-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·456 lines (379 loc) · 15.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# -*- coding: utf-8 -*-
import os
import matplotlib.pyplot as plt
import numpy as np
import chainer
from chainer import cuda, Variable, optimizers
import chainer.functions as F
import chainer.links as L
from chainer import Link, Chain, ChainList
from chainer import serializers
import sys
import csv
import time
import random
import math as mt
import skimage.io as sk
import argparse
import copy
import collections
os.environ['QT_QPA_PLATFORM']='offscreen'
plt.style.use('ggplot')
ap = argparse.ArgumentParser(description='python train.py')
ap.add_argument('--input', '-i', nargs='?', default='dataset', help='Specify input directory')
ap.add_argument('--gpu', '-g', type=int, default=-1, help='Specify GPU ID (negative value indicates CPU)')
ap.add_argument('--crop_size', '-c', type=int, default=180, help='Specify crop size (int)')
ap.add_argument('--preprocess', '-p', type=int, default=1, help='Specify pre-process mode; 1. median, 2. normalization')
ap.add_argument('--batchsize', '-b', type=int, default=2, help='Specify mini-batch size')
ap.add_argument('--epoch', '-e', type=int, default=100, help='Specify the number of epoch')
args = ap.parse_args()
os.makedirs('results', exist_ok=True)
batchsize = args.batchsize
epoch_num = args.epoch
imsize = 200
pd_size = int((imsize - args.crop_size) / 2)
draw = True
ans = False
print('[Training property]')
print('batchsize : ' + str(batchsize))
print('epoch : ' + str(epoch_num))
print('image size : ' + str(imsize))
print('crop size : ' + str(args.crop_size))
print('pad size : ' + str(pd_size))
# Load images
def loadImages(path):
imagePathes = list(map(lambda a:os.path.join(path,a),os.listdir(path)))
#images = np.array(map(lambda x: cv2.imread(x, 0).reshape(1, 200, 200), imagePathes))
images = np.array(list(map(lambda x: sk.imread(x).reshape(imsize, imsize), imagePathes)))
return(images)
# Augmentation
def batch_augmentation(
images,
crop_size=(180, 180)
):
""" 2d image batches are cropped from array.
Args:
images (np.ndarray) : Input batch of 2d images array
crop_size ((int, int)) : Crop patch from array
Returns:
aug_images (np.ndarray) : augmentation 2d image array
"""
bn, _, y_len, x_len = images.shape
assert y_len >= crop_size[0]
assert x_len >= crop_size[1]
aug_images = np.zeros((bn, 1, crop_size[0], crop_size[1]))
for n in range(bn):
# get cropping position (image)
left = random.randint(0, x_len-crop_size[1]-1) if x_len > crop_size[1] else 0
top = random.randint(0, y_len-crop_size[0]-1) if y_len > crop_size[0] else 0
right = left + crop_size[0]
bottom = top + crop_size[1]
aug_images[n, 0] = images[n, 0, top:bottom, left:right]
# get rotating position (image)
aug_flag = random.randint(0, 3)
aug_images[n, 0] = np.rot90(aug_images[n, 0], k=aug_flag)
return np.array(aug_images).astype(np.float32)
# Pre-processing
def image_preprocess(
image,
mode = 1
):
""" 2d image batches are cropped from array.
Args:
images (np.ndarray) : Input batch of 2d images array
mode (int) : 1. Median devision method
2. Normalization method
Returns:
proc_image (np.ndarray) : augmentation 2d image array
"""
if mode == 1:
image = image / np.percentile(image, 50)
elif mode == 2:
mean = image.mean()
std = image.std()
image = (image - mean) / std
else:
raise ValueError('mode is int value {1, 2}')
return copy.deepcopy(image)
images = {}
images["diff_train"] = loadImages(args.input + "/diff/train")
images["ndiff_train"] = loadImages(args.input + "/ndiff/train")
images["diff_test"] = loadImages(args.input + "/diff/test")
images["ndiff_test"] = loadImages(args.input + "/ndiff/test")
images["diff_train"] = images["diff_train"].astype('float32')
images["ndiff_train"] = images["ndiff_train"].astype('float32')
images["diff_test"] = images["diff_test"].astype('float32')
images["ndiff_test"] = images["ndiff_test"].astype('float32')
for i in range(len(images["diff_train"])):
images["diff_train"][i] = image_preprocess(images["diff_train"][i], mode=args.preprocess)
for i in range(len(images["ndiff_train"])):
images["ndiff_train"][i] = image_preprocess(images["ndiff_train"][i], mode=args.preprocess)
for i in range(len(images["diff_test"])):
images["diff_test"][i] = image_preprocess(images["diff_test"][i], mode=args.preprocess)
for i in range(len(images["ndiff_test"])):
images["ndiff_test"][i] = image_preprocess(images["ndiff_test"][i], mode=args.preprocess)
images["all"] = np.vstack([images["diff_train"], images["ndiff_train"], images["diff_test"], images["ndiff_test"]]).astype(np.float32)
diff_trainnumber = len(images['diff_train'])
ndiff_trainnumber = len(images['ndiff_train'])
diff_testnumber = len(images['ndiff_test'])
ndiff_testnumber = len(images['ndiff_test'])
all_number = diff_trainnumber + ndiff_trainnumber + diff_testnumber + ndiff_testnumber
images["diff_train"] = images['diff_train'].reshape(diff_trainnumber, 1, imsize, imsize)
images["ndiff_train"] = images['ndiff_train'].reshape(ndiff_trainnumber, 1, imsize, imsize)
images["diff_test"] = images['diff_test'].reshape(diff_testnumber, 1, imsize, imsize)
images["ndiff_test"] = images['ndiff_test'].reshape(ndiff_testnumber, 1, imsize, imsize)
x_train = np.vstack([images["diff_train"], images["ndiff_train"]]).astype(np.float32)
x_test = np.vstack([images["diff_test"], images["ndiff_test"]]).astype(np.float32)
y_train = np.append([0]*len(images['diff_train']), [1]*len(images['ndiff_train'])).astype(np.int32)
y_test = np.append([0]*len(images['diff_test']), [1]*len(images['ndiff_test'])).astype(np.int32)
N_train = diff_trainnumber + ndiff_trainnumber
N_test = diff_testnumber + ndiff_testnumber
print('[Dataset property]')
print('Data Sets : ' + str(all_number))
print('Learning Data : ' + str(N_train))
print('Test Data : ' + str(N_test))
k1_s = 4
f1_s = 155
p1_s = 3
k2_s = 9
f2_s = 130
p2_s = 5
k3_s = 3
f3_s = 152
p3_s = 3
f_units = 2863
dropout = 0.799
def max_pooling1(x):
return F.max_pooling_2d(x, ksize=p1_s, stride=p1_s)
def max_pooling2(x):
return F.max_pooling_2d(x, ksize=p2_s, stride=p2_s)
def max_pooling3(x):
return F.max_pooling_2d(x, ksize=p3_s, stride=p3_s)
def Dropout(x):
return F.dropout(x, ratio=dropout)
class diff_nn(Chain):
def __init__(self, k1_s=k1_s, f1_s=f1_s, k2_s=k2_s, f2_s=f2_s, k3_s=k3_s, f3_s=f3_s, f_units=f_units):
self.k1_s = k1_s
self.f1_s = f1_s
self.k2_s = k2_s
self.f2_s = f2_s
self.k3_s = k3_s
self.f3_s = f3_s
self.f_units = f_units
self.initializer = chainer.initializers.HeNormal()
self.size = imsize
super(diff_nn, self).__init__(
conv1=L.Convolution2D(1, self.f1_s, self.k1_s, initialW=self.initializer, initial_bias=None),
conv2=L.Convolution2D(self.f1_s, self.f2_s, self.k2_s, initialW=self.initializer, initial_bias=None),
conv3=L.Convolution2D(self.f2_s, self.f3_s, self.k3_s, initialW=self.initializer, initial_bias=None),
bn1=L.BatchNormalization(self.f1_s),
bn2=L.BatchNormalization(self.f2_s),
bn3=L.BatchNormalization(self.f3_s),
fc1 = L.Linear(None, self.f_units),
fc2 = L.Linear(self.f_units, 2),
)
self.functions = collections.OrderedDict([
('conv1', [self.conv1, self.bn1, F.relu]),
('pool1', [max_pooling1]),
('conv2', [self.conv2, self.bn2, F.relu]),
('pool2', [max_pooling2]),
('conv3', [self.conv3, self.bn3, F.relu]),
('pool3', [max_pooling3]),
('fc1', [self.fc1, F.relu, Dropout]),
('fc2', [self.fc2]),
('prob', [F.softmax]),
])
def calc(self, x, train):
h = max_pooling1(F.relu(self.bn1(self.conv1(x))))
h = max_pooling2(F.relu(self.bn2(self.conv2(h))))
h = max_pooling3(F.relu(self.bn3(self.conv3(h))))
h = F.relu(self.fc1(h))
with chainer.using_config('train', train):
h = Dropout(h)
h = self.fc2(h)
return h
def __call__(self, x, y, train=True):
x, y = Variable(x), Variable(y)
h = self.calc(x, train)
output = F.softmax(h)
loss = F.softmax_cross_entropy(h, y)
acc = F.accuracy(h, y)
del h
return loss, acc
# Optimizer
model = diff_nn()
optimizer = optimizers.Adam()
optimizer.setup(model)
if args.gpu >= 0:
cuda.get_device(0).use()
model.to_gpu()
train_loss = []
train_acc = []
test_loss = []
test_acc = []
sum_train_error = []
sum_test_error = []
sum_train_accuracy = []
sum_test_accuracy = []
diffErrorList = []
ndiffErrorList = []
conv1_W = []
conv2_W = []
conv3_W = []
l4_W = []
l5_W = []
best_accuracy = 0
# Learning loop
for epoch in range(1, epoch_num+1):
print('---------------------------')
print('epoch', epoch)
# training
perm = np.random.permutation(N_train)
train_sum_accuracy = 0
train_sum_loss = 0
for i in range(0, N_train, batchsize):
x_batch = x_train[perm[i:i+batchsize]]
x_batch = batch_augmentation(x_batch, crop_size=(args.crop_size, args.crop_size))
y_batch = y_train[perm[i:i+batchsize]]
real_batchsize = len(x_batch)
if args.gpu >= 0:
x_batch = cuda.to_gpu(x_batch)
y_batch = cuda.to_gpu(y_batch)
loss, acc = model(x_batch, y_batch, train=True)
optimizer.target.cleargrads()
loss.backward()
optimizer.update()
train_loss.append(loss.data)
train_acc.append(acc.data)
train_sum_loss += float(cuda.to_cpu(loss.data)) * real_batchsize
train_sum_accuracy += float(cuda.to_cpu(acc.data)) * real_batchsize
# sum_train_error.append(1 - (train_sum_accuracy / N_train))
sum_train_error.append(train_sum_loss / N_train)
sum_train_accuracy.append(train_sum_accuracy / N_train)
# evaluation
test_sum_accuracy = 0
test_sum_loss = 0
diff_error = 0
ndiff_error = 0
for i in range(0, N_test):
x_batch = x_test[i].reshape(1, 1, imsize, imsize)
if pd_size != 0:
x_batch = x_batch[0, 0, pd_size:-pd_size, pd_size:-pd_size].reshape(1, 1, args.crop_size, args.crop_size)
y_batch = np.array(y_test[i]).reshape(1)
real_batchsize = len(x_batch)
if args.gpu >= 0:
x_batch = cuda.to_gpu(x_batch)
y_batch = cuda.to_gpu(y_batch)
loss, acc = model(x_batch, y_batch, train=False)
test_loss.append(loss.data)
test_acc.append(acc.data)
test_sum_loss += float(cuda.to_cpu(loss.data)) * real_batchsize
test_sum_accuracy += float(cuda.to_cpu(acc.data)) * real_batchsize
print('---------------------------')
print('train mean loss={}, accuracy={}'.format(train_sum_loss / N_train, train_sum_accuracy / N_train))
print('test mean loss={}, accuracy={}'.format(test_sum_loss / N_test, test_sum_accuracy / N_test))
if test_sum_accuracy / N_test >= best_accuracy:
best_epoch = epoch
best_accuracy = test_sum_accuracy / N_test
serializers.save_npz("best_model_{}.npz".format(args.input[-5:]), model)
sum_test_error.append(test_sum_loss / N_test)
sum_test_accuracy.append(test_sum_accuracy / N_test)
print('best_epoch:' + str(best_epoch))
print('best_accuracy:' + str(best_accuracy))
serializers.load_npz("best_model_{}.npz".format(args.input[-5:]), model)
# TP, TN
TP = 0
TN = 0
FP = 0
FN = 0
for i in range(0, N_test):
x_batch = x_test[i].reshape(1, 1, imsize, imsize)
if pd_size != 0:
x_batch = x_batch[0, 0, pd_size:-pd_size, pd_size:-pd_size].reshape(1, 1, args.crop_size, args.crop_size)
y_batch = np.array(y_test[i]).reshape(1)
real_batchsize = len(x_batch)
if args.gpu >= 0:
x_batch = cuda.to_gpu(x_batch)
y_batch = cuda.to_gpu(y_batch)
loss, acc = model(x_batch, y_batch, train=False)
if acc.data == 1:
if y_batch == 0:
TP += 1
elif y_batch == 1:
TN += 1
elif acc.data == 0:
if y_batch == 0:
FN += 1
elif y_batch == 1:
FP += 1
print('TP:' + str(TP))
print('TN:' + str(TN))
print('FP:' + str(FP))
print('FN:' + str(FN))
plt.style.use('fivethirtyeight')
def draw_digit2(data, n, ans, recog):
size = imsize
plt.subplot(10, 10, n)
Z = data.reshape(size,size)
Z = Z[::-1,:]
plt.xlim(0,99)
plt.ylim(0,99)
plt.pcolor(Z)
if ans == 0:
if recog == 0:
plt.title("ans=diff, recog=diff", size=8)
else:
plt.title("ans=diff, recog=ndiff", size=8)
else:
if recog == 0:
plt.title("ans=ndiff, recog=diff", size=8)
else:
plt.title("ans=ndiff, recog=ndiff", size=8)
plt.gray()
plt.tick_params(labelbottom="off")
plt.tick_params(labelleft="off")
if ans:
plt.figure(figsize=(15,15))
serializers.load_npz('bestepoch.model', model)
if args.gpu >= 0:
model.to_gpu()
cnt = 0
for idx in range(N_test):
x_batch = x_test[idx].reshape(1, 1, imsize, imsize)
if args.gpu >= 0:
x_data = cuda.to_gpu(x_batch)
x = Variable(x_data)
h1 = F.max_pooling_2d( F.relu( model['layer{}'.format(1)](model['layer{}'.format(0)](x)) ), ksize=3, stride=3 )
h2 = F.max_pooling_2d( F.relu( model['layer{}'.format(3)](model['layer{}'.format(2)](h1)) ), ksize=3, stride=3 )
h3 = F.dropout( F.relu(model['layer{}'.format(4)](h2)), ratio=0.1, train=False)
y = model['layer{}'.format(5)](h3)
y_batch = cuda.to_cpu(y.data)
if y_test[idx] != np.argmax(y_batch):
cnt+=1
draw_digit2(x_test[idx], cnt, y_test[idx], np.argmax(y_batch))
figname = 'false_figures.png'
plt.savefig(figname)
# グラフの描画
if draw:
# draw accuracy
plt.figure(figsize=(8,6))
plt.plot(range(1, epoch_num+1), sum_train_accuracy)
plt.plot(range(1, epoch_num+1), sum_test_accuracy)
plt.xlim([1, epoch_num])
plt.ylim([0, 1])
plt.legend(["train_acc","test_acc"],loc='upper right')
plt.title("Accuracy")
plt.plot()
figname = 'Accuracy_' + str(epoch_num) + '.pdf'
plt.savefig(os.path.join('results', figname))
# draw error rate
plt.figure(figsize=(8,6))
plt.plot(range(1, epoch_num+1), sum_train_error)
plt.plot(range(1, epoch_num+1), sum_test_error)
plt.legend(["train_error","test_error"],loc='upper right')
plt.xlim([1, epoch_num])
plt.ylim([0, 10])
plt.title("Error Rate")
plt.plot()
figname = 'Error_' + str(epoch_num) + '.pdf'
plt.savefig(os.path.join('results', figname))