-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathapi.py
135 lines (111 loc) · 5.22 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from flask import Flask, request
from flask_restful import Resource, Api, reqparse, abort
from werkzeug.utils import secure_filename
########################################################################
import tempfile
import os
from langchain.document_loaders import DirectoryLoader, PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.vectorstores import Pinecone
import pinecone
from templates.qa_prompt import QA_PROMPT
from templates.condense_prompt import CONDENSE_PROMPT
from dotenv import load_dotenv
load_dotenv()
openai_api_key_env = os.environ.get('OPENAI_API_KEY')
pinecone_api_key_env = os.environ.get('PINECONE_API_KEY')
pinecone_environment_env = os.environ.get('PINECONE_ENVIRONMENT')
pinecone_index_env = os.environ.get('PINECONE_INDEX')
pinecone_namespace = 'testing-pdf-2389203901'
app = Flask("L-ChatBot")
UPLOAD_FOLDER = 'documents'
ALLOWED_EXTENSIONS = {'pdf'}
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
api = Api(app)
parser = reqparse.RequestParser()
def get_answer(message, temperature=0.7, source_amount=4):
chat_history = []
embeddings = OpenAIEmbeddings(
model='text-embedding-ada-002', openai_api_key=openai_api_key_env)
pinecone.init(api_key=pinecone_api_key_env,
environment=pinecone_environment_env)
vectorstore = Pinecone.from_existing_index(
index_name=pinecone_index_env, embedding=embeddings, text_key='text', namespace=pinecone_namespace)
model = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=temperature,
openai_api_key=openai_api_key_env, streaming=False) # max temperature is 2 least is 0
retriever = vectorstore.as_retriever(search_kwargs={
"k": source_amount}, qa_template=QA_PROMPT, question_generator_template=CONDENSE_PROMPT) # 9 is the max sources
qa = ConversationalRetrievalChain.from_llm(
llm=model, retriever=retriever, return_source_documents=True)
result = qa({"question": message, "chat_history": chat_history})
print("Cevap Geldi")
answer = result["answer"]
source_documents = result['source_documents']
parsed_documents = []
for doc in source_documents:
parsed_doc = {
"page_content": doc.page_content,
"metadata": {
"author": doc.metadata.get("author", ""),
"creationDate": doc.metadata.get("creationDate", ""),
"creator": doc.metadata.get("creator", ""),
"file_path": doc.metadata.get("file_path", ""),
"format": doc.metadata.get("format", ""),
"keywords": doc.metadata.get("keywords", ""),
"modDate": doc.metadata.get("modDate", ""),
"page_number": doc.metadata.get("page_number", 0),
"producer": doc.metadata.get("producer", ""),
"source": doc.metadata.get("source", ""),
"subject": doc.metadata.get("subject", ""),
"title": doc.metadata.get("title", ""),
"total_pages": doc.metadata.get("total_pages", 0),
"trapped": doc.metadata.get("trapped", "")
}
}
parsed_documents.append(parsed_doc)
# Display the response in the Streamlit app
return {
"answer": answer,
"meta": parsed_documents
}
########################################################################
class Ask(Resource):
def get(self):
question = request.args.get("question")
temp = request.args.get("temp", default=0.7)
sources = request.args.get("sources", default=4)
return get_answer(question, float(temp), int(sources))
class Ingest(Resource):
def allowed_file(self, filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def post(self):
# Get Text type fields
if 'file' not in request.files:
return 'No file part'
file = request.files.get("file")
if file and self.allowed_file(file.filename):
filename = secure_filename(file.filename)
file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
loader = DirectoryLoader(
app.config['UPLOAD_FOLDER'], glob="**/*.pdf", loader_cls=PyMuPDFLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=100)
documents = text_splitter.split_documents(documents)
pinecone.init(
api_key=pinecone_api_key_env, # find at app.pinecone.io
environment=pinecone_environment_env # next to api key in console
)
embeddings = OpenAIEmbeddings(
model='text-embedding-ada-002', openai_api_key=openai_api_key_env)
Pinecone.from_documents(
documents, embeddings, index_name=pinecone_index_env, namespace=pinecone_namespace)
return 'File uploaded and ingested successfully'
api.add_resource(Ask, "/ask")
api.add_resource(Ingest, "/ingest")
if __name__ == "__main__":
app.run()