diff --git a/src/federatedlearning/reputation/monitoring.py b/src/federatedlearning/reputation/monitoring.py
index 29acdd8..76dc78a 100644
--- a/src/federatedlearning/reputation/monitoring.py
+++ b/src/federatedlearning/reputation/monitoring.py
@@ -5,6 +5,7 @@
 import numpy as np
 import torch
 import torch.nn as nn
+import torchvision
 from federatedlearning.models.cnn import CNNMnist
 from models.resnet import ResNet18
 from nptyping import DataFrame
@@ -225,8 +226,10 @@ def monitor_time_series_convergence(
         global_model = CNNMnist(cfg=cfg)
         local_model = CNNMnist(cfg=cfg)
     elif cfg.train.dataset == "cifar":
-        global_model = ResNet18()
-        local_model = ResNet18()
+        global_model = torchvision.models.resnet18(weights="IMAGENET1K_V1")
+        global_model.fc = torch.nn.Linear(global_model.fc.in_features, 10)
+        local_model = torchvision.models.resnet18(weights="IMAGENET1K_V1")
+        local_model.fc = torch.nn.Linear(local_model.fc.in_features, 10)
     # Check if it's not the first round
     if round > 0:
         # Load the local model weights for the current client and round
@@ -279,8 +282,18 @@ def monitor_time_series_similarity(
         previous_local_model = CNNMnist(cfg)
         current_local_model = CNNMnist(cfg)
     elif cfg.train.dataset == "cifar":
-        previous_local_model = ResNet18()
-        current_local_model = ResNet18()
+        previous_local_model = torchvision.models.resnet18(
+            weights="IMAGENET1K_V1"
+        )
+        previous_local_model.fc = torch.nn.Linear(
+            previous_local_model.fc.in_features, 10
+        )
+        current_local_model = torchvision.models.resnet18(
+            weights="IMAGENET1K_V1"
+        )
+        current_local_model.fc = torch.nn.Linear(
+            current_local_model.fc.in_features, 10
+        )
 
     is_reliable: bool = True
     if round > 0:
@@ -322,7 +335,8 @@ def monitor_trust_scored_clustering(
     if cfg.train.dataset == "mnist":
         local_model = CNNMnist(cfg=cfg)
     elif cfg.train.dataset == "cifar":
-        local_model = ResNet18()
+        local_model = torchvision.models.resnet18(weights="IMAGENET1K_V1")
+        local_model.fc = torch.nn.Linear(local_model.fc.in_features, 10)
 
     print(f"[TrustScoredClustering] {selected_client_idx=}")
     print(f"[TrustScoredClustering] {byzantine_clients=}")