-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path~trainer.py
39 lines (32 loc) · 1.3 KB
/
~trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import cv2
import numpy as np
from PIL import Image
import os
# Path for face image database
path = "dataset"
recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
# function to get the images and label data
def getImagesAndLabels(path):
imagePaths = [os.path.join(path, f) for f in os.listdir(path)]
faceSamples = []
ids = []
for imagePath in imagePaths:
PIL_img = Image.open(imagePath).convert("L") # convert it to grayscale
img_numpy = np.array(PIL_img, "uint8")
id = int(os.path.split(imagePath)[-1].split(".")[1])
print(id)
faces = detector.detectMultiScale(img_numpy)
for x, y, w, h in faces:
faceSamples.append(img_numpy[y : y + h, x : x + w])
ids.append(id)
return faceSamples, ids
print("\n [INFO] Training faces. It will take a few seconds. Wait ...")
print("p1")
faces, ids = getImagesAndLabels(path)
recognizer.train(faces, np.array(ids))
print("p2")
# Save the model into trainer/trainer.yml
recognizer.write("trainer.yml") # recognizer.save() worked on Mac, but not on Pi
# Print the numer of faces trained and end program
print("\n [INFO] {0} faces trained. Exiting Program".format(len(np.unique(ids))))