-
Notifications
You must be signed in to change notification settings - Fork 164
/
eval_DFOLD_dynamics.py
238 lines (207 loc) · 9.18 KB
/
eval_DFOLD_dynamics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import torch
import GPUtil
import time
import tree
import numpy as np
import wandb
import copy
import hydra
import logging
import copy
import random
import pandas as pd
import subprocess
from collections import defaultdict
from collections import deque
from datetime import datetime
from omegaconf import DictConfig
from omegaconf import OmegaConf
from torch.nn import DataParallel as DP
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
from torch.utils import data
from openfold.utils import rigid_utils as ru
from hydra.core.hydra_config import HydraConfig
from src.analysis import utils as au
from src.analysis import metrics
# from data import Dfold_data_loader_new
from src.data import Dfold_data_loader_dynamic
from src.data import se3_diffuser
from src.data import utils as du
from src.data import all_atom
from src.model import Dfold_network_dynamic
from src.experiments import utils as eu
from openfold.utils.loss import lddt, lddt_ca,torsion_angle_loss,supervised_chi_loss
from openfold.np import residue_constants#
from openfold.utils.superimposition import superimpose
from openfold.utils.validation_metrics import (
gdt_ts,
gdt_ha,
drmsd
)
from openfold.utils.lr_schedulers import AlphaFoldLRScheduler
from Bio.SVDSuperimposer import SVDSuperimposer
# from openfold.utils.loss import compute_fape
# from openfold.utils.rigid_utils import Rotation, Rigid
from typing import Dict
import train_DFOLD_dynamics
seed = 42
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
np.random.default_rng(seed)
class Evaluator:
def __init__(
self,
conf: DictConfig,
conf_overrides:Dict=None
):
# 初始化参数
self._log = logging.getLogger(__name__)
# Remove static type checking.
OmegaConf.set_struct(conf, False)
# Prepare configs.
self._conf = conf
self._eval_conf = conf.eval
self._diff_conf = conf.diffuser
self._data_conf = conf.data
self._exp_conf = conf.experiment
# Set-up GPU
if torch.cuda.is_available():
if self._eval_conf.gpu_id is None:
available_gpus = ''.join([str(x) for x in GPUtil.getAvailable(order='memory', limit = 8)])
self.device = f'cuda:{available_gpus[0]}'
else:
self.device = f'cuda:{self._eval_conf.gpu_id}'
else:
self.device = 'cpu'
self._log.info(f'Using device: {self.device}')
# model weight
self._weights_path = self._eval_conf.weights_path
project_name = self._weights_path.split('/')[-3]
output_dir =self._eval_conf.output_dir
if self._eval_conf.name is None:
dt_string = datetime.now().strftime("%dD_%mM_%YY_%Hh_%Mm_%Ss")
else:
dt_string = self._eval_conf.name
self._output_dir = os.path.join(output_dir, project_name,dt_string)
os.makedirs(self._output_dir, exist_ok=True)
self._log.info(f'Saving results to {self._output_dir}')
# Load models and experiment
self._load_ckpt(conf_overrides)
def _load_ckpt(self, conf_overrides):
"""Loads in model checkpoint."""
self._log.info(f'===================>>>>>>>>>>>>>>>> Loading weights from {self._weights_path}')
# Read checkpoint and create experiment.
weights_pkl = du.read_pkl(self._weights_path, use_torch=True, map_location=self.device)
# Merge base experiment config with checkpoint config.
self._conf.model = OmegaConf.merge(self._conf.model, weights_pkl['conf'].model)
if conf_overrides is not None:
self._conf = OmegaConf.merge(self._conf, conf_overrides)
# Prepare model
self._conf.experiment.ckpt_dir = None
self._conf.experiment.warm_start = None
self.exp = train_DFOLD_dynamics.Experiment(conf=self._conf)
self.model = self.exp.model
# Remove module prefix if it exists.
model_weights = weights_pkl['model']
model_weights = {k.replace('module.', ''):v for k,v in model_weights.items()}
# print(self.model.state_dict()['score_model.rigid_embeder.2.weight'])
# exit()
self.model.load_state_dict(model_weights)
# print(self.model.state_dict()['score_model.rigid_embeder.2.weight'])
# exit()
self.model = self.model.to(self.device)
self.model.eval()
self.diffuser = self.exp.diffuser
self._log.info(f'Loading model Successfully!!!')
def create_dataset(self,is_random=False):
if self._data_conf.is_extrapolation:
test_dataset = Dfold_data_loader_dynamic.PdbDatasetExtrapolation(
data_conf=self._data_conf,
diffuser=self.exp._diffuser,
is_training=False,
is_testing=True,
is_random_test=is_random
)
else:
test_dataset = Dfold_data_loader_dynamic.PdbDataset(
data_conf=self._data_conf,
diffuser=self.exp._diffuser,
is_training=False,
is_testing=True,
is_random_test=is_random
)
num_workers = self._exp_conf.num_loader_workers
persistent_workers = True if num_workers > 0 else False
prefetch_factor=2
prefetch_factor = 2 if num_workers == 0 else prefetch_factor
test_dataloader = data.DataLoader(
test_dataset,
batch_size=self._eval_conf.eval_batch_size,
shuffle=False,
num_workers=num_workers,
prefetch_factor=prefetch_factor,
persistent_workers=persistent_workers,
drop_last=False,
multiprocessing_context='fork' if num_workers != 0 else None,
)
return test_dataloader
def start_evaluation(self):
test_loader = self.create_dataset(is_random=self._conf.eval.random_sample)
if self._eval_conf.name is None:
eval_dir = os.path.join(self._output_dir,'eval_res')
else:
df = datetime.now().strftime("%dD_%mM_%YY_%Hh_%Mm_%Ss")
eval_dir = os.path.join(self._output_dir,df)
os.makedirs(eval_dir, exist_ok=True)
config_path = os.path.join(eval_dir ,'eval_conf.yaml')
with open(config_path, 'w') as f:
OmegaConf.save(config=self._conf, f=f)
self._log.info(f'Saving inference config to {config_path}')
# for valid_feats, pdb_names in test_loader:
# print(pdb_names,valid_feats['atom37_pos'].shape,valid_feats['atom37_pos'][0,:,0,0])
# exit()
# for test_feats, pdb_names in test_loader:
# print(pdb_names)
# ckpt_eval_metrics,curve_fig,curve_fig_aligned,error_fig,model_ckpt_update,rot_trans_error_mean = self.exp.eval_fn(eval_dir,test_loader,self.device,noise_scale=self._exp_conf.noise_scale,is_training=False)
# return ckpt_eval_metrics,curve_fig,curve_fig_aligned,error_fig,model_ckpt_update,rot_trans_error_mean
# self.exp.eval_extension(eval_dir,test_loader,self.device,noise_scale=self._exp_conf.noise_scale,is_training=False)
#self.exp.eval_fn_multi(eval_dir,test_loader,self.device,diffuser=self.exp._diffuser,exp_name=self._weights_path.split('/')[-3],data_conf=self._data_conf,
#self.exp.eval_fn(eval_dir,test_loader,self.device,diffuser=self.exp._diffuser,exp_name=self._weights_path.split('/')[-3],data_conf=self._data_conf,
# num_workers=self._exp_conf.num_loader_workers,eval_batch_size=self._eval_conf.eval_batch_size,
# noise_scale=self._exp_conf.noise_scale,is_training=False)
self.exp.eval_fn(eval_dir,test_loader,self.device,noise_scale=self._exp_conf.noise_scale,is_training=False)
@hydra.main(version_base=None, config_path="./config", config_name="eval_DFOLDv2")
def run(conf: DictConfig) -> None:
# Read model checkpoint.
print('Starting inference')
start_time = time.time()
sampler = Evaluator(conf)
# here to infere multi times
# for i in range(2):
# print(f"======>>>>>>>>>{i}")
#ckpt_eval_metrics,curve_fig,curve_fig_aligned,error_fig,model_ckpt_update,rot_trans_error_mean = sampler.start_evaluation()
rot_trans_error_mean = sampler.start_evaluation()
# print(ckpt_eval_metrics,rot_trans_error_mean)
# print('Rotation:',rot_trans_error_mean['ave_rot'],rot_trans_error_mean['first_rot'])
# print('Translation:',rot_trans_error_mean['ave_trans'],rot_trans_error_mean['first_trans'])
# print(rot_trans_error_mean)
# 用于存储结果字典的列表
# dict_list = []
# # 遍历 DataFrame 的每一行
# for index, row in ckpt_eval_metrics.iterrows():
# # 创建一个字典,将列名作为键,对应的值作为键的值
# row_dict = {col: (val.item() if isinstance(val, np.ndarray) else val) for col, val in row.items()}
# # 添加到结果列表中
# dict_list.append(row_dict)
# # 还需要加入trans rots error
# print('='*10)
# print(dict_list)
elapsed_time = time.time() - start_time
print(f'Finished in {elapsed_time:.2f}s')
if __name__ == '__main__':
run()