-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsignal_processor.py
399 lines (361 loc) · 16 KB
/
signal_processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#!/usr/bin/python3
"""
System diagnostics: signal processor
Copyright (C) 2020 Francesco Melchiori
<https://www.francescomelchiori.com/>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see
<http://www.gnu.org/licenses/>.
"""
import numpy as np
from numpy.random import standard_normal
from scipy.interpolate import interp1d
from scipy.optimize import curve_fit
from scipy.fftpack import fft, fftfreq, fftshift, ifft
from scipy.signal import spectrogram, welch, cwt, ricker
import matplotlib.pyplot as plt
import pandas as pd
from pandas.plotting import register_matplotlib_converters
plt.style.use('seaborn-dark')
register_matplotlib_converters()
def filter_low_pass(pd_series,
lpf_harmonic_amount=10,
lpf_cutoff_frequency=0.1):
sampling_period_s = 1
pd_series_sampling_unit = pd_series.index.freq.name
if pd_series_sampling_unit == 'S':
sampling_period_s = pd_series.index.freq.n
measures_time = pd_series.values
sampling_points = measures_time.size
measures_freq = fft(measures_time)
measures_power = np.abs(measures_freq)
measures_frequencies = fftfreq(sampling_points, d=sampling_period_s)
measures_phases = np.angle(fftshift(measures_freq))
if lpf_harmonic_amount:
lpf_cutoff_frequency = measures_frequencies[lpf_harmonic_amount]
passed_frequencies_mask = np.abs(measures_frequencies) <=\
lpf_cutoff_frequency
measures_freq_lpf = measures_freq.copy()
cutoff_frequencies_mask = np.invert(passed_frequencies_mask)
measures_freq_lpf[cutoff_frequencies_mask] = 0
measures_lpf = ifft(measures_freq_lpf)
return measures_frequencies,\
measures_power, \
measures_phases,\
passed_frequencies_mask,\
measures_lpf
def filter_low_pass_pd_series(pd_series,
lpf_harmonic_amount=10,
direct_signal=False):
measures_frequencies,\
measures_power,\
measures_phases,\
passed_frequencies_mask,\
measures_lpf = filter_low_pass(
pd_series,
lpf_harmonic_amount=lpf_harmonic_amount)
if not direct_signal:
passed_frequencies_mask[0] = False
passed_half_frequencies_mask_size = int(passed_frequencies_mask.size/2)
passed_half_frequencies_mask = passed_frequencies_mask[:]
passed_half_frequencies_mask[passed_half_frequencies_mask_size:] = False
passed_half_frequencies = \
measures_frequencies[passed_half_frequencies_mask]
half_measures_power = measures_power[passed_half_frequencies_mask]
pd_series_lpf = pd.Series(half_measures_power,
index=passed_half_frequencies)
return pd_series_lpf
def filter_low_pass_pd_dataframe(pd_dataframe,
lpf_harmonic_amount=10,
direct_signal=False):
pd_dataframe_lpf = {}
pd_series_names = pd_dataframe.columns
for pd_series_name in pd_series_names:
pd_series = pd_dataframe[pd_series_name]
pd_series_lpf = filter_low_pass_pd_series(
pd_series,
lpf_harmonic_amount=lpf_harmonic_amount,
direct_signal=direct_signal)
pd_dataframe_lpf[pd_series_name] = pd_series_lpf
pd_dataframe_lpf = pd.DataFrame(pd_dataframe_lpf)
return pd_dataframe_lpf
def plot_signal_filter(pd_series,
lpf_harmonic_amount=10,
lpf_cutoff_frequency=0.1,
show_direct_signal=False,
show_phase_signal=False):
sampling_period_s = 1
pd_series_sampling_unit = pd_series.index.freq.name
if pd_series_sampling_unit == 'S':
sampling_period_s = pd_series.index.freq.n
sampling_points = pd_series.values.size
processing_period_s = (sampling_points - 1) * sampling_period_s
chart_amount = 3
if show_phase_signal:
chart_amount = 4
fig, ax = plt.subplots(chart_amount)
sampling_times = np.linspace(0, processing_period_s, sampling_points)
for sampling_time in sampling_times:
ax[0].axvline(sampling_time, c='black', alpha=0.02)
ax[0].set_xlabel('[s]')
ax[0].scatter(sampling_times, pd_series.values,
marker='o', c='green', alpha=0.3)
measures_frequencies,\
measures_power,\
measures_phases,\
passed_frequencies_mask,\
measures_lpf = filter_low_pass(
pd_series,
lpf_harmonic_amount=lpf_harmonic_amount,
lpf_cutoff_frequency=lpf_cutoff_frequency)
cutoff_frequencies_mask = np.invert(passed_frequencies_mask)
if not show_direct_signal:
passed_frequencies_mask[0] = False
for measures_frequency in measures_frequencies:
ax[1].axvline(measures_frequency, c='black', alpha=0.02)
ax[1].set_xlabel('[Hz]')
ax[1].scatter(measures_frequencies[passed_frequencies_mask],
measures_power[passed_frequencies_mask],
s=10,
c='#5dade2')
ax[1].scatter(measures_frequencies[cutoff_frequencies_mask],
measures_power[cutoff_frequencies_mask],
s=10,
c='red')
passed_half_frequencies_mask_size = int(passed_frequencies_mask.size/2)
passed_half_frequencies_mask = passed_frequencies_mask[:]
passed_half_frequencies_mask[passed_half_frequencies_mask_size:] = False
passed_half_frequencies_mask_length = sum(passed_half_frequencies_mask)
passed_half_frequencies = np.linspace(1,
passed_half_frequencies_mask_length,
passed_half_frequencies_mask_length)
half_measures_power = measures_power[passed_half_frequencies_mask]
for passed_half_frequency in passed_half_frequencies:
ax[2].axvline(passed_half_frequency, c='black', alpha=0.02)
ax[2].scatter(passed_half_frequencies,
half_measures_power,
s=10,
c='#5dade2')
ax[2].set_xlabel('[feat]')
if show_phase_signal:
for measures_frequency in measures_frequencies:
ax[3].axvline(measures_frequency, c='black', alpha=0.02)
ax[3].set_xlabel('[rad]')
ax[3].scatter(measures_frequencies[passed_frequencies_mask],
measures_phases[passed_frequencies_mask],
s=10,
c='#5dade2')
ax[3].scatter(measures_frequencies[cutoff_frequencies_mask],
measures_phases[cutoff_frequencies_mask],
s=10,
c='red')
ax[0].plot(sampling_times, measures_lpf, c='#5dade2')
plt.show()
return True
def signal_to_fit(x, a, b, c, d):
return a * np.sin(b * x) + c * np.sin(d * x)
def main():
timestamp_start = '2019-01-01 00:00:00.000000'
time_zone = 'Europe/Rome'
sampling_period_s = 1
processing_period_s = 60
sampling_points = int(processing_period_s/sampling_period_s) + 1
harmonic_base_period = (2 * np.pi) / processing_period_s
harmonic_base_amplitude = 4
harmonic_1_period = harmonic_base_period * 4
harmonic_1_amplitude = 2
harmonic_2_period = harmonic_base_period * 16
harmonic_2_amplitude = 1
phase = (np.pi / 2) * 0.5
noise_amplitude = 0.3
interpolation_fraction = 5
lpf_harmonic_amount = 10
lpf_cutoff_frequency = 0.1
plot_lab = True
plot_phase = True
scatter_noisy = True
scatter_interpolation_linear = False
scatter_interpolation_cubic = False
scatter_fitting = True
plot_spectrogram_psd = False
plot_wavelet_ricker = False
sampling_times = np.linspace(0, processing_period_s, sampling_points)
harmonic_base = np.sin(harmonic_base_period * sampling_times + phase) *\
harmonic_base_amplitude
harmonic_1 = np.sin(harmonic_1_period * sampling_times + phase) *\
harmonic_1_amplitude
harmonic_2 = np.sin(harmonic_2_period * sampling_times + phase) *\
harmonic_2_amplitude
noise = standard_normal(size=sampling_points) * noise_amplitude
measures_clean = harmonic_base + harmonic_1 + harmonic_2
measures_noisy = measures_clean + noise
timezone_index = pd.date_range(timestamp_start,
periods=sampling_points,
freq='1S',
tz=time_zone)
utc_index = pd.to_datetime(timezone_index, utc=True)
measures_clean = pd.Series(measures_clean, index=utc_index)
measures_noisy = pd.Series(measures_noisy, index=utc_index)
pd_dataframe = pd.DataFrame({'measures_clean': measures_clean,
'measures_noisy': measures_noisy})
pd_series = pd_dataframe['measures_noisy']
if plot_lab:
chart_amount = 2
if plot_phase:
chart_amount = 3
fig, ax = plt.subplots(chart_amount)
if plot_lab and scatter_interpolation_linear:
linear_interpolation = interp1d(
sampling_times[::interpolation_fraction],
measures_noisy[::interpolation_fraction])
linear_results = linear_interpolation(sampling_times)
ax[0].scatter(sampling_times[::interpolation_fraction],
linear_results[::interpolation_fraction],
c='purple')
ax[0].scatter(sampling_times,
linear_results,
s=10,
c='purple',
alpha=0.3)
ax[0].plot(sampling_times, linear_results, c='purple', alpha=0.3)
if plot_lab and scatter_interpolation_cubic:
cubic_interpolation = interp1d(
sampling_times[::interpolation_fraction],
measures_noisy[::interpolation_fraction],
kind='cubic')
cubic_results = cubic_interpolation(sampling_times)
ax[0].scatter(sampling_times[::interpolation_fraction],
cubic_results[::interpolation_fraction],
c='purple')
ax[0].scatter(sampling_times,
cubic_results,
s=10,
c='purple')
ax[0].plot(sampling_times, cubic_results, c='purple')
if plot_lab and scatter_fitting:
params, params_covariance = curve_fit(
signal_to_fit,
sampling_times[::interpolation_fraction],
measures_noisy[::interpolation_fraction],
p0=[harmonic_base_amplitude, harmonic_base_period,
harmonic_1_amplitude, harmonic_1_period])
fitting_results = signal_to_fit(sampling_times, *params)
ax[0].scatter(sampling_times[::interpolation_fraction],
fitting_results[::interpolation_fraction],
c='blue')
ax[0].scatter(sampling_times,
fitting_results,
s=10,
c='blue')
ax[0].plot(sampling_times, fitting_results, c='blue')
if plot_lab:
measures_frequencies,\
measures_power,\
measures_phases,\
passed_frequencies_mask,\
measures_lpf = filter_low_pass(
pd_series,
lpf_harmonic_amount=lpf_harmonic_amount,
lpf_cutoff_frequency=lpf_cutoff_frequency)
cutoff_frequencies_mask = np.invert(passed_frequencies_mask)
for sampling_time in sampling_times:
ax[0].axvline(sampling_time, c='black', alpha=0.02)
ax[0].set_xlabel('[s]')
ax[0].scatter(pd_dataframe['measures_clean'].index.second,
pd_dataframe['measures_clean'].values,
marker='o',
c='green',
alpha=0.3)
if noise_amplitude > 0:
if scatter_noisy:
ax[0].scatter(pd_dataframe['measures_noisy'].index.second,
pd_dataframe['measures_noisy'].values,
marker='o',
c='red')
for measures_frequency in measures_frequencies:
ax[1].axvline(measures_frequency, c='black', alpha=0.02)
ax[1].set_xlabel('[Hz]')
ax[1].bar(measures_frequencies[passed_frequencies_mask],
measures_power[passed_frequencies_mask],
width=0.01,
color='#5dade2')
ax[1].scatter(measures_frequencies[cutoff_frequencies_mask],
measures_power[cutoff_frequencies_mask],
s=10,
c='red')
if plot_phase:
for measures_frequency in measures_frequencies:
ax[2].axvline(measures_frequency, c='black', alpha=0.02)
ax[2].set_xlabel('[rad]')
ax[2].scatter(measures_frequencies[passed_frequencies_mask],
measures_phases[passed_frequencies_mask],
s=10,
c='#5dade2')
ax[2].scatter(measures_frequencies[cutoff_frequencies_mask],
measures_phases[cutoff_frequencies_mask],
s=10,
c='red')
ax[0].plot(sampling_times, measures_lpf, c='#5dade2')
plt.show()
if plot_spectrogram_psd:
fig, ax = plt.subplots(2)
measures_time = pd_series.values
sampling_points = measures_time.size
measures_freq_spg, time_segments, measures_powers_spg = spectrogram(
measures_time, fs=1, nperseg=sampling_points)
measures_power_spg = [measures_power[0]
for measures_power in measures_powers_spg]
ax[0].bar(measures_freq_spg, measures_power_spg,
width=0.01, color='#5dade2')
ax[0].set_ylabel('spectrogram')
ax[0].set_xlabel('[Hz]')
measures_freq_wlc, measures_powers_wlc = welch(
measures_time, fs=1, nperseg=sampling_points)
ax[1].bar(measures_freq_wlc, measures_powers_wlc,
width=0.01, color='#5dade2')
ax[1].set_ylabel('welch psd')
ax[1].set_xlabel('[Hz]')
plt.show()
if plot_wavelet_ricker:
fig, ax = plt.subplots(2)
for sampling_time in sampling_times:
ax[0].axvline(sampling_time, c='black', alpha=0.02)
ax[0].set_xlabel('[s]')
ax[0].scatter(pd_dataframe['measures_clean'].index.second,
pd_dataframe['measures_clean'].values,
marker='o',
c='green',
alpha=0.3)
if noise_amplitude > 0:
if scatter_noisy:
ax[0].scatter(pd_dataframe['measures_noisy'].index.second,
pd_dataframe['measures_noisy'].values,
marker='o',
c='red')
measures_time = pd_dataframe['measures_clean'].values
wavelet_length = 30
measures_wavelet_widths = np.arange(1, wavelet_length)
measures_wavelet_ricker = cwt(measures_time,
ricker,
measures_wavelet_widths)
ax[1].set_xlabel('[wavelet]')
ax[1].imshow(measures_wavelet_ricker,
extent=[-1, 1, 1, wavelet_length],
cmap='coolwarm',
aspect='auto',
vmax=abs(measures_wavelet_ricker).max(),
vmin=-abs(measures_wavelet_ricker).max())
plt.show()
# plot_signal_filter(pd_series,
# lpf_harmonic_amount=lpf_harmonic_amount,
# lpf_cutoff_frequency=lpf_cutoff_frequency)
if __name__ == '__main__':
main()