-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
108 lines (78 loc) · 3.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
"""
In "params", the batch size for the Adam optimizer is specified.
For each epoch, train_and_evaluate_model() trains on the training data and predicts on the test data.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import data
from utils import sort_data
from dataloader import Dataset
from torchvision import datasets, models, transforms
import time
import numpy as np
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Parameters for training/ for the optimizer
params = {'batch_size': 16,
'shuffle': True,
'num_workers': 1}
def train_and_evaluate_model(model, criterion, optimizer, scheduler, partition, data_transforms, imSize, num_epochs):
since = time.time()
epoch_loss_test_history = []
epoch_loss_train_history = []
divergence_dict = {}
difference_dict = {}
dataset_sizes = {x: len(partition[x]) for x in ['train', 'test']}
print('Train: {} / Test: {} '.format(dataset_sizes['train'],dataset_sizes['test']))
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'test']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
y_data = torch.tensor([],dtype=torch.float,
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
x_data = torch.tensor([],dtype=torch.float,
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
# Iterate over data.
loaded_set = Dataset(partition[phase], imSize, data_transforms[phase])
loader = data.DataLoader(loaded_set, **params)
for inputs, labels in loader:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
loss = criterion(outputs, labels)
x_data = torch.cat((x_data, labels))
y_data = torch.cat((y_data, outputs))
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / dataset_sizes [phase]
x_data = x_data.cpu().numpy()
y_data = y_data.detach().cpu().numpy()
print('{} Loss: {:.4f}'.format(
phase, epoch_loss))
if phase == 'train' :
epoch_loss_train_history.append(epoch_loss)
if phase == 'test' :
epoch_loss_test_history.append(epoch_loss)
param, param_pred, _ = sort_data(x_data, y_data)
dparam = param_pred-param
div = 0.5*(np.roll(dparam,-1)-np.roll(dparam,1))/np.abs(param[0]-param[1])
divergence_dict[epoch] = div
difference_dict[epoch] = dparam
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
return model,epoch_loss_train_history,epoch_loss_test_history, divergence_dict, param, difference_dict