-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
84 lines (63 loc) · 1.64 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# !/usr/bin/python3
# -*-coding utf-8 -*-
# @Time : 2021/06/30 22:23
# @Author : Francisco Muñoz
# @Project : evolution_of_species
# @File : main.py
# @Software : PyCharm
import numpy as np
from perthame_pde.model.solver import solve_perthame, Solver1R, Solver2U
x_lims = (-4, 4)
y_lims = (-4, 4)
N = 400
M = 100
dt = 0.05
T = 100
CONFIG_LIMITES = {
"x_lims": x_lims,
"y_lims": y_lims,
"N": N,
"M": M,
"dt": dt,
"T": T
}
M_1_CONST, M_2_CONST = 0.3, 1.
EPS = 0.001
SIG_K, SIG_IN = 0.6, 1.
R_CONST = 1.
M_IN = 3.
U_MAX, MU_U, SIG_U = 3., 1., 0.01
R_MAX, MU_R, SIG_R = 5., -1., 1.
def K(x, y, sig_K=SIG_K) -> float:
num = np.exp(- (x - y) ** 2 / (2 * sig_K ** 2))
den = sig_K * np.sqrt(2 * np.pi)
return num / den
def R_in(y, M_in=M_IN, sig_in=SIG_IN) -> float:
num = M_in * np.exp(- y ** 2 / (2 * sig_in ** 2))
den = sig_in * np.sqrt(2 * np.pi)
return num / den
def m_1(x) -> float:
return M_1_CONST
def m_2(y) -> float:
return M_2_CONST
def r(x) -> float:
return R_CONST
# Distribuciones Gaussianas
def u_0(x, u_max=U_MAX, mu_u=MU_U, sig_u=SIG_U) -> float:
num = u_max * np.exp(- (x - mu_u) ** 2 / (2 * sig_u ** 2))
den = sig_u * np.sqrt(2 * np.pi)
return num / den
def R_0(y, R_max=R_MAX, mu_R=MU_R, sig_R=SIG_R) -> float:
num = R_max * np.exp(- (y - mu_R) ** 2 / (2 * sig_R ** 2))
den = sig_R * np.sqrt(2 * np.pi)
return num / den
u, R = solve_perthame(
u_0, R_0, r, R_in, m_1, m_2, K, EPS,
solver_R=Solver1R, solver_u=Solver2U.set_theta(1),
verbose=True, reports_every=50,
**CONFIG_LIMITES
)
# print(u, R)
# print(u.F)
print(u)
print(u[2, 3:8])