-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
51 lines (36 loc) · 1.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from preprocess import SEQUENCE_LENGTH, generate_training_sequences
import tensorflow.keras as keras
import sys
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
OUTPUT_UNITS = 38
LOSS = "sparse_categorical_crossentropy"
LEARNING_RATE = 0.001
NUM_UNITS = [256]
EPOCHS = 50
BATCH_SIZE = 64
SAVE_MODEL_PATH = "model.h5"
def build_model(output_units, num_units, loss, learning_rate):
# Create model architecture
inputs = keras.layers.Input(shape=(None, output_units))
x = keras.layers.LSTM(num_units[0])(inputs)
x = keras.layers.Dropout(0.2)(x)
outputs = keras.layers.Dense(output_units, activation='softmax')(x)
model = keras.Model(inputs, outputs)
# Compile the model
model.compile(
loss=loss,
optimizer = keras.optimizers.Adam(learning_rate=learning_rate),
metrics = ['accuracy']
)
model.summary()
return model
def train(output_units=OUTPUT_UNITS, num_units=NUM_UNITS, loss=LOSS, learning_rate=LEARNING_RATE):
# Generate the training sequences
train_inputs, targets = generate_training_sequences(SEQUENCE_LENGTH)
# build the network
model = build_model(output_units, num_units, loss, learning_rate, )
# train the model
model.fit(train_inputs, targets, epochs=EPOCHS, batch_size=BATCH_SIZE)
# Save the model
model.save(SAVE_MODEL_PATH)