diff --git a/.conda/meta.yaml b/.conda/meta.yaml index 3a723a9..c227313 100644 --- a/.conda/meta.yaml +++ b/.conda/meta.yaml @@ -1,30 +1,26 @@ -# https://docs.conda.io/projects/conda-build/en/latest/resources/define-metadata.html#loading-data-from-other-files -# https://github.com/conda/conda-build/pull/4480 -# for conda-build > 3.21.9 -# {% set pyproject = load_file_data('../pyproject.toml', from_recipe_dir=True) %} -# {% set project = pyproject.get('project') %} -# {% set urls = pyproject.get('project', {}).get('urls') %} +{% set pyproject = load_file_data('../pyproject.toml', from_recipe_dir=True) %} +{% set project = pyproject.get('project') %} +{% set urls = pyproject.get('project', {}).get('urls') %} +{% set version = environ.get('BUILD_VERSION', '0.2.0.dev0') %} package: - name: torchscan - version: "{{ environ.get('BUILD_VERSION') }}" + name: {{ project.get('name') }} + version: {{ version }} source: - fn: torchscan-{{ environ.get('BUILD_VERSION') }}.tar.gz - url: ../dist/torchscan-{{ environ.get('BUILD_VERSION') }}.tar.gz + fn: {{ project.get('name') }}-{{ version }}}.tar.gz + url: ../dist/{{ project.get('name') }}-{{ version }}.tar.gz build: - number: 0 noarch: python script: python setup.py install --single-version-externally-managed --record=record.txt requirements: host: - - python>=3.6, <4.0 + - python>=3.8, <4.0 - setuptools run: - - python>=3.6, <4.0 - - pytorch >=1.5.0, <2.0.0 + - pytorch >=2.0.0, <3.0.0 test: # Python imports @@ -33,13 +29,15 @@ test: - torchscan.modules - torchscan.process - torchscan.utils + requires: + - python about: - home: https://github.com/frgfm/torch-scan + home: {{ urls.get('repository') }} license: Apache 2.0 - license_file: LICENSE - summary: 'Useful information about your Pytorch module' + license_file: {{ project.get('license', {}).get('file') }} + summary: {{ project.get('description') }} # description: | # {{ data['long_description'] | replace("\n", "\n ") | replace("#", '\#')}} - doc_url: https://frgfm.github.io/torch-scan/ - dev_url: https://github.com/frgfm/torch-scan + doc_url: {{ urls.get('documentation') }} + dev_url: {{ urls.get('repository') }} diff --git a/.flake8 b/.flake8 deleted file mode 100644 index 70ebcb5..0000000 --- a/.flake8 +++ /dev/null @@ -1,5 +0,0 @@ -[flake8] -max-line-length = 120 -ignore = E203, E402, E265, F403, W503, W504, E731 -exclude = .git, venv*, build, docs -per-file-ignores = **/__init__.py:F401 diff --git a/.github/collect_env.py b/.github/collect_env.py index 961510e..4664c4f 100644 --- a/.github/collect_env.py +++ b/.github/collect_env.py @@ -14,9 +14,10 @@ import locale import os import re -import subprocess +import subprocess # noqa S404 import sys -from collections import namedtuple +from pathlib import Path +from typing import NamedTuple try: import torchscan @@ -36,20 +37,16 @@ # System Environment Information -SystemEnv = namedtuple( - "SystemEnv", - [ - "torchscan_version", - "torch_version", - "os", - "python_version", - "is_cuda_available", - "cuda_runtime_version", - "nvidia_driver_version", - "nvidia_gpu_models", - "cudnn_version", - ], -) +class SystemEnv(NamedTuple): + torchscan_version: str + torch_version: str + os: str + python_version: str + is_cuda_available: bool + cuda_runtime_version: str + nvidia_driver_version: str + nvidia_gpu_models: str + cudnn_version: str def run(command): @@ -125,18 +122,18 @@ def get_cudnn_version(run_lambda): # find will return 1 if there are permission errors or if not found if len(out) == 0 or rc not in (1, 0): lib = os.environ.get("CUDNN_LIBRARY") - if lib is not None and os.path.isfile(lib): + if lib is not None and Path(lib).is_file(): return os.path.realpath(lib) return None files = set() for fn in out.split("\n"): fn = os.path.realpath(fn) # eliminate symbolic links - if os.path.isfile(fn): + if Path(fn).is_file(): files.add(fn) if not files: return None # Alphabetize the result because the order is non-deterministic otherwise - files = list(sorted(files)) + files = sorted(files) if len(files) == 1: return files[0] result = "\n".join(files) @@ -149,11 +146,11 @@ def get_nvidia_smi(): if get_platform() == "win32": system_root = os.environ.get("SYSTEMROOT", "C:\\Windows") program_files_root = os.environ.get("PROGRAMFILES", "C:\\Program Files") - legacy_path = os.path.join(program_files_root, "NVIDIA Corporation", "NVSMI", smi) - new_path = os.path.join(system_root, "System32", smi) + legacy_path = Path(program_files_root) / "NVIDIA Corporation" / "NVSMI" / smi + new_path = Path(system_root) / "System32" / smi smis = [new_path, legacy_path] for candidate_smi in smis: - if os.path.exists(candidate_smi): + if Path(candidate_smi).exists(): smi = '"{}"'.format(candidate_smi) break return smi @@ -220,10 +217,7 @@ def get_os(run_lambda): def get_env_info(): run_lambda = run - if TORCHSCAN_AVAILABLE: - torchscan_str = torchscan.__version__ - else: - torchscan_str = "N/A" + torchscan_str = torchscan.__version__ if TORCHSCAN_AVAILABLE else "N/A" if TORCH_AVAILABLE: torch_str = torch.__version__ @@ -261,14 +255,14 @@ def get_env_info(): def pretty_str(envinfo): def replace_nones(dct, replacement="Could not collect"): - for key in dct.keys(): + for key in dct: if dct[key] is not None: continue dct[key] = replacement return dct def replace_bools(dct, true="Yes", false="No"): - for key in dct.keys(): + for key in dct: if dct[key] is True: dct[key] = true elif dct[key] is False: @@ -292,7 +286,7 @@ def maybe_start_on_next_line(string): "nvidia_gpu_models", "nvidia_driver_version", ] - all_cuda_fields = dynamic_cuda_fields + ["cudnn_version"] + all_cuda_fields = [*dynamic_cuda_fields, "cudnn_version"] all_dynamic_cuda_fields_missing = all(mutable_dict[field] is None for field in dynamic_cuda_fields) if TORCH_AVAILABLE and not torch.cuda.is_available() and all_dynamic_cuda_fields_missing: for field in all_cuda_fields: diff --git a/.github/verify_labels.py b/.github/verify_labels.py index 143d616..58f6c99 100644 --- a/.github/verify_labels.py +++ b/.github/verify_labels.py @@ -45,7 +45,9 @@ def query_repo(cmd: str, *, accept) -> Any: - response = requests.get(f"https://api.github.com/repos/{GH_ORG}/{GH_REPO}/{cmd}", headers=dict(Accept=accept)) + response = requests.get( + f"https://api.github.com/repos/{GH_ORG}/{GH_REPO}/{cmd}", headers={"Accept": accept}, timeout=5 + ) return response.json() diff --git a/.github/workflows/builds.yml b/.github/workflows/builds.yml index a1f9744..6b0180f 100644 --- a/.github/workflows/builds.yml +++ b/.github/workflows/builds.yml @@ -13,11 +13,10 @@ jobs: fail-fast: false matrix: os: [ubuntu-latest, macos-latest, windows-latest] - python: [3.7, 3.8] + python: [3.8, 3.9, '3.10', 3.11] steps: - uses: actions/checkout@v2 - - name: Set up Python - uses: actions/setup-python@v1 + - uses: actions/setup-python@v4 with: python-version: ${{ matrix.python }} architecture: x64 @@ -29,6 +28,48 @@ jobs: - name: Install package run: | python -m pip install --upgrade pip - pip install -e . --upgrade + pip install -e . - name: Import package run: python -c "import torchscan; print(torchscan.__version__)" + + pypi: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v2 + - name: Set up Python + uses: actions/setup-python@v4 + with: + python-version: 3.9 + architecture: x64 + - name: Cache python modules + uses: actions/cache@v2 + with: + path: ~/.cache/pip + key: ${{ runner.os }}-python-${{ matrix.python }}-${{ hashFiles('pyproject.toml') }}-build + - name: Install dependencies + run: | + python -m pip install --upgrade pip + pip install setuptools wheel twine --upgrade + - run: | + python setup.py sdist bdist_wheel + twine check dist/* + + conda: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v2 + - uses: conda-incubator/setup-miniconda@v2 + with: + auto-update-conda: true + python-version: "3.9" + - name: Install dependencies + shell: bash -el {0} + run: conda install -y conda-build conda-verify + - name: Build conda + shell: bash -el {0} + run: | + python setup.py sdist + mkdir conda-dist + conda env list + conda build .conda/ -c pytorch --output-folder conda-dist + ls -l conda-dist/noarch/*tar.bz2 diff --git a/.github/workflows/doc-status.yml b/.github/workflows/doc-status.yml index ef9a250..d2f2d9d 100644 --- a/.github/workflows/doc-status.yml +++ b/.github/workflows/doc-status.yml @@ -6,10 +6,9 @@ jobs: see-page-build-payload: runs-on: ubuntu-latest steps: - - name: Set up Python 3.7 - uses: actions/setup-python@v1 + - uses: actions/setup-python@v4 with: - python-version: 3.7 + python-version: 3.9 architecture: x64 - name: check status run: | diff --git a/.github/workflows/docs.yml b/.github/workflows/docs.yml index dbb65ac..e778325 100644 --- a/.github/workflows/docs.yml +++ b/.github/workflows/docs.yml @@ -9,13 +9,12 @@ jobs: strategy: matrix: os: [ubuntu-latest] - python: [3.7] + python: [3.9] steps: - uses: actions/checkout@v2 with: persist-credentials: false - - name: Set up Python - uses: actions/setup-python@v1 + - uses: actions/setup-python@v4 with: python-version: ${{ matrix.python }} architecture: x64 diff --git a/.github/workflows/pr-labels.yml b/.github/workflows/pr-labels.yml index a951045..39e039b 100644 --- a/.github/workflows/pr-labels.yml +++ b/.github/workflows/pr-labels.yml @@ -13,7 +13,7 @@ jobs: - name: Checkout repository uses: actions/checkout@v2 - name: Set up python - uses: actions/setup-python@v2 + uses: actions/setup-python@v4 - name: Install requests run: pip install requests - name: Process commit and find merger responsible for labeling diff --git a/.github/workflows/release.yml b/.github/workflows/publish.yml similarity index 62% rename from .github/workflows/release.yml rename to .github/workflows/publish.yml index d13253b..c6d9c07 100644 --- a/.github/workflows/release.yml +++ b/.github/workflows/publish.yml @@ -1,18 +1,18 @@ -name: release +name: publish on: release: types: [published] jobs: - pypi-publish: + pypi: + if: "!github.event.release.prerelease" runs-on: ubuntu-latest steps: - uses: actions/checkout@v2 - - name: Set up Python 3.7 - uses: actions/setup-python@v1 + - uses: actions/setup-python@v4 with: - python-version: 3.7 + python-version: 3.9 architecture: x64 - name: Cache python modules uses: actions/cache@v2 @@ -23,30 +23,25 @@ jobs: run: | python -m pip install --upgrade pip pip install setuptools wheel twine --upgrade - - name: Get release tag - id: release_tag - run: | - echo ::set-output name=VERSION::${GITHUB_REF/refs\/tags\//} - name: Build and publish env: TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }} TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }} - VERSION: ${{ steps.release_tag.outputs.VERSION }} run: | - BUILD_VERSION=${VERSION:1} python setup.py sdist bdist_wheel + echo "BUILD_VERSION=${GITHUB_REF#refs/*/}" | cut -c 2- >> $GITHUB_ENV + python setup.py sdist bdist_wheel twine check dist/* twine upload dist/* pypi-check: if: "!github.event.release.prerelease" runs-on: ubuntu-latest - needs: pypi-publish + needs: pypi steps: - uses: actions/checkout@v2 - - name: Set up Python 3.7 - uses: actions/setup-python@v1 + - uses: actions/setup-python@v4 with: - python-version: 3.7 + python-version: 3.9 architecture: x64 - name: Install package run: | @@ -54,46 +49,44 @@ jobs: pip install torchscan python -c "import torchscan; print(torchscan.__version__)" - conda-publish: + conda: + if: "!github.event.release.prerelease" runs-on: ubuntu-latest steps: - uses: actions/checkout@v2 - name: Miniconda setup - uses: conda-incubator/setup-miniconda@v2 + uses: conda-incubator/setup-miniconda@v3 with: auto-update-conda: true - python-version: 3.7 - auto-activate-base: true + python-version: 3.9 - name: Install dependencies - run: | - conda install -y conda-build conda-verify anaconda-client - - name: Get release tag - id: release_tag - run: | - echo ::set-output name=VERSION::${GITHUB_REF/refs\/tags\//} + shell: bash -el {0} + run: conda install -y conda-build conda-verify anaconda-client - name: Build and publish + shell: bash -el {0} env: ANACONDA_API_TOKEN: ${{ secrets.ANACONDA_TOKEN }} - VERSION: ${{ steps.release_tag.outputs.VERSION }} run: | - BUILD_VERSION=${VERSION:1} python setup.py sdist + echo "BUILD_VERSION=${GITHUB_REF#refs/*/}" | cut -c 2- >> $GITHUB_ENV + python setup.py sdist mkdir conda-dist - conda-build .conda/ -c pytorch --output-folder conda-dist + conda build .conda/ -c pytorch --output-folder conda-dist ls -l conda-dist/noarch/*tar.bz2 anaconda upload conda-dist/noarch/*tar.bz2 conda-check: if: "!github.event.release.prerelease" runs-on: ubuntu-latest - needs: conda-publish + needs: conda steps: - name: Miniconda setup - uses: conda-incubator/setup-miniconda@v2 + uses: conda-incubator/setup-miniconda@v3 with: auto-update-conda: true - python-version: 3.7 + python-version: 3.9 auto-activate-base: true - name: Install package + shell: bash -el {0} run: | conda install -c frgfm torchscan python -c "import torchscan; print(torchscan.__version__)" diff --git a/.github/workflows/pull_requests.yml b/.github/workflows/pull_requests.yml index de64b63..2d9ac11 100644 --- a/.github/workflows/pull_requests.yml +++ b/.github/workflows/pull_requests.yml @@ -10,9 +10,9 @@ jobs: steps: - uses: actions/checkout@v2 - name: Set up Python - uses: actions/setup-python@v2 + uses: actions/setup-python@v4 with: - python-version: 3.8 + python-version: 3.9 architecture: x64 - name: Cache python modules uses: actions/cache@v2 diff --git a/.github/workflows/style.yml b/.github/workflows/style.yml index d16779b..57dade8 100644 --- a/.github/workflows/style.yml +++ b/.github/workflows/style.yml @@ -7,55 +7,33 @@ on: branches: main jobs: - flake8: + ruff: runs-on: ${{ matrix.os }} strategy: matrix: os: [ubuntu-latest] - python: [3.8] + python: [3.9] steps: - uses: actions/checkout@v2 - - name: Set up Python - uses: actions/setup-python@v1 + - uses: actions/setup-python@v4 with: python-version: ${{ matrix.python }} architecture: x64 - - name: Run flake8 + - name: Run ruff run: | - pip install flake8 - flake8 --version - flake8 - - isort: - runs-on: ${{ matrix.os }} - strategy: - matrix: - os: [ubuntu-latest] - python: [3.8] - steps: - - uses: actions/checkout@v2 - - name: Set up Python - uses: actions/setup-python@v1 - with: - python-version: ${{ matrix.python }} - architecture: x64 - - name: Run isort - run: | - pip install isort - isort --version - isort . - if [ -n "$(git status --porcelain --untracked-files=no)" ]; then exit 1; else echo "All clear"; fi + pip install ruff==0.1.14 + ruff --version + ruff check --diff . mypy: runs-on: ${{ matrix.os }} strategy: matrix: os: [ubuntu-latest] - python: [3.8] + python: [3.9] steps: - uses: actions/checkout@v2 - - name: Set up Python - uses: actions/setup-python@v1 + - uses: actions/setup-python@v4 with: python-version: ${{ matrix.python }} architecture: x64 @@ -63,70 +41,50 @@ jobs: uses: actions/cache@v2 with: path: ~/.cache/pip - key: ${{ runner.os }}-python-${{ matrix.python }}-${{ hashFiles('pyproject.toml') }}-mypy + key: ${{ runner.os }}-python-${{ matrix.python }}-${{ hashFiles('pyproject.toml') }} - name: Install dependencies run: | python -m pip install --upgrade pip - pip install -e . --upgrade - pip install mypy + pip install -e ".[quality]" --upgrade - name: Run mypy run: | mypy --version mypy - pydocstyle: - runs-on: ${{ matrix.os }} - strategy: - matrix: - os: [ubuntu-latest] - python: [3.8] - steps: - - uses: actions/checkout@v2 - - name: Set up Python - uses: actions/setup-python@v2 - with: - python-version: ${{ matrix.python }} - architecture: x64 - - name: Run pydocstyle - run: | - pip install "pydocstyle[toml]" - pydocstyle --version - pydocstyle - - black: + ruff-format: runs-on: ${{ matrix.os }} strategy: matrix: os: [ubuntu-latest] - python: [3.8] + python: [3.9] steps: - uses: actions/checkout@v2 - - name: Set up Python - uses: actions/setup-python@v2 + - uses: actions/setup-python@v4 with: python-version: ${{ matrix.python }} architecture: x64 - - name: Run black + - name: Run ruff run: | - pip install black - black --version - black --check --diff . + pip install ruff==0.1.14 + ruff --version + ruff format --check --diff . - bandit: + precommit-hooks: runs-on: ${{ matrix.os }} strategy: matrix: os: [ubuntu-latest] - python: [3.8] + python: [3.9] steps: - uses: actions/checkout@v2 - - name: Set up Python - uses: actions/setup-python@v2 + - uses: actions/setup-python@v4 with: python-version: ${{ matrix.python }} architecture: x64 - - name: Run bandit + - name: Run pre-commit hooks run: | - pip install bandit[toml] - bandit --version - bandit -r . -c pyproject.toml + pip install pre-commit + git checkout -b temp + pre-commit install + pre-commit --version + pre-commit run --all-files diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index 22e4828..a627fb4 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -12,13 +12,12 @@ jobs: strategy: matrix: os: [ubuntu-latest] - python: [3.7] + python: [3.9] steps: - uses: actions/checkout@v2 with: persist-credentials: false - - name: Set up Python - uses: actions/setup-python@v1 + - uses: actions/setup-python@v4 with: python-version: ${{ matrix.python }} architecture: x64 @@ -32,12 +31,10 @@ jobs: python -m pip install --upgrade pip pip install -e ".[test]" --upgrade - name: Run unittests - run: | - coverage run -m pytest tests/ - coverage xml + run: pytest --cov=torchscan --cov-report xml tests/ - uses: actions/upload-artifact@v2 with: - name: coverage-main + name: coverage-reports path: ./coverage.xml codecov-upload: @@ -47,9 +44,11 @@ jobs: - uses: actions/checkout@v2 - uses: actions/download-artifact@v2 - name: Upload coverage to Codecov - uses: codecov/codecov-action@v1 + uses: codecov/codecov-action@v3 with: + token: ${{ secrets.CODECOV_TOKEN }} flags: unittests + directory: ./coverage-reports fail_ci_if_error: true headers: diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index b615adc..d94bf8a 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,20 +1,30 @@ +default_language_version: + python: python3.9 repos: - repo: https://github.com/pre-commit/pre-commit-hooks - rev: v4.3.0 + rev: v4.5.0 hooks: - - id: check-yaml + - id: check-added-large-files + - id: check-ast + - id: check-case-conflict + - id: check-json + - id: check-merge-conflict + - id: check-symlinks - id: check-toml + - id: check-xml + - id: check-yaml + exclude: .conda + - id: debug-statements + language_version: python3 - id: end-of-file-fixer + - id: no-commit-to-branch + args: ['--branch', 'main'] + - id: requirements-txt-fixer - id: trailing-whitespace - - repo: https://github.com/psf/black - rev: 22.3.0 - hooks: - - id: black - - repo: https://github.com/pycqa/isort - rev: 5.10.1 - hooks: - - id: isort - - repo: https://github.com/PyCQA/autoflake - rev: v1.7.7 + - repo: https://github.com/charliermarsh/ruff-pre-commit + rev: 'v0.1.14' hooks: - - id: autoflake + - id: ruff + args: + - --fix + - id: ruff-format diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 4530014..0f7ad57 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -80,47 +80,22 @@ make test #### Code quality -To run all quality checks together +The CI will also run some sanity checks (header format, dependency consistency, etc.), which you can run as follows: ```shell make quality ``` -##### Lint verification +This will read `pyproject.toml` and run: +- lint checking, formatting ([ruff](https://docs.astral.sh/ruff/)) +- type annotation checking ([mypy](https://github.com/python/mypy)) -To ensure that your incoming PR complies with the lint settings, you need to install [flake8](https://flake8.pycqa.org/en/latest/), [black](https://black.readthedocs.io/en/stable/) and run the following command from the repository's root folder: +You can apply automatic fix to most of those by running: ```shell -flake8 ./ -black --check . +make style ``` -##### Import order - -In order to ensure there is a common import order convention, run [isort](https://github.com/PyCQA/isort) as follows: - -```shell -isort . -``` -This will reorder the imports of your local files. - -##### Annotation typing - -Additionally, to catch type-related issues and have a cleaner codebase, annotation typing are expected. After installing [mypy](https://github.com/python/mypy), you can run the verifications as follows: - -```shell -mypy torchscan/ -``` - -##### Docstring style - -Finally, documentation being important, [pydocstyle](https://github.com/PyCQA/pydocstyle) will be checking the docstrings: - -```shell -pydocstyle torchscan/ -``` - - ### Submit your modifications Push your last modifications to your remote branch diff --git a/Makefile b/Makefile index e4ab5f2..e9885b3 100644 --- a/Makefile +++ b/Makefile @@ -1,22 +1,17 @@ # this target runs checks on all files quality: - isort . -c - flake8 + ruff format --check . + ruff check . mypy - pydocstyle - black --check . - bandit -r . -c pyproject.toml - autoflake -r . # this target runs checks on all files and potentially modifies some of them style: - isort . - black . - autoflake --in-place -r . + ruff format . + ruff --fix . # Run tests for the library test: - coverage run -m pytest tests/ + pytest --cov=torchscan tests/ # Build documentation for current version single-docs: diff --git a/README.md b/README.md index 6096e22..29fb114 100644 --- a/README.md +++ b/README.md @@ -1,31 +1,41 @@

- +

CI Status - - Documentation Status - - - Test coverage percentage + + ruff - - black + + ruff + + Test coverage percentage +

- PyPi Status + PyPi Version + + + Conda Version + + pyversions + + License + +

+

+ + Documentation Status - - pyversions - license

+ The very useful [summary](https://www.tensorflow.org/api_docs/python/tf/keras/Model#summary) method of `tf.keras.Model` but for PyTorch, with more useful information. @@ -104,7 +114,7 @@ which will add the layer's receptive field (relatively to the last convolutional ## Setup -Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Torchscan. +Python 3.8 (or newer) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Torchscan. ### Stable release diff --git a/docs/source/conf.py b/docs/source/conf.py index 819b70b..ba0eff5 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -15,12 +15,11 @@ # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # -import os import sys - -sys.path.insert(0, os.path.abspath("../..")) from datetime import datetime +from pathlib import Path +sys.path.insert(0, Path().cwd().parent.parent) import torchscan # -- Project information ----------------------------------------------------- @@ -106,10 +105,10 @@ # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] + # Add googleanalytics id # ref: https://github.com/orenhecht/googleanalytics/blob/master/sphinxcontrib/googleanalytics.py def add_ga_javascript(app, pagename, templatename, context, doctree): - metatags = context.get("metatags", "") metatags += """ @@ -120,9 +119,7 @@ def add_ga_javascript(app, pagename, templatename, context, doctree): gtag('js', new Date()); gtag('config', '{0}'); - """.format( - app.config.googleanalytics_id - ) + """.format(app.config.googleanalytics_id) context["metatags"] = metatags diff --git a/pyproject.toml b/pyproject.toml index 3d2deba..fba5175 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -9,7 +9,7 @@ authors = [ {name = "François-Guillaume Fernandez", email = "fg-feedback@protonmail.com"} ] readme = "README.md" -requires-python = ">=3.6,<4" +requires-python = ">=3.8,<4" license = {file = "LICENSE"} keywords = ["pytorch", "deep learning", "summary", "memory", "ram"] classifiers = [ @@ -20,33 +20,29 @@ classifiers = [ "Natural Language :: English", "Operating System :: OS Independent", "Programming Language :: Python :: 3", - "Programming Language :: Python :: 3.6", - "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", + "Programming Language :: Python :: 3.10", + "Programming Language :: Python :: 3.11", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Mathematics", "Topic :: Scientific/Engineering :: Artificial Intelligence", ] dynamic = ["version"] dependencies = [ - "torch>=1.5.0,<2.0.0", + "torch>=2.0.0,<3.0.0", ] [project.optional-dependencies] test = [ - "pytest>=5.3.2", - "coverage[toml]>=4.5.4", + "pytest>=7.3.2", + "pytest-cov>=3.0.0,<5.0.0", + "pytest-pretty>=1.0.0,<2.0.0", ] quality = [ - "flake8>=3.9.0", - "isort>=5.7.0", - "mypy>=0.812", - "pydocstyle[toml]>=6.0.0", - "black>=22.1,<23.0", - "autoflake>=1.5.0,<2.0.0", - "bandit[toml]>=1.7.0,<1.8.0", - "pre-commit>=2.17.0,<3.0.0", + "ruff==0.1.14", + "mypy==1.8.0", + "pre-commit>=3.0.0,<4.0.0", ] docs = [ "sphinx>=3.0.0,!=3.5.0", @@ -59,17 +55,13 @@ docs = [ ] dev = [ # test - "pytest>=5.3.2", - "coverage[toml]>=4.5.4", + "pytest>=7.3.2", + "pytest-cov>=3.0.0,<5.0.0", + "pytest-pretty>=1.0.0,<2.0.0", # style - "flake8>=3.9.0", - "isort>=5.7.0", - "mypy>=0.812", - "pydocstyle[toml]>=6.0.0", - "black>=22.1,<23.0", - "autoflake>=1.5.0,<2.0.0", - "bandit[toml]>=1.7.0,<1.8.0", - "pre-commit>=2.17.0,<3.0.0", + "ruff==0.1.14", + "mypy==1.8.0", + "pre-commit>=3.0.0,<4.0.0", # docs "sphinx>=3.0.0,!=3.5.0", "furo>=2022.3.4", @@ -90,8 +82,91 @@ zip-safe = true [tool.setuptools.packages.find] exclude = ["docs*", "scripts*", "tests*"] +[tool.pytest.ini_options] +testpaths = ["torchscan/"] + +[tool.coverage.run] +source = ["torchscan/"] + +[tool.ruff] +select = [ + "E", # pycodestyle errors + "W", # pycodestyle warnings + "D101", "D103", # pydocstyle missing docstring in public function/class + "D201","D202","D207","D208","D214","D215","D300","D301","D417", "D419", # pydocstyle + "F", # pyflakes + "I", # isort + "C4", # flake8-comprehensions + "B", # flake8-bugbear + "CPY001", # flake8-copyright + "ISC", # flake8-implicit-str-concat + "PYI", # flake8-pyi + "NPY", # numpy + "PERF", # perflint + "RUF", # ruff specific + "PTH", # flake8-use-pathlib + "S", # flake8-bandit + "N", # pep8-naming + "T10", # flake8-debugger + "T20", # flake8-print + "PT", # flake8-pytest-style + "LOG", # flake8-logging + "SIM", # flake8-simplify + "YTT", # flake8-2020 + "ANN", # flake8-annotations + "ASYNC", # flake8-async + "BLE", # flake8-blind-except + "A", # flake8-builtins + "ICN", # flake8-import-conventions + "PIE", # flake8-pie + "ARG", # flake8-unused-arguments + "FURB", # refurb +] +ignore = [ + "E501", # line too long, handled by black + "B008", # do not perform function calls in argument defaults + "B904", # raise from + "C901", # too complex + "F403", # star imports + "E731", # lambda assignment + "C416", # list comprehension to list() + "ANN101", # missing type annotations on self + "ANN102", # missing type annotations on cls + "ANN002", # missing type annotations on *args + "ANN003", # missing type annotations on **kwargs + "COM812", # trailing comma missing + "N812", # lowercase imported as non-lowercase + "ISC001", # implicit string concatenation (handled by format) + "ANN401", # Dynamically typed expressions (typing.Any) are disallowed +] +exclude = [".git"] +line-length = 120 +target-version = "py39" +preview = true + +[tool.ruff.format] +quote-style = "double" +indent-style = "space" + +[tool.ruff.per-file-ignores] +"**/__init__.py" = ["I001", "F401", "CPY001"] +"scripts/**.py" = ["D", "T201", "N812", "S101", "ANN"] +".github/**.py" = ["D", "T201", "S602", "S101", "ANN"] +"docs/**.py" = ["E402", "D103", "ANN", "A001", "ARG001"] +"tests/**.py" = ["D101", "D103", "CPY001", "S101", "PT011", "ANN"] +"demo/**.py" = ["D103", "ANN"] +"setup.py" = ["T201"] +"torchscan/process/memory.py" = ["S60"] + +[tool.ruff.flake8-quotes] +docstring-quotes = "double" + +[tool.ruff.isort] +known-first-party = ["torchscan", "app"] +known-third-party = ["torch", "torchvision"] [tool.mypy] +python_version = "3.9" files = "torchscan/" show_error_codes = true pretty = true @@ -101,29 +176,5 @@ no_implicit_optional = true disallow_untyped_calls = true check_untyped_defs = true implicit_reexport = false - -[tool.isort] -line_length = 120 -src_paths = ["torchscan", "tests", "scripts", "docs", ".github"] -skip_glob = "**/__init__.py" -known_third_party = ["torch", "torchvision"] - -[tool.pydocstyle] -select = "D300,D301,D417" -match = ".*\\.py" - -[tool.coverage.run] -source = ["torchscan"] - -[tool.black] -line-length = 120 -target-version = ['py38'] - -[tool.autoflake] -remove-unused-variables = true -remove-all-unused-imports = true -ignore-init-module-imports = true - -[tool.bandit] -exclude_dirs = [".github/collect_env.py", "torchscan/process/memory.py"] -skips = ["B101"] +disallow_untyped_defs = true +explicit_package_bases = true diff --git a/scripts/benchmark.py b/scripts/benchmark.py index 7ad011a..570f129 100644 --- a/scripts/benchmark.py +++ b/scripts/benchmark.py @@ -52,7 +52,6 @@ def main(): - device = "cuda" if torch.cuda.is_available() else "cpu" margin = 4 diff --git a/setup.py b/setup.py index 7dd2bdb..a1db9a1 100644 --- a/setup.py +++ b/setup.py @@ -14,12 +14,11 @@ if __name__ == "__main__": - print(f"Building wheel {PKG_NAME}-{VERSION}") # Dynamically set the __version__ attribute cwd = Path(__file__).parent.absolute() - with open(cwd.joinpath("torchscan", "version.py"), "w", encoding="utf-8") as f: + with cwd.joinpath("torchscan", "version.py").open("w", encoding="utf-8") as f: f.write(f"__version__ = '{VERSION}'\n") setup(name=PKG_NAME, version=VERSION) diff --git a/tests/test_crawler.py b/tests/test_crawler.py index 0a73247..5f160d4 100644 --- a/tests/test_crawler.py +++ b/tests/test_crawler.py @@ -24,7 +24,6 @@ def tag_name(mod, name): def test_crawl_module(): - mod = nn.Conv2d(3, 8, 3) res = crawler.crawl_module(mod, (3, 32, 32)) @@ -34,7 +33,6 @@ def test_crawl_module(): def test_summary(): - mod = nn.Conv2d(3, 8, 3) # Redirect stdout with StringIO object @@ -67,13 +65,11 @@ def test_summary(): crawler.summary(mod, (3, 32, 32), max_depth=1) mod = nn.Sequential( - OrderedDict( - [ - ("features", nn.Sequential(nn.Conv2d(3, 8, 3), nn.ReLU(inplace=True))), - ("pool", nn.Sequential(nn.AdaptiveAvgPool2d(1), nn.Flatten(1))), - ("classifier", nn.Linear(8, 1)), - ] - ) + OrderedDict([ + ("features", nn.Sequential(nn.Conv2d(3, 8, 3), nn.ReLU(inplace=True))), + ("pool", nn.Sequential(nn.AdaptiveAvgPool2d(1), nn.Flatten(1))), + ("classifier", nn.Linear(8, 1)), + ]) ) captured_output = io.StringIO() diff --git a/tests/test_modules.py b/tests/test_modules.py index 40fccb5..349880d 100644 --- a/tests/test_modules.py +++ b/tests/test_modules.py @@ -16,38 +16,38 @@ def test_module_flops_warning(): @pytest.mark.parametrize( - "mod, input_shape, output_shape, expected_val", + ("mod", "input_shape", "output_shape", "expected_val"), [ # Check for unknown module that it returns 0 and throws a warning - [MyModule(), (1,), (1,), 0], + (MyModule(), (1,), (1,), 0), # Fully-connected - [nn.Linear(8, 4), (1, 8), (1, 4), 4 * (2 * 8 - 1) + 4], - [nn.Linear(8, 4, bias=False), (1, 8), (1, 4), 4 * (2 * 8 - 1)], - [nn.Linear(8, 4), (1, 2, 8), (1, 2, 4), 2 * (4 * (2 * 8 - 1) + 4)], + (nn.Linear(8, 4), (1, 8), (1, 4), 4 * (2 * 8 - 1) + 4), + (nn.Linear(8, 4, bias=False), (1, 8), (1, 4), 4 * (2 * 8 - 1)), + (nn.Linear(8, 4), (1, 2, 8), (1, 2, 4), 2 * (4 * (2 * 8 - 1) + 4)), # Activations - [nn.Identity(), (1, 8), (1, 8), 0], - [nn.Flatten(), (1, 8), (1, 8), 0], - [nn.ReLU(), (1, 8), (1, 8), 8], - [nn.ELU(), (1, 8), (1, 8), 48], - [nn.LeakyReLU(), (1, 8), (1, 8), 32], - [nn.ReLU6(), (1, 8), (1, 8), 16], - [nn.Tanh(), (1, 8), (1, 8), 48], - [nn.Sigmoid(), (1, 8), (1, 8), 32], + (nn.Identity(), (1, 8), (1, 8), 0), + (nn.Flatten(), (1, 8), (1, 8), 0), + (nn.ReLU(), (1, 8), (1, 8), 8), + (nn.ELU(), (1, 8), (1, 8), 48), + (nn.LeakyReLU(), (1, 8), (1, 8), 32), + (nn.ReLU6(), (1, 8), (1, 8), 16), + (nn.Tanh(), (1, 8), (1, 8), 48), + (nn.Sigmoid(), (1, 8), (1, 8), 32), # BN - [nn.BatchNorm1d(8), (1, 8, 4), (1, 8, 4), 144 + 32 + 32 * 3 + 48], + (nn.BatchNorm1d(8), (1, 8, 4), (1, 8, 4), 144 + 32 + 32 * 3 + 48), # Pooling - [nn.MaxPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 3 * 32], - [nn.AvgPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 5 * 32], - [nn.AdaptiveMaxPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 3 * 32], - [nn.AdaptiveMaxPool2d(2), (1, 8, 4, 4), (1, 8, 2, 2), 3 * 32], - [nn.AdaptiveAvgPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 5 * 32], - [nn.AdaptiveAvgPool2d(2), (1, 8, 4, 4), (1, 8, 2, 2), 5 * 32], + (nn.MaxPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 3 * 32), + (nn.AvgPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 5 * 32), + (nn.AdaptiveMaxPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 3 * 32), + (nn.AdaptiveMaxPool2d(2), (1, 8, 4, 4), (1, 8, 2, 2), 3 * 32), + (nn.AdaptiveAvgPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 5 * 32), + (nn.AdaptiveAvgPool2d(2), (1, 8, 4, 4), (1, 8, 2, 2), 5 * 32), # Dropout - [nn.Dropout(), (1, 8), (1, 8), 8], - [nn.Dropout(p=0), (1, 8), (1, 8), 0], + (nn.Dropout(), (1, 8), (1, 8), 8), + (nn.Dropout(p=0), (1, 8), (1, 8), 0), # Conv - [nn.Conv2d(3, 8, 3), (1, 3, 32, 32), (1, 8, 30, 30), 388800], - [nn.ConvTranspose2d(3, 8, 3), (1, 3, 32, 32), (1, 8, 34, 34), 499408], + (nn.Conv2d(3, 8, 3), (1, 3, 32, 32), (1, 8, 30, 30), 388800), + (nn.ConvTranspose2d(3, 8, 3), (1, 3, 32, 32), (1, 8, 34, 34), 499408), ], ) def test_module_flops(mod, input_shape, output_shape, expected_val): @@ -67,33 +67,32 @@ def test_module_macs_warning(): @pytest.mark.parametrize( - "mod, input_shape, output_shape, expected_val", + ("mod", "input_shape", "output_shape", "expected_val"), [ # Check for unknown module that it returns 0 and throws a warning - [MyModule(), (1,), (1,), 0], + (MyModule(), (1,), (1,), 0), # Fully-connected - [nn.Linear(8, 4), (1, 8), (1, 4), 8 * 4], - [nn.Linear(8, 4), (1, 2, 8), (1, 2, 4), 8 * 4 * 2], + (nn.Linear(8, 4), (1, 8), (1, 4), 8 * 4), + (nn.Linear(8, 4), (1, 2, 8), (1, 2, 4), 8 * 4 * 2), # Activations - [nn.ReLU(), (1, 8), (1, 8), 0], + (nn.ReLU(), (1, 8), (1, 8), 0), # BN - [nn.BatchNorm1d(8), (1, 8, 4), (1, 8, 4), 64 + 24 + 56 + 32], + (nn.BatchNorm1d(8), (1, 8, 4), (1, 8, 4), 64 + 24 + 56 + 32), # Pooling - [nn.MaxPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 3 * 32], - [nn.AvgPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 5 * 32], - [nn.AdaptiveMaxPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 3 * 32], - [nn.AdaptiveMaxPool2d(2), (1, 8, 4, 4), (1, 8, 2, 2), 3 * 32], - [nn.AdaptiveAvgPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 5 * 32], - [nn.AdaptiveAvgPool2d(2), (1, 8, 4, 4), (1, 8, 2, 2), 5 * 32], + (nn.MaxPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 3 * 32), + (nn.AvgPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 5 * 32), + (nn.AdaptiveMaxPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 3 * 32), + (nn.AdaptiveMaxPool2d(2), (1, 8, 4, 4), (1, 8, 2, 2), 3 * 32), + (nn.AdaptiveAvgPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 5 * 32), + (nn.AdaptiveAvgPool2d(2), (1, 8, 4, 4), (1, 8, 2, 2), 5 * 32), # Dropout - [nn.Dropout(), (1, 8), (1, 8), 0], + (nn.Dropout(), (1, 8), (1, 8), 0), # Conv - [nn.Conv2d(3, 8, 3), (1, 3, 32, 32), (1, 8, 30, 30), 194400], - [nn.ConvTranspose2d(3, 8, 3), (1, 3, 32, 32), (1, 8, 34, 34), 249704], + (nn.Conv2d(3, 8, 3), (1, 3, 32, 32), (1, 8, 30, 30), 194400), + (nn.ConvTranspose2d(3, 8, 3), (1, 3, 32, 32), (1, 8, 34, 34), 249704), ], ) def test_module_macs(mod, input_shape, output_shape, expected_val): - assert modules.module_macs(mod, torch.zeros(input_shape), torch.zeros(output_shape)) == expected_val @@ -103,37 +102,36 @@ def test_module_dmas_warning(): @pytest.mark.parametrize( - "mod, input_shape, output_shape, expected_val", + ("mod", "input_shape", "output_shape", "expected_val"), [ # Check for unknown module that it returns 0 and throws a warning - [MyModule(), (1,), (1,), 0], + (MyModule(), (1,), (1,), 0), # Fully-connected - [nn.Linear(8, 4), (1, 8), (1, 4), 4 * (8 + 1) + 8 + 4], - [nn.Linear(8, 4), (1, 2, 8), (1, 2, 4), 4 * (8 + 1) + 2 * (8 + 4)], + (nn.Linear(8, 4), (1, 8), (1, 4), 4 * (8 + 1) + 8 + 4), + (nn.Linear(8, 4), (1, 2, 8), (1, 2, 4), 4 * (8 + 1) + 2 * (8 + 4)), # Activations - [nn.Identity(), (1, 8), (1, 8), 8], - [nn.Flatten(), (1, 8), (1, 8), 16], - [nn.ReLU(), (1, 8), (1, 8), 8 * 2], - [nn.ReLU(inplace=True), (1, 8), (1, 8), 8], - [nn.ELU(), (1, 8), (1, 8), 17], - [nn.Tanh(), (1, 8), (1, 8), 24], - [nn.Sigmoid(), (1, 8), (1, 8), 16], + (nn.Identity(), (1, 8), (1, 8), 8), + (nn.Flatten(), (1, 8), (1, 8), 16), + (nn.ReLU(), (1, 8), (1, 8), 8 * 2), + (nn.ReLU(inplace=True), (1, 8), (1, 8), 8), + (nn.ELU(), (1, 8), (1, 8), 17), + (nn.Tanh(), (1, 8), (1, 8), 24), + (nn.Sigmoid(), (1, 8), (1, 8), 16), # BN - [nn.BatchNorm1d(8), (1, 8, 4), (1, 8, 4), 32 + 17 + 16 + 1 + 17 + 32], + (nn.BatchNorm1d(8), (1, 8, 4), (1, 8, 4), 32 + 17 + 16 + 1 + 17 + 32), # Pooling - [nn.MaxPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 4 * 32 + 32], - [nn.MaxPool2d(2), (1, 8, 4, 4), (1, 8, 2, 2), 4 * 32 + 32], - [nn.AdaptiveMaxPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 4 * 32 + 32], - [nn.AdaptiveMaxPool2d(2), (1, 8, 4, 4), (1, 8, 2, 2), 4 * 32 + 32], + (nn.MaxPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 4 * 32 + 32), + (nn.MaxPool2d(2), (1, 8, 4, 4), (1, 8, 2, 2), 4 * 32 + 32), + (nn.AdaptiveMaxPool2d((2, 2)), (1, 8, 4, 4), (1, 8, 2, 2), 4 * 32 + 32), + (nn.AdaptiveMaxPool2d(2), (1, 8, 4, 4), (1, 8, 2, 2), 4 * 32 + 32), # Dropout - [nn.Dropout(), (1, 8), (1, 8), 17], + (nn.Dropout(), (1, 8), (1, 8), 17), # Conv - [nn.Conv2d(3, 8, 3), (1, 3, 32, 32), (1, 8, 30, 30), 201824], - [nn.ConvTranspose2d(3, 8, 3), (1, 3, 32, 32), (1, 8, 34, 34), 259178], + (nn.Conv2d(3, 8, 3), (1, 3, 32, 32), (1, 8, 30, 30), 201824), + (nn.ConvTranspose2d(3, 8, 3), (1, 3, 32, 32), (1, 8, 34, 34), 259178), ], ) def test_module_dmas(mod, input_shape, output_shape, expected_val): - assert modules.module_dmas(mod, torch.zeros(input_shape), torch.zeros(output_shape)) == expected_val @@ -169,7 +167,7 @@ def test_module_dmas(mod, input_shape, output_shape, expected_val): # self.assertEqual(modules.module_rf(nn.BatchNorm1d(8), torch.zeros((1, 8, 4)), torch.zeros((1, 8, 4))), # (1, 1, 0)) -# # Pooling +# # Pooling # self.assertEqual(modules.module_rf(nn.MaxPool2d((2, 2)), # torch.zeros((1, 8, 4, 4)), torch.zeros((1, 8, 2, 2))), # (2, 2, 0)) diff --git a/tests/test_process.py b/tests/test_process.py index b40371a..319cca1 100644 --- a/tests/test_process.py +++ b/tests/test_process.py @@ -6,7 +6,6 @@ def test_get_process_gpu_ram(): - if torch.cuda.is_initialized: assert process.get_process_gpu_ram(os.getpid()) >= 0 else: diff --git a/tests/test_utils.py b/tests/test_utils.py index 03d263a..3edafdc 100644 --- a/tests/test_utils.py +++ b/tests/test_utils.py @@ -11,7 +11,6 @@ def test_format_name(): def test_wrap_string(): - example = ".".join(["a" for _ in range(10)]) max_len = 10 wrap = "[...]" @@ -24,13 +23,13 @@ def test_wrap_string(): @pytest.mark.parametrize( - "input_val, num_val, unit", + ("input_val", "num_val", "unit"), [ - [3e14, 300, "T"], - [3e10, 30, "G"], - [3e7, 30, "M"], - [15e3, 15, "k"], - [500, 500, ""], + (3e14, 300, "T"), + (3e10, 30, "G"), + (3e7, 30, "M"), + (15e3, 15, "k"), + (500, 500, ""), ], ) def test_unit_scale(input_val, num_val, unit): diff --git a/torchscan/__init__.py b/torchscan/__init__.py index 8aac9ef..f5eb582 100644 --- a/torchscan/__init__.py +++ b/torchscan/__init__.py @@ -1,7 +1,6 @@ +from contextlib import suppress from torchscan import modules, process, utils from torchscan.crawler import * -try: - from .version import __version__ # noqa: F401 -except ImportError: - pass +with suppress(ImportError): + from .version import __version__ diff --git a/torchscan/crawler.py b/torchscan/crawler.py index 2dc52ea..c98dc38 100644 --- a/torchscan/crawler.py +++ b/torchscan/crawler.py @@ -24,7 +24,6 @@ def apply(module: Module, fn: Callable[[Module, str], None], name: Optional[str] fn: function to apply to each module name: name of the current module """ - if name is None: name = module.__class__.__name__.lower() fn(module, name) @@ -51,7 +50,6 @@ def crawl_module( Returns: layer and overhead information """ - # Get device and data types from model p = next(module.parameters()) device = p.device @@ -118,28 +116,26 @@ def _pre_hook(module: Module, inp: torch.Tensor) -> None: else: call_idxs[id(module)].append(len(info)) - info.append( - dict( - name=name.rpartition(".")[-1], - depth=len(name.split(".")) - 1, - type=module.__class__.__name__, - input_shape=(-1, *inp[0][0].shape[1:]), - output_shape=None, - grad_params=grad_params, - nograd_params=nograd_params, - param_size=param_size, - num_buffers=num_buffers, - buffer_size=buffer_size, - flops=0, - macs=0, - dmas=0, - rf=1, - s=1, - p=0, - is_shared=is_shared, - is_leaf=not any(module.children()), - ) - ) + info.append({ + "name": name.rpartition(".")[-1], + "depth": len(name.split(".")) - 1, + "type": module.__class__.__name__, + "input_shape": (-1, *inp[0][0].shape[1:]), + "output_shape": None, + "grad_params": grad_params, + "nograd_params": nograd_params, + "param_size": param_size, + "num_buffers": num_buffers, + "buffer_size": buffer_size, + "flops": 0, + "macs": 0, + "dmas": 0, + "rf": 1, + "s": 1, + "p": 0, + "is_shared": is_shared, + "is_leaf": not any(module.children()), + }) # Mark the next hook for execution pre_hook_tracker[id(module)]["target"] += 1 # Current pass already used one of the hooks @@ -152,7 +148,6 @@ def _pre_hook(module: Module, inp: torch.Tensor) -> None: def _fwd_hook(module: Module, inputs: Tuple[torch.Tensor, ...], out: torch.Tensor) -> None: """Post-forward hook""" - # Check that another hook has not been triggered at this forward stage if not post_hook_tracker[id(module)]["is_used"] and ( post_hook_tracker[id(module)]["target"] == post_hook_tracker[id(module)]["current"] @@ -199,11 +194,11 @@ def _fwd_hook(module: Module, inputs: Tuple[torch.Tensor, ...], out: torch.Tenso post_hook_tracker[id(module)]["current"] = 0 post_hook_tracker[id(module)]["is_used"] = False - pre_fw_handles.append(module.register_forward_pre_hook(_pre_hook)) + pre_fw_handles.append(module.register_forward_pre_hook(_pre_hook)) # type: ignore[arg-type] post_fw_handles.append(module.register_forward_hook(_fwd_hook)) # Handle modules that are used multiple times (with several hooks) - pre_hook_tracker[id(module)] = dict(current=0, target=0, is_used=False) - post_hook_tracker[id(module)] = dict(current=0, target=0, is_used=False) + pre_hook_tracker[id(module)] = {"current": 0, "target": 0, "is_used": False} + post_hook_tracker[id(module)] = {"current": 0, "target": 0, "is_used": False} # Hook model info: List[Dict[str, Any]] = [] @@ -250,23 +245,23 @@ def _fwd_hook(module: Module, inputs: Tuple[torch.Tensor, ...], out: torch.Tenso info[fw_idx]["s"] = _s info[fw_idx]["p"] = _p - return dict( - overheads=dict( - cuda=dict( - pre=cuda_overhead, - fwd=get_process_gpu_ram(os.getpid()) - reserved_ram, - ), - framework=dict(pre=framework_overhead, fwd=diff_ram), - ), - layers=info, - overall=dict( - grad_params=grad_params, - nograd_params=nograd_params, - param_size=param_size, - num_buffers=num_buffers, - buffer_size=buffer_size, - ), - ) + return { + "overheads": { + "cuda": { + "pre": cuda_overhead, + "fwd": get_process_gpu_ram(os.getpid()) - reserved_ram, + }, + "framework": {"pre": framework_overhead, "fwd": diff_ram}, + }, + "layers": info, + "overall": { + "grad_params": grad_params, + "nograd_params": nograd_params, + "param_size": param_size, + "num_buffers": num_buffers, + "buffer_size": buffer_size, + }, + } def summary( @@ -292,11 +287,10 @@ def summary( receptive_field: whether receptive field estimation should be performed effective_rf_stats: if `receptive_field` is True, displays effective stride and padding """ - # Get the summary dict module_info = crawl_module(module, input_shape) # Aggregate until max_depth if isinstance(max_depth, int): module_info = aggregate_info(module_info, max_depth) # Format it and print it - print(format_info(module_info, wrap_mode, receptive_field, effective_rf_stats)) + print(format_info(module_info, wrap_mode, receptive_field, effective_rf_stats)) # noqa T201 diff --git a/torchscan/modules/__init__.py b/torchscan/modules/__init__.py index 582290a..7676278 100644 --- a/torchscan/modules/__init__.py +++ b/torchscan/modules/__init__.py @@ -1,4 +1,4 @@ from .flops import * -from .macs import * # type: ignore[assignment] +from .macs import * from .memory import * from .receptive import * diff --git a/torchscan/modules/flops.py b/torchscan/modules/flops.py index 9550b8c..296ccf8 100644 --- a/torchscan/modules/flops.py +++ b/torchscan/modules/flops.py @@ -28,7 +28,6 @@ def module_flops(module: Module, inputs: Tuple[Tensor, ...], out: Tensor) -> int Returns: number of FLOPs """ - if isinstance(module, (nn.Identity, nn.Flatten)): return 0 elif isinstance(module, nn.Linear): @@ -64,13 +63,12 @@ def module_flops(module: Module, inputs: Tuple[Tensor, ...], out: Tensor) -> int elif isinstance(module, nn.Transformer): return flops_transformer(module, inputs) else: - warnings.warn(f"Module type not supported: {module.__class__.__name__}") + warnings.warn(f"Module type not supported: {module.__class__.__name__}", stacklevel=1) return 0 def flops_linear(module: nn.Linear, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.Linear`""" - # batch size * out_chan * in_chan num_out_feats = module.out_features * reduce(mul, inputs[0].shape[:-1]) mm_flops = num_out_feats * (2 * module.in_features - 1) @@ -79,51 +77,44 @@ def flops_linear(module: nn.Linear, inputs: Tuple[Tensor, ...]) -> int: return mm_flops + bias_flops -def flops_sigmoid(module: nn.Sigmoid, inputs: Tuple[Tensor, ...]) -> int: +def flops_sigmoid(_: nn.Sigmoid, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.Sigmoid`""" - # For each element, mul by -1, exp it, add 1, div return inputs[0].numel() * 4 -def flops_relu(module: nn.ReLU, inputs: Tuple[Tensor, ...]) -> int: +def flops_relu(_: nn.ReLU, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.ReLU`""" - # Each element is compared to 0 return inputs[0].numel() -def flops_elu(module: nn.ELU, inputs: Tuple[Tensor, ...]) -> int: +def flops_elu(_: nn.ELU, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.ELU`""" - # For each element, compare it to 0, exp it, sub 1, mul by alpha, compare it to 0 and sum both return inputs[0].numel() * 6 -def flops_leakyrelu(module: nn.LeakyReLU, inputs: Tuple[Tensor, ...]) -> int: +def flops_leakyrelu(_: nn.LeakyReLU, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.LeakyReLU`""" - # For each element, compare it to 0 (max), compare it to 0 (min), mul by slope and sum both return inputs[0].numel() * 4 -def flops_relu6(module: nn.ReLU6, inputs: Tuple[Tensor, ...]) -> int: +def flops_relu6(_: nn.ReLU6, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.ReLU6`""" - # For each element, compare it to 0 (max), compare it to 0 (min), mul by slope and sum both return inputs[0].numel() * 2 -def flops_tanh(module: nn.Tanh, inputs: Tuple[Tensor, ...]) -> int: +def flops_tanh(_: nn.Tanh, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.Tanh`""" - # For each element, exp it, mul by -1 and exp it, divide the sub by the add return inputs[0].numel() * 6 def flops_dropout(module: nn.Dropout, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.Dropout`""" - if module.p > 0: # Sample a random number for each input element return inputs[0].numel() @@ -133,7 +124,6 @@ def flops_dropout(module: nn.Dropout, inputs: Tuple[Tensor, ...]) -> int: def flops_convtransposend(module: _ConvTransposeNd, inputs: Tuple[Tensor, ...], out: Tensor) -> int: """FLOPs estimation for `torch.nn.modules.conv._ConvTranposeNd`""" - # Padding (# cf. https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/conv.py#L496-L532) # Define min and max sizes padding_flops = len(module.kernel_size) * 8 @@ -146,7 +136,6 @@ def flops_convtransposend(module: _ConvTransposeNd, inputs: Tuple[Tensor, ...], def flops_convnd(module: _ConvNd, inputs: Tuple[Tensor, ...], out: Tensor) -> int: """FLOPs estimation for `torch.nn.modules.conv._ConvNd`""" - # For each position, # mult = kernel size, # adds = kernel size - 1 window_flops_per_chan = 2 * reduce(mul, module.kernel_size) - 1 # Connections to input channels is controlled by the group parameter @@ -163,7 +152,6 @@ def flops_convnd(module: _ConvNd, inputs: Tuple[Tensor, ...], out: Tensor) -> in def flops_bn(module: _BatchNorm, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.modules.batchnorm._BatchNorm`""" - # for each channel, add eps and running_var, sqrt it norm_ops = module.num_features * 2 # For each element, sub running_mean, div by denom @@ -189,9 +177,8 @@ def flops_bn(module: _BatchNorm, inputs: Tuple[Tensor, ...]) -> int: return bn_flops + tracking_flops -def flops_maxpool(module: _MaxPoolNd, inputs: Tuple[Tensor, ...], out: Tensor) -> int: +def flops_maxpool(module: _MaxPoolNd, _: Tuple[Tensor, ...], out: Tensor) -> int: """FLOPs estimation for `torch.nn.modules.pooling._MaxPoolNd`""" - k_size = reduce(mul, module.kernel_size) if isinstance(module.kernel_size, tuple) else module.kernel_size # for each spatial output element, check max element in kernel scope @@ -200,16 +187,14 @@ def flops_maxpool(module: _MaxPoolNd, inputs: Tuple[Tensor, ...], out: Tensor) - def flops_avgpool(module: _AvgPoolNd, inputs: Tuple[Tensor, ...], out: Tensor) -> int: """FLOPs estimation for `torch.nn.modules.pooling._AvgPoolNd`""" - k_size = reduce(mul, module.kernel_size) if isinstance(module.kernel_size, tuple) else module.kernel_size # for each spatial output element, sum elements in kernel scope and div by kernel size return out.numel() * (k_size - 1 + inputs[0].ndim - 2) -def flops_adaptive_maxpool(module: _AdaptiveMaxPoolNd, inputs: Tuple[Tensor, ...], out: Tensor) -> int: +def flops_adaptive_maxpool(_: _AdaptiveMaxPoolNd, inputs: Tuple[Tensor, ...], out: Tensor) -> int: """FLOPs estimation for `torch.nn.modules.pooling._AdaptiveMaxPoolNd`""" - # Approximate kernel_size using ratio of spatial shapes between input and output kernel_size = tuple( i_size // o_size if (i_size % o_size) == 0 else i_size - o_size * (i_size // o_size) + 1 @@ -220,9 +205,8 @@ def flops_adaptive_maxpool(module: _AdaptiveMaxPoolNd, inputs: Tuple[Tensor, ... return out.numel() * (reduce(mul, kernel_size) - 1) -def flops_adaptive_avgpool(module: _AdaptiveAvgPoolNd, inputs: Tuple[Tensor, ...], out: Tensor) -> int: +def flops_adaptive_avgpool(_: _AdaptiveAvgPoolNd, inputs: Tuple[Tensor, ...], out: Tensor) -> int: """FLOPs estimation for `torch.nn.modules.pooling._AdaptiveAvgPoolNd`""" - # Approximate kernel_size using ratio of spatial shapes between input and output kernel_size = tuple( i_size // o_size if (i_size % o_size) == 0 else i_size - o_size * (i_size // o_size) + 1 @@ -235,7 +219,6 @@ def flops_adaptive_avgpool(module: _AdaptiveAvgPoolNd, inputs: Tuple[Tensor, ... def flops_layernorm(module: nn.LayerNorm, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.modules.batchnorm._BatchNorm`""" - # Compute current mean norm_ops = reduce(mul, module.normalized_shape) * inputs[0].shape[: -len(module.normalized_shape)].numel() # current var (sub the mean, square it, sum them, divide by remaining shape) @@ -252,7 +235,6 @@ def flops_layernorm(module: nn.LayerNorm, inputs: Tuple[Tensor, ...]) -> int: def flops_mha(module: nn.MultiheadAttention, inputs: Tuple[Tensor, ...]) -> int: """FLOPs estimation for `torch.nn.MultiheadAttention`""" - # Input projection q, k, _ = inputs[:3] batch_size = q.shape[1] diff --git a/torchscan/modules/macs.py b/torchscan/modules/macs.py index cd91666..8b596f8 100644 --- a/torchscan/modules/macs.py +++ b/torchscan/modules/macs.py @@ -47,13 +47,12 @@ def module_macs(module: Module, inp: Tensor, out: Tensor) -> int: elif isinstance(module, nn.Dropout): return 0 else: - warnings.warn(f"Module type not supported: {module.__class__.__name__}") + warnings.warn(f"Module type not supported: {module.__class__.__name__}", stacklevel=1) return 0 -def macs_linear(module: nn.Linear, inp: Tensor, out: Tensor) -> int: +def macs_linear(module: nn.Linear, _: Tensor, out: Tensor) -> int: """MACs estimation for `torch.nn.Linear`""" - # batch size * out_chan * macs_per_elt (bias already counted in accumulation) mm_mac = module.in_features * reduce(mul, out.shape) @@ -62,7 +61,6 @@ def macs_linear(module: nn.Linear, inp: Tensor, out: Tensor) -> int: def macs_convtransposend(module: _ConvTransposeNd, inp: Tensor, out: Tensor) -> int: """MACs estimation for `torch.nn.modules.conv._ConvTransposeNd`""" - # Padding (# cf. https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/conv.py#L496-L532) # Define min and max sizes, then subtract them padding_macs = len(module.kernel_size) * 4 @@ -75,7 +73,6 @@ def macs_convtransposend(module: _ConvTransposeNd, inp: Tensor, out: Tensor) -> def macs_convnd(module: _ConvNd, inp: Tensor, out: Tensor) -> int: """MACs estimation for `torch.nn.modules.conv._ConvNd`""" - # For each position, # mult = kernel size, # adds = kernel size - 1 window_macs_per_chan = reduce(mul, module.kernel_size) # Connections to input channels is controlled by the group parameter @@ -88,9 +85,8 @@ def macs_convnd(module: _ConvNd, inp: Tensor, out: Tensor) -> int: return conv_mac -def macs_bn(module: _BatchNorm, inp: Tensor, out: Tensor) -> int: +def macs_bn(module: _BatchNorm, inp: Tensor, _: Tensor) -> int: """MACs estimation for `torch.nn.modules.batchnorm._BatchNorm`""" - # sub mean, div by denom norm_mac = 1 # mul by gamma, add beta @@ -116,9 +112,8 @@ def macs_bn(module: _BatchNorm, inp: Tensor, out: Tensor) -> int: return bn_mac + tracking_mac -def macs_maxpool(module: _MaxPoolNd, inp: Tensor, out: Tensor) -> int: +def macs_maxpool(module: _MaxPoolNd, _: Tensor, out: Tensor) -> int: """MACs estimation for `torch.nn.modules.pooling._MaxPoolNd`""" - k_size = reduce(mul, module.kernel_size) if isinstance(module.kernel_size, tuple) else module.kernel_size # for each spatial output element, check max element in kernel scope @@ -127,16 +122,14 @@ def macs_maxpool(module: _MaxPoolNd, inp: Tensor, out: Tensor) -> int: def macs_avgpool(module: _AvgPoolNd, inp: Tensor, out: Tensor) -> int: """MACs estimation for `torch.nn.modules.pooling._AvgPoolNd`""" - k_size = reduce(mul, module.kernel_size) if isinstance(module.kernel_size, tuple) else module.kernel_size # for each spatial output element, sum elements in kernel scope and div by kernel size return out.numel() * (k_size - 1 + inp.ndim - 2) -def macs_adaptive_maxpool(module: _AdaptiveMaxPoolNd, inp: Tensor, out: Tensor) -> int: +def macs_adaptive_maxpool(_: _AdaptiveMaxPoolNd, inp: Tensor, out: Tensor) -> int: """MACs estimation for `torch.nn.modules.pooling._AdaptiveMaxPoolNd`""" - # Approximate kernel_size using ratio of spatial shapes between input and output kernel_size = tuple( i_size // o_size if (i_size % o_size) == 0 else i_size - o_size * (i_size // o_size) + 1 @@ -147,9 +140,8 @@ def macs_adaptive_maxpool(module: _AdaptiveMaxPoolNd, inp: Tensor, out: Tensor) return out.numel() * (reduce(mul, kernel_size) - 1) -def macs_adaptive_avgpool(module: _AdaptiveAvgPoolNd, inp: Tensor, out: Tensor) -> int: +def macs_adaptive_avgpool(_: _AdaptiveAvgPoolNd, inp: Tensor, out: Tensor) -> int: """MACs estimation for `torch.nn.modules.pooling._AdaptiveAvgPoolNd`""" - # Approximate kernel_size using ratio of spatial shapes between input and output kernel_size = tuple( i_size // o_size if (i_size % o_size) == 0 else i_size - o_size * (i_size // o_size) + 1 diff --git a/torchscan/modules/memory.py b/torchscan/modules/memory.py index 2d73157..6fd6bbe 100644 --- a/torchscan/modules/memory.py +++ b/torchscan/modules/memory.py @@ -28,7 +28,6 @@ def module_dmas(module: Module, inp: Tensor, out: Tensor) -> int: Returns: int: number of DMAs """ - if isinstance(module, nn.Identity): return dmas_identity(module, inp, out) elif isinstance(module, nn.Flatten): @@ -56,7 +55,7 @@ def module_dmas(module: Module, inp: Tensor, out: Tensor) -> int: elif isinstance(module, nn.Dropout): return dmas_dropout(module, inp, out) else: - warnings.warn(f"Module type not supported: {module.__class__.__name__}") + warnings.warn(f"Module type not supported: {module.__class__.__name__}", stacklevel=1) return 0 @@ -68,25 +67,21 @@ def num_params(module: Module) -> int: Returns: int: number of parameter elements """ - return sum(p.data.numel() for p in module.parameters()) -def dmas_identity(module: nn.Identity, inp: Tensor, out: Tensor) -> int: +def dmas_identity(_: nn.Identity, inp: Tensor, __: Tensor) -> int: """DMAs estimation for `torch.nn.Identity`""" - return inp.numel() -def dmas_flatten(module: nn.Flatten, inp: Tensor, out: Tensor) -> int: +def dmas_flatten(_: nn.Flatten, inp: Tensor, __: Tensor) -> int: """DMAs estimation for `torch.nn.Flatten`""" - return 2 * inp.numel() def dmas_linear(module: nn.Linear, inp: Tensor, out: Tensor) -> int: """DMAs estimation for `torch.nn.Linear`""" - input_dma = inp.numel() # Access weight and bias ops_dma = num_params(module) @@ -97,7 +92,6 @@ def dmas_linear(module: nn.Linear, inp: Tensor, out: Tensor) -> int: def dmas_relu(module: Union[nn.ReLU, nn.ReLU6], inp: Tensor, out: Tensor) -> int: """DMAs estimation for `torch.nn.ReLU`""" - input_dma = inp.numel() output_dma = 0 if module.inplace else out.numel() @@ -106,7 +100,6 @@ def dmas_relu(module: Union[nn.ReLU, nn.ReLU6], inp: Tensor, out: Tensor) -> int def dmas_act_single_param(module: Union[nn.ELU, nn.LeakyReLU], inp: Tensor, out: Tensor) -> int: """DMAs estimation for activations with single parameter""" - input_dma = inp.numel() # Access alpha, slope or other ops_dma = 1 @@ -115,9 +108,8 @@ def dmas_act_single_param(module: Union[nn.ELU, nn.LeakyReLU], inp: Tensor, out: return input_dma + ops_dma + output_dma -def dmas_sigmoid(module: nn.Sigmoid, inp: Tensor, out: Tensor) -> int: +def dmas_sigmoid(_: nn.Sigmoid, inp: Tensor, out: Tensor) -> int: """DMAs estimation for `torch.nn.Sigmoid`""" - # Access for both exp input_dma = inp.numel() output_dma = out.numel() @@ -125,9 +117,8 @@ def dmas_sigmoid(module: nn.Sigmoid, inp: Tensor, out: Tensor) -> int: return input_dma + output_dma -def dmas_tanh(module: nn.Tanh, inp: Tensor, out: Tensor) -> int: +def dmas_tanh(_: nn.Tanh, inp: Tensor, out: Tensor) -> int: """DMAs estimation for `torch.nn.Tanh`""" - # Access for both exp input_dma = inp.numel() * 2 output_dma = out.numel() @@ -137,7 +128,6 @@ def dmas_tanh(module: nn.Tanh, inp: Tensor, out: Tensor) -> int: def dmas_dropout(module: nn.Dropout, inp: Tensor, out: Tensor) -> int: """DMAs estimation for `torch.nn.Dropout`""" - input_dma = inp.numel() # Access sampling probability @@ -150,7 +140,6 @@ def dmas_dropout(module: nn.Dropout, inp: Tensor, out: Tensor) -> int: def dmas_convtransposend(module: _ConvTransposeNd, inp: Tensor, out: Tensor) -> int: """DMAs estimation for `torch.nn.modules.conv._ConvTransposeNd`""" - # Padding (# cf. https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/conv.py#L496-L532) # Access stride, padding and kernel_size in_padding = len(module.kernel_size) * 4 @@ -162,9 +151,8 @@ def dmas_convtransposend(module: _ConvTransposeNd, inp: Tensor, out: Tensor) -> return in_padding + out_padding + conv_dmas -def dmas_convnd(module: _ConvNd, inp: Tensor, out: Tensor) -> int: +def dmas_convnd(module: _ConvNd, _: Tensor, out: Tensor) -> int: """DMAs estimation for `torch.nn.modules.conv._ConvNd`""" - # Each output element required K ** 2 memory access of each input channel input_dma = module.in_channels * reduce(mul, module.kernel_size) * out.numel() # Correct with groups @@ -202,7 +190,6 @@ def dmas_bn(module: _BatchNorm, inp: Tensor, out: Tensor) -> int: def dmas_pool(module: Union[_MaxPoolNd, _AvgPoolNd], inp: Tensor, out: Tensor) -> int: """DMAs estimation for spatial pooling modules""" - # Resolve kernel size and stride size (can be stored as a single integer or a tuple) if isinstance(module.kernel_size, tuple): kernel_size = module.kernel_size @@ -217,9 +204,8 @@ def dmas_pool(module: Union[_MaxPoolNd, _AvgPoolNd], inp: Tensor, out: Tensor) - return input_dma + output_dma -def dmas_adaptive_pool(module: Union[_AdaptiveMaxPoolNd, _AdaptiveAvgPoolNd], inp: Tensor, out: Tensor) -> int: +def dmas_adaptive_pool(_: Union[_AdaptiveMaxPoolNd, _AdaptiveAvgPoolNd], inp: Tensor, out: Tensor) -> int: """DMAs estimation for adaptive spatial pooling modules""" - # Approximate kernel_size using ratio of spatial shapes between input and output kernel_size = tuple( i_size // o_size if (i_size % o_size) == 0 else i_size - o_size * (i_size // o_size) + 1 diff --git a/torchscan/modules/receptive.py b/torchscan/modules/receptive.py index 8d366f4..25611ae 100644 --- a/torchscan/modules/receptive.py +++ b/torchscan/modules/receptive.py @@ -52,30 +52,29 @@ def module_rf(module: Module, inp: Tensor, out: Tensor) -> Tuple[float, float, f elif isinstance(module, (_AdaptiveMaxPoolNd, _AdaptiveAvgPoolNd)): return rf_adaptive_poolnd(module, inp, out) else: - warnings.warn(f"Module type not supported: {module.__class__.__name__}") + warnings.warn(f"Module type not supported: {module.__class__.__name__}", stacklevel=1) return 1.0, 1.0, 0.0 -def rf_convtransposend(module: _ConvTransposeNd, intput: Tensor, out: Tensor) -> Tuple[float, float, float]: +def rf_convtransposend(module: _ConvTransposeNd, _: Tensor, __: Tensor) -> Tuple[float, float, float]: k = module.kernel_size[0] if isinstance(module.kernel_size, tuple) else module.kernel_size s = module.stride[0] if isinstance(module.stride, tuple) else module.stride return -k, 1.0 / s, 0.0 -def rf_aggregnd(module: Union[_ConvNd, _MaxPoolNd, _AvgPoolNd], inp: Tensor, out: Tensor) -> Tuple[float, float, float]: +def rf_aggregnd(module: Union[_ConvNd, _MaxPoolNd, _AvgPoolNd], _: Tensor, __: Tensor) -> Tuple[float, float, float]: k = module.kernel_size[0] if isinstance(module.kernel_size, tuple) else module.kernel_size if hasattr(module, "dilation"): d = module.dilation[0] if isinstance(module.dilation, tuple) else module.dilation - k = d * (k - 1) + 1 # type: ignore[operator] + k = d * (k - 1) + 1 s = module.stride[0] if isinstance(module.stride, tuple) else module.stride p = module.padding[0] if isinstance(module.padding, tuple) else module.padding return k, s, p # type: ignore[return-value] def rf_adaptive_poolnd( - module: Union[_AdaptiveMaxPoolNd, _AdaptiveAvgPoolNd], inp: Tensor, out: Tensor + _: Union[_AdaptiveMaxPoolNd, _AdaptiveAvgPoolNd], inp: Tensor, out: Tensor ) -> Tuple[int, int, float]: - stride = math.ceil(inp.shape[-1] / out.shape[-1]) kernel_size = stride padding = (inp.shape[-1] - kernel_size * stride) / 2 diff --git a/torchscan/process/memory.py b/torchscan/process/memory.py index 1a5b67c..0065cb0 100644 --- a/torchscan/process/memory.py +++ b/torchscan/process/memory.py @@ -4,7 +4,7 @@ # See LICENSE or go to for full license details. import re -import subprocess +import subprocess # noqa S404 import warnings import torch @@ -20,10 +20,9 @@ def get_process_gpu_ram(pid: int) -> float: Returns: RAM usage in Megabytes """ - # PyTorch is not responsible for GPU usage if not torch.cuda.is_available(): - warnings.warn("CUDA is unavailable to PyTorch.") + warnings.warn("CUDA is unavailable to PyTorch.", stacklevel=1) return 0.0 # Query the running processes on GPUs @@ -40,8 +39,8 @@ def get_process_gpu_ram(pid: int) -> float: ["nvidia-smi", "--query-gpu=memory.used", "--format=csv"], capture_output=True ).stdout.decode() return float(res.split("\n")[1].split()[0]) - except Exception as e: - warnings.warn(f"raised: {e}. Parsing NVIDIA-SMI failed.") + except FileNotFoundError as e: + warnings.warn(f"raised: {e}. Parsing NVIDIA-SMI failed.", stacklevel=1) # Default to overall RAM usage for this process on the GPU ram_str = torch.cuda.list_gpu_processes().split("\n") diff --git a/torchscan/utils.py b/torchscan/utils.py index 0ed8461..7c093e9 100644 --- a/torchscan/utils.py +++ b/torchscan/utils.py @@ -3,6 +3,7 @@ # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. +from itertools import starmap from typing import Any, Dict, List, Optional, Tuple @@ -15,7 +16,6 @@ def format_name(name: str, depth: int = 0) -> str: Returns: formatted string """ - if depth == 0: return name elif depth == 1: @@ -36,7 +36,6 @@ def wrap_string(s: str, max_len: int, delimiter: str = ".", wrap: str = "[...]", Returns: wrapped string """ - if len(s) <= max_len or mode is None: return s @@ -58,7 +57,6 @@ def unit_scale(val: float) -> Tuple[float, str]: Returns: tuple of rescaled value and unit """ - if val // 1e12 > 0: return val / 1e12, "T" elif val // 1e9 > 0: @@ -71,7 +69,8 @@ def unit_scale(val: float) -> Tuple[float, str]: return val, "" -def format_s(f_string, min_w: Optional[int] = None, max_w: Optional[int] = None) -> str: +def format_s(f_string: str, min_w: Optional[int] = None, max_w: Optional[int] = None) -> str: + """Format number strings""" if isinstance(min_w, int): f_string = f"{f_string:<{min_w}}" if isinstance(max_w, int): @@ -87,25 +86,25 @@ def format_line_str( receptive_field: bool = False, effective_rf_stats: bool = False, ) -> List[str]: - + """Wrap all information into multiple lines""" if not isinstance(col_w, list): col_w = [None] * 7 # type: ignore[list-item] max_len = col_w[0] + 3 if isinstance(col_w[0], int) else 100 line_str = [ - format_s(wrap_string(format_name(layer["name"], layer["depth"]), max_len, mode=wrap_mode), col_w[0], col_w[0]) + format_s(wrap_string(format_name(layer["name"], layer["depth"]), max_len, mode=wrap_mode), col_w[0], col_w[0]), + format_s(layer["type"], col_w[1], col_w[1]), + format_s(str(layer["output_shape"]), col_w[2], col_w[2]), + format_s(f"{layer['grad_params'] + layer['nograd_params'] + layer['num_buffers']:,}", col_w[3], col_w[3]), ] - line_str.append(format_s(layer["type"], col_w[1], col_w[1])) - line_str.append(format_s(str(layer["output_shape"]), col_w[2], col_w[2])) - line_str.append( - format_s(f"{layer['grad_params'] + layer['nograd_params'] + layer['num_buffers']:,}", col_w[3], col_w[3]) - ) if receptive_field: line_str.append(format_s(f"{layer['rf']:.0f}", col_w[4], col_w[4])) if effective_rf_stats: - line_str.append(format_s(f"{layer['s']:.0f}", col_w[5], col_w[5])) - line_str.append(format_s(f"{layer['p']:.0f}", col_w[6], col_w[6])) + line_str.extend(( + format_s(f"{layer['s']:.0f}", col_w[5], col_w[5]), + format_s(f"{layer['p']:.0f}", col_w[6], col_w[6]), + )) return line_str @@ -123,7 +122,6 @@ def format_info( Returns: formatted information """ - # Set margin between cols margin = 4 # Dynamic col width @@ -141,7 +139,7 @@ def format_info( ] # Truncate columns that are too long - col_w = [min(v, max_v) for v, max_v in zip(col_w, max_w)] + col_w = list(starmap(min, zip(col_w, max_w))) if not receptive_field: col_w = col_w[:4] @@ -159,9 +157,11 @@ def format_info( margin_str = " " * margin # Header - info_str = [thin_line] - info_str.append(margin_str.join([f"{col_name:<{col_w}}" for col_name, col_w in zip(headers, col_w)])) - info_str.append(thick_line) + info_str = [ + thin_line, + margin_str.join([f"{col_name:<{col_w}}" for col_name, col_w in zip(headers, col_w)]), + thick_line, + ] # Layers for layer in module_info["layers"]: @@ -169,12 +169,13 @@ def format_info( info_str.append((" " * margin).join(line_str)) # Parameter information - info_str.append(thick_line) - - info_str.append(f"Trainable params: {module_info['overall']['grad_params']:,}") - info_str.append(f"Non-trainable params: {module_info['overall']['nograd_params']:,}") num_params = module_info["overall"]["grad_params"] + module_info["overall"]["nograd_params"] - info_str.append(f"Total params: {num_params:,}") + info_str.extend(( + thick_line, + f"Trainable params: {module_info['overall']['grad_params']:,}", + f"Non-trainable params: {module_info['overall']['nograd_params']:,}", + f"Total params: {num_params:,}", + )) # Static RAM usage info_str.append(dot_line) @@ -183,9 +184,11 @@ def format_info( param_size = (module_info["overall"]["param_size"] + module_info["overall"]["buffer_size"]) / 1024**2 overhead = module_info["overheads"]["framework"]["fwd"] + module_info["overheads"]["cuda"]["fwd"] - info_str.append(f"Model size (params + buffers): {param_size:.2f} Mb") - info_str.append(f"Framework & CUDA overhead: {overhead:.2f} Mb") - info_str.append(f"Total RAM usage: {param_size + overhead:.2f} Mb") + info_str.extend(( + f"Model size (params + buffers): {param_size:.2f} Mb", + f"Framework & CUDA overhead: {overhead:.2f} Mb", + f"Total RAM usage: {param_size + overhead:.2f} Mb", + )) # FLOPS information info_str.append(dot_line) @@ -194,11 +197,12 @@ def format_info( macs, macs_units = unit_scale(sum(layer["macs"] for layer in module_info["layers"])) dmas, dmas_units = unit_scale(sum(layer["dmas"] for layer in module_info["layers"])) - info_str.append(f"Floating Point Operations on forward: {flops:.2f} {flops_units}FLOPs") - info_str.append(f"Multiply-Accumulations on forward: {macs:.2f} {macs_units}MACs") - info_str.append(f"Direct memory accesses on forward: {dmas:.2f} {dmas_units}DMAs") - - info_str.append(thin_line) + info_str.extend(( + f"Floating Point Operations on forward: {flops:.2f} {flops_units}FLOPs", + f"Multiply-Accumulations on forward: {macs:.2f} {macs_units}MACs", + f"Direct memory accesses on forward: {dmas:.2f} {dmas_units}DMAs", + thin_line, + )) return "\n".join(info_str) @@ -212,7 +216,6 @@ def aggregate_info(info: Dict[str, Any], max_depth: int) -> Dict[str, Any]: Returns: edited dictionary information """ - if not any(layer["depth"] == max_depth for layer in info["layers"]): raise ValueError("The `max_depth` argument cannot be higher than module depth.")