-
Notifications
You must be signed in to change notification settings - Fork 8
/
cornersearch_attacks_pt.py
235 lines (196 loc) · 10.5 KB
/
cornersearch_attacks_pt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#import tensorflow as tf
import scipy.io
import numpy as np
import torch
from utils_pt import get_logits, get_predictions
def onepixel_perturbation(attack, orig_x, pos, sigma):
''' returns a batch with the possible perturbations of the pixel in position pos '''
if attack.type_attack == 'L0':
if orig_x.shape[-1] == 3:
batch_x = np.tile(orig_x,(8,1,1,1))
t = np.zeros([3])
for counter in range(8):
t2 = counter + 0
for c in range(3):
t[c] = t2 % 2
t2 = (t2 - t[c])/2
batch_x[counter,pos[0],pos[1]] = t.astype(np.float32)
elif orig_x.shape[-1] == 1:
batch_x = np.tile(orig_x,(2,1,1,1))
batch_x[0,pos[0],pos[1],0] = 0.0
batch_x[1,pos[0],pos[1],0] = 1.0
elif attack.type_attack == 'L0+Linf':
if orig_x.shape[-1] == 3:
batch_x = np.tile(orig_x,(8,1,1,1))
t = np.zeros([3])
for counter in range(8):
t2 = counter + 0
for c in range(3):
t3 = t2 % 2
t[c] = (t3*2.0 - 1.0)*attack.epsilon
t2 = (t2 - t3)/2
batch_x[counter,pos[0],pos[1]] = np.clip(t.astype(np.float32) + orig_x[pos[0],pos[1]], 0.0, 1.0)
elif orig_x.shape[-1] == 1:
batch_x = np.tile(orig_x,(2,1,1,1))
batch_x[0,pos[0],pos[1],0] = np.clip(batch_x[0,pos[0],pos[1],0] - attack.epsilon, 0.0, 1.0)
batch_x[1,pos[0],pos[1],0] = np.clip(batch_x[1,pos[0],pos[1],0] + attack.epsilon, 0.0, 1.0)
elif attack.type_attack == 'L0+sigma':
batch_x = np.tile(orig_x,(2,1,1,1))
if orig_x.shape[-1] == 3:
batch_x[0,pos[0],pos[1]] = np.clip(batch_x[0,pos[0],pos[1]]*(1.0 - attack.kappa*sigma[pos[0],pos[1]]), 0.0, 1.0)
batch_x[1,pos[0],pos[1]] = np.clip(batch_x[0,pos[0],pos[1]]*(1.0 + attack.kappa*sigma[pos[0],pos[1]]), 0.0, 1.0)
elif orig_x.shape[-1] == 1:
batch_x[0,pos[0],pos[1]] = np.clip(batch_x[0,pos[0],pos[1]] - attack.kappa*sigma[pos[0],pos[1]], 0.0, 1.0)
batch_x[1,pos[0],pos[1]] = np.clip(batch_x[0,pos[0],pos[1]] + attack.kappa*sigma[pos[0],pos[1]], 0.0, 1.0)
else:
raise ValueError('unknown attack')
return batch_x
def onepixel_perturbation_image(attack, orig_x, sigma):
''' returns a batch with all the possible perturbations of the image orig_x '''
n_channels = orig_x.shape[-1]
assert n_channels in [1, 3]
n_corners = 2**n_channels if attack.type_attack in ['L0', 'L0+Linf'] else 2
batch_x = np.zeros([n_corners*orig_x.shape[0]*orig_x.shape[1], orig_x.shape[0], orig_x.shape[1], orig_x.shape[2]])
for counter in range(orig_x.shape[0]):
for counter2 in range(orig_x.shape[1]):
batch_x[(counter*orig_x.shape[0]+counter2)*n_corners:(counter*orig_x.shape[1]+counter2)*n_corners+n_corners] = np.clip(onepixel_perturbation(attack, orig_x, [counter,counter2], sigma), 0.0, 1.0)
return batch_x
def flat2square(attack, ind):
''' returns the position and the perturbation given the index of an image
of the batch of all the possible perturbations '''
if attack.type_attack in ['L0', 'L0+Linf']:
if attack.shape_img[-1] == 3:
new_pixel = ind % 8
ind = (ind - new_pixel)//8
c = ind % attack.shape_img[1]
r = (ind - c)//attack.shape_img[1]
t = np.zeros([ind.shape[0],3])
for counter in range(3):
t[:,counter] = new_pixel % 2
new_pixel = (new_pixel - t[:,counter])/2
elif attack.shape_img[-1] == 1:
t = ind % 2
ind = (ind-t)//2
c = ind % attack.shape_img[1]
r = (ind-c)//attack.shape_img[1]
elif attack.type_attack == 'L0+sigma':
t = ind % 2
c = ((ind - t)//2) % attack.shape_img[1]
r = ((ind - t)//2 - c)//attack.shape_img[1]
return r, c, t
def npixels_perturbation(attack, orig_x, ind, k, sigma):
''' creates n_iter images which differ from orig_x in at most k pixels '''
# sampling the n_iter k-pixels perturbations
ind2 = np.random.randint(0, attack.n_max**2, (attack.n_iter, k))
ind2 = attack.n_max - np.floor(ind2**0.5).astype(int) - 1
# creating the n_iter k-pixels perturbed images
batch_x = np.tile(orig_x,(attack.n_iter,1,1,1))
if attack.type_attack == 'L0':
for counter in range(attack.n_iter):
p11, p12, d1 = flat2square(attack, ind[ind2[counter]])
batch_x[counter,p11,p12] = d1 + 0 if attack.shape_img[-1] == 3 else np.expand_dims(d1 + 0, 1)
elif attack.type_attack == 'L0+Linf':
for counter in range(attack.n_iter):
p11, p12, d1 = flat2square(attack, ind[ind2[counter]])
d1 = d1 + 0 if attack.shape_img[-1] == 3 else np.expand_dims(d1 + 0, 1)
batch_x[counter,p11,p12] = np.clip(batch_x[counter,p11,p12]+(2.0*d1 - 1.0)*attack.epsilon, 0.0, 1.0)
elif attack.type_attack == 'L0+sigma':
for counter in range(attack.n_iter):
p11, p12, d1 = flat2square(attack, ind[ind2[counter]])
d1 = np.expand_dims(d1,1)
if attack.shape_img[-1] == 3: batch_x[counter,p11,p12] = np.clip(batch_x[counter,p11,p12] - attack.kappa*sigma[p11,p12]*(1-d1) + attack.kappa*sigma[p11,p12]*d1, 0.0, 1.0)
elif attack.shape_img[-1] == 1: batch_x[counter,p11,p12] = np.clip(batch_x[counter,p11,p12] - attack.kappa*sigma[p11,p12]*(1-d1) + attack.kappa*sigma[p11,p12]*d1, 0.0, 1.0)
return batch_x
def sigma_map(x):
''' creates the sigma-map for the batch x '''
sh = [4]
sh.extend(x.shape)
t = np.zeros(sh)
t[0,:,:-1] = x[:,1:]
t[0,:,-1] = x[:,-1]
t[1,:,1:] = x[:,:-1]
t[1,:,0] = x[:,0]
t[2,:,:,:-1] = x[:,:,1:]
t[2,:,:,-1] = x[:,:,-1]
t[3,:,:,1:] = x[:,:,:-1]
t[3,:,:,0] = x[:,:,0]
mean1 = (t[0] + x + t[1])/3
sd1 = np.sqrt(((t[0]-mean1)**2 + (x-mean1)**2 + (t[1]-mean1)**2)/3)
mean2 = (t[2] + x + t[3])/3
sd2 = np.sqrt(((t[2]-mean2)**2 + (x-mean2)**2 + (t[3]-mean2)**2)/3)
sd = np.minimum(sd1, sd2)
sd = np.sqrt(sd)
return sd
class CSattack():
def __init__(self, model, args):
self.model = model
self.type_attack = args['type_attack'] # 'L0', 'L0+Linf', 'L0+sigma'
self.n_iter = args['n_iter'] # number of iterations (N_iter in the paper)
self.n_max = args['n_max'] # the modifications for k-pixels perturbations are sampled among the best n_max (N in the paper)
self.epsilon = args['epsilon'] # for L0+Linf, the bound on the Linf-norm of the perturbation
self.kappa = args['kappa'] # for L0+sigma (see kappa in the paper), larger kappa means easier and more visible attacks
self.k = args['sparsity'] # maximum number of pixels that can be modified (k_max in the paper)
self.size_incr = args['size_incr'] # size of progressive increment of sparsity levels to check
def perturb(self, x_nat, y_nat):
adv = np.copy(x_nat)
fl_success = np.ones([x_nat.shape[0]])
self.shape_img = x_nat.shape[1:]
self.sigma = sigma_map(x_nat)
self.n_classes = 10
self.n_corners = 2**self.shape_img[2] if self.type_attack in ['L0', 'L0+Linf'] else 2
#corr_pred = sess.run(self.model.correct_prediction, {self.model.x_input: x_nat, self.model.y_input: y_nat})
corr_pred = get_predictions(self.model, x_nat, y_nat)
bs = self.shape_img[0]*self.shape_img[1]
for c in range(x_nat.shape[0]):
if corr_pred[c]:
sigma = np.copy(self.sigma[c])
batch_x = onepixel_perturbation_image(self, x_nat[c], sigma)
batch_y = np.squeeze(y_nat[c])
logit_2 = np.zeros([batch_x.shape[0], self.n_classes])
found = False
# checks one-pixels modifications
for counter in range(self.n_corners):
#logit_2[counter*bs:(counter+1)*bs], pred = sess.run([self.model.y, self.model.correct_prediction], feed_dict={self.model.x_input: batch_x[counter*bs:(counter+1)*bs], self.model.y_input: np.tile(batch_y,(bs))})
logit_2[counter*bs:(counter+1)*bs] = get_logits(self.model, batch_x[counter*bs:(counter+1)*bs])
pred = logit_2[counter*bs:(counter+1)*bs].argmax(axis=-1) == np.tile(batch_y,(bs))
if not pred.all() and not found:
ind_adv = np.where(pred.astype(int)==0)
adv[c] = batch_x[counter*bs + ind_adv[0][0]]
found = True
print('Point {} - adversarial example found changing 1 pixel'.format(c))
# creates the orderings
t1 = np.copy(logit_2[:, batch_y])
logit_2[:, batch_y] = -1000.0*np.ones(np.shape(logit_2[:, batch_y]))
t2 = np.amax(logit_2, axis=1)
t3 = t1 - t2
logit_3 = np.tile(np.expand_dims(t1,axis=1),(1,self.n_classes))-logit_2
logit_3[:, batch_y] = t3
ind = np.argsort(logit_3, axis=0)
# checks multiple-pixels modifications
for n3 in range(1 + self.size_incr, self.k + 1, self.size_incr):
if not found:
for c2 in range(self.n_classes):
if not found:
ind_cl = np.copy(ind[:, c2])
batch_x = npixels_perturbation(self, x_nat[c], ind_cl, n3, sigma)
#pred = sess.run(self.model.correct_prediction, feed_dict={self.model.x_input: batch_x, self.model.y_input: np.tile(batch_y,(batch_x.shape[0]))})
pred = get_predictions(self.model, batch_x, np.tile(batch_y,(batch_x.shape[0])))
if np.sum(pred.astype(np.int32)) < self.n_iter and not found:
found = True
ind_adv = np.where(pred.astype(int)==0)
adv[c] = batch_x[ind_adv[0][0]]
print('Point {} - adversarial example found changing {} pixels'.format(c, np.sum(np.amax(np.abs(adv[c] - x_nat[c]) > 1e-10, axis=-1), axis=(0,1))))
if not found:
fl_success[c] = 0
print('Point {} - adversarial example not found'.format(c))
else:
print('Point {} - misclassified'.format(c))
pixels_changed = np.sum(np.amax(np.abs(adv - x_nat) > 1e-10, axis=-1), axis=(1,2))
print('Pixels changed: ', pixels_changed)
#print('attack successful: ', fl_success)
#print('attack successful: {:.2f}%'.format((1.0 - np.mean(fl_success))*100.0))
#corr_pred = sess.run(self.model.correct_prediction, {self.model.x_input: adv, self.model.y_input: y_nat})
corr_pred = get_predictions(self.model, adv, y_nat)
print('Robust accuracy at {} pixels: {:.2f}%'.format(self.k, np.sum(corr_pred)/x_nat.shape[0]*100.0))
print('Maximum perturbation size: {:.5f}'.format(np.amax(np.abs(adv - x_nat))))
return adv, pixels_changed, fl_success