": "Compute the wavefunction for a real scalar x
using the adapted recurrence relation.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (double): Position at which to evaluate the wavefunction.
\n
\n\nReturns:
\n\n\n double
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_single_fock_single_position(0, 1.0)\n0.45558067201133257\n>>> psi_n_single_fock_single_position(61, 1.0)\n-0.2393049199171131\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x):", "funcdef": "def"}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"fullname": "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex", "modulename": "fast_wave.wavefunction_cython", "qualname": "psi_n_single_fock_single_position_complex", "kind": "function", "doc": "Compute the wavefunction for a complex scalar x
using the adapted recurrence relation.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (double complex): Position at which to evaluate the wavefunction.
\n
\n\nReturns:
\n\n\n double complex
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_single_fock_single_position_complex(0, 1.0 + 2.0j)\n(-1.4008797330262455-3.0609780602975003j)\n>>> psi_n_single_fock_single_position_complex(61, 1.0 + 2.0j)\n(-511062135.47555304+131445997.75753704j)\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x):", "funcdef": "def"}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"fullname": "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position", "modulename": "fast_wave.wavefunction_cython", "qualname": "psi_n_single_fock_multiple_position", "kind": "function", "doc": "Compute the wavefunction for a real vector x
using the adapted recurrence relation.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (np.ndarray[np.float64_t]): Position at which to evaluate the wavefunction.
\n
\n\nReturns:
\n\n\n np.ndarray[np.float64_t]
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_single_fock_multiple_position(0, np.array([1.0, 2.0]))\narray([0.45558067, 0.10165379])\n>>> psi_n_single_fock_multiple_position(61, np.array([1.0, 2.0]))\narray([-0.23930492, -0.01677378])\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x):", "funcdef": "def"}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"fullname": "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex", "modulename": "fast_wave.wavefunction_cython", "qualname": "psi_n_single_fock_multiple_position_complex", "kind": "function", "doc": "Compute the wavefunction for a complex vector x
using the adapted recurrence relation.
\n\nThere is another version of this code, implemented by the same authors who developed this function, in a Cython module of QuTip: _distributions.pyx, to be used in the HarmonicOscillatorWaveFunction
class from the distributions.py module.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (np.ndarray[np.complex128_t]): Position at which to evaluate the wavefunction.
\n
\n\nReturns:
\n\n\n np.ndarray[np.complex128_t]
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_single_fock_multiple_position_complex(0, np.array([1.0 + 1.0j, 2.0 + 2.0j]))\narray([ 0.40583486-0.63205035j, -0.49096842+0.56845369j])\n>>> psi_n_single_fock_multiple_position_complex(61, np.array([1.0 + 1.0j, 2.0 + 2.0j]))\narray([-7.56548941e+03+9.21498621e+02j, -1.64189542e+08-3.70892077e+08j])\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x):", "funcdef": "def"}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"fullname": "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position", "modulename": "fast_wave.wavefunction_cython", "qualname": "psi_n_multiple_fock_single_position", "kind": "function", "doc": "Compute the wavefunction for a real scalar x
to all Fock states up to n
using the adapted recurrence relation.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (double): Position at which to evaluate the wavefunction.
\n
\n\nReturns:
\n\n\n np.ndarray[np.float64_t]
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_multiple_fock_single_position(0, 1.0)\narray([0.45558067, 0.64428837])\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x):", "funcdef": "def"}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"fullname": "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex", "modulename": "fast_wave.wavefunction_cython", "qualname": "psi_n_multiple_fock_single_position_complex", "kind": "function", "doc": "Compute the wavefunction for a complex scalar x
to all Fock states up to n
using the adapted recurrence relation.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (double complex): Position at which to evaluate the wavefunction.
\n
\n\nReturns:
\n\n\n np.ndarray[np.complex128_t]
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_multiple_fock_single_position_complex(0, 1.0 + 2.0j)\narray([-1.40087973-3.06097806j, 6.67661026-8.29116292j])\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x):", "funcdef": "def"}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"fullname": "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position", "modulename": "fast_wave.wavefunction_cython", "qualname": "psi_n_multiple_fock_multiple_position", "kind": "function", "doc": "Compute the wavefunction for a real vector x
to all Fock states up to n
using the adapted recurrence relation.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (np.ndarray[np.float64_t]): Positions at which to evaluate the wavefunction.
\n
\n\nReturns:
\n\n\n np.ndarray[np.ndarray[np.float64_t]]
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_multiple_fock_multiple_position(1, np.array([1.0, 2.0]))\narray([[0.45558067, 0.10165379],\n [0.64428837, 0.28752033]])\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x):", "funcdef": "def"}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"fullname": "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex", "modulename": "fast_wave.wavefunction_cython", "qualname": "psi_n_multiple_fock_multiple_position_complex", "kind": "function", "doc": "Compute the wavefunction for a complex vector x
to all Fock states up to n
using the adapted recurrence relation.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (np.ndarray[np.complex128_t]): Positions at which to evaluate the wavefunction.
\n
\n\nReturns:
\n\n\n np.ndarray[np.ndarray[np.complex128_t]]
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_multiple_fock_multiple_position_complex(1, np.array([1.0 + 1.0j, 2.0 + 2.0j]))\narray([[ 0.40583486-0.63205035j, -0.49096842+0.56845369j],\n [ 1.46779135-0.31991701j, -2.99649822+0.21916143j]])\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x):", "funcdef": "def"}, "fast_wave.wavefunction_mpmath": {"fullname": "fast_wave.wavefunction_mpmath", "modulename": "fast_wave.wavefunction_mpmath", "kind": "module", "doc": "\n"}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"fullname": "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position", "modulename": "fast_wave.wavefunction_mpmath", "qualname": "psi_n_single_fock_single_position", "kind": "function", "doc": "Calculates the nth wavefunction for a real scalar x
with arbitrary precision using mpmath.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (float): Position at which to evaluate the wavefunction.
\n- prec (numpy.uint64): Desired precision for the calculation (number of decimal digits).
\n
\n\nReturns:
\n\n\n mpmath.ctx_mp_python.mpf
: evaluated wavefunction with the specified precision.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_single_fock_single_position(0, 1.0, 60)\nmpf('0.45558067201133253483370525689785138607662639040929439687915331')\n>>> psi_n_single_fock_single_position(61, 1.0, 60)\nmpf('-0.239304919917113097789996116536717211865611421191819349290628243')\n
\n
\n
\n\nReferences:
\n\n\n \n - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision \n floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
\n
\n
\n", "signature": "(n, x, prec):", "funcdef": "def"}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"fullname": "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex", "modulename": "fast_wave.wavefunction_mpmath", "qualname": "psi_n_single_fock_single_position_complex", "kind": "function", "doc": "Calculates the nth wavefunction for a complex scalar x
with arbitrary precision using mpmath.
\n\nArguments:
\n\n\n- n (np.uint64): Quantum state number.
\n- x (np.complex128): Position at which to evaluate the wavefunction.
\n- prec (np.uint64): Desired precision for the calculation (number of decimal digits).
\n
\n\nReturns:
\n\n\n mpmath.ctx_mp_python.mpc
: The evaluated wavefunction with the specified precision.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_single_fock_single_position_complex(0, 1.0 + 2.0j, 60)\nmpc(real='-1.40087973302624535996319358379185603705205815719366827159881527', imag='-3.06097806029750039193292973729038840279841978760336147713769087')\n>>> psi_n_single_fock_single_position_complex(61, 1.0 + 2.0j, 60)\nmpc(real='-511062135.475553070892329856229109412939170026007243421420322129', imag='131445997.757536932748911867174534983962121585813389430606204944')\n
\n
\n
\n\nReferences:
\n\n\n \n - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
\n
\n
\n", "signature": "(n, x, prec):", "funcdef": "def"}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"fullname": "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position", "modulename": "fast_wave.wavefunction_mpmath", "qualname": "psi_n_single_fock_multiple_position", "kind": "function", "doc": "Calculates the nth wavefunction for a real vector x
with arbitrary precision using mpmath.
\n\nArguments:
\n\n\n- n (np.uint64): Quantum state number.
\n- x (np.ndarray[np.float64]): Positions at which to evaluate the wavefunction.
\n- prec (np.uint64): Desired precision for the calculation (number of decimal digits).
\n
\n\nReturns:
\n\n\n mpmath.matrices.matrices._matrix
: The evaluated wavefunction with the specified precision.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_single_fock_multiple_position(0, np.array([1.0, 2.0]), 20)\nmatrix(\n[['0.45558067201133253483', '0.10165378830641791152']])\n>>> psi_n_single_fock_multiple_position(61, np.array([1.0, 2.0]), 20)\nmatrix(\n[['-0.23930491991711309779', '-0.016773782204892582343']])\n
\n
\n
\n\nReferences:
\n\n\n \n - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
\n
\n
\n", "signature": "(n, X, prec):", "funcdef": "def"}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"fullname": "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex", "modulename": "fast_wave.wavefunction_mpmath", "qualname": "psi_n_single_fock_multiple_position_complex", "kind": "function", "doc": "Calculates the nth wavefunction for a complex vector x
with arbitrary precision using mpmath.
\n\nArguments:
\n\n\n- n (np.uint64): Quantum state number.
\n- x (np.ndarray[np.complex128]): Positions at which to evaluate the wavefunction.
\n- prec (np.uint64): Desired precision for the calculation (number of decimal digits).
\n
\n\nReturns:
\n\n\n mpmath.matrices.matrices._matrix
: The evaluated wavefunction with the specified precision.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_single_fock_multiple_position_complex(0, np.array([1.0 + 1.0j, 2.0 + 2.0j]), 20)\nmatrix(\n[[mpc(real='0.40583486367087033308603', imag='-0.63205035161528260798606'), \nmpc(real='-0.49096842060721693717778', imag='0.56845368634059468652777')]])\n>>> psi_n_single_fock_multiple_position_complex(61, np.array([1.0 + 1.0j, 2.0 + 2.0j]), 20)\nmatrix(\n[[mpc(real='-7565.4894098859360141926', imag='921.4986211518276840917'), \nmpc(real='-164189541.53192908120809', imag='-370892077.23796911662203')]])\n
\n
\n
\n\nReferences:
\n\n\n \n - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
\n
\n
\n", "signature": "(n, X, prec):", "funcdef": "def"}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"fullname": "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position", "modulename": "fast_wave.wavefunction_mpmath", "qualname": "psi_n_multiple_fock_single_position", "kind": "function", "doc": "Determines the wavefunction for a real scalar x
for all Fock states up to n
, employing mpmath for arbitrary-precision calculations.
\n\nArguments:
\n\n\n- n (np.uint64): Quantum state number up to which the wavefunctions are calculated.
\n- x (np.float64): Position at which to evaluate the wavefunctions.
\n- prec (np.uint64): Desired precision for the calculation (number of decimal digits).
\n
\n\nReturns:
\n\n\n mpmath.matrices.matrices._matrix
: The evaluated wavefunctions with the specified precision.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_multiple_fock_single_position(1, 1.0, 60)\nmatrix(\n[['0.455580672011332534833705256897851386076626390409294396879153', \n'0.644288365113475181510837645362740498634994248687269122618738']])\n
\n
\n
\n\nReferences:
\n\n\n \n - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
\n
\n
\n", "signature": "(n, x, prec):", "funcdef": "def"}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"fullname": "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex", "modulename": "fast_wave.wavefunction_mpmath", "qualname": "psi_n_multiple_fock_single_position_complex", "kind": "function", "doc": "Determines the wavefunction for a complex scalar x
for all Fock states up to n
, employing mpmath for arbitrary-precision calculations.
\n\nArguments:
\n\n\n- n (np.uint64): Quantum state number up to which the wavefunctions are calculated.
\n- x (np.complex128): Position at which to evaluate the wavefunctions.
\n- prec (np.uint64): Desired precision for the calculation (number of decimal digits).
\n
\n\nReturns:
\n\n\n mpmath.matrices.matrices._matrix
: The evaluated wavefunctions with the specified precision.
\n
\n\nExamples:
\n\n\n \n
>>> c_wavefunction_mmod_arb_prec(1, 1.0 + 2.0j, 20)\nmatrix(\n[[mpc(real='-1.400879733026245359964', imag='-3.0609780602975003919354'), \nmpc(real='6.6766102562991123531695', imag='-8.2911629223978481324862')]])\n
\n
\n
\n\nReferences:
\n\n\n \n - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
\n
\n
\n", "signature": "(n, x, prec):", "funcdef": "def"}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"fullname": "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position", "modulename": "fast_wave.wavefunction_mpmath", "qualname": "psi_n_multiple_fock_multiple_position", "kind": "function", "doc": "Determines the wavefunction for a real vector x
for all Fock states up to n
, employing mpmath for arbitrary-precision calculations.
\n\nArguments:
\n\n\n- n (np.uint64): Quantum state number up to which the wavefunctions are calculated.
\n- x (np.ndarray[np.float64]): Positions at which to evaluate the wavefunctions.
\n- prec (np.uint64): Desired precision for the calculation (number of decimal digits).
\n
\n\nReturns:
\n\n\n mpmath.matrices.matrices._matrix
: The evaluated wavefunctions with the specified precision.
\n
\n\nExamples:
\n\n\n \n
>>> wavefunction_mmmd_arb_prec(1, np.array([1.0, 2.0]), 20)\nmatrix(\n[['0.45558067201133253483', '0.10165378830641791152'],\n['0.64428836511347518151', '0.28752033217907949445']])\n
\n
\n
\n\nReferences:
\n\n\n \n - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
\n
\n
\n", "signature": "(n, X, prec):", "funcdef": "def"}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"fullname": "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex", "modulename": "fast_wave.wavefunction_mpmath", "qualname": "psi_n_multiple_fock_multiple_position_complex", "kind": "function", "doc": "Determines the wavefunction for a complex vector x
for all Fock states up to n
, employing mpmath for arbitrary-precision calculations.
\n\nArguments:
\n\n\n- n (np.uint64): Quantum state number up to which the wavefunctions are calculated.
\n- x (np.ndarray[np.complex128]): Positions at which to evaluate the wavefunctions.
\n- prec (np.uint64): Desired precision for the calculation (number of decimal digits).
\n
\n\nReturns:
\n\n\n mpmath.matrices.matrices._matrix
: The evaluated wavefunctions with the specified precision.
\n
\n\nExamples:
\n\n\n \n
>>> c_wavefunction_mmmd_arb_prec(1, np.array([1.0 + 1.0j, 2.0 + 2.0j]), 20)\n[[mpc(real='0.40583486367087033308603', imag='-0.63205035161528260798606'), \nmpc(real='-0.49096842060721693717778', imag='0.56845368634059468652777')],\n[mpc(real='1.4677913476441970351171', imag='-0.31991701106983521979673'), \nmpc(real='-2.9964982238469495343176', imag='0.21916142736845211639935')]]\n
\n
\n
\n\nReferences:
\n\n\n \n - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
\n
\n
\n", "signature": "(n, X, prec):", "funcdef": "def"}, "fast_wave.wavefunction_numba": {"fullname": "fast_wave.wavefunction_numba", "modulename": "fast_wave.wavefunction_numba", "kind": "module", "doc": "\n"}, "fast_wave.wavefunction_numba.c_s_matrix": {"fullname": "fast_wave.wavefunction_numba.c_s_matrix", "modulename": "fast_wave.wavefunction_numba", "qualname": "c_s_matrix", "kind": "variable", "doc": "\n", "default_value": "array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,\n 0.00000000e+00, 0.00000000e+00, 7.51125544e-01],\n [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,\n 0.00000000e+00, 1.06225193e+00, 0.00000000e+00],\n [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,\n 1.06225193e+00, 0.00000000e+00, -5.31125966e-01],\n ...,\n [ 0.00000000e+00, 0.00000000e+00, 2.63024748e-31, ...,\n 1.40707622e+01, 0.00000000e+00, -2.42599349e-01],\n [ 0.00000000e+00, 4.84267813e-32, 0.00000000e+00, ...,\n 0.00000000e+00, -2.63530347e+00, 0.00000000e+00],\n [ 8.84148017e-33, 0.00000000e+00, -7.82470995e-30, ...,\n -1.44341516e+01, 0.00000000e+00, 2.40569193e-01]])"}, "fast_wave.wavefunction_numba.compilation_test": {"fullname": "fast_wave.wavefunction_numba.compilation_test", "modulename": "fast_wave.wavefunction_numba", "qualname": "compilation_test", "kind": "variable", "doc": "\n", "default_value": "True"}, "fast_wave.wavefunction_numba.hermite_sympy": {"fullname": "fast_wave.wavefunction_numba.hermite_sympy", "modulename": "fast_wave.wavefunction_numba", "qualname": "hermite_sympy", "kind": "function", "doc": "Compute the nth Hermite polynomial using symbolic differentiation.
\n\nArguments:
\n\n\n- n (int): Order of the Hermite polynomial.
\n
\n\nReturns:
\n\n\n sympy.Poly
: The nth Hermite polynomial as a sympy expression.
\n
\n\nExamples:
\n\n\n \n
>>> hermite_sympy(2)\n4*x**2 - 2\n
\n
\n
\n\nReferences:
\n\n\n \n - Olver, F. W. J., & Maximon, L. C. (2010). NIST Handbook of Mathematical Functions. Cambridge University Press. https://search.worldcat.org/pt/title/502037224?oclcNum=502037224
\n - NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15.
\n - Sympy Documentation: https://docs.sympy.org/latest/modules/polys/index.html
\n
\n
\n", "signature": "(n):", "funcdef": "def"}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"fullname": "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix", "modulename": "fast_wave.wavefunction_numba", "qualname": "create_normalized_hermite_coefficients_matrix", "kind": "function", "doc": "Create a matrix of coefficients for normalized Hermite polynomials up to order n_max
.
\n\nArguments:
\n\n\n- n_max (int): The maximum order of Hermite polynomials to compute.
\n
\n\nReturns:
\n\n\n np.ndarray
: A 2D numpy array containing the coefficients for the Hermite polynomials.
\n
\n\nExamples:
\n\n\n \n
>>> create_normalized_hermite_coefficients_matrix(3)\narray([[ 0. , 0. , 0. , 0.75112554],\n [ 0. , 0. , 1.06225193, 0. ],\n [ 0. , 1.06225193, 0. , -0.53112597],\n [ 0.86732507, 0. , -1.30098761, 0. ]])\n
\n
\n
\n\nReferences:
\n\n\n \n - Olver, F. W. J., & Maximon, L. C. (2010). NIST Handbook of Mathematical Functions. Cambridge University Press.
\n - NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15.
\n - Sympy Documentation: https://docs.sympy.org/latest/modules/polys/index.html
\n
\n
\n", "signature": "(n_max):", "funcdef": "def"}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"fullname": "fast_wave.wavefunction_numba.psi_n_single_fock_single_position", "modulename": "fast_wave.wavefunction_numba", "qualname": "psi_n_single_fock_single_position", "kind": "function", "doc": "Compute the wavefunction for a real scalar x
using a pre-computed matrix of normalized Hermite polynomial coefficients \nuntil n=60 and then use the adapted recurrence relation for higher orders.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (float): Position at which to evaluate the wavefunction.
\n- CS_matrix (bool, optional): If True, use the optimized method for n <= 60, which relies on a pre-computed matrix \nof coefficients for faster computation. For n > 60 or if False, use the general recursion \nmethod. Defaults to True.
\n
\n\nReturns:
\n\n\n float
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_single_fock_single_position(0, 1.0)\n0.45558067201133257\n>>> psi_n_single_fock_single_position(61, 1.0)\n-0.2393049199171131\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x, CS_matrix=True):", "funcdef": "def"}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"fullname": "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex", "modulename": "fast_wave.wavefunction_numba", "qualname": "psi_n_single_fock_single_position_complex", "kind": "function", "doc": "Compute the wavefunction for a complex scalar x
using a pre-computed matrix of normalized Hermite polynomial coefficients \nuntil n=60 and then use the adapted recurrence relation for higher orders.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (complex): Position at which to evaluate the wavefunction.
\n- CS_matrix (bool, optional): If True, use the optimized method for n <= 60, which relies on a pre-computed matrix \nof coefficients for faster computation. For n > 60 or if False, use the general recursion \nmethod. Defaults to True.
\n
\n\nReturns:
\n\n\n complex
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_single_fock_single_position_complex(0, 1.0 + 2.0j)\n(-1.4008797330262455 - 3.0609780602975003j)\n>>> psi_n_single_fock_single_position_complex(61, 1.0 + 2.0j)\n(-511062135.47555304 + 131445997.75753704j)\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x, CS_matrix=True):", "funcdef": "def"}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"fullname": "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position", "modulename": "fast_wave.wavefunction_numba", "qualname": "psi_n_single_fock_multiple_position", "kind": "function", "doc": "Compute the wavefunction for a real vector x
using a pre-computed matrix of normalized Hermite polynomial coefficients \nuntil n=60 and x_size = 35. For higher orders, use the adapted recurrence relation.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (numpy.ndarray): Positions at which to evaluate the wavefunction.
\n- CS_matrix (bool, optional): If True, use the optimized method for n <= 60 and x_size <= 35, which relies on a pre-computed matrix \nof coefficients for faster computation. For n > 60, or x_size > 35 or if False, use the general recursion \nmethod. Defaults to True.
\n
\n\nReturns:
\n\n\n numpy.ndarray
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_single_fock_multiple_position(0, np.array([1.0, 2.0]))\narray([0.45558067, 0.10165379])\n>>> psi_n_single_fock_multiple_position(61, np.array([1.0, 2.0]))\narray([-0.23930492, -0.01677378])\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x, CS_matrix=True):", "funcdef": "def"}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"fullname": "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex", "modulename": "fast_wave.wavefunction_numba", "qualname": "psi_n_single_fock_multiple_position_complex", "kind": "function", "doc": "Compute the wavefunction for a complex vector x
using a pre-computed matrix of normalized Hermite polynomial coefficients \nuntil n=60 and x_size = 35. For higher orders, use the adapted recurrence relation.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (numpy.ndarray): Positions at which to evaluate the wavefunction.
\n- CS_matrix (bool, optional): If True, use the optimized method for n <= 60 and x_size <= 35, which relies on a pre-computed matrix \nof coefficients for faster computation. For n > 60, or x_size > 35 or if False, use the general recursion \nmethod. Defaults to True.
\n
\n\nReturns:
\n\n\n numpy.ndarray
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_single_fock_multiple_position_complex(0, np.array([1.0 + 1.0j, 2.0 + 2.0j]))\narray([ 0.40583486-0.63205035j, -0.49096842+0.56845369j])\n>>> psi_n_single_fock_multiple_position_complex(61, np.array([1.0 + 1.0j, 2.0 + 2.0j]))\narray([-7.56548941e+03+9.21498621e+02j, -1.64189542e+08-3.70892077e+08j])\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x, CS_matrix=True):", "funcdef": "def"}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"fullname": "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position", "modulename": "fast_wave.wavefunction_numba", "qualname": "psi_n_multiple_fock_single_position", "kind": "function", "doc": "Compute the wavefunction for a real scalar x
to all Fock states up to n
using the recurrence relation.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (float): Position at which to evaluate the wavefunction.
\n
\n\nReturns:
\n\n\n numpy.ndarray
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_multiple_fock_single_position(1, 1.0)\narray([0.45558067, 0.64428837])\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x):", "funcdef": "def"}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"fullname": "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex", "modulename": "fast_wave.wavefunction_numba", "qualname": "psi_n_multiple_fock_single_position_complex", "kind": "function", "doc": "Compute the wavefunction for a complex scalar x
to all Fock states up to n
using the recurrence relation.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (complex): Position at which to evaluate the wavefunction.
\n
\n\nReturns:
\n\n\n numpy.ndarray
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_multiple_fock_single_position_complex(1, 1.0 + 2.0j)\narray([-1.40087973-3.06097806j, 6.67661026-8.29116292j])\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x):", "funcdef": "def"}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"fullname": "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position", "modulename": "fast_wave.wavefunction_numba", "qualname": "psi_n_multiple_fock_multiple_position", "kind": "function", "doc": "Compute the wavefunction for a real vector x
to all Fock states up to n
using the recurrence relation.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (numpy.ndarray): Positions at which to evaluate the wavefunction.
\n
\n\nReturns:
\n\n\n numpy.ndarray
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_multiple_fock_multiple_position(1, np.array([1.0, 2.0]))\narray([[0.45558067, 0.10165379],\n [0.64428837, 0.28752033]])\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x):", "funcdef": "def"}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"fullname": "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex", "modulename": "fast_wave.wavefunction_numba", "qualname": "psi_n_multiple_fock_multiple_position_complex", "kind": "function", "doc": "Compute the wavefunction for a complex vector x
to all Fock states up to n
using the recurrence relation.
\n\nArguments:
\n\n\n- n (int): Quantum state number.
\n- x (numpy.ndarray): Positions at which to evaluate the wavefunction.
\n
\n\nReturns:
\n\n\n numpy.ndarray
: The evaluated wavefunction.
\n
\n\nExamples:
\n\n\n \n
>>> psi_n_multiple_fock_multiple_position_complex(1, np.array([1.0 + 1.0j, 2.0 + 2.0j]))\narray([[ 0.40583486-0.63205035j, -0.49096842+0.56845369j],\n [ 1.46779135-0.31991701j, -2.99649822+0.21916143j]])\n
\n
\n
\n\nReferences:
\n\n\n \n - P\u00e9rez-Jord\u00e1, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. European Journal of Physics, \n 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
\n
\n
\n", "signature": "(n, x):", "funcdef": "def"}}, "docInfo": {"fast_wave": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3850}, "fast_wave.caching": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"qualname": 6, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 244}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"qualname": 6, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 231}, "fast_wave.caching.int_array_cache_Cython": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 219}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"qualname": 7, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 244}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"qualname": 7, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 225}, "fast_wave.caching.int_array_cache_Cython_complex": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 232}, "fast_wave.wavefunction_cython": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 197}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"qualname": 7, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 225}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 245}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"qualname": 7, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 335}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 179}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"qualname": 7, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 195}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 207}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"qualname": 7, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 234}, "fast_wave.wavefunction_mpmath": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 236}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"qualname": 7, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 271}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 291}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"qualname": 7, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 361}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 224}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"qualname": 7, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 244}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 249}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"qualname": 7, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 295}, "fast_wave.wavefunction_numba": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "fast_wave.wavefunction_numba.c_s_matrix": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 88, "signature": 0, "bases": 0, "doc": 3}, "fast_wave.wavefunction_numba.compilation_test": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "fast_wave.wavefunction_numba.hermite_sympy": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 162}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"qualname": 5, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 215}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 262}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"qualname": 7, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 289}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 317}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"qualname": 7, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 362}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 175}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"qualname": 7, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 190}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 201}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"qualname": 7, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 228}}, "length": 39, "save": true}, "index": {"qualname": {"root": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}, "c": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 15}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.wavefunction_numba.compilation_test": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 24, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 20}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 28}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 20}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 24}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 24}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave.wavefunction_numba.compilation_test": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}}}}}}}}}, "fullname": {"root": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba": {"tf": 1}, "fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.compilation_test": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 39}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 28}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba": {"tf": 1}, "fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.compilation_test": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 39, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.wavefunction_cython": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba": {"tf": 1}, "fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.compilation_test": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 31}}}}}}}}}}}}, "c": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave.caching": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}}}, "e": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 11}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 15}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.wavefunction_numba.compilation_test": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}, "n": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 24, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.wavefunction_numba": {"tf": 1}, "fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.compilation_test": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 20}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 20}}}}}}}, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave.wavefunction_mpmath": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 9}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 24}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 24}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave.wavefunction_numba.compilation_test": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}}}}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 4.795831523312719}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 2}}, "df": 1}, "6": {"2": {"2": {"5": {"1": {"9": {"3": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 4.795831523312719}}, "df": 1}, "1": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 2}}, "df": 1}, "2": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 2}}, "df": 1}, "3": {"0": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}, "1": {"1": {"2": {"5": {"9": {"6": {"6": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}, "2": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}, "3": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"0": {"5": {"6": {"9": {"1": {"9": {"3": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"7": {"6": {"2": {"2": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"1": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"5": {"9": {"9": {"3": {"4": {"9": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"3": {"4": {"1": {"5": {"1": {"6": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"1": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}, "5": {"1": {"1": {"2": {"5": {"5": {"4": {"4": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}, "6": {"3": {"0": {"2": {"4": {"7": {"4": {"8": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"3": {"0": {"3": {"4": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"2": {"4": {"7": {"0": {"9": {"9": {"5": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"4": {"8": {"0": {"1": {"7": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"6": {"7": {"8": {"1": {"3": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}, "docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 2.6457513110645907}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.compilation_test": {"tf": 1}}, "df": 1}}}}}}, "signature": {"root": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 3.1622776601683795}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 3.1622776601683795}, "fast_wave.caching.int_array_cache_Cython": {"tf": 3.1622776601683795}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 3.1622776601683795}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 3.1622776601683795}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 3.1622776601683795}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 3.7416573867739413}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 3.7416573867739413}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 3.7416573867739413}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 3.7416573867739413}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 3.7416573867739413}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 3.7416573867739413}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 3.7416573867739413}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 3.7416573867739413}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 4.242640687119285}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 4.242640687119285}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 4.242640687119285}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 4.242640687119285}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 4.242640687119285}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 4.242640687119285}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 4.242640687119285}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 4.242640687119285}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 3.1622776601683795}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 3.1622776601683795}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 4.69041575982343}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 4.69041575982343}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 4.69041575982343}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 4.69041575982343}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 3.7416573867739413}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 3.7416573867739413}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 3.7416573867739413}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 3.7416573867739413}}, "df": 32, "f": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}, "n": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 26}, "x": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 24}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 8}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}}}, "c": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}}}, "bases": {"root": {"docs": {}, "df": 0}}, "doc": {"root": {"0": {"0": {"7": {"2": {"4": {"4": {"8": {"4": {"8": {"2": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"5": {"4": {"0": {"2": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"7": {"3": {"7": {"8": {"2": {"2": {"0": {"4": {"8": {"9": {"2": {"5": {"8": {"2": {"3": {"4": {"3": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"2": {"1": {"1": {"9": {"2": {"2": {"5": {"0": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"6": {"9": {"7": {"8": {"1": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"6": {"9": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"7": {"8": {"0": {"6": {"0": {"2": {"9": {"7": {"5": {"0": {"0": {"3": {"9": {"1": {"9": {"3": {"2": {"9": {"2": {"9": {"7": {"3": {"7": {"2": {"9": {"0": {"3": {"8": {"8": {"4": {"0": {"2": {"7": {"9": {"8": {"4": {"1": {"9": {"7": {"8": {"7": {"6": {"0": {"3": {"3": {"6": {"1": {"4": {"7": {"7": {"1": {"3": {"7": {"6": {"9": {"0": {"8": {"7": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"4": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "j": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}}, "df": 2}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "j": {"docs": {"fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 2}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"5": {"1": {"9": {"3": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"6": {"3": {"3": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}, "docs": {"fast_wave": {"tf": 5.385164807134504}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 2.23606797749979}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 3}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 3.4641016151377544}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 2}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 3.1622776601683795}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 3.7416573867739413}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 2.6457513110645907}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 3.3166247903554}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 3.7416573867739413}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 3}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 3.4641016151377544}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 2.8284271247461903}}, "df": 33, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "]": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "1": {"0": {"0": {"7": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"1": {"0": {"6": {"9": {"9": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "1": {"6": {"5": {"3": {"7": {"8": {"8": {"3": {"0": {"6": {"4": {"1": {"7": {"9": {"1": {"1": {"5": {"2": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"8": {"docs": {}, "df": 0, "/": {"1": {"3": {"6": {"1": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 2.23606797749979}}, "df": 1}, "1": {"0": {"8": {"4": {"2": {"9": {"7": {"6": {"9": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "docs": {}, "df": 0}, "4": {"5": {"docs": {}, "df": 0, "/": {"2": {"8": {"3": {"3": {"1": {"5": {"7": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "8": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {"fast_wave": {"tf": 2}}, "df": 1}, "2": {"docs": {"fast_wave": {"tf": 2}}, "df": 1}, "3": {"1": {"4": {"4": {"5": {"9": {"9": {"7": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 2}}, "df": 1}, "5": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 3}, "6": {"4": {"1": {"8": {"9": {"5": {"4": {"1": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {"fast_wave": {"tf": 7.615773105863909}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 2}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 2.23606797749979}}, "df": 27, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "/": {"2": {"docs": {"fast_wave": {"tf": 2.6457513110645907}}, "df": 1, "}": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "h": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "4": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "docs": {}, "df": 0}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "2": {"0": {"0": {"1": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "3": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"0": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 3}, "1": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "5": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "7": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}, "docs": {}, "df": 0}, "2": {"0": {"docs": {"fast_wave": {"tf": 2}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 3}, "1": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "2": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}, "3": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 8}, "4": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 5}, "1": {"4": {"6": {"8": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "docs": {}, "df": 0}, "9": {"8": {"6": {"2": {"1": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"2": {"docs": {}, "df": 0, "j": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 2}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"6": {"1": {"4": {"2": {"7": {"3": {"6": {"8": {"4": {"5": {"2": {"1": {"1": {"6": {"3": {"9": {"9": {"3": {"5": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {}, "df": 0, "j": {"docs": {"fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 2}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"3": {"3": {"1": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "q": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"7": {"9": {"6": {"9": {"1": {"1": {"6": {"6": {"2": {"2": {"0": {"3": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"0": {"4": {"9": {"1": {"9": {"9": {"1": {"7": {"1": {"1": {"3": {"0": {"9": {"7": {"7": {"8": {"9": {"9": {"9": {"6": {"1": {"1": {"6": {"5": {"3": {"6": {"7": {"1": {"7": {"2": {"1": {"1": {"8": {"6": {"5": {"6": {"1": {"1": {"4": {"2": {"1": {"1": {"9": {"1": {"8": {"1": {"9": {"3": {"4": {"9": {"2": {"9": {"0": {"6": {"2": {"8": {"2": {"4": {"3": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "8": {"3": {"3": {"1": {"6": {"2": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"2": {"0": {"3": {"3": {"2": {"1": {"7": {"9": {"0": {"7": {"9": {"4": {"9": {"4": {"4": {"5": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}, "9": {"1": {"1": {"6": {"2": {"9": {"2": {"2": {"3": {"9": {"7": {"8": {"4": {"8": {"1": {"3": {"2": {"4": {"8": {"6": {"2": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "j": {"docs": {"fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 2}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 5}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}}, "df": 26, "m": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "^": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 2.6457513110645907}}, "df": 1, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 2}}, "df": 1}, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1, "h": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 1}}, "3": {"0": {"0": {"9": {"8": {"7": {"6": {"1": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 1}}, "df": 1}, "1": {"9": {"9": {"1": {"7": {"0": {"1": {"1": {"0": {"6": {"9": {"8": {"3": {"5": {"2": {"1": {"9": {"7": {"9": {"6": {"7": {"3": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "j": {"docs": {"fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 2}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 1}}, "df": 1}, "3": {"9": {"0": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"1": {"3": {"0": {"5": {"0": {"8": {"5": {"3": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"7": {"2": {"9": {"4": {"3": {"5": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}}, "df": 3}, "6": {"6": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "7": {"0": {"8": {"9": {"2": {"0": {"7": {"7": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 4}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 4}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 25}, "docs": {"fast_wave": {"tf": 3.1622776601683795}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 16}, "4": {"0": {"0": {"8": {"7": {"9": {"7": {"3": {"3": {"0": {"2": {"6": {"2": {"4": {"5": {"3": {"5": {"9": {"9": {"6": {"3": {"1": {"9": {"3": {"5": {"8": {"3": {"7": {"9": {"1": {"8": {"5": {"6": {"0": {"3": {"7": {"0": {"5": {"2": {"0": {"5": {"8": {"1": {"5": {"7": {"1": {"9": {"3": {"6": {"6": {"8": {"2": {"7": {"1": {"5": {"9": {"8": {"8": {"1": {"5": {"2": {"7": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"3": {"4": {"8": {"6": {"3": {"6": {"7": {"0": {"8": {"7": {"0": {"3": {"3": {"3": {"0": {"8": {"6": {"0": {"3": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"5": {"5": {"8": {"0": {"6": {"7": {"2": {"0": {"1": {"1": {"3": {"3": {"2": {"5": {"3": {"4": {"8": {"3": {"3": {"7": {"0": {"5": {"2": {"5": {"6": {"8": {"9": {"7": {"8": {"5": {"1": {"3": {"8": {"6": {"0": {"7": {"6": {"6": {"2": {"6": {"3": {"9": {"0": {"4": {"0": {"9": {"2": {"9": {"4": {"3": {"9": {"6": {"8": {"7": {"9": {"1": {"5": {"3": {"3": {"1": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"7": {"9": {"1": {"3": {"4": {"7": {"6": {"4": {"4": {"1": {"9": {"7": {"0": {"3": {"5": {"1": {"1": {"7": {"1": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"5": {"5": {"3": {"0": {"4": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}}, "df": 1, "+": {"1": {"3": {"1": {"4": {"4": {"5": {"9": {"9": {"7": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "7": {"0": {"8": {"9": {"2": {"3": {"2": {"9": {"8": {"5": {"6": {"2": {"2": {"9": {"1": {"0": {"9": {"4": {"1": {"2": {"9": {"3": {"9": {"1": {"7": {"0": {"0": {"2": {"6": {"0": {"0": {"7": {"2": {"4": {"3": {"4": {"2": {"1": {"4": {"2": {"0": {"3": {"2": {"2": {"1": {"2": {"9": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"4": {"0": {"9": {"8": {"8": {"5": {"9": {"3": {"6": {"0": {"1": {"4": {"1": {"9": {"2": {"6": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"9": {"6": {"8": {"4": {"2": {"0": {"6": {"0": {"7": {"2": {"1": {"6": {"9": {"3": {"7": {"1": {"7": {"7": {"7": {"8": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "+": {"0": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"6": {"2": {"1": {"1": {"5": {"1": {"8": {"2": {"7": {"6": {"8": {"4": {"0": {"9": {"1": {"7": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 2.449489742783178}}, "df": 1, "*": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "5": {"0": {"2": {"0": {"3": {"7": {"2": {"2": {"4": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"1": {"0": {"6": {"2": {"1": {"3": {"5": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"1": {"1": {"2": {"5": {"9": {"7": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"2": {"9": {"0": {"8": {"1": {"2": {"0": {"8": {"0": {"9": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"5": {"4": {"8": {"9": {"4": {"1": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"3": {"docs": {}, "df": 0, "+": {"9": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"4": {"5": {"3": {"6": {"8": {"6": {"3": {"4": {"0": {"5": {"9": {"4": {"6": {"8": {"6": {"5": {"2": {"7": {"7": {"7": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {}, "df": 0, "j": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {"fast_wave": {"tf": 3.1622776601683795}}, "df": 1}, "6": {"0": {"docs": {"fast_wave": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}}, "df": 8}, "1": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 12}, "3": {"2": {"0": {"5": {"0": {"3": {"5": {"1": {"6": {"1": {"5": {"2": {"8": {"2": {"6": {"0": {"7": {"9": {"8": {"6": {"0": {"6": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "j": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"0": {"4": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "a": {"9": {"5": {"8": {"4": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "1": {"8": {"9": {"5": {"4": {"2": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"8": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"2": {"8": {"8": {"3": {"6": {"5": {"1": {"1": {"3": {"4": {"7": {"5": {"1": {"8": {"1": {"5": {"1": {"0": {"8": {"3": {"7": {"6": {"4": {"5": {"3": {"6": {"2": {"7": {"4": {"0": {"4": {"9": {"8": {"6": {"3": {"4": {"9": {"9": {"4": {"2": {"4": {"8": {"6": {"8": {"7": {"2": {"6": {"9": {"1": {"2": {"2": {"6": {"1": {"8": {"7": {"3": {"8": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"6": {"1": {"0": {"2": {"5": {"6": {"2": {"9": {"9": {"1": {"1": {"2": {"3": {"5": {"3": {"1": {"6": {"9": {"5": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 4, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "7": {"0": {"8": {"9": {"2": {"0": {"7": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"8": {"docs": {}, "df": 0, "j": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 2}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"1": {"2": {"5": {"5": {"4": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {}, "df": 0, "\u2013": {"8": {"0": {"2": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "6": {"5": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"5": {"3": {"6": {"9": {"3": {"2": {"7": {"4": {"8": {"9": {"1": {"1": {"8": {"6": {"7": {"1": {"7": {"4": {"5": {"3": {"4": {"9": {"8": {"3": {"9": {"6": {"2": {"1": {"2": {"1": {"5": {"8": {"5": {"8": {"1": {"3": {"3": {"8": {"9": {"4": {"3": {"0": {"6": {"0": {"6": {"2": {"0": {"4": {"9": {"4": {"4": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"4": {"docs": {}, "df": 0, "j": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}}, "df": 2}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 3}, "8": {"5": {"3": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"7": {"3": {"2": {"5": {"0": {"7": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 4}, "9": {"2": {"1": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"8": {"0": {"0": {"7": {"2": {"4": {"4": {"8": {"4": {"8": {"1": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"1": {"1": {"9": {"2": {"2": {"5": {"5": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"6": {"9": {"7": {"8": {"2": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"1": {"0": {"8": {"4": {"2": {"9": {"7": {"6": {"4": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"5": {"2": {"7": {"2": {"9": {"4": {"3": {"5": {"0": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"6": {"4": {"9": {"8": {"2": {"2": {"3": {"8": {"4": {"6": {"9": {"4": {"9": {"5": {"3": {"4": {"3": {"1": {"7": {"6": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "+": {"0": {"docs": {"fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {"fast_wave": {"tf": 29.29163703175362}, "fast_wave.caching": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 8.602325267042627}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 8.366600265340756}, "fast_wave.caching.int_array_cache_Cython": {"tf": 8.246211251235321}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 8.602325267042627}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 8.366600265340756}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 8.246211251235321}, "fast_wave.wavefunction_cython": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 10.344080432788601}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 11.045361017187261}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 11.61895003862225}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 13}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 9.486832980505138}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 9.848857801796104}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 10.295630140987}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 10.954451150103322}, "fast_wave.wavefunction_mpmath": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 11.045361017187261}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 11.575836902790225}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 12.569805089976535}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 13.638181696985855}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 10.392304845413264}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 10.583005244258363}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 11.045361017187261}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 11.575836902790225}, "fast_wave.wavefunction_numba": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.c_s_matrix": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.compilation_test": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 9}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 10.04987562112089}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 10.63014581273465}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 11.313708498984761}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 11.832159566199232}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 12.84523257866513}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 9.433981132056603}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 9.797958971132712}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 10.295630140987}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 10.954451150103322}}, "df": 39, "t": {"docs": {"fast_wave": {"tf": 4.123105625617661}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 7, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 5.744562646538029}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 8}}, "e": {"docs": {"fast_wave": {"tf": 13.038404810405298}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 3}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 3}, "fast_wave.caching.int_array_cache_Cython": {"tf": 3}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 3}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 3}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 3.1622776601683795}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 3}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 2.23606797749979}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 2.6457513110645907}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 2.6457513110645907}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 2.6457513110645907}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 2.6457513110645907}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 2.449489742783178}}, "df": 33, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 2.6457513110645907}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 2}}, "n": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 2}}, "df": 1}}, "m": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 3.7416573867739413}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 2.6457513110645907}}, "df": 1, "s": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}, "o": {"docs": {"fast_wave": {"tf": 6.708203932499369}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 2.449489742783178}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 2.23606797749979}, "fast_wave.caching.int_array_cache_Cython": {"tf": 2.23606797749979}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 2.449489742783178}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 2.23606797749979}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 2}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}}, "df": 32, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 2, "s": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 9}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 2.449489742783178}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 5}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}, "p": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "d": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 5, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 3}}, "c": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 8, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 2.23606797749979}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 2}}, "df": 9}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 3.3166247903554}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 23, "s": {"docs": {"fast_wave": {"tf": 2.8284271247461903}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 9}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 3}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 6, "s": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}, "s": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 3.3166247903554}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 2}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 2.23606797749979}}, "df": 1, "^": {"2": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}}, "y": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 3.3166247903554}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 9}}}}, "x": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 2}, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 2.23606797749979}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}}}}}}}}}}, "i": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "p": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "\\": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "^": {"docs": {}, "df": 0, "{": {"1": {"docs": {}, "df": 0, "/": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 2.6457513110645907}}, "df": 1}}}}}}}}}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave": {"tf": 7.14142842854285}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 22}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "\u00e9": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "z": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "a": {"docs": {"fast_wave": {"tf": 6.928203230275509}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 2.6457513110645907}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 2.449489742783178}, "fast_wave.caching.int_array_cache_Cython": {"tf": 2}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 2.6457513110645907}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 2.23606797749979}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 33, "n": {"docs": {"fast_wave": {"tf": 3.3166247903554}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7, "d": {"docs": {"fast_wave": {"tf": 4.898979485566356}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 11}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}, "t": {"docs": {"fast_wave": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 25}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 12}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6, "s": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 9}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 3.1622776601683795}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 2.449489742783178}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 2.449489742783178}, "fast_wave.caching.int_array_cache_Cython": {"tf": 2.449489742783178}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 2.449489742783178}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 2.449489742783178}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 2}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 24, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {"fast_wave": {"tf": 3.3166247903554}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 5}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 2}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 33}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"2": {"2": {"0": {"9": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 8}}}}}}}}}, "s": {"docs": {"fast_wave": {"tf": 5.291502622129181}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}}, "df": 8, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "k": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"fast_wave": {"tf": 3}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 19, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "d": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"fast_wave": {"tf": 8.660254037844387}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 2}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 33, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "n": {"docs": {"fast_wave": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17, "e": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 2.23606797749979}}, "df": 1}}}}, "r": {"docs": {"fast_wave": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 5, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 8, "/": {"1": {"0": {"docs": {"fast_wave": {"tf": 2.6457513110645907}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"1": {"0": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 16}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"5": {"0": {"2": {"0": {"3": {"7": {"2": {"2": {"4": {"docs": {}, "df": 0, "?": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}}, "df": 1}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 7.211102550927978}}, "df": 1, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 3}}}}}, "f": {"docs": {"fast_wave": {"tf": 2.449489742783178}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 6}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 2.23606797749979}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 2.23606797749979}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 32, "m": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"fast_wave": {"tf": 4.358898943540674}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 29}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}}, "df": 7}}}, "s": {"docs": {"fast_wave": {"tf": 2.23606797749979}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 4.58257569495584}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 2}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 8, "s": {"docs": {"fast_wave": {"tf": 3.3166247903554}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.4142135623730951}}, "df": 9}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"fast_wave": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 10}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.7320508075688772}}, "df": 6}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"6": {"4": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}}, "df": 9}, "docs": {}, "df": 0}, "docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 8}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {"fast_wave": {"tf": 3}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 2.6457513110645907}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 8, "s": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 4}, "d": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}}, "df": 6}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 2.6457513110645907}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 2}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 2}, "fast_wave.caching.int_array_cache_Cython": {"tf": 2}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 2}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 2}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 2}}, "df": 7, "s": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 2}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}}, "df": 7}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"fast_wave": {"tf": 3.1622776601683795}}, "df": 1, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 2}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 2.23606797749979}}, "df": 1}}}, "e": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 18, "d": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 5}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "\u00e7": {"docs": {}, "df": 0, "\u00e3": {"docs": {}, "df": 0, "o": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 2}}, "df": 1}, "d": {"docs": {"fast_wave": {"tf": 2.8284271247461903}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"1": {"2": {"8": {"docs": {"fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 10}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 16}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 2}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 2.8284271247461903}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 8}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 4.123105625617661}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 9}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "j": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 3.605551275463989}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 4.123105625617661}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}}, "df": 25, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}}, "df": 5}}}}}}}}}}}, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 3.605551275463989}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 15, "i": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}, "e": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 3.3166247903554}}, "df": 1}}, "n": {"docs": {"fast_wave": {"tf": 2}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 2}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 31}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 1}}, "n": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "c": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {"fast_wave": {"tf": 4}}, "df": 1, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}, "s": {"docs": {"fast_wave": {"tf": 3.3166247903554}}, "df": 1, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 3}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 31, "s": {"docs": {"fast_wave": {"tf": 2.6457513110645907}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 13}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 3.1622776601683795}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 2}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 2}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 21}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 2.23606797749979}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 8}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}}, "o": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "p": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"fast_wave": {"tf": 2.23606797749979}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "{": {"2": {"docs": {"fast_wave": {"tf": 2}}, "df": 1, "^": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 2.449489742783178}}, "df": 1}, "{": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 2.6457513110645907}}, "df": 1}, "i": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "!": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"1": {"docs": {}, "df": 0, "/": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}}}}}}}}}, "i": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "n": {"docs": {"fast_wave": {"tf": 2}}, "df": 1, "}": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"fast_wave": {"tf": 2.449489742783178}}, "df": 1, "!": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"1": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "+": {"1": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "\u00f6": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 12}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 8}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {"fast_wave": {"tf": 3.3166247903554}}, "df": 1, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"fast_wave": {"tf": 4.69041575982343}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 31}}}}, "d": {"docs": {"fast_wave": {"tf": 4.123105625617661}}, "df": 1, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "\u00e2": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "^": {"docs": {}, "df": 0, "{": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "/": {"2": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}}}, "h": {"docs": {"fast_wave": {"tf": 4.69041575982343}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"fast_wave": {"tf": 3}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 2}}, "df": 1}}, "s": {"docs": {"fast_wave": {"tf": 2}}, "df": 1, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1, "^": {"docs": {}, "df": 0, "{": {"2": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "}": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 3.605551275463989}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 2}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 7}}}}}}, "y": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "c": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave": {"tf": 2.6457513110645907}}, "df": 1}, "c": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "f": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 16}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 8}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"fast_wave": {"tf": 2.23606797749979}}, "df": 1, "n": {"docs": {"fast_wave": {"tf": 7.416198487095663}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 8, "c": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}}, "df": 5}}}}}}, "o": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"fast_wave": {"tf": 2}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 26, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"fast_wave": {"tf": 2}}, "df": 1}}}}}}}}, "o": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "+": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 2.23606797749979}}, "df": 1, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "\u00e7": {"docs": {}, "df": 0, "\u00e3": {"docs": {}, "df": 0, "o": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}}, "df": 5}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"fast_wave": {"tf": 6}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 2.23606797749979}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 2.23606797749979}, "fast_wave.caching.int_array_cache_Cython": {"tf": 2}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 2.23606797749979}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 2}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 8, "b": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 2.23606797749979}}, "df": 1}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 2.23606797749979}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 4}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 2}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {"fast_wave": {"tf": 3.1622776601683795}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 2, "s": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "!": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"1": {"docs": {}, "df": 0, "/": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}}}}}, "f": {"docs": {"fast_wave": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 5}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 16}}}, "l": {"docs": {"fast_wave": {"tf": 2}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "m": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "u": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "k": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 10}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "m": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}, "t": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 4}}, "n": {"docs": {"fast_wave": {"tf": 8.426149773176359}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}}, "df": 33, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {"fast_wave": {"tf": 3.872983346207417}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 31}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 2}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 15}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"fast_wave": {"tf": 2.23606797749979}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 2}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 2.23606797749979}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 25}, "+": {"1": {"docs": {"fast_wave": {"tf": 3.7416573867739413}}, "df": 1, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "docs": {}, "df": 0}, "o": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 6}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "w": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 2}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}, "!": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave": {"tf": 2.23606797749979}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"1": {"docs": {}, "df": 0, "/": {"2": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}}}}}, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "}": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "^": {"docs": {}, "df": 0, "{": {"2": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}}, "\\": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "]": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "^": {"docs": {}, "df": 0, "{": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "docs": {}, "df": 0}}, ">": {"6": {"0": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.7320508075688772}}, "df": 3}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 8, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 15}}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1.4142135623730951}}, "df": 5}}}, "m": {"docs": {"fast_wave": {"tf": 4.242640687119285}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17, "r": {"docs": {"fast_wave": {"tf": 2}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}}, "df": 7, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 2}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 3.7416573867739413}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 22}, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 3.872983346207417}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 8, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 2}}, "df": 1, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "l": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {"fast_wave": {"tf": 3.7416573867739413}}, "df": 1, "{": {"7": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "t": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "c": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "n": {"docs": {"fast_wave": {"tf": 3}}, "df": 1}, "q": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "x": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "p": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave": {"tf": 2.8284271247461903}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}}, "df": 16}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 6}}}}}}, "x": {"docs": {"fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "y": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 2}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 2}}, "df": 9}}}}, "f": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}}, "df": 1}, "c": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 2}}, "df": 4}}, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}}, "\\": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {"fast_wave": {"tf": 2.449489742783178}}, "df": 1, "^": {"2": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "/": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "w": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 2.23606797749979}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 16, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 13}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"fast_wave": {"tf": 4.47213595499958}}, "df": 1, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 3.4641016151377544}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 27}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 24, "d": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 25}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 3}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}}}}}}}}, "u": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 2.23606797749979}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 22}}}, "e": {"docs": {"fast_wave": {"tf": 3.3166247903554}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1.7320508075688772}}, "df": 5, "d": {"docs": {"fast_wave": {"tf": 2.6457513110645907}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 3}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}, "p": {"docs": {"fast_wave": {"tf": 2}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 14, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"6": {"4": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 14}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "j": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}}, "df": 23, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "r": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}}}}}}}, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}}, "df": 6}}}, "s": {"docs": {"fast_wave": {"tf": 2.23606797749979}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 33}}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 2.6457513110645907}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 17}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 3, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "d": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 2}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}}, "df": 19, "m": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 32}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 8}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 6}}}}}}, "d": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 8}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 2}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "s": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1.7320508075688772}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}}, "df": 7, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}}, "df": 6}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 8}}}}}, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 8}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 2}}, "df": 1}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 2.449489742783178}}, "df": 1}}}}}, "{": {"1": {"docs": {"fast_wave": {"tf": 2.23606797749979}}, "df": 1}, "2": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "e": {"docs": {"fast_wave": {"tf": 3}}, "df": 1}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 8}, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "y": {"docs": {"fast_wave": {"tf": 2}}, "df": 1}, "x": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {"fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1}}, "df": 16}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "y": {"docs": {"fast_wave": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 2}, "e": {"docs": {"fast_wave": {"tf": 3.1622776601683795}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 8, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1, "g": {"docs": {"fast_wave": {"tf": 6.48074069840786}}, "df": 1, "]": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"1": {"docs": {}, "df": 0, "/": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}}, "|": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "docs": {}, "df": 0}}}}, "[": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 2}}, "df": 1, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "l": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "w": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "x": {"docs": {"fast_wave": {"tf": 7.280109889280518}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1.4142135623730951}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 2.23606797749979}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.4142135623730951}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.4142135623730951}}, "df": 31, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {"fast_wave": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_single_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Numba_complex_multiple_fock": {"tf": 1}, "fast_wave.caching.int_array_cache_Cython_complex": {"tf": 1}}, "df": 7}}}}}, "^": {"2": {"docs": {"fast_wave": {"tf": 2.8284271247461903}}, "df": 1}, "docs": {}, "df": 0, "{": {"1": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "2": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "x": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"2": {"docs": {"fast_wave": {"tf": 2.8284271247461903}}, "df": 1}, "docs": {}, "df": 0}}}, "3": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1.7320508075688772}}, "df": 1}}}, "l": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}, "t": {"docs": {"fast_wave": {"tf": 3.872983346207417}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_single_fock_single_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_single_fock_multiple_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_cython.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_single_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position": {"tf": 2.449489742783178}, "fast_wave.wavefunction_mpmath.psi_n_single_fock_multiple_position_complex": {"tf": 2.449489742783178}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_mpmath.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 2.6457513110645907}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 2.6457513110645907}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 2.8284271247461903}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_single_position_complex": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position": {"tf": 1.7320508075688772}, "fast_wave.wavefunction_numba.psi_n_multiple_fock_multiple_position_complex": {"tf": 1.7320508075688772}}, "df": 27}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {"fast_wave.wavefunction_numba.hermite_sympy": {"tf": 1}, "fast_wave.wavefunction_numba.create_normalized_hermite_coefficients_matrix": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"fast_wave.wavefunction_numba.psi_n_single_fock_single_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_single_position_complex": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position": {"tf": 1}, "fast_wave.wavefunction_numba.psi_n_single_fock_multiple_position_complex": {"tf": 1}}, "df": 4}}}}}}}, "y": {"docs": {"fast_wave": {"tf": 4.69041575982343}}, "df": 1, "^": {"2": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "/": {"2": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}, "docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}, "docs": {}, "df": 0, "{": {"2": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "\\": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "o": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}, "k": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "n": {"docs": {"fast_wave": {"tf": 1.4142135623730951}}, "df": 1}, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"fast_wave": {"tf": 1}}, "df": 1, "s": {"docs": {"fast_wave": {"tf": 1}}, "df": 1}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true};
+
+ // mirrored in build-search-index.js (part 1)
+ // Also split on html tags. this is a cheap heuristic, but good enough.
+ elasticlunr.tokenizer.setSeperator(/[\s\-.;&_'"=,()]+|<[^>]*>/);
+
+ let searchIndex;
+ if (docs._isPrebuiltIndex) {
+ console.info("using precompiled search index");
+ searchIndex = elasticlunr.Index.load(docs);
+ } else {
+ console.time("building search index");
+ // mirrored in build-search-index.js (part 2)
+ searchIndex = elasticlunr(function () {
+ this.pipeline.remove(elasticlunr.stemmer);
+ this.pipeline.remove(elasticlunr.stopWordFilter);
+ this.addField("qualname");
+ this.addField("fullname");
+ this.addField("annotation");
+ this.addField("default_value");
+ this.addField("signature");
+ this.addField("bases");
+ this.addField("doc");
+ this.setRef("fullname");
+ });
+ for (let doc of docs) {
+ searchIndex.addDoc(doc);
+ }
+ console.timeEnd("building search index");
+ }
+
+ return (term) => searchIndex.search(term, {
+ fields: {
+ qualname: {boost: 4},
+ fullname: {boost: 2},
+ annotation: {boost: 2},
+ default_value: {boost: 2},
+ signature: {boost: 2},
+ bases: {boost: 2},
+ doc: {boost: 1},
+ },
+ expand: true
+ });
+})();
\ No newline at end of file
diff --git a/images/Fast_Wave_faveicon.ico b/images/Fast_Wave_faveicon.ico
new file mode 100644
index 0000000..4c25315
Binary files /dev/null and b/images/Fast_Wave_faveicon.ico differ
diff --git a/images/Fast_Wave_logo.png b/images/Fast_Wave_logo.png
new file mode 100644
index 0000000..c0dff63
Binary files /dev/null and b/images/Fast_Wave_logo.png differ
diff --git a/pdoc b/pdoc
new file mode 100644
index 0000000..e69de29
diff --git a/setup.cfg b/setup.cfg
index aaa922b..81e998b 100644
--- a/setup.cfg
+++ b/setup.cfg
@@ -1,6 +1,6 @@
[metadata]
name = fast_wave
-version = 1.5.1
+version = 1.6.0
description = Package for the calculation of the time-independent wavefunction.
author = Matheus Gomes Cordeiro
author_email = matheusgomescord@gmail.com
diff --git a/setup.py b/setup.py
index 7de1d80..ea3a490 100644
--- a/setup.py
+++ b/setup.py
@@ -6,7 +6,7 @@
long_description = fh.read()
name = "fast_wave"
-version = "1.5.1"
+version = "1.6.0"
description = "Package for the calculation of the time-independent wavefunction."
author_email = "matheusgomescord@gmail.com"
url = "https://github.com/pikachu123deimos/fast-wave"
diff --git a/src/fast_wave/__init__.py b/src/fast_wave/__init__.py
index e69de29..8d7e7f0 100644
--- a/src/fast_wave/__init__.py
+++ b/src/fast_wave/__init__.py
@@ -0,0 +1,247 @@
+
+"""
+ This project presents an optimized approach for calculating the position wave functions of a Fock state of a quantum harmonic oscillator, with applications in Photonic Quantum Computing simulations. Leveraging [Numba](https://numba.pydata.org/) [[1](#references)] and [Cython](https://cython.org/) [[2](#references)], this approach outperforms the [Mr Mustard](https://mrmustard.readthedocs.io/en/stable/) package [[3, 4](#references)] in computing a single wave function value at a single position and at multiple positions.
+
+ ## ✨ Advantages
+
+
+ - **Highly Efficient**: This package includes two fixed-point modules focused on speed. One is implemented using *Numba*, an open-source Just-in-Time (JIT) compiler, and the other module is implemented in *Cython*, a programming language that combines the ease of use of Python with the speed of C.
+ - **Highly Accurate**: The functions in this package have precision next to the precision of Wolfram Mathematica and MATLAB. In addition, there is a module for calculating wave functions with arbitrary precision using the *mpmath* package.
+ - **Past response cache**: This package provides a caching module designed to enhance the performance of functions that take multiple positions of a *NumPy* array as input. This module stores previously computed results by leveraging Python's functools.lru_cache, eliminating the need for redundant calculations. This caching module is inspired by the [caching module](https://github.com/XanaduAI/MrMustard/blob/develop/mrmustard/math/caching.py#L26) from Mr. Mustard, a package from the photonic quantum computing company Xanadu.
+
+
+ ## 🛠️ Setup
+ To use this package, simply run the following command in the command line:
+ ```bash
+ pip install fast-wave
+ ```
+
+ ## 🎨 Examples
+
+ The functions `psi_n_multiple_fock_multiple_position` calculate the values of the wavefunction $\psi_{0 → n} \( X_m \)$ for multiple Fock states ($n$) and multiple positions ($X_{m}$).
+
+ **Inputs:**
+
+ * `n`: An integer specifying the maximum Fock state ($n$).
+ * `X_m`: A 1D `numpy` array with `m` positions, representing the input values where $\psi_{0 → n}$ will be evaluated. For example, `np.array([1.0, 2.0])` has dimension $(m,)$, where $m=2$ in this case.
+
+ **Outputs:**
+
+ - `numpy` **Matrix**: The output has dimensions $(n+1) × m$, where:
+ - $n+1$: Corresponds to the Fock states $[0, 1, ..., n]$.
+ - $m$: Represents the positions given in `X_m`.
+
+ **Demonstration:**
+
+ Using the provided inputs:
+
+ ```python
+ >>> import fast_wave.wavefunction_numba as wn
+ Functionality Test Passed: True
+ >>> import fast_wave.wavefunction_cython as wc
+ >>> import numpy as np
+ >>> wn.psi_n_multiple_fock_multiple_position(1,np.array([1.0 ,2.0]))
+ array([[0.45558067, 0.10165379],
+ [0.64428837, 0.28752033]])
+ >>> wc.psi_n_multiple_fock_multiple_position(1,np.array([1.0 ,2.0]))
+ array([[0.45558067, 0.10165379],
+ [0.64428837, 0.28752033]])
+ ```
+
+ **Explanation of the Output:**
+
+ * For `n=1` and `X_m = np.array([1.0, 2.0])`:
+ - The output matrix has dimensions $(n+1) × m = 2 × 2$.
+ - The first row contains $\psi_{0}(x_1)$ and $\psi_{0}(x_2)$.
+ - The second row contains $\psi_{1}(x_1)$ and $\psi_{1}(x_2)$.
+
+ There are other examples in the examples folder: [Speed Tests: Numba & Cython](https://colab.research.google.com/github/fobos123deimos/fast-wave/blob/main/examples/speed_tests_numba_and_cython.ipynb); [Precision Tests: mpmath](https://colab.research.google.com/github/fobos123deimos/fast-wave/blob/main/examples/precision_tests_mpmath.ipynb). In the first one there is a comparison with the [Mr Mustard](https://mrmustard.readthedocs.io/en/stable/) package.
+
+ ## 🌊 The Wavefunction
+
+ The wavefunction, $\Psi(y,t)$, is a fundamental concept in quantum mechanics that describes the quantum state of a particle or system. Its absolute square, $|\Psi(y,t)|^2$, represents the probability density of finding the particle at position $\mathbf{y}$ and time $\mathbf{t}$. Due to the normalization property: $\int_{-\infty}^{\infty} |\Psi(y,t)|^2 dy = 1$ it's guaranteed that for a given time $\mathbf{t}$, the total probability of finding the particle somewhere in space is unity [[5](#references)].
+
+ ### Schrödinger Equation
+
+ The wavefunction is the solution to the Schrödinger equation, a fundamental equation in quantum mechanics:
+
+ $$
+ -\Bigg(\{\hbar^{2} \over 2m\}\Bigg) \{\partial^2 \Psi(y,t) \over \partial y^{2}\} + \Bigg(\{m\omega^2 y^2 \over 2\}\Bigg) \Psi(y,t) = \mathbf{i}\hbar \, \{\partial \Psi(y,t) \over \partial t\} \quad \mathbf{(1)}
+ $$
+
+ where $\mathbf{\hbar}$ is the reduced Planck constant, $\mathbf{m}$ is the mass of the particle, and $\mathbf{\omega}$ is the angular frequency of the harmonic potential. The symbol $\mathbf{i}$ represents the imaginary unit. When seeking the solution to this equation, we separated the variables as follows: $\Psi(y,t) = \psi(y)f(t)$, and we find as a result for $f(t)$ [[5](#references)]:
+
+ $$ f(t) = C \, e^{-iEt/\hbar} \quad \mathbf{(2)}$$
+
+ where $\mathbf{C}$ may be considered an arbitrary complex constant and $\mathbf{E}$, the system separation constant can be interpreted as the system's energy. Substituting into the wavefunction we have [[5](#references)]:
+
+ $$ \Psi(y,t) = C \, e^{-iEt/\hbar} \, \psi(y) \quad \mathbf{(3)}$$
+
+ The term $e^{-iEt/\hbar}$ is called the **phase factor** of $\Psi(y,t)$. In order to find $\psi(y)$ we then solve the **time-independent Schröndiger equation** [[5](#references)]:
+
+ $$
+ -\Bigg(\{\hbar^{2} \over 2m \}\Bigg) \psi''(y) + \Bigg(\{m\omega^2 y^2 \over 2 \}\Bigg) \psi(y) = E \, \psi(y) \quad \mathbf{(4)}
+ $$
+
+
+ ### Quantum Harmonic Oscillator
+
+ By solving equation **(4)**, we obtain a family of energy eigenfunctions defined as follows [[5](#references)]:
+
+ $$
+ \psi_n(y) = \Bigg(\{ m\omega \over \pi\hbar \}\Bigg)^{1/4} \Bigg(\{ 1 \over \sqrt{2^n n!}\}\Bigg) H_n\Bigg(\sqrt{m\omega \over \hbar }y\Bigg) \, e^{-m\omega y^2/2\hbar} , \quad n \in \mathbb{N}_{0} \quad \mathbf{(5)}
+ $$
+
+ where $\mathbf{n}$ represents a non-negative integer corresponding to the different energy states of the system, with energies given by $E_n = [n + (1/2)]\hbar \omega$. The term $H_n$ denotes the Hermite polynomial of degree $\mathbf{n}$; thus, for each energy state $\mathbf{n}$, there is an associated Hermite polynomial of degree $\mathbf{n}$ within its eigenfunction [[5](#references)]:
+
+
+
+
+
+
+ Wavefunctions and energies for different $\mathbf{n}$ values. [6]
+
+
+
+
+ The energy eigenfunction for an energy state $\mathbf{n}$ is the wavefunction for an energy state $\mathbf{n}$ of a Quantum Harmonic Oscillator. From this definition, we can then represent the wave function $\Psi(x,t)$ as a series expansion of its family of energy eigenfunctions $\{\psi_{n}(x)\}$ [[5](#references)]:
+
+ $$
+ \Psi(y,t) = \sum_{n=0}^{\infty} c_{n} \, \psi_{n}(y) \, e^{-\mathbf{i}E_{n}t/\hbar} \quad \mathbf{(6)}
+ $$
+
+ where $\mathbf{c_{n}}$ are complex constants that determine the contribution of each eigenfunction $\psi_{n}(y)$ to the total wavefunction $\Psi(y,t)$. These coefficients are chosen to ensure that the wavefunction satisfies the initial condition of the problem ($t=0$) [[5](#references)].
+
+ ### Fock states
+
+ When defining the dimensionless variable $x = \Big(m\omega/\hbar\Big)^{1/2}y$, referred to as the **reduced coordinate**, it follows that $dy = \Big(\hbar/m\omega\Big)^{1/2}dx$. As a result, we can write [[7](#references)]:
+
+
+ $\displaystyle\int_{-\infty}^{+\infty} |\psi(y)|^{2} dy = 1 \implies \int_{-\infty}^{+\infty}\Bigg[\Bigg(\{m\omega \over \pi\hbar \}\Bigg)^{1/2} \Bigg(\{1 \over 2^n n!\}\Bigg) H_n^{2}\Bigg(\sqrt{ m\omega \over \hbar}y\Bigg) e^{-m\omega y^2/\hbar} \Bigg] dy \implies$
+
+
+ $\displaystyle\int_{-\infty}^{+\infty} \Bigg[ \Bigg(\{m\omega \over \pi\hbar \} \Bigg)^{1/2} \Bigg( \{ 1 \over 2^n n! \} \Bigg) H_{n}^{2}(x) \, e^{-x^{2}}\Bigg]\Bigg[\{ \hbar \over \omega m \}\Bigg]^{1/2}dx = 1 \implies \int_{-\infty}^{+\infty} \Bigg[ \Bigg(\{ 1 \over 2^n n!\sqrt{\pi} \} \Bigg) H_{n}^{2}(x) \, e^{-x^{2}}\Bigg]dx = 1 \implies$
+
+
+ $\displaystyle\int_{-\infty}^{+\infty} \, \Bigg| \Bigg( \{1 \over 2^n n!\sqrt{\pi} \} \Bigg)^{1/2} H_{n}(x) \, e^{-x^{2}/2} \Bigg|^{2}dx = 1 \implies \int_{-\infty}^{+\infty} |\psi(x)|^{2} dx = 1\implies$
+
+ $$\psi_{n}(x) = \Bigg( \{1 \over 2^n n!\sqrt{\pi} \}\Bigg)^{1/2} H_{n}(x) \quad e^{-x^{2}/2} \quad \mathbf{(7)}$$
+
+ This demonstrates that the wavefunction of a Quantum Harmonic Oscillator can be represented in a more dimensionless form, known as the **Hermite function**, it is also sometimes referred to as the **Gauss Hermite function** (equation $\mathbf{7}$) [[8](#references)]. A more simplified form for this type of function is this: $\psi_{n}(x) = \mathcal{N_{n}} \, H_{n}(x) \, e^{-x^{2}/2}$, where $\mathcal{N_{n}} = [1 /(2^n n!\sqrt{\pi})]^{1/2}$ is referred to as the normalization constant [[9](#references)].
+
+ This type of representation for the wavefunction enables the modeling of wave functions for **Fock states**, which are energy eigenstates with a well-defined number of particles. When the particles are considered photons, $\mathbf{n}$, the degree of the Hermite polynomial, also represents the number of photons. Consequently, the Fock states ($\ket{n}$) become eigenstates of the photon number operator $\hat{n}$, such that $\hat{n}\ket{n}=n\ket{n}$. Moreover, the energy states now correspond to the energy levels of an optical system containing $n$-photons [[10](#references)].
+
+
+ $\ket{\psi_{n}} = \displaystyle\{1 \over \sqrt{n!} \}(a^{\dagger})^{n}\ket{\psi_{0}} \implies \psi_{n}(q) = \{ 1 \over \sqrt{n!} \}\{ 1 \over \sqrt{2^n} \}\Bigg(q - \{\partial \over \partial q \}\Bigg)^{n}\psi_{0}(q) \implies $
+
+ $\psi_{n}(q) = \displaystyle\{1 \over \sqrt{n!}\}\{1 \over \sqrt{2^n} \} H_{n}(q) \psi_{0}(q) \implies \psi_{n}(q) = \displaystyle\{1 \over \sqrt{n!} \}\{1 \over \sqrt{2^n} \} H_{n}(q) \Big(\pi^{-1/4}\Big) e^{-q^{2}/2} \implies$
+
+ $$\psi_{n}(q) = \displaystyle\Bigg(\{1 \over 2^n n!\sqrt{\pi} \}\Bigg)^{1/2} H_{n}(q) \quad e^{-q^{2}/2} \quad \mathbf{(8)}$$
+
+ where $\mathbf{q}$ is interpreted as the normalized field amplitude associated with the position quadrature ($\hat{q}$) and has a dimensionless character similar to $\mathbf{x}$ [[10](#references)].
+
+ The wavefunction $\mathbf{n}$ of a Fock state is the projection of the state $\ket{n}$, and as we can observe, the wavefunctions of a Fock state for $n$-photon systems can be interpreted as a family of dimensionless energy eigenfunctions (Hermite functions), similar to those shown by equation $\mathbf{(7)}$ [[10](#references)].
+
+ ## 🔁 The Wavefunction Recurrence
+
+ In essence, Mr Mustard's strategy is to use the [Renormalized Hermite Polynomial](https://mrmustard.readthedocs.io/en/stable/code/api/mrmustard.math.hermite_renormalized.html) [[3, 4](#references)] for the computation of the wavefunction of a quantum harmonic oscillator. Below, we show the recurrence for calculating the Renormalized Hermite Polynomial, as well as the method for calculating it using the traditional Hermite polynomial:
+
+ $$H_{n+1}^{re}(x) = \displaystyle\{2 \over \sqrt{n+1} \}\Big[xH_{n}^{re}(x) - H_{n-1}^{re}(x)\sqrt{n-1}\Big] \quad \mathbf{(8)} $$
+
+ $$H_{n}^{re}(x) = \displaystyle\{H_{n}(x) \over \sqrt{n!}} \quad \mathbf{(10)} $$
+
+ When we use this polynomial in calculating the wavefunction of a Quantum Harmonic Oscillator, the equation is as follows:
+
+ $$\psi_{n}(x) = \displaystyle\Bigg(\{1 \over 2^n\sqrt{\pi} \}\Bigg)^{1/2}H_{n}^{re}(x) \quad e^{-\{x^2 \over 2 \}} \quad \mathbf{(11)} $$
+
+ In this package, we implemented a recurrence based on the recursive solution to the wavefunction of the Quantum Harmonic Oscillator presented in the work of *José Maria Pérez-Jordá* [[11](#references)]. The recurrence we implemented was for $\psi_{n+1}$, which we obtained from the recursive definition of the Hermite polynomial [[12](#references)], as suggested by *José Maria Pérez-Jordá* in his article:
+
+
+ $H_{n+1}(x) = 2xH_{n}(x) - 2nH_{n-1}(x) \implies $
+
+
+ $\Bigg( \displaystyle\{e^{-x^2 / 2} \over \sqrt{2^{n-1}(n-1)!\pi^{1/2}}\}\Bigg)H_{n+1}(x) = \Bigg( \displaystyle\{e^{-x^2 / 2} \over \sqrt{2^{n-1}(n-1)!\pi^{1/2}}\}\Bigg)2xH_{n}(x) -\Bigg( \displaystyle\{e^{-x^2 / 2} \over \sqrt{2^{n-1}(n-1)!\pi^{1/2}}\}\Bigg)2nH_{n-1}(x) \implies$
+
+
+ $\Bigg( \displaystyle\{e^{-x^{2}/2} \over \sqrt{2^{n-1}(n-1)!\pi^{1/2}}\}\Bigg)H_{n+1}(x) = \Bigg( \displaystyle\{e^{-x^{2}/2} \over \sqrt{2^{n-1}(n-1)!\pi^{1/2}}\}\Bigg)2xH_{n}(x) -2n\psi_{n-1}(x) \implies $
+
+
+ $\displaystyle\{1 \over \sqrt{2n}\}\Bigg( \displaystyle\{e^{-x^2 / 2} \over \sqrt{2^{n-1}(n-1)!\pi^{1/2}}\}\Bigg)H_{n+1}(x) = \{1 \over \sqrt{2n} \}\Bigg( \displaystyle\{e^{-x^2 /2} \over \sqrt{2^{n-1}(n-1)!\pi^{1/2}}\}\Bigg)2xH_{n}(x) -\{2n \over \sqrt{2n}\} \, \psi_{n-1}(x) \implies$
+
+
+ $\Bigg(\displaystyle\{e^{-x^2 / 2} \over \sqrt{2^n n!\pi^{1/2}}\}\Bigg) H_{n+1}(x) = 2x\psi_{n}(x) - \{2n \over \sqrt{2n}\} \, \psi_{n-1}(x) \implies$
+
+
+ $\displaystyle\Bigg(\{1 \over \sqrt{2(n+1)} \}\Bigg)\Bigg(\displaystyle\{e^{-x^2 / 2} \over \sqrt{2^n n!\pi^{1/2}} \}\Bigg) H_{n+1}(x) = \displaystyle\Bigg(\{1 \over \sqrt{2(n+1)}\}\Bigg)2x\psi_{n}(x) - \displaystyle\Bigg(\{1 \over \sqrt{2(n+1)}\}\Bigg) \, \{2n \over \sqrt{2n} \} \, \psi_{n-1}(x) \implies$
+
+
+ $$\psi_{n+1}(x) = \displaystyle\Bigg(\sqrt{2 \over n+1}\Bigg)x\psi_{n}(x) -\Bigg(\sqrt{n \over n+1}\Bigg)\psi_{n-1}(x) \quad \mathbf{(12)}$$
+
+
+ Besides the use of this recurrence in this package, the same authors implemented a version of it in a Cython module of QuTip: [_distributions.pyx](https://github.com/qutip/qutip/blob/master/qutip/_distributions.pyx), to be used in the HarmonicOscillatorWaveFunction class from the [distributions.py](https://github.com/qutip/qutip/blob/master/qutip/distributions.py) module.
+
+
+ ## ⚡️The Numba Module - Hybrid Solution
+
+ We use a hybrid solution with two algorithms for calculating the wave function for calculating a single Fock wave function's values at multiple positions (Single Fock and Multiple Position) (`psi_n_single_fock_multiple_position`). For $n>60$ or more than 35 positions, we use the recurrence for the wave function. For $n\le 60$ and at most 35 positions we use a precomputed matrix with the normalized coefficients of the Hermite polynomial as follows:
+
+
+ $$\psi_{i}(x) = \displaystyle\{1 \over \sqrt{2^i i!\pi^{1/2}}\}H_{i}(x)e^{-x^{2}/2} = \{1 \over \sqrt{2^{i}i!\pi^{1/2}}\}\mathbf{C_{n}[i]} \cdot \mathbf{x^{p}} e^{-x^{2}/2} \implies $$
+
+
+ $$\psi_{i}(x) = \mathbf{C^{s}_{n}[i]\cdot x^{p}e^{-x^{2}/2} \quad \mathbf{(13)}}$$
+
+
+ where $\mathbf{C^{s}_{n}[i]}$ is the row vector of normalized coefficients that multiply each power of $x$ up to $x^n$. The entire matrix $\mathbf{C^s_n}$ of such rows is precomputed up to degree $n=60$. $\mathbf{x^{p}}$ is a column vector of powers up to n, with zeros in places where the coefficient is zero; for example, for $i=3$, $\mathbf{x^{p}} = [x^{3}, 0.0, x^{1}, 0.0]^T$. This hybrid algorithm is also used in Single Fock and Single Position (`psi_n_single_fock_single_position`) problems, though it offers no computational advantage in these cases. Additionally, there is an argument named **CS_matrix** for these Single Fock functions, set to **True** to enable the use of this matrix. In other words, you can use only the recurrence relation for the wave function at any value. The use of this coefficient matrix is limited to values up to **60** (determined empirically), as beyond this point, the function may encounter precision errors, resulting in incoherent outputs [[13](#references)].
+
+ ## ⚡️ The Numba Module - Arguments
+
+ For this algorithm to perform as efficiently as possible, Numba's Just-in-Time compilation is used in conjunction with [lru_cache (Least Recently Used - Cache Management)](https://docs.python.org/3/library/functools.html). The following arguments were used in the **@nb.jit** decorator:
+
+ - **nopython=True:** This argument forces the Numba compiler to operate in "nopython" mode, which means that all the code within the function must be compilable to pure machine code without falling back to the Python interpreter. This results in significant performance improvements by eliminating the overhead of the Python interpreter.
+ - **looplift=True:** This argument allows Numba to "lift" loops out of "nopython" mode. That is, if there are loops in the code that cannot be compiled in "nopython" mode, Numba will try to move them outside of the compiled part and execute them as normal Python code.
+ - **nogil=True:** This argument releases the Python Global Interpreter Lock (GIL) while the function is executing. It is useful for allowing the Numba-compiled code to run in parallel with other Python threads, increasing performance in multi-threaded programs.
+ - **boundscheck=False:** Disables array bounds checking. Normally, Numba checks if array indices are within valid bounds. Disabling this check can increase performance but may result in undefined behavior if there are out-of-bounds accesses.
+ - **cache=True:** Enables caching of the compiled function. The first time the function is compiled, Numba stores the compiled version in a cache. On subsequent executions, Numba can reuse the compiled version from the cache instead of recompiling the function, reducing the function's startup time.
+
+ ## ⚙️ The Cython Module
+
+ The Cython module includes compiled files for Linux (**.so**) and Windows (**.pyd**), which allows it to be used in Google Colab (Linux). Additionally, this module supports three versions of Python 3: 3.10, 3.11, and 3.12. All these files are placed in the package folder upon installation. The source code of the Cython module is available in the repository in **.pyx** format. In the functions of the Cython module, some decorators are used to increase speed:
+
+ - **@cython.nogil**: This decorator allows a Cython function to release the Global Interpreter Lock (GIL), making it possible to execute that block of code concurrently in multiple threads.
+ - **@cython.cfunc**: This decorator tells Cython to treat the function as a C function, meaning it can be called from other Cython or C code, not just Python. The function will have C-level calling conventions.
+ - **@cython.locals(...)**: Declares local variable types to optimize performance.
+ - **@cython.boundscheck(False)**: Disables bounds checking for arrays/lists to boost speed, but at the cost of safety.
+
+
+ ## 📖 References
+
+ Our journey through the quantum realm is inspired by the following:
+
+ 1. Lam, S. K., Pitrou, A., & Seibert, S. (2015). _Numba: A LLVM-based Python JIT compiler_. In _Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC_ (LLVM '15) (pp. 7-12). Association for Computing Machinery. https://doi.org/10.1145/2833157.2833162
+ 2. Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011). *Cython: The best of both worlds*. Computing in Science & Engineering, 13(2), 31-39. https://doi.org/10.1109/MCSE.2010.118
+ 3. Yao, Y., Miatto, F., & Quesada, N. (2024). _Riemannian optimization of photonic quantum circuits in phase and Fock space_ [Preprint]. arXiv:2209.06069. [https://doi.org/10.21468/SciPostPhys.17.3.082](https://doi.org/10.21468/SciPostPhys.17.3.082)
+ 4. Miatto, F. M., & Quesada, N. (2020). *_Fast optimization of parametrized quantum optical circuits_* (*Quantum*, 4, 366). [https://doi.org/10.22331/q-2020-11-30-366](https://doi.org/10.22331/q-2020-11-30-366)
+ 5. Bowers, P. L. (2020). *Lectures on Quantum Mechanics: A Primer for Mathematicians*. Cambridge University Press. ISBN: [1108429769](https://www.worldcat.org/isbn/1108429769) ([9781108429764](https://www.worldcat.org/isbn/9781108429764))
+ 6. Aerts, D., Beltran, L. *Quantum Structure in Cognition: Human Language as a Boson Gas of Entangled Words*. Found Sci 25, 755–802 (2020). [https://doi.org/10.1007/s10699-019-09633-4](https://doi.org/10.1007/s10699-019-09633-4)
+ 7. Beiser, A. (2003). *Concepts of Modern Physics*. 6th ed. McGraw Hill. ISBN: [0072448482](https://www.worldcat.org/isbn/0072448482) ([9780072448481](https://www.worldcat.org/isbn/9780072448481))
+ 8. Celeghini, E., Gadella, M., & del Olmo, M. A. (2021). *Hermite functions and Fourier series*. Symmetry, 13(5), Article 853. [https://doi.org/10.3390/sym13050853](https://doi.org/10.3390/sym13050853)
+ 9. Schleich, W. P. (2001). *Quantum optics in phase space*. Wiley-VCH. ISBN: [352729435X](https://www.worldcat.org/isbn/352729435X) ([9783527294350](https://www.worldcat.org/isbn/9783527294350))
+ 10. Leonhardt, U. (2010). Essential Quantum Optics: From Quantum Measurements to Black Holes. Cambridge: Cambridge University Press. ISBN: [0521869781](https://www.worldcat.org/isbn/0521869781) ([9780521869782](https://www.worldcat.org/isbn/9780521869782))
+ 11. Pérez-Jordá, J. M. (2017). *On the recursive solution of the quantum harmonic oscillator*. European Journal of Physics, 39(1), 015402. [https://doi.org/10.1088/1361-6404/aa9584](https://doi.org/10.1088/1361-6404/aa9584)
+ 12. Olver, F. W. J., & Maximon, L. C. (2010). *NIST Handbook of Mathematical Functions*. Cambridge University Press. ISBN: [0521192250](https://www.worldcat.org/isbn/0521192250) ([9780521192255](https://www.worldcat.org/isbn/9780521192255))
+ 13. Cordeiro, M., Bezerra, I. P., & Vasconcelos, H. H. M. (2024). *Efficient computation of the wave function ψn(x) using Hermite coefficient matrix in Python*. In 7º Workshop Escola de Computação e Informação Quântica (7ª WECIQ) (pp. 56-60). CEFET/RJ.
+
+ ## 🤝 Contributing
+
+ Contributions, whether filing an issue, proposing improvements, or submitting a pull request, are welcome! Please feel free to explore, ask questions, and share your ideas.
+
+ ## 📜 License
+
+ This project is available under the *BSD 3-Clause License*. See the LICENSE file for more details.
+
+ ## 📬 Contact
+
+ If you have any questions or want to reach out to the team, please send me an email at [matheusgomescord@gmail.com](matheusgomescord@gmail.com).
+
+"""
diff --git a/src/fast_wave/caching.py b/src/fast_wave/caching.py
index b88d40e..65bb667 100644
--- a/src/fast_wave/caching.py
+++ b/src/fast_wave/caching.py
@@ -16,92 +16,69 @@
import numpy as np
def int_array_cache_Numba_single_fock(fn):
-
"""
- Cache decorator for functions that receive real multiple positions (numpy array) and is a problem Single Fock in the Numba module.
-
- This decorator caches function results to improve performance, particularly when `fn` is called
- multiple times with the same arguments. The function to be decorated must accept an integer `n`,
- a numpy array `x_array`, and a boolean `CS_matrix`. The numpy array is converted to a tuple for
- caching purposes, as `lru_cache` only accepts hashable types.
-
- Parameters
- ----------
- fn : callable
- The function to be decorated, which takes three arguments:
- - n: np.uint64 representing the state number.
- - x_array: np.ndarray with dtype=np.float64 representing the positions.
- - CS_matrix: bool.
-
- Returns
- -------
- callable
- A wrapped version of `fn` with caching enabled, including methods to access cache information:
- - cache_info: Returns cache statistics.
- - cache_clear: Clears the cache.
-
- .. note::
-
- This code is a modified version of the tensor_int_cache provided in Mr Mustard `_,
- which is released under Apache License, Version 2.0 , with the following
- copyright notice:
-
- Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved.
-
+ Cache decorator for functions that receive real multiple positions (numpy array)
+ and is a problem Single Fock in the Numba module.
+
+ This decorator caches function results to improve performance, particularly when `fn`
+ is called multiple times with the same arguments. The function to be decorated must accept
+ an integer `n`, a numpy array `x_array`, and a boolean `CS_matrix`. The numpy array is
+ converted to a tuple for caching purposes, as `lru_cache` only accepts hashable types.
+
+ Args:
+ fn (callable): The function to be decorated, which takes three arguments:
+ - n (np.uint64): The state number.
+ - x_array (np.ndarray[np.float64]): Array representing the positions.
+ - CS_matrix (bool): A flag to indicate CS matrix.
+
+ Returns:
+ `callable` : A wrapped version of **fn** with caching enabled, including methods to access cache information.
+
+ References:
+ 1. This code is a modified version of the `tensor_int_cache` provided in Mr Mustard ([link](https://github.com/XanaduAI/MrMustard/blob/develop/mrmustard/math/caching.py#L26)),
+ which is released under Apache License, Version 2.0, with the following copyright notice: Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved.
"""
-
@lru_cache
- def cached_wrapper(n, x_tuple,CS_matrix = True):
+ def cached_wrapper(n, x_tuple, CS_matrix=True):
x_array = np.array(x_tuple, dtype=np.float64)
- return fn(n,x_array,CS_matrix)
+ return fn(n, x_array, CS_matrix)
@wraps(fn)
- def wrapper(n, x_array,CS_matrix = True):
- return cached_wrapper(n, tuple(x_array),CS_matrix)
+ def wrapper(n, x_array, CS_matrix=True):
+ return cached_wrapper(n, tuple(x_array), CS_matrix)
wrapper.cache_info = cached_wrapper.cache_info
wrapper.cache_clear = cached_wrapper.cache_clear
return wrapper
-def int_array_cache_Numba_multiple_fock(fn):
+def int_array_cache_Numba_multiple_fock(fn):
"""
- Cache decorator for functions that receive real multiple positions (numpy array) and is a problem Multiple Fock in the Numba module.
-
- This decorator caches function results to improve performance, particularly when `fn` is called
- multiple times with the same arguments. The function to be decorated must accept an integer `n`,
- a numpy array `x_array`, and a boolean `CS_matrix`. The numpy array is converted to a tuple for
- caching purposes, as `lru_cache` only accepts hashable types.
-
- Parameters
- ----------
- fn : callable
- The function to be decorated, which takes three arguments:
- - n: np.uint64 representing the state number.
- - x_array: np.ndarray with dtype=np.float64 representing the positions.
+ Cache decorator for functions that receive real multiple positions (numpy array)
+ and is a problem Multiple Fock in the Numba module.
- Returns
- -------
- callable
- A wrapped version of `fn` with caching enabled, including methods to access cache information:
- - cache_info: Returns cache statistics.
- - cache_clear: Clears the cache.
+ This decorator caches function results to improve performance, particularly when `fn`
+ is called multiple times with the same arguments. The function to be decorated must accept
+ an integer `n`, a numpy array `x_array`, and a boolean `CS_matrix`. The numpy array is
+ converted to a tuple for caching purposes, as `lru_cache` only accepts hashable types.
- .. note::
+ Args:
+ fn (callable): The function to be decorated, which takes two arguments:
+ - n (np.uint64): The state number.
+ - x_array (np.ndarray[np.float64]): Array representing the positions.
- This code is a modified version of the tensor_int_cache provided in Mr Mustard `_,
- which is released under Apache License, Version 2.0 , with the following
- copyright notice:
+ Returns:
+ `callable` : A wrapped version of **fn** with caching enabled, including methods to access cache information.
- Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved.
-
+ References:
+ 1. This code is a modified version of the `tensor_int_cache` provided in Mr Mustard ([link](https://github.com/XanaduAI/MrMustard/blob/develop/mrmustard/math/caching.py#L26)),
+ which is released under Apache License, Version 2.0, with the following copyright notice: Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved.
"""
-
@lru_cache
def cached_wrapper(n, x_tuple):
x_array = np.array(x_tuple, dtype=np.float64)
- return fn(n,x_array)
+ return fn(n, x_array)
@wraps(fn)
def wrapper(n, x_array):
@@ -112,44 +89,33 @@ def wrapper(n, x_array):
return wrapper
-def int_array_cache_Cython(fn):
+def int_array_cache_Cython(fn):
"""
- Cache decorator for functions that receive real multiple positions (numpy array) in the Cython module.
+ Cache decorator for functions that receive real multiple positions (numpy array)
+ in the Cython module.
- This decorator caches function results to improve performance, particularly when `fn` is called
- multiple times with the same arguments. The function to be decorated must accept an integer `n` and
- a numpy array `x_array`. The numpy array is converted to a tuple for
+ This decorator caches function results to improve performance, particularly when `fn`
+ is called multiple times with the same arguments. The function to be decorated must accept
+ an integer `n` and a numpy array `x_array`. The numpy array is converted to a tuple for
caching purposes, as `lru_cache` only accepts hashable types.
- Parameters
- ----------
- fn : callable
- The function to be decorated, which takes three arguments:
- - n: np.uint64 representing the state number.
- - x_array: np.ndarray with dtype=np.float64 representing the positions.
-
- Returns
- -------
- callable
- A wrapped version of `fn` with caching enabled, including methods to access cache information:
- - cache_info: Returns cache statistics.
- - cache_clear: Clears the cache.
-
- .. note::
+ Args:
+ fn (callable): The function to be decorated, which takes two arguments:
+ - n (np.uint64): The state number.
+ - x_array (np.ndarray[np.float64]): Array representing the positions.
- This code is a modified version of the tensor_int_cache provided in Mr Mustard `_,
- which is released under Apache License, Version 2.0 , with the following
- copyright notice:
+ Returns:
+ `callable` : A wrapped version of **fn** with caching enabled, including methods to access cache information.
- Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved.
-
+ References:
+ 1. This code is a modified version of the `tensor_int_cache` provided in Mr Mustard ([link](https://github.com/XanaduAI/MrMustard/blob/develop/mrmustard/math/caching.py#L26)),
+ which is released under Apache License, Version 2.0, with the following copyright notice: Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved.
"""
-
@lru_cache
def cached_wrapper(n, x_tuple):
x_array = np.array(x_tuple, dtype=np.float64)
- return fn(n,x_array)
+ return fn(n, x_array)
@wraps(fn)
def wrapper(n, x_array):
@@ -162,92 +128,69 @@ def wrapper(n, x_array):
def int_array_cache_Numba_complex_single_fock(fn):
-
"""
- Cache decorator for functions that receive complex multiple positions (numpy array) and is a problem Single Fock in the Numba module.
-
- This decorator caches function results to improve performance, particularly when `fn` is called
- multiple times with the same arguments. The function to be decorated must accept an integer `n`,
- a numpy array `x_array`, and a boolean `CS_matrix`. The numpy array is converted to a tuple for
- caching purposes, as `lru_cache` only accepts hashable types.
-
- Parameters
- ----------
- fn : callable
- The function to be decorated, which takes three arguments:
- - n: np.uint64 representing the state number.
- - x_array: np.ndarray with dtype=np.complex128 representing the positions.
- - CS_matrix: bool.
-
- Returns
- -------
- callable
- A wrapped version of `fn` with caching enabled, including methods to access cache information:
- - cache_info: Returns cache statistics.
- - cache_clear: Clears the cache.
-
- .. note::
-
- This code is a modified version of the tensor_int_cache provided in Mr Mustard `_,
- which is released under Apache License, Version 2.0 , with the following
- copyright notice:
-
- Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved.
-
+ Cache decorator for functions that receive complex multiple positions (numpy array)
+ and is a problem Single Fock in the Numba module.
+
+ This decorator caches function results to improve performance, particularly when `fn`
+ is called multiple times with the same arguments. The function to be decorated must accept
+ an integer `n`, a numpy array `x_array`, and a boolean `CS_matrix`. The numpy array is
+ converted to a tuple for caching purposes, as `lru_cache` only accepts hashable types.
+
+ Args:
+ fn (callable): The function to be decorated, which takes three arguments:
+ - n (np.uint64): The state number.
+ - x_array (np.ndarray[np.complex128]): Array representing the positions.
+ - CS_matrix (bool): A flag to indicate CS matrix.
+
+ Returns:
+ `callable` : A wrapped version of **fn** with caching enabled, including methods to access cache information.
+
+ References:
+ 1. This code is a modified version of the `tensor_int_cache` provided in Mr Mustard ([link](https://github.com/XanaduAI/MrMustard/blob/develop/mrmustard/math/caching.py#L26)),
+ which is released under Apache License, Version 2.0, with the following copyright notice: Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved.
"""
-
@lru_cache
- def cached_wrapper(n, x_tuple,CS_matrix):
+ def cached_wrapper(n, x_tuple, CS_matrix):
x_array = np.array(x_tuple, dtype=np.complex128)
- return fn(n,x_array,CS_matrix)
+ return fn(n, x_array, CS_matrix)
@wraps(fn)
- def wrapper(n, x_array,CS_matrix):
- return cached_wrapper(n, tuple(x_array),CS_matrix)
+ def wrapper(n, x_array, CS_matrix):
+ return cached_wrapper(n, tuple(x_array), CS_matrix)
wrapper.cache_info = cached_wrapper.cache_info
wrapper.cache_clear = cached_wrapper.cache_clear
return wrapper
-def int_array_cache_Numba_complex_multiple_fock(fn):
+def int_array_cache_Numba_complex_multiple_fock(fn):
"""
- Cache decorator for functions that receive complex multiple positions (numpy array) in the Numba module.
-
- This decorator caches function results to improve performance, particularly when `fn` is called
- multiple times with the same arguments. The function to be decorated must accept an integer `n`,
- a numpy array `x_array`, and a boolean `CS_matrix`. The numpy array is converted to a tuple for
- caching purposes, as `lru_cache` only accepts hashable types.
+ Cache decorator for functions that receive complex multiple positions (numpy array)
+ in the Numba module.
- Parameters
- ----------
- fn : callable
- The function to be decorated, which takes three arguments:
- - n: np.uint64 representing the state number.
- - x_array: np.ndarray with dtype=np.complex128 representing the positions.
+ This decorator caches function results to improve performance, particularly when `fn`
+ is called multiple times with the same arguments. The function to be decorated must accept
+ an integer `n`, a numpy array `x_array`, and a boolean `CS_matrix`. The numpy array is
+ converted to a tuple for caching purposes, as `lru_cache` only accepts hashable types.
- Returns
- -------
- callable
- A wrapped version of `fn` with caching enabled, including methods to access cache information:
- - cache_info: Returns cache statistics.
- - cache_clear: Clears the cache.
+ Args:
+ fn (callable): The function to be decorated, which takes two arguments:
+ - n (np.uint64): The state number.
+ - x_array (np.ndarray[np.complex128]): Array representing the positions.
- .. note::
-
- This code is a modified version of the tensor_int_cache provided in Mr Mustard `_,
- which is released under Apache License, Version 2.0 , with the following
- copyright notice:
-
- Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved.
+ Returns:
+ `callable` : A wrapped version of **fn** with caching enabled, including methods to access cache information.
+ References:
+ 1. This code is a modified version of the `tensor_int_cache` provided in Mr Mustard ([link](https://github.com/XanaduAI/MrMustard/blob/develop/mrmustard/math/caching.py#L26)),
+ which is released under Apache License, Version 2.0, with the following copyright notice: Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved.
"""
-
@lru_cache
def cached_wrapper(n, x_tuple):
x_array = np.array(x_tuple, dtype=np.complex128)
- return fn(n,x_array)
+ return fn(n, x_array)
@wraps(fn)
def wrapper(n, x_array):
@@ -256,45 +199,34 @@ def wrapper(n, x_array):
wrapper.cache_info = cached_wrapper.cache_info
wrapper.cache_clear = cached_wrapper.cache_clear
+ return wrapper
def int_array_cache_Cython_complex(fn):
-
"""
- Cache decorator for functions that receive real multiple positions (numpy array) and is a problem Single Fock in the Cython module.
+ Cache decorator for functions that receive complex multiple positions (numpy array)
+ and is a problem Single Fock in the Cython module.
- This decorator caches function results to improve performance, particularly when `fn` is called
- multiple times with the same arguments. The function to be decorated must accept an integer `n` and
- a numpy array `x_array`. The numpy array is converted to a tuple for
+ This decorator caches function results to improve performance, particularly when `fn`
+ is called multiple times with the same arguments. The function to be decorated must accept
+ an integer `n` and a numpy array `x_array`. The numpy array is converted to a tuple for
caching purposes, as `lru_cache` only accepts hashable types.
- Parameters
- ----------
- fn : callable
- The function to be decorated, which takes three arguments:
- - n: np.uint64 representing the state number.
- - x_array: np.ndarray with dtype=np.complex128 representing the positions.
+ Args:
+ fn (callable): The function to be decorated. It must take two arguments:
+ - n (np.uint64): The state number.
+ - x_array (np.ndarray of dtype=np.complex128): The positions.
- Returns
- -------
- callable
- A wrapped version of `fn` with caching enabled, including methods to access cache information:
- - cache_info: Returns cache statistics.
- - cache_clear: Clears the cache.
-
- .. note::
-
- This code is a modified version of the tensor_int_cache provided in Mr Mustard `_,
- which is released under Apache License, Version 2.0 , with the following
- copyright notice:
-
- Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved.
+ Returns:
+ `callable` : A wrapped version of **fn** with caching enabled. This wrapped function also exposes the following methods for cache management.
+ References:
+ 1. This code is a modified version of the `tensor_int_cache` provided in Mr Mustard ([link](https://github.com/XanaduAI/MrMustard/blob/develop/mrmustard/math/caching.py#L26)),
+ which is released under Apache License, Version 2.0, with the following copyright notice: Copyright 2022 Xanadu Quantum Technologies Inc. All rights reserved.
"""
-
@lru_cache
def cached_wrapper(n, x_tuple):
x_array = np.array(x_tuple, dtype=np.complex128)
- return fn(n,x_array)
+ return fn(n, x_array)
@wraps(fn)
def wrapper(n, x_array):
@@ -303,4 +235,4 @@ def wrapper(n, x_array):
wrapper.cache_info = cached_wrapper.cache_info
wrapper.cache_clear = cached_wrapper.cache_clear
- return wrapper
+ return wrapper
\ No newline at end of file
diff --git a/src/fast_wave/wavefunction_cython.pyx b/src/fast_wave/wavefunction_cython.pyx
index 398b611..432c793 100644
--- a/src/fast_wave/wavefunction_cython.pyx
+++ b/src/fast_wave/wavefunction_cython.pyx
@@ -42,36 +42,25 @@ from cmath import exp as cexp, sqrt as csqrt, pi as cpi
@cython.boundscheck(False)
@cython.cdivision(True)
cpdef double psi_n_single_fock_single_position(int n, double x):
-
"""
- Compute the wavefunction to a real scalar x using adapted recurrence relation.
-
- Parameters
- ----------
- n : int
- Quantum state number.
- x : double
- Position(s) at which to evaluate the wavefunction.
-
-
- Returns
- -------
- double
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_single_fock_single_position(0, 1.0)
- 0.45558067201133257
- >>> psi_n_single_fock_single_position(61, 1.0)
- -0.2393049199171131
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a real scalar `x` using the adapted recurrence relation.
+
+ Args:
+ n (int): Quantum state number.
+ x (double): Position at which to evaluate the wavefunction.
+
+ Returns:
+ `double` : The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_single_fock_single_position(0, 1.0)
+ 0.45558067201133257
+ >>> psi_n_single_fock_single_position(61, 1.0)
+ -0.2393049199171131
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
cdef np.ndarray[np.float64_t, ndim=1] n_coeffs
@@ -97,36 +86,25 @@ cpdef double psi_n_single_fock_single_position(int n, double x):
@cython.boundscheck(False)
@cython.cdivision(True)
cpdef double complex psi_n_single_fock_single_position_complex(int n, double complex x):
-
"""
- Compute the wavefunction to a complex scalar x using adapted recurrence relation.
-
- Parameters
- ----------
- n : int
- Quantum state number.
- x : double
- Position(s) at which to evaluate the wavefunction.
-
-
- Returns
- -------
- double
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_single_fock_single_position_complex(0,1.0+2.0j)
- (-1.4008797330262455-3.0609780602975003j)
- >>> psi_n_single_fock_single_position_complex(61,1.0+2.0j)
- (-511062135.47555304+131445997.75753704j)
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a complex scalar `x` using the adapted recurrence relation.
+
+ Args:
+ n (int): Quantum state number.
+ x (double complex): Position at which to evaluate the wavefunction.
+
+ Returns:
+ `double complex` : The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_single_fock_single_position_complex(0, 1.0 + 2.0j)
+ (-1.4008797330262455-3.0609780602975003j)
+ >>> psi_n_single_fock_single_position_complex(61, 1.0 + 2.0j)
+ (-511062135.47555304+131445997.75753704j)
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
cdef np.ndarray[np.float64_t, ndim=1] n_coeffs
@@ -152,36 +130,25 @@ cpdef double complex psi_n_single_fock_single_position_complex(int n, double com
@cython.boundscheck(False)
@cython.cdivision(True)
cpdef np.ndarray[np.float64_t, ndim=1] psi_n_single_fock_multiple_position(int n, np.ndarray[np.float64_t, ndim=1] x):
-
"""
- Compute the wavefunction to a real vector x using adapted recurrence relation.
-
- Parameters
- ----------
- n : int
- Quantum state number.
- x : np.ndarray[np.float64_t]
- Position(s) at which to evaluate the wavefunction.
-
-
- Returns
- -------
- np.ndarray[np.float64_t]
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_single_fock_multiple_position(0, np.array([1.0, 2.0]))
- array([0.45558067, 0.10165379])
- >>> psi_n_single_fock_multiple_position(61, np.array([1.0, 2.0]))
- array([-0.23930492, -0.01677378])
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a real vector `x` using the adapted recurrence relation.
+
+ Args:
+ n (int): Quantum state number.
+ x (np.ndarray[np.float64_t]): Position at which to evaluate the wavefunction.
+
+ Returns:
+ `np.ndarray[np.float64_t]` : The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_single_fock_multiple_position(0, np.array([1.0, 2.0]))
+ array([0.45558067, 0.10165379])
+ >>> psi_n_single_fock_multiple_position(61, np.array([1.0, 2.0]))
+ array([-0.23930492, -0.01677378])
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
x_size = x.shape[0]
@@ -209,36 +176,27 @@ cpdef np.ndarray[np.float64_t, ndim=1] psi_n_single_fock_multiple_position(int n
@cython.boundscheck(False)
@cython.cdivision(True)
cpdef np.ndarray[np.complex128_t, ndim=1] psi_n_single_fock_multiple_position_complex(int n, np.ndarray[np.complex128_t, ndim=1] x):
-
"""
- Compute the wavefunction to a complex vector x using adapted recurrence relation.
-
- Parameters
- ----------
- n : int
- Quantum state number.
- x : np.ndarray[np.complex128_t]
- Position(s) at which to evaluate the wavefunction.
-
-
- Returns
- -------
- np.ndarray[np.complex128_t]
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_single_fock_multiple_position_complex(0, np.array([1.0 + 1.0j, 2.0 + 2.0j]))
- array([ 0.40583486-0.63205035j, -0.49096842+0.56845369j])
- >>> psi_n_single_fock_multiple_position_complex(61, np.array([1.0 + 1.0j, 2.0 + 2.0j]))
- array([-7.56548941e+03+9.21498621e+02j, -1.64189542e+08-3.70892077e+08j])
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a complex vector `x` using the adapted recurrence relation.
+
+ There is another version of this code, implemented by the same authors who developed this function, in a Cython module of QuTip: [_distributions.pyx](https://github.com/qutip/qutip/blob/master/qutip/_distributions.pyx), to be used in the `HarmonicOscillatorWaveFunction` class from the [distributions.py](https://github.com/qutip/qutip/blob/master/qutip/distributions.py) module.
+
+ Args:
+ n (int): Quantum state number.
+ x (np.ndarray[np.complex128_t]): Position at which to evaluate the wavefunction.
+
+ Returns:
+ `np.ndarray[np.complex128_t]`: The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_single_fock_multiple_position_complex(0, np.array([1.0 + 1.0j, 2.0 + 2.0j]))
+ array([ 0.40583486-0.63205035j, -0.49096842+0.56845369j])
+ >>> psi_n_single_fock_multiple_position_complex(61, np.array([1.0 + 1.0j, 2.0 + 2.0j]))
+ array([-7.56548941e+03+9.21498621e+02j, -1.64189542e+08-3.70892077e+08j])
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
x_size = x.shape[0]
@@ -267,34 +225,23 @@ cpdef np.ndarray[np.complex128_t, ndim=1] psi_n_single_fock_multiple_position_co
@cython.boundscheck(False)
@cython.cdivision(True)
cpdef np.ndarray[np.float64_t, ndim=1] psi_n_multiple_fock_single_position(int n, double x):
-
"""
- Compute the wavefunction to a real scalar x to all fock states until n using adapted recurrence relation.
-
- Parameters
- ----------
- n : int
- Quantum state number.
- x : double
- Position(s) at which to evaluate the wavefunction.
-
-
- Returns
- -------
- np.ndarray[np.float64_t]
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_multiple_fock_single_position(0, 1.0)
- array([0.45558067, 0.64428837])
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a real scalar `x` to all Fock states up to `n` using the adapted recurrence relation.
+
+ Args:
+ n (int): Quantum state number.
+ x (double): Position at which to evaluate the wavefunction.
+
+ Returns:
+ `np.ndarray[np.float64_t]` : The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_multiple_fock_single_position(0, 1.0)
+ array([0.45558067, 0.64428837])
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
cdef np.ndarray[np.float64_t, ndim=1] result = np.zeros((n + 1), dtype=np.float64)
@@ -314,34 +261,23 @@ cpdef np.ndarray[np.float64_t, ndim=1] psi_n_multiple_fock_single_position(int n
@cython.boundscheck(False)
@cython.cdivision(True)
cpdef np.ndarray[np.complex128_t, ndim=1] psi_n_multiple_fock_single_position_complex(int n, double complex x):
-
"""
- Compute the wavefunction to a complex scalar x to all fock states until n using adapted recurrence relation.
-
- Parameters
- ----------
- n : int
- Quantum state number.
- x : double complex
- Position(s) at which to evaluate the wavefunction.
-
-
- Returns
- -------
- np.ndarray[np.complex128_t]
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_multiple_fock_single_position_complex(0, 1.0 +2.0j)
- array([-1.40087973-3.06097806j, 6.67661026-8.29116292j])
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a complex scalar `x` to all Fock states up to `n` using the adapted recurrence relation.
+
+ Args:
+ n (int): Quantum state number.
+ x (double complex): Position at which to evaluate the wavefunction.
+
+ Returns:
+ `np.ndarray[np.complex128_t]` : The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_multiple_fock_single_position_complex(0, 1.0 + 2.0j)
+ array([-1.40087973-3.06097806j, 6.67661026-8.29116292j])
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
cdef np.ndarray[np.complex128_t, ndim=1] result = np.zeros((n + 1), dtype=np.complex128)
@@ -361,35 +297,24 @@ cpdef np.ndarray[np.complex128_t, ndim=1] psi_n_multiple_fock_single_position_co
@cython.boundscheck(False)
@cython.cdivision(True)
cpdef np.ndarray[np.float64_t, ndim=2] psi_n_multiple_fock_multiple_position(int n, np.ndarray[np.float64_t, ndim=1] x):
-
"""
- Compute the wavefunction to a real vector x to all fock states until n using adapted recurrence relation.
-
- Parameters
- ----------
- n : int
- Quantum state number.
- x : np.ndarray[np.float64_t]
- Position(s) at which to evaluate the wavefunction.
-
-
- Returns
- -------
- np.ndarray[np.ndarray[np.float64_t]]
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_multiple_fock_multiple_position(1, np.array([1.0, 2.0]))
- array([[0.45558067, 0.10165379],
- [0.64428837, 0.28752033]])
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a real vector `x` to all Fock states up to `n` using the adapted recurrence relation.
+
+ Args:
+ n (int): Quantum state number.
+ x (np.ndarray[np.float64_t]): Positions at which to evaluate the wavefunction.
+
+ Returns:
+ `np.ndarray[np.ndarray[np.float64_t]]`: The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_multiple_fock_multiple_position(1, np.array([1.0, 2.0]))
+ array([[0.45558067, 0.10165379],
+ [0.64428837, 0.28752033]])
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
x_size = x.shape[0]
@@ -417,35 +342,24 @@ cpdef np.ndarray[np.float64_t, ndim=2] psi_n_multiple_fock_multiple_position(int
@cython.boundscheck(False)
@cython.cdivision(True)
cpdef np.ndarray[np.complex128_t, ndim=2] psi_n_multiple_fock_multiple_position_complex(int n, np.ndarray[np.complex128_t, ndim=1] x):
-
"""
- Compute the wavefunction to a complex vector x to all fock states until n using adapted recurrence relation.
-
- Parameters
- ----------
- n : int
- Quantum state number.
- x : np.ndarray[np.complex128_t]
- Position(s) at which to evaluate the wavefunction.
-
-
- Returns
- -------
- np.ndarray[np.ndarray[np.complex128_t]]
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_multiple_fock_multiple_position_complex(1,np.array([1.0 + 1.0j, 2.0 + 2.0j]))
- array([[ 0.40583486-0.63205035j, -0.49096842+0.56845369j],
- [ 1.46779135-0.31991701j, -2.99649822+0.21916143j]])
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a complex vector `x` to all Fock states up to `n` using the adapted recurrence relation.
+
+ Args:
+ n (int): Quantum state number.
+ x (np.ndarray[np.complex128_t]): Positions at which to evaluate the wavefunction.
+
+ Returns:
+ `np.ndarray[np.ndarray[np.complex128_t]]`: The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_multiple_fock_multiple_position_complex(1, np.array([1.0 + 1.0j, 2.0 + 2.0j]))
+ array([[ 0.40583486-0.63205035j, -0.49096842+0.56845369j],
+ [ 1.46779135-0.31991701j, -2.99649822+0.21916143j]])
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
x_size = x.shape[0]
diff --git a/src/fast_wave/wavefunction_mpmath.py b/src/fast_wave/wavefunction_mpmath.py
index 504661d..44efd49 100644
--- a/src/fast_wave/wavefunction_mpmath.py
+++ b/src/fast_wave/wavefunction_mpmath.py
@@ -29,42 +29,28 @@
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from mpmath import mp, matrix
-import mpmath
-import numpy as np
+def psi_n_single_fock_single_position(n, x, prec):
+ """
+ Calculates the nth wavefunction for a real scalar `x` with arbitrary precision using mpmath.
-def psi_n_single_fock_single_position(n: np.uint64, x: np.float64, prec: np.uint64) -> mpmath.ctx_mp_python.mpf:
+ Args:
+ n (int): Quantum state number.
+ x (float): Position at which to evaluate the wavefunction.
+ prec (numpy.uint64): Desired precision for the calculation (number of decimal digits).
- """
- Calculates the nth wavefunction to an real scalar x with arbitrary precision using mpmath.
-
- Parameters:
- ----------
- n : np.uint64
- Quantum state number.
- x : np.float64
- Position(s) at which to evaluate the wavefunction.
- prec : np.uint64
- Desired precision for the calculation (number of decimal digits).
-
-
Returns:
- -------
- mpmath.ctx_mp_python.mpf
- The evaluated wavefunction with the specified precision.
-
- Examples
- --------
- ```python
- >>> psi_n_single_fock_single_position(0,1.0,60)
- mpf('0.45558067201133253483370525689785138607662639040929439687915331')
- >>> psi_n_single_fock_single_position(61,1.0,60)
- mpf('-0.239304919917113097789996116536717211865611421191819349290628243')
- ```
+ `mpmath.ctx_mp_python.mpf` : evaluated wavefunction with the specified precision.
+
+ Examples:
+ >>> psi_n_single_fock_single_position(0, 1.0, 60)
+ mpf('0.45558067201133253483370525689785138607662639040929439687915331')
+ >>> psi_n_single_fock_single_position(61, 1.0, 60)
+ mpf('-0.239304919917113097789996116536717211865611421191819349290628243')
References:
- ----------
- - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
+ 1. The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision
+ floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
"""
mp.dps = prec
@@ -72,42 +58,26 @@ def psi_n_single_fock_single_position(n: np.uint64, x: np.float64, prec: np.uint
n = mp.mpf(str(n))
return mp.hermite(n, x) * mp.power(mp.mpf('2.0'),(mp.mpf('-0.5') * n)) * mp.power(mp.gamma(n+1.0), mp.mpf('-0.5')) * mp.power(mp.pi , mp.mpf('-0.25')) * mp.exp(-mp.power(x , mp.mpf('2.0')) / mp.mpf('2.0'))
+def psi_n_single_fock_single_position_complex(n, x, prec):
+ """
+ Calculates the nth wavefunction for a complex scalar `x` with arbitrary precision using mpmath.
+ Args:
+ n (np.uint64): Quantum state number.
+ x (np.complex128): Position at which to evaluate the wavefunction.
+ prec (np.uint64): Desired precision for the calculation (number of decimal digits).
-
-
-def psi_n_single_fock_single_position_complex(n: np.uint64, x: np.complex128, prec: np.uint64) -> mpmath.ctx_mp_python.mpc:
-
- """
- Calculates the nth wavefunction to a complex scalar x with arbitrary precision using mpmath.
-
- Parameters:
- ----------
- n : np.uint64
- Quantum state number.
- x : np.complex128
- Position(s) at which to evaluate the wavefunction.
- prec : np.uint64
- Desired precision for the calculation (number of decimal digits).
-
-
Returns:
- -------
- mpmath.ctx_mp_python.mpc
- The evaluated wavefunction with the specified precision.
-
- Examples
- --------
- ```python
- >>> psi_n_single_fock_single_position_complex(0,1.0+2.0j,60)
- mpc(real='-1.40087973302624535996319358379185603705205815719366827159881527', imag='-3.06097806029750039193292973729038840279841978760336147713769087')
- >>> psi_n_single_fock_single_position_complex(61,1.0+2.0j,60)
- mpc(real='-511062135.475553070892329856229109412939170026007243421420322129', imag='131445997.757536932748911867174534983962121585813389430606204944')
- ```
+ `mpmath.ctx_mp_python.mpc` : The evaluated wavefunction with the specified precision.
+
+ Examples:
+ >>> psi_n_single_fock_single_position_complex(0, 1.0 + 2.0j, 60)
+ mpc(real='-1.40087973302624535996319358379185603705205815719366827159881527', imag='-3.06097806029750039193292973729038840279841978760336147713769087')
+ >>> psi_n_single_fock_single_position_complex(61, 1.0 + 2.0j, 60)
+ mpc(real='-511062135.475553070892329856229109412939170026007243421420322129', imag='131445997.757536932748911867174534983962121585813389430606204944')
References:
- ----------
- - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
+ 1. The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
"""
mp.dps = prec
@@ -115,248 +85,155 @@ def psi_n_single_fock_single_position_complex(n: np.uint64, x: np.complex128, pr
n = mp.mpf(str(n))
return mp.hermite(n, x) * mp.power(mp.mpf('2.0'),(mp.mpf('-0.5') * n)) * mp.power(mp.gamma(n+1.0), mp.mpf('-0.5')) * mp.power(mp.pi , mp.mpf('-0.25')) * mp.exp(-mp.power(x , mp.mpf('2.0')) / mp.mpf('2.0'))
+def psi_n_single_fock_multiple_position(n, X, prec):
+ """
+ Calculates the nth wavefunction for a real vector `x` with arbitrary precision using mpmath.
+ Args:
+ n (np.uint64): Quantum state number.
+ x (np.ndarray[np.float64]): Positions at which to evaluate the wavefunction.
+ prec (np.uint64): Desired precision for the calculation (number of decimal digits).
-
-
-
-def psi_n_single_fock_multiple_position(n: np.uint64, X: np.ndarray[np.float64], prec: np.uint64) -> mpmath.matrices.matrices._matrix:
-
-
- """
- Calculates the nth wavefunction to a real vector x with arbitrary precision using mpmath.
-
- Parameters:
- ----------
- n : np.uint64
- Quantum state number.
- x : np.ndarray[np.float64]
- Position(s) at which to evaluate the wavefunction.
- prec : np.uint64
- Desired precision for the calculation (number of decimal digits).
-
-
Returns:
- -------
- mpmath.matrices.matrices._matrix
- The evaluated wavefunction with the specified precision.
-
- Examples
- --------
- ```python
- >>> psi_n_single_fock_multiple_position(0,np.array([1.0,2.0]),20)
- matrix(
- [['0.45558067201133253483', '0.10165378830641791152']])
- >>> psi_n_single_fock_multiple_position(61,np.array([1.0,2.0]),20)
- matrix(
- [['-0.23930491991711309779', '-0.016773782204892582343']])
- ```
+ `mpmath.matrices.matrices._matrix` : The evaluated wavefunction with the specified precision.
+
+ Examples:
+ >>> psi_n_single_fock_multiple_position(0, np.array([1.0, 2.0]), 20)
+ matrix(
+ [['0.45558067201133253483', '0.10165378830641791152']])
+ >>> psi_n_single_fock_multiple_position(61, np.array([1.0, 2.0]), 20)
+ matrix(
+ [['-0.23930491991711309779', '-0.016773782204892582343']])
References:
- ----------
- - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
+ 1. The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
"""
-
return matrix([psi_n_single_fock_single_position(n, x, prec) for x in X]).T
+def psi_n_single_fock_multiple_position_complex(n, X, prec):
+ """
+ Calculates the nth wavefunction for a complex vector `x` with arbitrary precision using mpmath.
+ Args:
+ n (np.uint64): Quantum state number.
+ x (np.ndarray[np.complex128]): Positions at which to evaluate the wavefunction.
+ prec (np.uint64): Desired precision for the calculation (number of decimal digits).
-
-
-
-def psi_n_single_fock_multiple_position_complex(n: np.uint64, X: np.ndarray[np.complex128], prec: np.uint64) -> mpmath.matrices.matrices._matrix:
-
- """
- Calculates the nth wavefunction to a complex vector x with arbitrary precision using mpmath.
-
- Parameters:
- ----------
- n : np.uint64
- Quantum state number.
- x : np.ndarray[np.complex128]
- Position(s) at which to evaluate the wavefunction.
- prec : np.uint64
- Desired precision for the calculation (number of decimal digits).
-
-
Returns:
- -------
- mpmath.matrices.matrices._matrix
- The evaluated wavefunction with the specified precision.
-
- Examples
- --------
- ```python
- >>> psi_n_single_fock_multiple_position_complex(0,np.array([1.0 + 1.0j, 2.0 + 2.0j]),20)
- matrix(
- [[mpc(real='0.40583486367087033308603', imag='-0.63205035161528260798606'), mpc(real='-0.49096842060721693717778', imag='0.56845368634059468652777')]])
- >>> psi_n_single_fock_multiple_position_complex(61,np.array([1.0 + 1.0j, 2.0 + 2.0j]),20)
- matrix(
- [[mpc(real='-7565.4894098859360141926', imag='921.4986211518276840917'), mpc(real='-164189541.53192908120809', imag='-370892077.23796911662203')]])
- ```
+ `mpmath.matrices.matrices._matrix` : The evaluated wavefunction with the specified precision.
+
+ Examples:
+ >>> psi_n_single_fock_multiple_position_complex(0, np.array([1.0 + 1.0j, 2.0 + 2.0j]), 20)
+ matrix(
+ [[mpc(real='0.40583486367087033308603', imag='-0.63205035161528260798606'),
+ mpc(real='-0.49096842060721693717778', imag='0.56845368634059468652777')]])
+ >>> psi_n_single_fock_multiple_position_complex(61, np.array([1.0 + 1.0j, 2.0 + 2.0j]), 20)
+ matrix(
+ [[mpc(real='-7565.4894098859360141926', imag='921.4986211518276840917'),
+ mpc(real='-164189541.53192908120809', imag='-370892077.23796911662203')]])
References:
- ----------
- - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
+ 1. The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
"""
- return matrix([psi_n_single_fock_single_position_complex(n, x, prec) for x in X]).T
-
+ return matrix([psi_n_single_fock_single_position_complex(n, x, prec) for x in X]).T
+def psi_n_multiple_fock_single_position(n, x, prec):
+ """
+ Determines the wavefunction for a real scalar `x` for all Fock states up to `n`, employing mpmath for arbitrary-precision calculations.
-def psi_n_multiple_fock_single_position(n: np.uint64, x: np.float64, prec: np.uint64) -> mpmath.matrices.matrices._matrix:
+ Args:
+ n (np.uint64): Quantum state number up to which the wavefunctions are calculated.
+ x (np.float64): Position at which to evaluate the wavefunctions.
+ prec (np.uint64): Desired precision for the calculation (number of decimal digits).
- """
- Determines the wavefunction for a real scalar x to all fock states until n, employing mpmath for arbitrary-precision calculations.
-
- Parameters:
- ----------
- n : np.uint64
- Quantum state number.
- x : np.float64
- Position(s) at which to evaluate the wavefunction.
- prec : np.uint64
- Desired precision for the calculation (number of decimal digits).
-
-
Returns:
- -------
- mpmath.matrices.matrices._matrix
- The evaluated wavefunction with the specified precision.
-
- Examples
- --------
- ```python
- >>> psi_n_multiple_fock_single_position(1,1.0,60)
- matrix(
- [['0.455580672011332534833705256897851386076626390409294396879153', '0.644288365113475181510837645362740498634994248687269122618738']])
- ```
+ `mpmath.matrices.matrices._matrix` : The evaluated wavefunctions with the specified precision.
+
+ Examples:
+ >>> psi_n_multiple_fock_single_position(1, 1.0, 60)
+ matrix(
+ [['0.455580672011332534833705256897851386076626390409294396879153',
+ '0.644288365113475181510837645362740498634994248687269122618738']])
References:
- ----------
- - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
+ 1. The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
"""
-
return matrix([psi_n_single_fock_single_position(i, x, prec) for i in range(n+1)]).T
+def psi_n_multiple_fock_single_position_complex(n, x, prec):
+ """
+ Determines the wavefunction for a complex scalar `x` for all Fock states up to `n`, employing mpmath for arbitrary-precision calculations.
+ Args:
+ n (np.uint64): Quantum state number up to which the wavefunctions are calculated.
+ x (np.complex128): Position at which to evaluate the wavefunctions.
+ prec (np.uint64): Desired precision for the calculation (number of decimal digits).
-
-
-def psi_n_multiple_fock_single_position_complex(n: np.uint64, x: np.complex128, prec: np.uint64) -> mpmath.matrices.matrices._matrix:
-
- """
- Determines the wavefunction for a complex scalar x to all fock states until n, employing mpmath for arbitrary-precision calculations.
-
- Parameters:
- ----------
- n : np.uint64
- Quantum state number.
- x : np.complex128
- Position(s) at which to evaluate the wavefunction.
- prec : np.uint64
- Desired precision for the calculation (number of decimal digits).
-
-
Returns:
- -------
- mpmath.matrices.matrices._matrix
- The evaluated wavefunction with the specified precision.
-
- Examples
- --------
- ```python
- >>> c_wavefunction_mmod_arb_prec(1,1.0 +2.0j,20)
- matrix(
- [[mpc(real='-1.400879733026245359964', imag='-3.0609780602975003919354'), mpc(real='6.6766102562991123531695', imag='-8.2911629223978481324862')]])
- ```
+ `mpmath.matrices.matrices._matrix` : The evaluated wavefunctions with the specified precision.
+
+ Examples:
+ >>> c_wavefunction_mmod_arb_prec(1, 1.0 + 2.0j, 20)
+ matrix(
+ [[mpc(real='-1.400879733026245359964', imag='-3.0609780602975003919354'),
+ mpc(real='6.6766102562991123531695', imag='-8.2911629223978481324862')]])
References:
- ----------
- - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
+ 1. The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
"""
return matrix([psi_n_single_fock_single_position_complex(i, x, prec) for i in range(n+1)]).T
+def psi_n_multiple_fock_multiple_position(n, X, prec):
+ """
+ Determines the wavefunction for a real vector `x` for all Fock states up to `n`, employing mpmath for arbitrary-precision calculations.
+ Args:
+ n (np.uint64): Quantum state number up to which the wavefunctions are calculated.
+ x (np.ndarray[np.float64]): Positions at which to evaluate the wavefunctions.
+ prec (np.uint64): Desired precision for the calculation (number of decimal digits).
-
-
-def psi_n_multiple_fock_multiple_position(n: np.uint64, X: np.ndarray[np.float64], prec: np.uint64) -> mpmath.matrices.matrices._matrix:
-
- """
- Determines the wavefunction for a real vector x to all fock states until n, employing mpmath for arbitrary-precision calculations.
-
- Parameters:
- ----------
- n : np.uint64
- Quantum state number.
- x : np.ndarray[np.float64]
- Position(s) at which to evaluate the wavefunction.
- prec : np.uint64
- Desired precision for the calculation (number of decimal digits).
-
-
Returns:
- -------
- mpmath.matrices.matrices._matrix
- The evaluated wavefunction with the specified precision.
-
- Examples
- --------
- ```python
- >>> wavefunction_mmmd_arb_prec(1,np.array([1.0,2.0]),20)
- matrix(
- [['0.45558067201133253483', '0.10165378830641791152'],
- ['0.64428836511347518151', '0.28752033217907949445']])
- ```
+ `mpmath.matrices.matrices._matrix` : The evaluated wavefunctions with the specified precision.
+
+ Examples:
+ >>> wavefunction_mmmd_arb_prec(1, np.array([1.0, 2.0]), 20)
+ matrix(
+ [['0.45558067201133253483', '0.10165378830641791152'],
+ ['0.64428836511347518151', '0.28752033217907949445']])
References:
- ----------
- - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
+ 1. The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
"""
return matrix([[psi_n_single_fock_single_position(i, x, prec) for x in X] for i in range(n+1)])
+def psi_n_multiple_fock_multiple_position_complex(n, X, prec):
+ """
+ Determines the wavefunction for a complex vector `x` for all Fock states up to `n`, employing mpmath for arbitrary-precision calculations.
+ Args:
+ n (np.uint64): Quantum state number up to which the wavefunctions are calculated.
+ x (np.ndarray[np.complex128]): Positions at which to evaluate the wavefunctions.
+ prec (np.uint64): Desired precision for the calculation (number of decimal digits).
-
-
-def psi_n_multiple_fock_multiple_position_complex(n: np.uint64, X: np.ndarray[np.complex128], prec: np.uint64) -> mpmath.matrices.matrices._matrix:
-
- """
- Determines the wavefunction for a complex vector x to all fock states until n, employing mpmath for arbitrary-precision calculations.
-
- Parameters:
- ----------
- n : np.uint64
- Quantum state number.
- x : np.ndarray[np.float128]
- Position(s) at which to evaluate the wavefunction.
- prec : np.uint64
- Desired precision for the calculation (number of decimal digits).
-
-
Returns:
- -------
- mpmath.matrices.matrices._matrix
- The evaluated wavefunction with the specified precision.
-
- Examples
- --------
- ```python
- >>> c_wavefunction_mmmd_arb_prec(1,np.array([1.0+1.0j,2.0+2.0j]),20)
- [[mpc(real='0.40583486367087033308603', imag='-0.63205035161528260798606'), mpc(real='-0.49096842060721693717778', imag='0.56845368634059468652777')],
- [mpc(real='1.4677913476441970351171', imag='-0.31991701106983521979673'), mpc(real='-2.9964982238469495343176', imag='0.21916142736845211639935')]])
- ```
+ `mpmath.matrices.matrices._matrix` : The evaluated wavefunctions with the specified precision.
+
+ Examples:
+ >>> c_wavefunction_mmmd_arb_prec(1, np.array([1.0 + 1.0j, 2.0 + 2.0j]), 20)
+ [[mpc(real='0.40583486367087033308603', imag='-0.63205035161528260798606'),
+ mpc(real='-0.49096842060721693717778', imag='0.56845368634059468652777')],
+ [mpc(real='1.4677913476441970351171', imag='-0.31991701106983521979673'),
+ mpc(real='-2.9964982238469495343176', imag='0.21916142736845211639935')]]
References:
- ----------
- - The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
+ 1. The mpmath development team. (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). Retrieved from http://mpmath.org/
"""
return matrix([[psi_n_single_fock_single_position_complex(i, x, prec) for x in X] for i in range(n+1)])
diff --git a/src/fast_wave/wavefunction_numba.py b/src/fast_wave/wavefunction_numba.py
index 552d89c..dca2112 100644
--- a/src/fast_wave/wavefunction_numba.py
+++ b/src/fast_wave/wavefunction_numba.py
@@ -39,67 +39,56 @@
# Global variables for coefficient matrix and compilation status check
c_s_matrix = None
+
compilation_test = None
-def hermite_sympy(n: np.uint64) -> Poly:
+def hermite_sympy(n):
"""
Compute the nth Hermite polynomial using symbolic differentiation.
- Parameters
- ----------
- n : np.uint64
- Order of the Hermite polynomial.
-
- Returns
- -------
- Poly
- The nth Hermite polynomial as a sympy expression.
-
- Examples
- --------
- ```
- >>> hermite_sympy(2)
- 4*x**2 - 2
- ```
-
- References
- ----------
- - Wikipedia contributors. (2021). Hermite polynomials. In Wikipedia, The Free Encyclopedia. Retrieved from https://en.wikipedia.org/wiki/Hermite_polynomials
+ Args:
+ n (int): Order of the Hermite polynomial.
+
+ Returns:
+ `sympy.Poly` : The nth Hermite polynomial as a sympy expression.
+
+ Examples:
+ >>> hermite_sympy(2)
+ 4*x**2 - 2
+
+ References:
+ 1. Olver, F. W. J., & Maximon, L. C. (2010). NIST Handbook of Mathematical Functions. Cambridge University Press. https://search.worldcat.org/pt/title/502037224?oclcNum=502037224
+ 2. NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15.
+ 3. Sympy Documentation: https://docs.sympy.org/latest/modules/polys/index.html
"""
+
x = symbols("x")
return 1 if n == 0 else ((-1) ** n) * exp(x ** 2) * diff(exp(-x ** 2), x, n)
-def create_normalized_hermite_coefficients_matrix(n_max: np.uint64) -> np.ndarray:
+def create_normalized_hermite_coefficients_matrix(n_max):
"""
- Create a matrix of coefficients for normalized Hermite polynomials up to order `n_max`.
-
- Parameters
- ----------
- n_max : np.uint64
- The maximum order of Hermite polynomials to compute.
-
- Returns
- -------
- np.ndarray
- A 2D numpy array containing the coefficients for the Hermite polynomials.
-
- Examples
- --------
- ```
- >>> create_normalized_hermite_coefficients_matrix(3)
- array([[ 0. , 0. , 0. , 0.75112554],
- [ 0. , 0. , 1.06225193, 0. ],
- [ 0. , 1.06225193, 0. , -0.53112597],
- [ 0.86732507, 0. , -1.30098761, 0. ]])
- ```
-
- References
- ----------
- - Olver, F. W. J., & Maximon, L. C. (2010). NIST Handbook of Mathematical Functions. Cambridge University Press.
- - NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15.
- - Sympy Documentation: https://docs.sympy.org/latest/modules/polys/index.html
+ Create a matrix of coefficients for normalized Hermite polynomials up to order `n_max`.
+
+ Args:
+ n_max (int): The maximum order of Hermite polynomials to compute.
+
+ Returns:
+ `np.ndarray` : A 2D numpy array containing the coefficients for the Hermite polynomials.
+
+ Examples:
+ >>> create_normalized_hermite_coefficients_matrix(3)
+ array([[ 0. , 0. , 0. , 0.75112554],
+ [ 0. , 0. , 1.06225193, 0. ],
+ [ 0. , 1.06225193, 0. , -0.53112597],
+ [ 0.86732507, 0. , -1.30098761, 0. ]])
+
+ References:
+ 1. Olver, F. W. J., & Maximon, L. C. (2010). NIST Handbook of Mathematical Functions. Cambridge University Press.
+ 2. NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15.
+ 3. Sympy Documentation: https://docs.sympy.org/latest/modules/polys/index.html
"""
+
x = symbols("x")
C_s = np.zeros((n_max + 1, n_max + 1), dtype=np.float64)
C_s[0, n_max] = 1
@@ -116,42 +105,31 @@ def create_normalized_hermite_coefficients_matrix(n_max: np.uint64) -> np.ndarra
@nb.jit(nopython=True, looplift=True, nogil=True, boundscheck=False, cache=True)
-def psi_n_single_fock_single_position(n: np.uint64, x:np.float64, CS_matrix:bool = True) -> np.float64:
-
- """
- Compute the wavefunction to a real scalar x using a pre-computed matrix of normalized Hermite polynomial coefficients until n=60 and
- then use the adapted recurrence relation for higher orders.
-
- Parameters
- ----------
- n : np.uint64
- Quantum state number.
- x : np.float64
- Position(s) at which to evaluate the wavefunction.
- CS_matrix : bool, optional
- If True, use the optimized method for n <= 60, which relies on a pre-computed matrix of coefficients for faster computation.
- For n > 60 or if False, use the general recursion method. Defaults to True.
-
-
- Returns
- -------
- np.float64
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_single_fock_single_position(0, 1.0)
- 0.45558067201133257
- >>> psi_n_single_fock_single_position(61, 1.0)
- -0.2393049199171131
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+def psi_n_single_fock_single_position(n, x, CS_matrix = True):
"""
+ Compute the wavefunction for a real scalar `x` using a pre-computed matrix of normalized Hermite polynomial coefficients
+ until n=60 and then use the adapted recurrence relation for higher orders.
+
+ Args:
+ n (int): Quantum state number.
+ x (float): Position at which to evaluate the wavefunction.
+ CS_matrix (bool, optional): If True, use the optimized method for n <= 60, which relies on a pre-computed matrix
+ of coefficients for faster computation. For n > 60 or if False, use the general recursion
+ method. Defaults to True.
+
+ Returns:
+ `float` : The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_single_fock_single_position(0, 1.0)
+ 0.45558067201133257
+ >>> psi_n_single_fock_single_position(61, 1.0)
+ -0.2393049199171131
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
+ """
if(n<=60 and CS_matrix):
c_size = c_s_matrix.shape[0]
@@ -175,41 +153,30 @@ def psi_n_single_fock_single_position(n: np.uint64, x:np.float64, CS_matrix:bool
@nb.jit(nopython=True, looplift=True, nogil=True, boundscheck=False, cache=True)
-def psi_n_single_fock_single_position_complex(n: np.uint64, x: np.complex128, CS_matrix:bool = True) -> np.complex128:
-
+def psi_n_single_fock_single_position_complex(n, x, CS_matrix = True):
"""
- Compute the wavefunction to a complex scalar x using a pre-computed matrix of normalized Hermite polynomial coefficients until n=60 and
- then use the adapted recurrence relation for higher orders.
-
- Parameters
- ----------
- n : np.uint64
- Quantum state number.
- x : np.complex128
- Position(s) at which to evaluate the wavefunction.
- CS_matrix : bool, optional
- If True, use the optimized method for n <= 60, which relies on a pre-computed matrix of coefficients for faster computation.
- For n > 60 or if False, use the general recursion method. Defaults to True.
-
-
- Returns
- -------
- np.complex128
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_single_fock_single_position_complex(0,1.0+2.0j)
- (-1.4008797330262455-3.0609780602975003j)
- >>> psi_n_single_fock_single_position_complex(61,1.0+2.0j)
- (-511062135.47555304+131445997.75753704j)
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a complex scalar `x` using a pre-computed matrix of normalized Hermite polynomial coefficients
+ until n=60 and then use the adapted recurrence relation for higher orders.
+
+ Args:
+ n (int): Quantum state number.
+ x (complex): Position at which to evaluate the wavefunction.
+ CS_matrix (bool, optional): If True, use the optimized method for n <= 60, which relies on a pre-computed matrix
+ of coefficients for faster computation. For n > 60 or if False, use the general recursion
+ method. Defaults to True.
+
+ Returns:
+ `complex`: The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_single_fock_single_position_complex(0, 1.0 + 2.0j)
+ (-1.4008797330262455 - 3.0609780602975003j)
+ >>> psi_n_single_fock_single_position_complex(61, 1.0 + 2.0j)
+ (-511062135.47555304 + 131445997.75753704j)
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
if(n<=60 and CS_matrix):
@@ -234,42 +201,30 @@ def psi_n_single_fock_single_position_complex(n: np.uint64, x: np.complex128, CS
@nb.jit(nopython=True, looplift=True,nogil=True, boundscheck=False, cache=True)
-def psi_n_single_fock_multiple_position(n: np.uint64, x: np.ndarray[np.float64], CS_matrix: bool = True) -> np.ndarray[np.float64]:
-
+def psi_n_single_fock_multiple_position(n, x, CS_matrix = True):
"""
- Compute the wavefunction to a real vector x using a pre-computed matrix of normalized Hermite polynomial coefficients until n=60 and
- then use the adapted recurrence relation for higher orders.
-
- Parameters
- ----------
- n : np.uint64
- Quantum state number.
- x : np.ndarray[np.float64]
- Position(s) at which to evaluate the wavefunction.
- CS_matrix : bool, optional
- If True, use the optimized method for n <= 60, which relies on a pre-computed matrix of coefficients for faster computation.
- For n > 60 or if False, use the general recursion method. Defaults to True.
-
-
-
- Returns
- -------
- np.ndarray[np.float64]
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_single_fock_multiple_position(0,np.array([1.0, 2.0]))
- array([0.45558067, 0.10165379])
- >>> psi_n_single_fock_multiple_position(61,np.array([1.0, 2.0]))
- array([-0.23930492, -0.01677378])
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a real vector `x` using a pre-computed matrix of normalized Hermite polynomial coefficients
+ until n=60 and x_size = 35. For higher orders, use the adapted recurrence relation.
+
+ Args:
+ n (int): Quantum state number.
+ x (numpy.ndarray): Positions at which to evaluate the wavefunction.
+ CS_matrix (bool, optional): If True, use the optimized method for n <= 60 and x_size <= 35, which relies on a pre-computed matrix
+ of coefficients for faster computation. For n > 60, or x_size > 35 or if False, use the general recursion
+ method. Defaults to True.
+
+ Returns:
+ `numpy.ndarray`: The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_single_fock_multiple_position(0, np.array([1.0, 2.0]))
+ array([0.45558067, 0.10165379])
+ >>> psi_n_single_fock_multiple_position(61, np.array([1.0, 2.0]))
+ array([-0.23930492, -0.01677378])
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
x_size = x.shape[0]
@@ -295,42 +250,30 @@ def psi_n_single_fock_multiple_position(n: np.uint64, x: np.ndarray[np.float64],
@nb.jit(nopython=True, looplift=True,nogil=True, boundscheck=False, cache=True)
-def psi_n_single_fock_multiple_position_complex(n: np.uint64, x: np.ndarray[np.complex128], CS_matrix: bool = True) -> np.ndarray[np.complex128]:
-
+def psi_n_single_fock_multiple_position_complex(n, x, CS_matrix = True):
"""
- Compute the wavefunction to a complex vector x using a pre-computed matrix of normalized Hermite polynomial coefficients until n=60 and
- then use the adapted recurrence relation for higher orders.
-
- Parameters
- ----------
- n : np.uint64
- Quantum state number.
- x : np.ndarray[np.complex128]
- Position(s) at which to evaluate the wavefunction.
- CS_matrix : bool, optional
- If True, use the optimized method for n <= 60, which relies on a pre-computed matrix of coefficients for faster computation.
- For n > 60 or if False, use the general recursion method. Defaults to True.
-
-
-
- Returns
- -------
- np.ndarray[np.complex128]
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_single_fock_multiple_position_complex(0,np.array([1.0 + 1.0j, 2.0 + 2.0j]))
- array([ 0.40583486-0.63205035j, -0.49096842+0.56845369j])
- >>> psi_n_single_fock_multiple_position_complex(61,np.array([1.0 + 1.0j, 2.0 + 2.0j]))
- array([-7.56548941e+03+9.21498621e+02j, -1.64189542e+08-3.70892077e+08j])
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a complex vector `x` using a pre-computed matrix of normalized Hermite polynomial coefficients
+ until n=60 and x_size = 35. For higher orders, use the adapted recurrence relation.
+
+ Args:
+ n (int): Quantum state number.
+ x (numpy.ndarray): Positions at which to evaluate the wavefunction.
+ CS_matrix (bool, optional): If True, use the optimized method for n <= 60 and x_size <= 35, which relies on a pre-computed matrix
+ of coefficients for faster computation. For n > 60, or x_size > 35 or if False, use the general recursion
+ method. Defaults to True.
+
+ Returns:
+ `numpy.ndarray`: The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_single_fock_multiple_position_complex(0, np.array([1.0 + 1.0j, 2.0 + 2.0j]))
+ array([ 0.40583486-0.63205035j, -0.49096842+0.56845369j])
+ >>> psi_n_single_fock_multiple_position_complex(61, np.array([1.0 + 1.0j, 2.0 + 2.0j]))
+ array([-7.56548941e+03+9.21498621e+02j, -1.64189542e+08-3.70892077e+08j])
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
x_size = x.shape[0]
@@ -355,37 +298,26 @@ def psi_n_single_fock_multiple_position_complex(n: np.uint64, x: np.ndarray[np.c
@nb.jit(nopython=True, looplift=True,nogil=True, boundscheck=False, cache=True)
-def psi_n_multiple_fock_single_position(n: np.uint64, x:np.float64) -> np.ndarray[np.float64]:
-
+def psi_n_multiple_fock_single_position(n, x):
"""
- Compute the wavefunction to a real scalar x to all fock states until n using the recurrence relation.
-
- Parameters
- ----------
- n : np.uint64
- Quantum state number.
- x : np.float64
- Position(s) at which to evaluate the wavefunction.
-
-
- Returns
- -------
- np.ndarray[np.float64]
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_multiple_fock_single_position(1,1.0)
- array([0.45558067, 0.64428837])
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a real scalar `x` to all Fock states up to `n` using the recurrence relation.
+
+ Args:
+ n (int): Quantum state number.
+ x (float): Position at which to evaluate the wavefunction.
+
+ Returns:
+ `numpy.ndarray`: The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_multiple_fock_single_position(1, 1.0)
+ array([0.45558067, 0.64428837])
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
-
+
result = np.array([0.0] * (n+1))
result[0] = (np.pi ** (-0.25))*np.exp(-(x ** 2) / 2)
@@ -396,35 +328,24 @@ def psi_n_multiple_fock_single_position(n: np.uint64, x:np.float64) -> np.ndarra
@nb.jit(nopython=True, looplift=True,nogil=True, boundscheck=False, cache=True)
-def psi_n_multiple_fock_single_position_complex(n: np.uint64, x: np.complex128) -> np.ndarray[np.complex128]:
-
+def psi_n_multiple_fock_single_position_complex(n, x):
"""
- Compute the wavefunction to a complex scalar x to all fock states until n using the recurrence relation.
-
- Parameters
- ----------
- n : np.uint64
- Quantum state number.
- x : np.complex128
- Position(s) at which to evaluate the wavefunction.
-
-
- Returns
- -------
- np.ndarray[np.complex128]
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_multiple_fock_single_position_complex(1,1.0 +2.0j)
- array([-1.40087973-3.06097806j, 6.67661026-8.29116292j])
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a complex scalar `x` to all Fock states up to `n` using the recurrence relation.
+
+ Args:
+ n (int): Quantum state number.
+ x (complex): Position at which to evaluate the wavefunction.
+
+ Returns:
+ `numpy.ndarray`: The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_multiple_fock_single_position_complex(1, 1.0 + 2.0j)
+ array([-1.40087973-3.06097806j, 6.67661026-8.29116292j])
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
result = np.array([0.0 + 0.0j] * (n+1))
@@ -438,36 +359,25 @@ def psi_n_multiple_fock_single_position_complex(n: np.uint64, x: np.complex128)
@nb.jit(nopython=True, looplift=True,nogil=True, boundscheck=False, cache=True)
-def psi_n_multiple_fock_multiple_position(n: np.uint64, x: np.ndarray[np.float64]) -> np.ndarray[np.ndarray[np.float64]]:
-
+def psi_n_multiple_fock_multiple_position(n, x):
"""
- Compute the wavefunction to a real vector x to all fock states until n using the recurrence relation.
-
- Parameters
- ----------
- n : np.uint64
- Quantum state number.
- x : np.ndarray[np.float64]
- Position(s) at which to evaluate the wavefunction.
-
-
- Returns
- -------
- np.ndarray[np.ndarray[np.float64]]
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_multiple_fock_multiple_position(1,np.array([1.0, 2.0]))
- array([[0.45558067, 0.10165379],
- [0.64428837, 0.28752033]])
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a real vector `x` to all Fock states up to `n` using the recurrence relation.
+
+ Args:
+ n (int): Quantum state number.
+ x (numpy.ndarray): Positions at which to evaluate the wavefunction.
+
+ Returns:
+ `numpy.ndarray`: The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_multiple_fock_multiple_position(1, np.array([1.0, 2.0]))
+ array([[0.45558067, 0.10165379],
+ [0.64428837, 0.28752033]])
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
x_size = x.shape[0]
@@ -481,36 +391,25 @@ def psi_n_multiple_fock_multiple_position(n: np.uint64, x: np.ndarray[np.float64
@nb.jit(nopython=True, looplift=True,nogil=True, boundscheck=False, cache=True)
-def psi_n_multiple_fock_multiple_position_complex(n: np.uint64, x: np.ndarray[np.complex128]) -> np.ndarray[np.ndarray[np.float64]]:
-
+def psi_n_multiple_fock_multiple_position_complex(n, x):
"""
- Compute the wavefunction to a complex vector x to all fock states until n using the recurrence relation.
-
- Parameters
- ----------
- n : np.uint64
- Quantum state number.
- x : np.ndarray[np.complex128]
- Position(s) at which to evaluate the wavefunction.
-
-
- Returns
- -------
- np.ndarray[np.ndarray[np.complex128]]
- The evaluated wavefunction.
-
- Examples
- --------
- ```python
- >>> psi_n_multiple_fock_multiple_position_complex(1,np.array([1.0 + 1.0j, 2.0 + 2.0j]))
- array([[ 0.40583486-0.63205035j, -0.49096842+0.56845369j],
- [ 1.46779135-0.31991701j, -2.99649822+0.21916143j]])
- ```
-
- References
- ----------
- - Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*, 39(1),
- 015402. doi:10.1088/1361-6404/aa9584
+ Compute the wavefunction for a complex vector `x` to all Fock states up to `n` using the recurrence relation.
+
+ Args:
+ n (int): Quantum state number.
+ x (numpy.ndarray): Positions at which to evaluate the wavefunction.
+
+ Returns:
+ `numpy.ndarray`: The evaluated wavefunction.
+
+ Examples:
+ >>> psi_n_multiple_fock_multiple_position_complex(1, np.array([1.0 + 1.0j, 2.0 + 2.0j]))
+ array([[ 0.40583486-0.63205035j, -0.49096842+0.56845369j],
+ [ 1.46779135-0.31991701j, -2.99649822+0.21916143j]])
+
+ References:
+ 1. Pérez-Jordá, J. M. (2017). On the recursive solution of the quantum harmonic oscillator. *European Journal of Physics*,
+ 39(1), 015402. doi: https://iopscience.iop.org/article/10.1088/1361-6404/aa9584
"""
x_size = x.shape[0]