-
Notifications
You must be signed in to change notification settings - Fork 31
/
SPEI vs NDVI.js
272 lines (238 loc) · 10.6 KB
/
SPEI vs NDVI.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
////////////////////////////////////////////////////////////////////////////
// This script will compute the monthly NDVI from Landsat imagery and //
// correlate with SPEI calculated from NOAH Global Land Assimulation //
// System data. It will display and export the correlation map of SPEI vs //
// three months sum of NDVI anomalies. (spearson/pearson's correlation) //
//------------------------------------------------------------------------//
// This is part of a group work about drought analysis by MSc students in //
// Department of Earth Sciences, Uppsala University: //
// de Mendonça Fileni, Felipe; Erikson, Torbjörn-Johannes; Feng, Shunan // //
// Supervisor: Pettersson, Rickard; Winterdahl, Mattias //
// Contact: Shunan Feng (冯树楠): fsn.1995@gmail.com //
////////////////////////////////////////////////////////////////////////////
// NOTE
// The correlation map can be displayed for the period of 1984-2004 in console
// Longer period must be exported through task, (normally will take 1 hour for
// 40-year calculation
// note to myself:
// lucc class name on correlation chart needs to be corrected
// lucc class should be simplified
// SPEI could be uploaded once it is done and correlate it with NDVI
// Time lag and month gaps of ndvi
//------------------------------------------------------------------------//
// Preparation //
//------------------------------------------------------------------------//
// var worldmap = ee.FeatureCollection('ft:1tdSwUL7MVpOauSgRzqVTOwdfy17KDbw-1d9omPw');//world vector
var usstate = ee.FeatureCollection('ft:1fRY18cjsHzDgGiJiS2nnpUU3v9JPDc2HNaR7Xk8');//us state vector
// var worldmap = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017'); //not political right,
// var country = ['Spain'];//CHANGE the NAME of country here!
var state = ['California'];//CHANGE the NAME of us state here!
// var countryshape = worldmap.filter(ee.Filter.inList('Country', country));// country
var stateshape = usstate.filter(ee.Filter.inList('Name', state));// us state
// var roi = countryshape.geometry();// country
var roi = stateshape.geometry();// us state
var roiLayer = ui.Map.Layer(roi, {color: 'FF0000'}, 'roi');
// var roiCentroid = roi.centroid();
Map.layers().add(roiLayer);//display roi
// Map.setCenter(roiCentroid);
// study time range
var year_start = 1984;
var year_end = 2018;
// month range of ndvi anomalies (May to July)
// var month_start = 5;
// var month_end = 7;
var speim = 4;// month of spei
var month_start = speim + 1;
var month_end = speim + 3;
var date_start = ee.Date.fromYMD(year_start, 1, 1);
var date_end = ee.Date.fromYMD(year_end, 12, 31);
var years = ee.List.sequence(year_start, year_end);// time range of years
var months = ee.List.sequence(month_start, month_end);// time range of months
// next step is to define the months of ndvi anomal calculation
// var month_anomaly = ee.List.sequence(3,5);// March to May
// var month_upper = 8;// May to July
// var month_lower = 4;
//------------------------------------------------------------------------//
// NDVI //
//------------------------------------------------------------------------//
// load landsat image
var surfaceReflectance4 = ee.ImageCollection('LANDSAT/LT04/C01/T1_SR')
.filterDate(date_start, date_end)
.filterBounds(roi);
var surfaceReflectance5 = ee.ImageCollection('LANDSAT/LT05/C01/T1_SR')
.filterDate(date_start, date_end)
.filterBounds(roi);
var surfaceReflectance7 = ee.ImageCollection('LANDSAT/LE07/C01/T1_SR')
.filterDate(date_start, date_end)
.filterBounds(roi);
var surfaceReflectance8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR')
.filterDate(date_start, date_end)
.filterBounds(roi);
var surfaceReflectance457 = surfaceReflectance4.merge(surfaceReflectance5).merge(surfaceReflectance7);
// var spei = ee.ImageCollection("users/felipef93/SPEI_CAL").filterBounds(roi);
var spei = ee.ImageCollection("users/felipef93/SPEI_CAL_3m").filterBounds(roi);
// // cloud/snow/water mask
// pixel_qa contains fmask information:
// bit 0: fill, bit 1: clear, bit 2: water,
// bit 3: cloud shadow, bit 4: snow/ice bit 5: cloud
// fmask for surfaceReflectance8
var fmaskL8sr = function(image) {
var cloudShadowBitmask = 1 << 3;
var cloudsBitMask = 1 << 5;
var waterBitmask = 1 << 2;
var snowBitmask = 1 << 4;
// QA band pixel value
var qa = image.select('pixel_qa');
// set cloud and shadows to 0
var mask = qa.bitwiseAnd(cloudShadowBitmask).eq(0)
.and(qa.bitwiseAnd(cloudsBitMask).eq(0))
.and(qa.bitwiseAnd(waterBitmask).eq(0))
.and(qa.bitwiseAnd(snowBitmask).eq(0));
return image.updateMask(mask);
};
// fmask for surfaceRflectance457
var fmaskL457 = function(image) {
var qa = image.select('pixel_qa');
// If the cloud bit (5) is set and the cloud confidence (7) is high
// or the cloud shadow bit is set (3), then it's a bad pixel. (GEE example)
var maskband = qa.bitwiseAnd(1 << 5)
.and(qa.bitwiseAnd(1 << 7))
.or(qa.bitwiseAnd(1 << 3))
.and(qa.bitwiseAnd(1 << 2))
.and(qa.bitwiseAnd(1 << 4));
// Remove edge pixels that don't occur in all bands
var mask2 = image.mask().reduce(ee.Reducer.min());
return image.updateMask(maskband.not()).updateMask(mask2);
};
// NDVI computation [-1 1]
var addNDVI457 = function(image) {
var ndvi457 = image.normalizedDifference(['B4', 'B3']).rename('NDVI');
return image.addBands(ndvi457);
};
var addNDVI8 = function(image) {
var ndvi8 = image.normalizedDifference(['B5', 'B4']).rename('NDVI');
return image.addBands(ndvi8);
};
// add cloud masked ndvi band
var L8ndvi = surfaceReflectance8
.filter(ee.Filter.calendarRange(month_start, month_end, 'month'))
.map(fmaskL8sr)
.map(addNDVI8);
var L457ndvi = surfaceReflectance457
.filter(ee.Filter.calendarRange(month_start, month_end, 'month'))
.map(fmaskL457)
.map(addNDVI457);
// merge L8 L457 NDVI
var landsatndvi = L8ndvi.merge(L457ndvi);
// var NDVI = landsatndvi.filterDate(date_start, date_end)
// .sort('system:time_start', false)
// .select('NDVI');
// monthly average NDVI
// sytstem time is set as 1st of each month
var NDVI_monthlyave = ee.ImageCollection.fromImages(
years.map(function (y) {
return months.map(function(m) {
var vi = landsatndvi.select('NDVI')
.filter(ee.Filter.calendarRange(y, y, 'year'))
.filter(ee.Filter.calendarRange(m, m, 'month'))
.mean()
.rename('NDVIm');
return vi.set('year', y)
.set('month', m)
.set('system:time_start', ee.Date.fromYMD(y, m, 1));
});
}).flatten()
);
// 30yr monthly average NDVI
var NDVI_30yrave = ee.ImageCollection.fromImages(
months.map(function (m) {
var vi = NDVI_monthlyave.filter(ee.Filter.eq('month', m))
.mean()
.rename('NDVIy');
return vi.set('month', m);
}).flatten()
);
// print(NDVI_30yrave);
// NDVI anomaly = monthly average NDVI - 30yr monthly average NDVI
// NDVI monthly anomaly
var monthfilter = ee.Filter.equals({
leftField: 'month',
rightField: 'month',
});
var monthlink = ee.Join.saveFirst({
matchKey: 'match',
});
var NDVI_monthlink = ee.ImageCollection(monthlink.apply(NDVI_monthlyave,NDVI_30yrave,monthfilter))
.map(function(image) {
return image.addBands(image.get('match'));
});
// var date_all = NDVI_monthlink.map(function(image) {
// return image.set('date', image.date());
// });
// print(date_all);
// var datelist = date_all.aggregate_array('date');
// print(datelist);
// var NDVIfiltered = NDVI_monthlink.filterMetadata('month','less_than',month_upper)
// .filterMetadata('month','greater_than',month_lower);
// print(NDVIfiltered,'ndvifiltered');
var addNDVI_anomaly = function(image) {
var anomaly = image.expression(
'b1-b2',
{
b1: image.select('NDVIm'),
b2: image.select('NDVIy'),
}
).rename('NDVI_anomaly');
return image.addBands(anomaly);
};
var NDVI_anomaly = NDVI_monthlink.map(addNDVI_anomaly);
// print(NDVI_anomaly);
// three month sum of NDVI_anomaly
var NDVI_anomaly_sum = ee.ImageCollection.fromImages(
years.map(function (y) {
var vi = NDVI_anomaly.select('NDVI_anomaly')
.filter(ee.Filter.eq('year', y))
.sum()
.rename('NDVI_anomaly_sum');
return vi.set('year', y)
.set('month', speim)// here is set as the month of spei (April)
.set('system:time_start', ee.Date.fromYMD(y, speim, 1));
}).flatten()
);
// Map.addLayer(speiSelect.select('spei'), corrParams, 'spei Map');
// print(NDVI_anomaly_sum);
//------------------------------------------------------------------//
// This part compares NDVI anomalies with spei2m computed from NOAH //
// Global land assimulation system //
//------------------------------------------------------------------//
var speiSet = spei.map(function(image) {
return image.set('date', image.date());
});
// print(speiSet,'speiSet');
var yearfilter = ee.Filter.equals({
leftField: 'system:time_start',
rightField: 'date',
});
var yearlink = ee.Join.saveFirst({
matchKey: 'match',
});
// print(NDVI_anomaly_sum,'ndvi');
// print(spei,'spei');
var NDVI_spei = ee.ImageCollection(yearlink.apply(NDVI_anomaly_sum.select('NDVI_anomaly_sum'),
speiSet.select('b1'),yearfilter))
.map(function(image) {
return image.addBands(image.get('match'));
});
// print(NDVI_spei,'NDVI_spei');
var corrmap = NDVI_spei.reduce(ee.Reducer.pearsonsCorrelation()).clip(roi);
// var corrmap = NDVI_spei.reduce(ee.Reducer.spearmansCorrelation()).clip(roi);
// .addBands(lucc.select('landcover')
// .rename('lucc'));
var corrParams = {min: -1, max: 1, palette: ['red','white', 'green']};
Map.addLayer(corrmap.select('correlation'), corrParams, 'Correlation Map');
Export.image.toDrive({
image: corrmap,
description: 'Correlation map of monthly NDVI and water balance',
scale: 1000,
// region: roi
});