-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtutorial5_seaborn.py
71 lines (46 loc) · 2.14 KB
/
tutorial5_seaborn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
mpl.rcParams['pdf.fonttype'] = 42
mpl.rcParams['ps.fonttype'] = 42
mpl.rcParams['font.family'] = 'Arial'
import numpy as np
np.random.seed(42)
data1 = np.random.randn(100)
data2 = np.random.randn(100)
data3 = np.random.randn(100)
import seaborn as sns
import pandas as pd
# prepare datasets
penguin = sns.load_dataset('penguins') # long form
synthesis = pd.DataFrame({'var1':data1,'var2':data2,'var3':data3}) # wideform
a = synthesis.stack().reset_index(-1)
# distribution plot
fig,ax = plt.subplots()
sns.histplot(data=penguin,kde=True,stat='frequency',x='bill_length_mm',hue='species',multiple='layer',
kde_kws={'bw_adjust':5},line_kws={'linewidth':7},palette='Set2',ax=ax)
sns.rugplot(data=penguin,x='bill_length_mm',hue='species',ax=ax)
sns.histplot(data=synthesis,kde=True,stat='density',common_norm=False,hue_order=['var2','var1','var3'],
multiple='layer')
sns.kdeplot(data=penguin,x='bill_length_mm',hue='species',clip=(35,100))
sns.rugplot(data=penguin,x='bill_length_mm',hue='species')
# categorical plot
sns.violinplot(data=penguin,x='species',y='bill_length_mm',hue='sex',split=True,bw=0.2,inner='quartile',scale_hue=True,
scale='count')
sns.swarmplot(data=penguin,x='species',y='bill_length_mm',hue='sex',dodge=True)
sns.pointplot(data=penguin,x='species',y='bill_length_mm',hue='sex')
# regression plot
sns.regplot(data=penguin,x='bill_length_mm',y='bill_depth_mm')
# matrix plot
sns.heatmap(data=synthesis.iloc[0:5,:],annot=True,linewidths=0.5,square=True,yticklabels=False)
mask = np.array([[0,0,0],
[0,0,0],
[0,1,0],
[0,0,0],
[0,0,0]])
sns.heatmap(data=synthesis.iloc[0:5,:],annot=True,linewidths=0.5,square=True,yticklabels=False,mask=mask)
row_cb = pd.DataFrame(data=np.random.choice(['r','g','b','m'],(100,2)),index=np.arange(100),columns=['hey','ha'])
sns.clustermap(data=synthesis,row_colors=row_cb)
# pair plot and joint plot
sns.pairplot(data=penguin.iloc[:,[2,3,4,5]],dropna=True)
sns.jointplot(data=penguin,x='bill_length_mm',y='bill_depth_mm',kind='reg')