-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcnn.py
44 lines (36 loc) · 1.28 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
"""
Defines the convolutional neural network with 3 convolutional and 3 fully-connected layers.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import data
import numpy as np
class Net3(nn.Module):
def __init__(self):
super(Net3, self).__init__()
# 3 input channels, 6 output channels, 5x5 square convolution kernel
self.conv1 = nn.Conv2d(3, 6, 5, stride=2)
self.conv2 = nn.Conv2d(6, 16, 5, stride=2)
self.conv3 = nn.Conv2d(16, 32, 3, stride=2)
# an affine operation: y = Wx + b
# need to adjust the first number here to whatever one gets in
self.fc1 = nn.Linear(6272, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 1)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features