forked from logust79/BioTools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCommonFuncs.py
562 lines (528 loc) · 17.8 KB
/
CommonFuncs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
#
#
'''
Some self use and common functions
'''
#
#
import time
from requests.exceptions import HTTPError
import json
import os
import re
import requests
from collections import defaultdict
'''
constants
'''
VALID_CHROMOSOMES = [str(i) for i in range(1,23)] + ['X','Y']
'''
divide variants according to their chrom and chunk size
'''
def get_chrom_vars(variants, chunk_size=1e5):
result = {}
for v in sorted(variants, key=lambda x: int(x.split('-')[1])):
chrom,pos,_,_ = v.split('-')
pos = int(pos)
if chrom in result:
if pos > result[chrom][-1]['start'] + chunk_size:
result[chrom].append({'start':pos, 'variants':[v]})
else:
result[chrom][-1]['variants'].append(v)
else:
result[chrom] = [{'start':pos, 'variants':[v]}]
for chrom, chunks in result.items():
for chunk in chunks:
yield chunk['variants']
'''
get chrom, start, stop for a group of variants
'''
def get_chrom_start_stop(vs):
chrom = vs[0].split('-')[0]
vs_arrays = [v.split('-') for v in vs]
starts = [int(v[1]) for v in vs_arrays]
stops = [starts[i] + len(vs_arrays[i][2]) for i in range(len(vs))]
start = min(starts) - 1
stop = max(stops) + 1
return chrom,start,stop
'''
request ensembl for bases based on location
'''
def find_bases(chrom,start,end=None,build='hg19',strand=1):
# translate build
if build=='hg19':
server = "http://grch37.rest.ensembl.org"
elif build=='hg38':
server = "http://rest.ensembl.org"
end = end or start
ext = '''/sequence/region/human/%(chrom)s:%(start)s..%(end)s:%(strand)s''' % locals()
attempt = 5
while attempt:
try:
r = requests.get(server+ext, headers={'Content-Type':'application/json' })
time.sleep(0.05)
if r.ok:
break
except requests.HTTPError:
print('query ensembl HTTPError, retry')
attempt -= 1
time.sleep(2)
except requests.ConnectionError:
print('query ensembl ConnectionError, retry')
attempt -= 1
time.sleep(2)
if r.status_code == 404: return None
'''
if not r.ok:
return r.raise_for_status()
'''
decoded = r.json()
return str(decoded['seq'])
'''
liftover between different human genome builds, say hg38 to hg19
'''
def liftover(v, frm, to):
import pyliftover #pyliftover is slow!
# note that pyliftover is 0 based
# First frm-to pair may take time to download the data from UCSC
# return a list of tuple.
lo = pyliftover.LiftOver(frm, to)
chrom,pos,ref,alt = v.split('-')
results = lo.convert_coordinate('chr'+chrom, int(pos)-1)
if not results:
return []
return ['-'.join([i[0][3:],str(i[1]+1),ref,alt]) for i in results]
'''
this function cleans messy variant format
var = '1-94512001-GTT-GAT'
print clean_variant(var)
prints
1-94512002-T-A
'''
def clean_variant(v,build='hg19',human_ref_pysam=None):
# sometimes variant has funny format, which has more - than expected, such as 1-117122294---TCT.
# use find_bases to fill in the gap if human_ref_pysam is not provided
if v.count('-') == 4:
if v[-1] == '-':
# deletion
chrom,pos,ref,rubbish,rubbish = v.split('-')
pos = int(pos)-1
if human_ref_pysam:
common_base = human_ref_pysam.fetch(chrom, pos-1, pos)
else:
common_base = find_bases(chrom,pos,build=build)
ref = common_base + ref
alt = common_base
else:
# insertion
chrom,pos,ref,rubbish,alt = v.split('-')
pos = int(pos)-1
if human_ref_pysam:
common_base = human_ref_pysam.fetch(chrom, pos-1, pos)
else:
common_base = find_bases(chrom,pos,build=build)
ref = common_base
alt = common_base + alt
else:
chrom,pos,ref,alt = v.split('-')
pos = int(pos)
if len(ref) < len(alt):
ran = range(len(ref))
else:
ran = range(len(alt))
# insert
for e in ran:
ref_e = len(ref) - e - 1
alt_e = len(alt) - e - 1
if ref[ref_e] != alt[alt_e]: break
for b in ran:
if ref[b] != alt[b] or len(ref[b:ref_e+1]) == 1 or len(alt[b:alt_e+1]) == 1:
break
return '-'.join([chrom,str(pos+b),ref[b:ref_e+1],alt[b:alt_e+1]])
def find_start_of_repeat(string, start, length):
'''
string: GCAGAGAGAG
start: 5
length: 2 #GA
return 1 # the repeat starts from after 1:AG
===
if no repeat, return start
'''
ind = start
result = string[:start]+string[start+length:]
while ind >= 0:
ind -= 1
if string[:ind] + string[ind+length:] != result:
return ind
return ind
def find_leftmost_synonymous_variant(variant, padding=200, build='hg19', human_ref_pysam=None):
'''
Only necessary for indel!
find all synonymous variants given variant
padding is how far you would like to search left and right of the change
if human_ref_pysam is None, use find_base to query ensembl
'''
mode,pattern = None,None
chrom, pos, ref, alt = variant.split('-')
pos = int(pos)+1
# removing commong base
if ref[0] == alt[0]:
ref = ref[1:]
alt = alt[1:]
if len(ref) and not alt:
pattern = ref
mode = 'del'
elif len(alt) and not ref:
pattern = alt
mode = 'in'
else:
# it's not indel, return
return variant
if human_ref_pysam:
string = human_ref_pysam.fetch(chrom, pos-padding-1, pos+len(pattern)+padding-1)
else:
string = find_bases(chrom, pos-padding, pos+len(pattern)+padding, build=build)
ind = find_start_of_repeat(string, padding, len(pattern))
new_pos = pos - padding + ind
missing_base = string[ind]
pattern = string[ind+1:ind+len(pattern)+1]
if mode == 'del':
return '-'.join([chrom, str(new_pos), missing_base+pattern, missing_base])
elif mode == 'in':
return '-'.join([chrom, str(new_pos), missing_base, missing_base+pattern])
else:
msg = 'Cannot derive mode!'
raise ValueError(msg)
'''
use harvard's rest service to query ExAC_freq of a variant
anno_exac('1-123-G-C')
'''
def anno_exac(v):
rest_url = 'http://exac.hms.harvard.edu/rest'
service = 'variant'
attempt = 5
while attempt:
try:
r = requests.get('/'.join([rest_url,service,v]))
break
except requests.ConnectionError:
print('query exac connectionError, retry')
attempt -= 1
time.sleep(2)
if r.status_code == 404: return None
exac_anno = r.json()
return exac_anno
# good to return the json object
'''
if 'allele_freq' in exac_anno['variant']:
return exac_anno['variant']['allele_freq']
if exac_anno['base_coverage'] and exac_anno['base_coverage'][0]['has_coverage']:
return 0
return None
'''
def anno_exac_bulk(vars, chunk_size=100):
# chop into 100 chunks and send to exac annotation
vars_array = _chop_array(vars, chunk_size)
result = {}
for vs in vars_array:
print(vs)
result.update(_anno_exac_bulk_100(vs))
return result
def _anno_exac_bulk_100(vars):
# limit to 100 variants
rest_url = 'http://exac.hms.harvard.edu/rest/bulk/variant'
attempt = 5
while attempt:
try:
r = requests.post(rest_url, data=json.dumps(vars))
break
except requests.ConnectionError:
print('query exac connectionError, retry')
attempt -= 1
time.sleep(2)
if r.status_code == 404: return None
exac_anno = r.json()
return exac_anno
def _chop_array(arr, size=100):
for i in range(0, len(arr), size):
yield arr[i:i + size]
'''
this function queries kaviar for allele frequency
it queries a chromosome at a time for multiple locations
vars = ['1-123-G-C','1-234-C-T','2-234-T-GA']
result = anno_kaviar(vars)
hg19
'''
def anno_kaviar(vars, chunk_size=100):
from bs4 import BeautifulSoup
# collapse on chroms
chroms = {} # {1:[{pos:123,ref:A,alt:T},]}
for v in vars:
chrom,pos,ref,alt = v.split('-')
chroms[chrom] = chroms.get(chrom,[])
chroms[chrom].append({'pos':pos,'ref':ref,'alt':alt})
# get kaviar result
uri = 'http://db.systemsbiology.net/kaviar/cgi-pub/Kaviar.pl'
args = {
'frz' : 'hg19',
'onebased': '1',
'onebased_output': '1', # on the website the default is somehow 0
'chr': '',
'platform_specificity':'none',
'format': 'text', # json is bugged.
'pos':''
}
kaviar = []
br=0
for c in chroms:
positions = list(set([i['pos'] for i in chroms[c]]))
ind = 0
while True:
ind += chunk_size
if ind > len(positions):
position = ', '.join(positions[ind-chunk_size:len(positions)])
if not position: break
br = 1
else:
position = ', '.join(positions[ind-chunk_size:ind])
print('process %s variants' % min(ind,len(positions)))
args['pos'] = position
args['chr'] = c
print(args)
r = requests.get(uri,params=args)
# parse it
soup = BeautifulSoup(r.content, 'html.parser')
header = []
for l in soup.body.pre.get_text().split('\n'):
if not l:
continue
if l[:3] == '#Ch':
# parse header
header = l[1:].split('\t')
elif l[0] != '#':
# get data
l = l.split('\t')
pos = l[1]
if len(l) < len(header):
l.extend(['']*(len(header)-len(l)))
kaviar.append(dict([(header[i],l[i]) for i in range(len(header))]))
#print pos
if br: break
result = {}
for v in vars:
chrom,pos,ref,alt = v.split('-')
end = int(pos)+len(ref)-1
match = [i for i in kaviar if i['Chrom'] == 'chr'+chrom and i['Position']==pos and i['End'] == str(end) and i['Variant']==alt]
result[v] = float(match[0]['AF']) if match and match[0]['AF'] else None
return result
def my_gene(gene_id):
import mygene
mg = mygene.MyGeneInfo()
return mg.getgene(gene_id,fields='all')
def my_genes(gene_ids):
import mygene
mg = mygene.MyGeneInfo()
return mg.getgenes(gene_ids,fields='all')
def my_genes_by_symbol(symbols,species=None):
import mygene
mg = mygene.MyGeneInfo()
result = mg.querymany(symbols, scopes='symbol', species=species,fields='all')
# which ones are not found
not_found = [i['query'] for i in result if i.get('notfound',False) == True]
# query again on alias
result.extend(mg.querymany(not_found, scopes='alias', species=species,fields='all'))
return result
def obo_parser(obofile):
term_head = "[Term]"
#Keep the desired object data here
all_objects = {}
def add_object(d):
#Ignore obsolete objects
if "is_obsolete" in d:
return
#Gather desired data into a single list,
# and store it in the main all_objects dict
key = d["id"][0]
is_a = d["is_a"]
alt_id = d["alt_id"]
#Remove the next line if you want to keep the is_a description info
is_a = [s.partition(' ! ')[0] for s in is_a]
all_objects[key] = {
'name':d["name"],
'is_a':is_a,
'alt_id':alt_id,
}
#A temporary dict to hold object data
current = defaultdict(list)
with open(obofile,'r') as f:
#Skip header data
for line in f:
if line.rstrip() == term_head:
break
for line in f:
line = line.rstrip()
if not line:
#ignore blank lines
continue
if line == term_head:
#end of term
add_object(current)
current = defaultdict(list)
else:
#accumulate object data into current
key, _, val = line.partition(": ")
current[key].append(val)
if current:
add_object(current)
# convert to dict
for k,v in all_objects.items():
all_objects[k] = {'name':v['name'],'is_a':v['is_a'],'alt_id':v['alt_id']}
return all_objects
'''
check if ensembl id is active
'''
def check_ensemblId(ensemblId):
url = 'http://rest.ensembl.org/lookup/id/'+ensemblId
attempt = 5
while attempt:
try:
r = requests.get(url, headers={ "Content-Type" : "application/json"})
time.sleep(0.05)
break
except requests.HTTPError:
print('query ensembl connectionError, retry')
attempt -= 1
time.sleep(2)
if r.status_code == 404: return None
if not r.ok:
#print(r.raise_for_status())
return False
decoded = r.json()
if decoded.get("seq_region_name",None) in VALID_CHROMOSOMES:
return True
else:
return False
def add_pop_freqs(infile, outfile, options):
'''
add pop freqs, such as gnomad, bravo and kaviar
'''
import pysam
import gzip
options['human_ref_pysam'] = pysam.FastaFile(options['human_ref'])
fields = []
if 'gnomad_path' in options['pop_freqs']:
fields.extend(['gnomad_af', 'gnomad_hom_f'])
if 'bravo_vcf' in options['pop_freqs']:
fields.extend(['bravo_af','bravo_hom_f'])
if 'kaviar_vcf' in options['pop_freqs']:
fields.append('kaviar_af')
line_cache = []
variant_cache = {}
header = []
with gzip.open(infile, 'r') as inf, \
gzip.open(outfile, 'w') as outf:
for line in inf:
if line.startswith('##'):
outf.write(line)
elif line.startswith('#'):
# add an INFO line
info_line = construct_pop_info(fields)
outf.write(info_line)
outf.write(line)
header = line[1:].rstrip().split('\t')
else:
# write to cache
line_cache.append(line)
row = line.split('\t')
for alt in row[4].split(','):
v_id = utils.clean_variant(
'-'.join([row[0],row[1],row[3],alt]),
human_ref_pysam = options['human_ref_pysam']
)
variant_cache[v_id]={}
if len(line_cache) >= options['pop_freqs']['cache_size']:
# dump cache
pop_annotate(line_cache, variant_cache, header, fields, outf, options)
# empty caches
line_cache = []
variant_cache = {}
# finally dump cache
if line_cache:
pop_annotate(line_cache, variant_cache, header, fields, outf, options)
line_cache = []
variant_cache = {}
def pop_annotate(line_cache, variant_cache, header, fields, outf, options):
import gnomad_utils, bravo_utils, kaviar_utils
# annotate
# gnomad
if 'gnomad_path' in options['pop_freqs']:
gnomads = gnomad_utils.overall_freqs(
list(variant_cache.keys()),
options['pop_freqs']['gnomad_path']
)
for variant in variant_cache:
af = gnomads[variant]['gnomad_af']
if af is None:
af = ''
hom_f = gnomads[variant]['gnomad_hom_f']
if hom_f is None:
hom_f = ''
variant_cache[variant]['gnomad_af'] = af
variant_cache[variant]['gnomad_hom_f'] = hom_f
# bravo
if 'bravo_vcf' in options['pop_freqs']:
bravos = bravo_utils.bravo(
list(variant_cache.keys()),
options['pop_freqs']['bravo_vcf']
)
for variant in variant_cache:
if variant not in bravos:
variant_cache[variant]['bravo_af'] = ''
variant_cache[variant]['bravo_hom_f'] = ''
else:
variant_cache[variant]['bravo_af'] = \
bravos[variant]['af']
variant_cache[variant]['bravo_hom_f'] = \
bravos[variant]['Hom']*2 / bravos[variant]['an']
# kaviar
if 'kaviar_vcf' in options['pop_freqs']:
kaviars = kaviar_utils.kaviar(
list(variant_cache.keys()),
options['pop_freqs']['kaviar_vcf']
)
for variant in variant_cache:
if variant not in kaviars:
variant_cache[variant]['kaviar_af'] = ''
else:
variant_cache[variant]['kaviar_af'] = \
kaviars[variant]['af']
for line in line_cache:
record = dict(zip(header, line.rstrip().split('\t')))
INFO = record['INFO']
pop_info = []
for alt in record['ALT'].split(','):
v_id = clean_variant('-'.join([
record['CHROM'],
record['POS'],
record['REF'],
alt,
]), human_ref_pysam = options['human_ref_pysam'])
pop_info.append('|'.join(
[alt] + [str(variant_cache[v_id][f]) for f in fields]
))
pop_info = 'POPF=' + ','.join(pop_info)
new_INFO = ';'.join([INFO, pop_info])
record['INFO'] = new_INFO
new_line = '\t'.join([record[h] for h in header]) + '\n'
outf.write(new_line)
def construct_pop_info(fields):
info_line = (
'##INFO=<ID=POPF,Number=.,Type=String,Description="'
'Population frequency such as gnomAD and Bravo. '
'Format: Allele'
)
# add fields
info_line = '|'.join([info_line] + fields)
# closing
info_line += '">\n'
return info_line