-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreport.tex
283 lines (236 loc) · 9.4 KB
/
report.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{booktabs}
\usepackage{float}
\usepackage{subcaption}
\usepackage{graphicx}
\usepackage{hyperref}
\usepackage[top=1in, bottom=1.25in, left=1.25in, right=1.25in]{geometry}
\title{Enzyme Kinetics Analysis Report}
\author{Jozef Fülöp}
\date{March 2023}
\begin{document}
\maketitle
\section{Introduction}
Enzyme kinetics is the study of the chemical
reactions that are catalyzed by enzymes.
This report analyzes two sets of experimental data on enzyme kinetics,
one with an inhibitor and one without an inhibitor.
Calculates the $V_{max}$, $K_M$ and $K_I$ values.
\section{Input data}
\begin{table}[htbp]
\centering
\begin{subtable}{\textwidth}
\centering
\caption{Reaction without inhibitor}
\begin{tabular}{cccc}
\hline
[S](mmol/l) & [I](mmol/l) & V (µmol/L/min) \\
\hline
1 & 0 & 0.67 \\
2 & 0 & 1.13 \\
3 & 0 & 1.48 \\
4 & 0 & 1.74 \\
5 & 0 & 1.98 \\
\hline
\end{tabular}
\end{subtable}
\begin{subtable}{\textwidth}
\centering
\caption{Reaction with inhibitor}
\begin{tabular}{cccc}
\hline
[S](mmol/l) & [I](mmol/l) & V (µmol/L/min) \\
\hline
1 & 1 & 0.05 \\
2 & 1 & 0.10 \\
3 & 1 & 0.15 \\
4 & 1 & 0.16 \\
5 & 1 & 0.18 \\
\hline
\end{tabular}
\end{subtable}
\caption{Reaction rates with and without inhibitor}
\end{table}
\subsection*{Equations}
The Michaelis-Menten equation is given by:
\begin{equation}
V = V_{max} \frac{[S]}{K_{M} + [S]}
\end{equation}
The Lineweaver-Burk equation is given by:
\begin{equation}
\frac{1}{V} = \frac{1}{V_{max}} + \frac{1}{K_{M}} \cdot \frac{1}{[S]}
\end{equation}
The Michaelis-Menten equation can be derived from the Lineweaver-Burk equation by
multiplying both sides by $V$ and rearranging the terms:
\begin{equation}
V = \frac{V_{max}}{\displaystyle 1 + \frac{K_{M}}{[S]}}
\end{equation}
The Michaelis-Menten equation can be used to calculate the $K_I$ value, in noncompetitive
inhibition, as follows: % V = ((Vmax / (1 + [I]/Ki)) * [S]) / (Km + [S])
\begin{equation}
V = \frac{\displaystyle \frac{V_{max}}{1 + \frac{[I]}{K_{I}}} \cdot [S]}{K_{M} + [S]}
\end{equation}
\subsection*{Plots}
\begin{figure}[H]
\centering
\includegraphics[width=1.0\textwidth, height=0.5\textheight]{plots/data_plot1.png}
\caption{Michaelis-Menten kinetics plot showing the relationship
between substrate concentration and reaction rate with and without inhibitor.
The plot also includes fitted values and 1/2 $V_{max}$ lines for both datasets and
the $K_{M}$ from which we obtained starting values for fitting the data into the
model.}
\label{fig:MMplot}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=1.0\textwidth, height=0.5\textheight]{plots/Lineweaver-Burk_big.png}
\caption{Lineweaver-Burk plot showing the reciprocal of substrate concentration
($1/[S]$) versus the reciprocal of enzyme velocity ($1/V$) for inhibited (red) and
uninhibited (blue) enzyme reactions. The plot includes two linear regression lines with
slopes and intercepts calculated from the data also we can determine that the inhibition
is noncompetitive.}
\label{fig:lineweaver-burk}
\end{figure}
\section{Uninhibited Reaction}
The first set of data is from an uninhibited reaction. The data was fit to the
Michaelis-Menten equation $V = V_{max} \displaystyle \frac{[S]}{K_{M} + [S]}$, where $V_{max}$ is the
maximum velocity of the reaction, $[S]$ is the substrate concentration, and $K_{M}$ is the
Michaelis constant. The fitted parameters are as follows:
\begin{itemize}
\item $V_{max}$ = 3.89 $\pm$ 0.08 mmol/l
\item $K_{M}$ = 4.88 $\pm$ 0.18 µmol/L/min
\end{itemize}
\begin{table}[H]
\caption{Model summary without inhibitor}
\centering
\begin{tabular}[t]{l|r|r|r|r}
\hline
& Estimate & Std. Error & t value & Pr($>|t|$) \\
\hline
$V_{max}$ & 3.892276 & 0.0846582 & 45.97636 & 0.0000227 \\
\hline
$K_{M}$ & 4.881717 & 0.1828702 & 26.69498 & 0.0001153 \\
\hline
\end{tabular}
\end{table}
\begin{table}[H]
\caption{Confidence interval for Vm and Km for uninhibited reaction}
\centering
\begin{tabular}[t]{l|r|r}
\hline
& 2.5\% & 97.5\% \\
\hline
$V_{max}$ & 3.640811 & 4.185819 \\
\hline
$K_{M}$ & 4.340821 & 5.518560 \\
\hline
\end{tabular}
\end{table}
\section{Inhibited Reaction}
The second set of data is from an inhibited reaction. The data was fit to the Michaelis-Menten
equation $V = V_{max}\displaystyle \frac{[S]}{K_{M} + [S]}$, where $V_{max}$ is the maximum velocity of the
reaction, $[S]$ is the substrate concentration, and $K_{M}$ is the Michaelis constant. The
fitted parameters are as follows:
\begin{itemize}
\item $V_{max}$ = 0.39 $\pm$ 0.10 mmol/l
\item $K_{M}$ = 5.71 $\pm$ 2.30 µmol/L/min
\end{itemize}
\begin{table}[H]
\caption{Model summary with inhibitor}
\centering
\begin{tabular}[t]{l|r|r|r|r}
\hline
& Estimate & Std. Error & t value & Pr($>|t|$) \\
\hline
$V_{max}$ & 0.3945488 & 0.0974732 & 4.047765 & 0.0271504 \\
\hline
$K_{M}$ & 5.7125880 & 2.2981536 & 2.485729 & 0.0888187 \\
\hline
\end{tabular}
\end{table}
\begin{table}[H]
\caption{Confidence interval for $V_{max}$ and $K_{M}$ for inhibited reaction}
\centering
\begin{tabular}[t]{l|r|r}
\hline
& 2.5\% & 97.5\% \\
\hline
$V_{max}$ & 0.2437008 & 3.270304 \\
\hline
$K_{M}$ & 2.5583919 & 74.920253 \\
\hline
\end{tabular}
\end{table}
\begin{figure}[H]
\centering
\includegraphics[width=1.2\textwidth, height=0.5\textheight]{plots/enzyme_hw_plot3.png}
\caption{Bar plot showing parameter estimates with and without inhibitor for the $V_{max}$ and $K_M$ parameters.
Error bars represent the standard error of the estimates.}
\label{fig:Bar plot $V_{max}$ $K_{M}$}
\end{figure}
\section{Non-competitive inhibition}
The data was fit to the same Michaelis-Menten equation as before, but with an additional term to account for
the inhibitor: $ V =\displaystyle \frac{\displaystyle \frac{V_{max}}{1 + \frac{[I]}{K_{I}}} \cdot [S]}{K_{M} + [S]}
$\\ where $[I]$ is the inhibitor
concentration and $K_{I}$ is the inhibition constant. The results are as follows:
\begin{itemize}
\item $V_{max}$ = 3.90 $\pm$ 0.08 mmol/l
\item $K_{M}$ = 4.89 $\pm$ 0.17 mmol/l
\item $K_{I}$ = 0.10 $\pm$ 0.00 mmol/l
\end{itemize}
\begin{table}[H]
\caption{Model summary for non-competitive inhibition}
\centering
\begin{tabular}[t]{l|r|r|r|r}
\hline
& Estimate & Std. Error & t value & Pr($>|t|$) \\
\hline
$V_{max}$ & 3.8955119 & 0.0767059 & 50.78505 & 0 \\
\hline
$K_{M}$ & 4.8887879 & 0.1656901 & 29.50562 & 0 \\
\hline
$K_{I}$ & 0.1017605 & 0.0036314 & 28.02254 & 0 \\
\hline
\end{tabular}
\end{table}
\begin{table}[H]
\caption{Confidence interval for non-competitive inhibition}
\centering
\begin{tabular}[t]{l|r|r}
\hline
& 2.5\% & 97.5\% \\
\hline
$V_{max}$ & 3.7222470 & 4.0877450 \\
\hline
$K_{M}$ & 4.5155594 & 5.3052748 \\
\hline
$K_{I}$ & 0.0932454 & 0.1104207 \\
\hline
\end{tabular}
\end{table}
\begin{figure}[H]
\centering
\includegraphics[width=1.0\textwidth, height=0.5\textheight]{plots/model_fit_plot2.png}
\caption{Michaelis-Menten model for enzyme kinetics, showing the substrate concentration [S] (mmol/l)
on the x-axis and the reaction rate V (µmol/l/min) on the y-axis. The blue line represents the reaction
rate without inhibitor, while the red line shows the reaction rate with inhibitor.
The plot illustrates the effect of an inhibitor on the enzyme
activity.}
\label{fig:enzyme_kinetics}
\end{figure}
\section{Conclusion}
As a result of enzyme kinetics analysis, it was found that the presence of inhibitor
significantly reduced the maximum reaction rate ($V_{max}$) and slightly increased
the Michaelis constant ($K_M$) compared to the reaction without inhibitor.\\
From Lineweaver-Burk plot, it was determined that the inhibitor is non-competitive.\\
Inhibition of the reaction showed that the inhibitor could bind to the enzyme and
prevent binding of the substrate, leading to a decrease in the reaction rate.
An increase in $K_M$ indicates that the inhibitor can alter the affinity of the
enzyme for its substrate.\\
\section{Code} % with link to github
The code for this project can be found at \url{https://github.com/dodes24/enzymology}\\
Code was written in R and jupyter notebook was used to create the project.\\
Latex was used to create the report.
\end{document}