-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_cl.py
396 lines (337 loc) · 21.7 KB
/
run_cl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# coding: utf-8
from src.train_and_evaluate import *
from src.models import *
import time
import torch
import torch.optim
from src.expressions_transfer import *
from transformers import AdamW, get_linear_schedule_with_warmup
from src.neuralsim import NeuralSimilarity
import tqdm
import json
import logging
import argparse
import shutil
import random
import numpy as np
logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def alpha_schedule(beg, end, epoch, final_val):
if epoch <= beg:
return 0
elif epoch >= end:
return final_val
else:
return float(final_val) * (epoch - beg) / (end - beg)
def make_pair(data, is_eval=False):
items = data["pairs"]
generate_nums = data["generate_nums"]
copy_nums = data["copy_nums"]
temp_pairs = []
for p in items:
if not is_eval:
temp_pairs.append((p["tokens"], from_infix_to_prefix(p["expression"])[:MAX_OUTPUT_LENGTH], p["nums"], p["num_pos"]))
else:
temp_pairs.append((p["tokens"], from_infix_to_prefix(p["expression"]), p["nums"], p["num_pos"]))
pairs = temp_pairs
return pairs, generate_nums, copy_nums
def initial_model(output_lang, embedding_size, hidden_size, args, copy_nums, generate_nums):
encoder = EncoderBert(hidden_size=hidden_size, auto_transformer=True,
bert_pretrain_path=args.bert_pretrain_path, dropout=args.dropout)
neural_sim = NeuralSimilarity()
predict = Prediction(hidden_size=hidden_size, op_nums=output_lang.n_words - copy_nums - 1 - len(generate_nums),
input_size=len(generate_nums), dropout=args.dropout)
generate = GenerateNode(hidden_size=hidden_size, op_nums=output_lang.n_words - copy_nums - 1 - len(generate_nums),
embedding_size=embedding_size, dropout=args.dropout)
merge = Merge(hidden_size=hidden_size, embedding_size=embedding_size, dropout=args.dropout)
if args.model_reload_path != '' and os.path.exists(args.model_reload_path):
encoder.load_state_dict(torch.load(os.path.join(args.model_reload_path, "encoder.ckpt")))
neural_sim.load_state_dict(torch.load(os.path.join(args.model_reload_path, "neural_sim.ckpt")))
pred = torch.load(os.path.join(args.model_reload_path, "predict.ckpt"))
gene = torch.load(os.path.join(args.model_reload_path, "generate.ckpt"))
if args.finetune_from_trainset != "": # alignment finetune output vocab
logger.info("alignment finetune output vocab with {}".format(args.finetune_from_trainset))
from_train_data = json.load(open(os.path.join(args.data_dir, args.finetune_from_trainset), 'r', encoding='utf-8'))
from_pairs_trained, from_generate_nums, from_copy_nums = make_pair(from_train_data)
use_bert = True
_, from_output_lang, _, _, _ = prepare_data(from_pairs_trained, (), 5, from_generate_nums, from_copy_nums, tree=True, use_bert=use_bert, auto_transformer=True, bert_pretrain_path=args.bert_pretrain_path)
op_weight = None
op_bias = None
gene_embed_weight = None
for i in range(output_lang.num_start): # op
op = output_lang.index2word[i]
from_idx = from_output_lang.word2index[op]
if op_weight == None:
op_weight = pred["ops.weight"][from_idx:from_idx+1, :]
op_bias = pred["ops.bias"][from_idx:from_idx+1]
gene_embed_weight = gene["embeddings.weight"][from_idx:from_idx+1, :]
else:
op_weight = torch.cat([op_weight, pred["ops.weight"][from_idx:from_idx+1, :]], dim=0)
op_bias = torch.cat([op_bias, pred["ops.bias"][from_idx:from_idx+1]], dim=0)
gene_embed_weight = torch.cat([gene_embed_weight, gene["embeddings.weight"][from_idx:from_idx+1, :]], dim=0)
pred["ops.weight"] = op_weight
pred["ops.bias"] = op_bias
gene["embeddings.weight"] = gene_embed_weight
embedding_weight = None
for i in generate_num_ids: # constant
constant = output_lang.index2word[i]
const_emb = None
if constant not in from_output_lang.word2index:
const_emb = nn.Parameter(torch.randn(1, 1, hidden_size))
if USE_CUDA:
const_emb = const_emb.cuda(device = torch.device(os.environ["DEVICE"]))
else:
from_idx = from_output_lang.word2index[constant] - from_output_lang.num_start
const_emb = pred["embedding_weight"][:,from_idx:from_idx+1,:]
if embedding_weight == None:
embedding_weight = const_emb
else:
embedding_weight = torch.cat([embedding_weight, const_emb], dim=1)
pred["embedding_weight"] = embedding_weight
predict.load_state_dict(pred)
generate.load_state_dict(gene)
merge.load_state_dict(torch.load(os.path.join(args.model_reload_path, "merge.ckpt")))
return encoder, neural_sim, predict, generate, merge
def train_model(args, train_pairs, test_pairs, generate_num_ids,
encoder, neural_sim, predict, generate, merge, output_lang):
batch_size = args.batch_size
need_optimized_parameters = []
for module in [encoder, neural_sim, predict, generate, merge]:
need_optimized_parameters += [p for n, p in module.named_parameters() if p.requires_grad]
contra_pair = None
subtree_pos_pair = None
logger.info("Loading contra pair file: {}".format(args.contra_pair))
contra_pair = json.load(open(os.path.join(args.data_dir, args.contra_pair), 'r', encoding='utf-8'))
if isinstance(contra_pair, dict):
subtree_pos_pair = contra_pair["pos"]
contra_pair = contra_pair["pairs"]
t_total = (len(contra_pair) // batch_size + 1) * args.n_epochs
logger.info("Num of Training Data = {}".format(len(contra_pair)))
logger.info("Total Steps = {}".format(t_total))
optimizer = AdamW([{'params': need_optimized_parameters, 'weight_decay': 0.0}], lr=args.learning_rate)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=t_total)
best_metric = (0, 0, 0)
best_value_acc_ls = [0.0 for _ in range(args.n_save_ckpt)]
best_equ_acc_ls = [0.0 for _ in range(args.n_save_ckpt)]
best_metric_ls = [(0, 0, 0) for _ in range(args.n_save_ckpt)]
best_epoch_ls = [-1 for _ in range(args.n_save_ckpt)]
with open(os.path.join(args.output_dir, 'training_args.txt'), 'w', encoding='utf-8') as f:
for arg in vars(args):
f.write('{}: {}\n'.format(arg, getattr(args, arg)))
logger.info("Training start...")
run_steps = 0
for epoch in range(args.n_epochs):
loss_total = 0
contra_loss_total = 0
expr_loss_total = 0
if args.contra_common_tree_pair:
input_batches, input_lengths, output_batches, output_lengths, nums_batches, num_stack_batches, num_pos_batches, num_size_batches, subtree_pos_pair_batches = prepare_contra_train_batch(train_pairs, batch_size, contra_pair, subtree_pos_pair, args, args.neg_sample, args.neg_sample_from_pair_file) # input_batches = [(input_batch1, input_batch2, neg_batch, ...), ...] ...
else:
input_batches, input_lengths, output_batches, output_lengths, nums_batches, num_stack_batches, num_pos_batches, num_size_batches = prepare_contra_train_batch(train_pairs, batch_size, contra_pair, subtree_pos_pair, args, args.neg_sample, args.neg_sample_from_pair_file) # input_batches = [(input_batch1, input_batch2, neg_batch, ...), ...] ...
logger.info("epoch: {}".format(epoch + 1))
start = time.time()
for idx in range(len(input_lengths)):
# alpha warmup
if args.alpha_warmup:
alpha = alpha_schedule(args.warmup_begin, args.warmup_end, run_steps, args.alpha)
else:
alpha = args.alpha
if args.contra_common_tree_pair:
loss, contra_loss, expr_loss = contra_train_tree(
input_batches[idx], input_lengths[idx], output_batches[idx], output_lengths[idx],
num_stack_batches[idx], num_size_batches[idx], generate_num_ids, encoder, neural_sim, predict, generate, merge,
output_lang, num_pos_batches[idx], args, alpha, args.contra_loss_func, subtree_pos_pair_batches[idx])
else:
loss, contra_loss, expr_loss = contra_train_tree(
input_batches[idx], input_lengths[idx], output_batches[idx], output_lengths[idx],
num_stack_batches[idx], num_size_batches[idx], generate_num_ids, encoder, neural_sim, predict, generate, merge,
output_lang, num_pos_batches[idx], args, alpha, args.contra_loss_func)
torch.nn.utils.clip_grad_norm_(need_optimized_parameters, args.max_grad_norm)
optimizer.step()
scheduler.step()
encoder.zero_grad()
neural_sim.zero_grad()
predict.zero_grad()
generate.zero_grad()
merge.zero_grad()
contra_loss_total += contra_loss
expr_loss_total += expr_loss
loss_total += loss
run_steps += 1
if run_steps % args.logging_steps == 0:
logger.info("step: {}, lr: {}, loss: {}, c_alpha: {}, c_loss: {}, e_loss: {}".format(run_steps, scheduler.get_last_lr()[0], loss_total/(idx+1), alpha, contra_loss_total/(idx+1), expr_loss_total/(idx+1)))
logger.info("loss: {}, contra_loss: {}, expr_loss: {}".format(loss_total / len(input_lengths), contra_loss_total / len(input_lengths), expr_loss_total / len(input_lengths)))
logger.info("training time: {}".format(time_since(time.time() - start)))
logger.info("--------------------------------")
del input_batches, input_lengths, output_batches, output_lengths, nums_batches, num_stack_batches, num_pos_batches, num_size_batches
if epoch % args.n_val == 0 or epoch > args.n_epochs - 5:
value_ac = 0
equation_ac = 0
eval_total = 0
start = time.time()
for nd in range(len(test_pairs)):
value_ac_0 = 0
equation_ac_0 = 0
eval_total_0 = 0
for test_batch in test_pairs[nd]:
test_res = evaluate_tree(test_batch[0], test_batch[1], generate_num_ids, encoder, predict, generate,
merge, output_lang, test_batch[5], beam_size=beam_size)
val_ac, equ_ac, _, _ = compute_prefix_tree_result(test_res, test_batch[2], output_lang, test_batch[4], test_batch[6])
del test_res
if val_ac:
value_ac_0 += 1
value_ac += 1
if equ_ac:
equation_ac_0 += 1
equation_ac += 1
eval_total_0 += 1
eval_total += 1
logger.info("{}, {}, {}".format(equation_ac_0, value_ac_0, eval_total_0))
logger.info("test_answer_acc: {}, {}".format(float(equation_ac_0) / eval_total, float(value_ac_0) / eval_total_0))
logger.info("{}, {}, {}".format(equation_ac, value_ac, eval_total))
logger.info("test_answer_acc: {}, {}".format(float(equation_ac) / eval_total, float(value_ac) / eval_total))
logger.info("best_answer_acc: {}, {}".format(max(best_equ_acc_ls), max(best_value_acc_ls)))
logger.info("testing time: {}".format(time_since(time.time() - start)))
logger.info("------------------------------------------------------")
if float(value_ac) / eval_total > min(best_value_acc_ls):
if float(value_ac) / eval_total > max(best_value_acc_ls):
best_metric = (equation_ac, value_ac, eval_total)
min_pos = best_value_acc_ls.index(min(best_value_acc_ls))
best_value_acc_ls[min_pos] = float(value_ac) / eval_total
best_equ_acc_ls[min_pos] = float(equation_ac) / eval_total
best_metric_ls[min_pos] = (equation_ac, value_ac, eval_total)
logger.info("delete checkpoint: epoch {}".format(best_epoch_ls[min_pos]))
if best_epoch_ls[min_pos] != -1:
shutil.rmtree(os.path.join(args.output_dir, "epoch_{}".format(best_epoch_ls[min_pos])))
logger.info("saving best checkpoint")
best_epoch_ls[min_pos] = epoch
if os.path.exists(os.path.join(args.output_dir, "epoch_{}".format(epoch))):
shutil.rmtree(os.path.join(args.output_dir, "epoch_{}".format(epoch)))
os.makedirs(os.path.join(args.output_dir, "epoch_{}".format(epoch)))
torch.save(encoder.state_dict(), os.path.join(args.output_dir, "epoch_{}".format(epoch), "encoder.ckpt"))
torch.save(neural_sim.state_dict(), os.path.join(args.output_dir, "epoch_{}".format(epoch), "neural_sim.ckpt"))
torch.save(predict.state_dict(), os.path.join(args.output_dir, "epoch_{}".format(epoch), "predict.ckpt"))
torch.save(generate.state_dict(), os.path.join(args.output_dir, "epoch_{}".format(epoch), "generate.ckpt"))
torch.save(merge.state_dict(), os.path.join(args.output_dir, "epoch_{}".format(epoch), "merge.ckpt"))
return best_metric
def test_model(args, test_pairs, generate_num_ids, encoder, predict, generate, merge, output_lang, beam_size):
epochs = os.listdir(os.path.join(args.output_dir))
for epoch in epochs:
if not epoch.startswith('epoch'):
continue
logger.info("testing -> " + os.path.join(args.output_dir, epoch))
encoder.load_state_dict(torch.load(os.path.join(args.output_dir, epoch, "encoder.ckpt")))
predict.load_state_dict(torch.load(os.path.join(args.output_dir, epoch, "predict.ckpt")))
generate.load_state_dict(torch.load(os.path.join(args.output_dir, epoch, "generate.ckpt")))
merge.load_state_dict(torch.load(os.path.join(args.output_dir, epoch, "merge.ckpt")))
for test_pair in test_pairs:
value_ac = 0
equation_ac = 0
eval_total = 0
start = time.time()
for test_batch in test_pair:
test_res = evaluate_tree(test_batch[0], test_batch[1], generate_num_ids, encoder, predict, generate,
merge, output_lang, test_batch[5], beam_size=beam_size)
val_ac, equ_ac, _, _ = compute_prefix_tree_result(test_res, test_batch[2], output_lang, test_batch[4], test_batch[6])
del test_res
if val_ac:
value_ac += 1
if equ_ac:
equation_ac += 1
eval_total += 1
logger.info("{}, {}, {}".format(equation_ac, value_ac, eval_total))
logger.info("test_answer_acc: {}, {}".format(float(equation_ac) / eval_total, float(value_ac) / eval_total))
logger.info("testing time: {}".format(time_since(time.time() - start)))
logger.info("------------------------------------------------------")
return (equation_ac, value_ac, eval_total)
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--output_dir', default='', type=str, required=True, help='Model Saved Path, Output Directory')
parser.add_argument('--bert_pretrain_path', default='', type=str, required=True)
parser.add_argument('--train_file', default='', type=str, required=True)
parser.add_argument('--contra_pair', default='', type=str, required=True, help='Contrastive Pair File')
parser.add_argument('--data_dir', default='data', type=str)
parser.add_argument('--dev_file_1', default='Math_23K_mbert_token_val.json', type=str)
parser.add_argument('--test_file_1', default='Math_23K_mbert_token_test.json', type=str)
parser.add_argument('--dev_file_2', default='MathQA_mbert_token_val.json', type=str)
parser.add_argument('--test_file_2', default='MathQA_mbert_token_test.json', type=str)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--learning_rate', default=5e-5, type=float)
parser.add_argument('--n_epochs', default=20, type=int)
parser.add_argument('--max_grad_norm', default=3.0, type=int)
parser.add_argument('--n_save_ckpt', default=5, type=int, help='totally save $n_save_ckpt best ckpts')
parser.add_argument('--n_val', default=5, type=int, help='conduct validation every $n_val epochs')
parser.add_argument('--logging_steps', default=100, type=int)
parser.add_argument('--embedding_size', default=128, type=int, help='Embedding size')
parser.add_argument('--hidden_size', default=512, type=int, help='Hidden size')
parser.add_argument('--beam_size', default=5, type=int, help='Beam size')
parser.add_argument('--contra_loss_func', default='margin', type=str, help='margin, ...')
parser.add_argument('--contra_loss_margin', default=0.2, type=float)
parser.add_argument('--contra_common_tree_pair', action='store_true', help='contra learn use common_tree pair')
parser.add_argument('--neg_sample', default=1, type=int, help="Neg sample num for contra learn")
parser.add_argument('--neg_sample_from_pair_file', action='store_true', help='if true: neg samples from pair file, else: random neg sample')
parser.add_argument('--neg_no_expr_loss', action='store_true', help='neg samples not compute expression loss')
parser.add_argument('--alpha', default=0.2, type=float, help="contra_loss weight")
parser.add_argument('--alpha_warmup', action='store_true', help='alpha warmup')
parser.add_argument('--warmup_begin', type=int, help="alpha=0 until epoch warmup_begin")
parser.add_argument('--warmup_end', type=int, help="alpha=alpha until epoch warmup_end")
parser.add_argument('--dropout', default=0.5, type=float)
parser.add_argument('--seed', default=42, type=int, help='universal seed')
parser.add_argument('--only_test', action='store_true')
parser.add_argument('--model_reload_path', default='', type=str)
parser.add_argument('--finetune_from_trainset', default='', type=str, help='train_file which pretrained model used, important for alignment output vocab')
parser.add_argument('--device', default='cpu', type=str, help="GPU Device number")
args = parser.parse_args()
import os
os.environ["DEVICE"] = args.device
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
set_seed(args)
if os.path.exists(os.path.join(args.output_dir, "log.txt")) and not args.only_test:
# print("remove log file")
os.remove(os.path.join(args.output_dir, "log.txt"))
if args.only_test:
handler = logging.FileHandler(os.path.join(args.output_dir, "log_test.txt"))
else:
handler = logging.FileHandler(os.path.join(args.output_dir, "log.txt"))
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
embedding_size = args.embedding_size
hidden_size = args.hidden_size
beam_size = args.beam_size
train_data = json.load(open(os.path.join(args.data_dir, args.train_file), 'r', encoding='utf-8'))
val_data1 = json.load(open(os.path.join(args.data_dir, args.dev_file_1), 'r', encoding='utf-8'))
test_data1 = json.load(open(os.path.join(args.data_dir, args.test_file_1), 'r', encoding='utf-8'))
val_data2 = json.load(open(os.path.join(args.data_dir, args.dev_file_2), 'r', encoding='utf-8'))
test_data2 = json.load(open(os.path.join(args.data_dir, args.test_file_2), 'r', encoding='utf-8'))
pairs_trained, generate_nums, copy_nums = make_pair(train_data, False)
pairs_tested1, _, _ = make_pair(test_data1, True)
pairs_valed1, _, _ = make_pair(val_data1, True)
pairs_tested2, _, _ = make_pair(test_data2, True)
pairs_valed2, _, _ = make_pair(val_data2, True)
use_bert = True
input_lang, output_lang, train_pairs, (test_pairs1, val_pairs1, test_pairs2, val_pairs2), len_bert_token = prepare_data(pairs_trained, (pairs_tested1, pairs_valed1, pairs_tested2, pairs_valed2), 5, generate_nums,
copy_nums, tree=True, use_bert=use_bert, auto_transformer=True, bert_pretrain_path=args.bert_pretrain_path)
generate_num_ids = []
for num in generate_nums:
generate_num_ids.append(output_lang.word2index[num])
encoder, neural_sim, predict, generate, merge = initial_model(output_lang, embedding_size, hidden_size, args, copy_nums, generate_nums)
if torch.cuda.is_available():
encoder.cuda(device = torch.device(os.environ["DEVICE"]))
neural_sim.cuda(device = torch.device(os.environ["DEVICE"]))
predict.cuda(device = torch.device(os.environ["DEVICE"]))
generate.cuda(device = torch.device(os.environ["DEVICE"]))
merge.cuda(device = torch.device(os.environ["DEVICE"]))
if not args.only_test:
train_model(args, train_pairs, (val_pairs1, val_pairs2), generate_num_ids,
encoder, neural_sim, predict, generate, merge, output_lang)
test_model(args, (test_pairs1, test_pairs2), generate_num_ids,encoder, predict, generate, merge, output_lang, beam_size)