forked from logust79/BioTools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgnomad_utils.py
239 lines (222 loc) · 8.35 KB
/
gnomad_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
'''
annotate gnomad population frequencies
!!!NOTE!!! that you need to normalise all variants before using this script, e.g.
maps = {variant:utils.clean_variant(variant) for variant in variants}
gnomads = gnomad_utils.overall_freqs(list(maps.values()),path_to_gnomad,group=True)
result = {variant:gnomads.get(maps[variant],None) for variant in maps}
'''
from __future__ import print_function, division
import sys
import pysam
import os
import CommonFuncs
class BadVariantException(Exception): pass
#path = '/cluster/project8/vyp/gnomad_data'
VALID_CHROMOSOMES = [str(i) for i in range(1,23)] + ['X']
POPS = ('AFR','NFE','AMR','EAS','ASJ','SAS','OTH','FIN')
'''
coverage, look at different parts of the ref
'''
def coverage(vs,path_to_gnomad,mode,chrom,start,stop):
# pysam does not support header yet. hard code it
header = ['chrom','pos','mean','median',1,5,10,15,20,25,30,50,100,]
result = {v:None for v in vs}
vcf = None
if mode == 'exome':
vcf = os.path.join(path_to_gnomad,'coverage','exomes','exacv2.chr'+chrom+'.cov.txt.gz')
elif mode == 'genome':
vcf = os.path.join(path_to_gnomad,'coverage','genomes','gnomad.chr'+chrom+'.cov.txt.gz')
else:
msg = "mode only accepts 'exome' or 'genome'"
raise ValueError(msg)
try:
tb = pysam.TabixFile(vcf)
rs = tb.fetch(chrom, start-1, stop+1)
except OSError:
return result
except ValueError:
return result
cov_record = {}
for r in rs:
this = {a:b for a,b in zip(header,r.split('\t'))}
cov_record[int(this['pos'])] = this
for v in vs:
_,pos,ref,_ = v.split('-')
pos = int(pos)
end = pos + len(ref)
for i in range(pos,end):
if i not in cov_record:
result[v] = None
break
if result[v] is None:
result[v] = {pos: cov_record[pos]}
else:
result[v][pos] = cov_record[pos]
return result
'''
exome freqs
'''
def freqs(vs,path_to_gnomad,mode,chrom,start,stop):
# pytabix does not support header yet. hard code it
header = ['chrom','pos','id','ref','alt','quality','filter','info']
if mode == 'exome':
vcf = os.path.join(path_to_gnomad,'vcf','exomes','gnomad.exomes.r2.0.1.sites.vcf.gz')
elif mode == 'genome':
vcf = os.path.join(path_to_gnomad,'vcf','genomes','gnomad.genomes.r2.0.1.sites.'+chrom+'.vcf.gz')
result = {v:{} for v in vs}
try:
tb = pysam.TabixFile(vcf)
records = tb.fetch(chrom, start-1, stop+1)
except OSError:
return result
except ValueError:
return result
#tb = tabix.open(vcf)
#records = tb.query(chrom, int(pos)-1, int(pos))
for r in records:
if not r: return result
data = {a:b for a,b in zip(header,r.split('\t'))}
# find the variant
g_alts = data['alt'].split(',')
alt_ind = None
v_ids = []
for ind,this_alt in enumerate(g_alts):
v_id = CommonFuncs.clean_variant('-'.join([data['chrom'],data['pos'],data['ref'],this_alt]))
if v_id in vs:
v_ids.append((v_id, ind))
if not v_ids:
continue
# parse info
# no need for annotation?
info = data['info'].split(';CSQ=')[0] # 1 for annotation
info = info.split(';')
for i in info:
if not '=' in i: continue
a,b = i.split('=')
b = b.split(',')
for v_ind in range(len(v_ids)):
ind = min(v_ids[v_ind][1],len(b)-1)
c = b[ind]
# convert to number if possible
try:
if '.' in c:
c = float(c)
else:
c = int(c)
except ValueError:
pass
result[v_ids[v_ind][0]][a] = c
for v in v_ids:
result[v[0]]['filter'] = data['filter']
return result
'''
simple query on overall allele freq (or homozygote frequency). if covered, return at least 0. if not, return None.
Assuming all variants are on the same chrom, and close together. If not, please
query a single variant (in a list) at a time
'''
def overall_freqs(vs,path_to_gnomad):
# get start, stop and chrom if block
chrom,start,stop = CommonFuncs.get_chrom_start_stop(vs)
result = {}
null = {
'gnomad_af': None,
'gnomad_ac': None,
'gnomad_hom_f': None, # if X chrom, this takes into account of hemi
'gnomad_hom_c': None,
'gnomad_hemi_c': None,
'filters':{'exome':None,'genome':None},
'pop_filter':[],
'most_freq_pops':[],
}
covs = {
'exome': coverage(vs,path_to_gnomad,'exome',chrom,start,stop),
'genome':coverage(vs,path_to_gnomad,'genome',chrom,start,stop),
}
fs = {
'exome': freqs(vs,path_to_gnomad,'exome',chrom,start,stop),
'genome':freqs(vs,path_to_gnomad,'genome',chrom,start,stop),
}
for v in vs:
if v.split('-')[0] not in VALID_CHROMOSOMES:
result[v] = null
continue
if not fs['exome'][v] and not fs['genome'][v] and not covs['exome'][v] and not covs['genome'][v]:
result[v] = null
continue
ac = hom_c = af = hom_f = an = 0.
hemi_c = None
pop_filter = []
filters = {'exome':None,'genome':None}
# also check population frequencies to remove any variants
# with big af(>0.01)/hom_f(0) discrepancy, such as 1-144931607-C-T
pops = {p:{'Hom':0,'Hemi':0,'AC':0,'AN':0} for p in POPS}
for m in ['exome', 'genome']:
if fs[m][v]:
ac += fs[m][v]['AC']
hom_c += fs[m][v]['Hom']
an += fs[m][v]['AN']
if 'Hemi' in fs[m][v]:
hemi_c = hemi_c + fs[m][v]['Hemi'] if hemi_c != None else fs[m][v]['Hemi']
filters[m] = fs[m][v]['filter']
for p in POPS:
for kk in pops[p]:
try:
this_c = fs[m][v].get('{}_{}'.format(kk,p), 0)
# sometimes on X this_c is a dot
if this_c == '.':
this_c = 0
pops[p][kk] += this_c
except TypeError:
print(v)
print(p,kk)
print(pops[p][kk])
print(fs[m][v].get('{}_{}'.format(kk,p), 0))
raise
max_pop = ([], -1)
for p in pops:
if pops[p]['AC']:
pop_af = pops[p]['AC'] / pops[p]['AN']
if pop_af:
if pop_af > max_pop[1]:
max_pop = ([p], pop_af)
elif pop_af == max_pop[1]:
max_pop[0].append(p)
if pop_af > 0.01 and pops[p]['Hemi'] == 0 and pops[p]['Hom'] == 0:
pop_filter.append(p)
if ac: af = ac / an
if hom_c:
if hemi_c is not None and isinstance(hemi_c, int):
hom_f = (hom_c * 2 + hemi_c) / an
else:
hom_f = hom_c * 2 / an
result[v] = {
'gnomad_af':af,
'gnomad_ac':ac,
'gnomad_hom_f':hom_f,
'gnomad_hom_c':hom_c,
'gnomad_hemi_c':hemi_c,
'gnomad_an':an,
'filters':filters,
'pop_filter':pop_filter,
'most_freq_pops':max_pop[0],
}
return result
if __name__ == '__main__':
vs = ['M-150-T-C','1-12140-GCAT-C','1-12141-CAT-C','1-12143-T-C','1-40705-C-T','1-165389-CA-C','1-107189335-C-CTTTT']
p2g = '/cluster/project8/vyp/gnomad_data'
#print(freqs(vs[1:-1],p2g,'genome','1',12140,165390))
print(overall_freqs(vs[1:-1],p2g))
vs = ['1-12140-GCAT-C','1-55516888-G-GA','1-55516887-GG-GGA']
print(overall_freqs(vs,p2g))
chrom,start,stop = CommonFuncs.get_chrom_start_stop(vs)
result = {}
covs = {
'exome': coverage(vs,p2g,'exome',chrom,start,stop),
'genome':coverage(vs,p2g,'genome',chrom,start,stop),
}
fs = {
'exome': freqs(vs,p2g,'exome',chrom,start,stop),
'genome':freqs(vs,p2g,'genome',chrom,start,stop),
}
print(fs['genome'][vs[0]])
print(covs['genome'][vs[0]])