forked from thehiddenwaffle/depthai_tgtracker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
o3d_utils.py
250 lines (221 loc) · 8.38 KB
/
o3d_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import open3d as o3d
import numpy as np
# From : https://stackoverflow.com/a/59026582/8574085
def calculate_zy_rotation_for_arrow(v):
"""
Calculates the rotations required to go from the vector v to the
z axis vector. The first rotation that is
calculated is over the z axis. This will leave the vector v on the
XZ plane. Then, the rotation over the y axis.
Returns the angles of rotation over axis z and y required to
get the vector v into the same orientation as axis z
Args:
- v ():
"""
# Rotation over z axis
gamma = np.arctan(v[1]/v[0])
Rz = np.array([[np.cos(gamma),-np.sin(gamma),0],
[np.sin(gamma),np.cos(gamma),0],
[0,0,1]])
# Rotate v to calculate next rotation
v = Rz.T@v.reshape(-1,1)
v = v.reshape(-1)
# Rotation over y axis
beta = np.arctan(v[0]/v[2])
Ry = np.array([[np.cos(beta),0,np.sin(beta)],
[0,1,0],
[-np.sin(beta),0,np.cos(beta)]])
return Rz @ Ry
def create_cylinder(height=1, radius=None, resolution=20):
"""
Create an cylinder in Open3D
"""
radius = height/20 if radius is None else radius
mesh_frame = o3d.geometry.TriangleMesh.create_cylinder(
radius=radius,
height=height,
resolution=resolution)
return(mesh_frame)
def create_segment(a, b, radius=0.05, color=(1,1,0), resolution=20):
"""
Creates an line(cylinder) from an pointa to point b,
or create an line from a vector v starting from origin.
Args:
- a, b: End points [x,y,z]
- radius: radius cylinder
"""
a = np.array(a)
b = np.array(b)
T = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
T[:3, -1] = a
v = b-a
height = np.linalg.norm(v)
if height == 0: return None
R = calculate_zy_rotation_for_arrow(v)
mesh = create_cylinder(height, radius)
mesh.rotate(R, center=np.array([0, 0, 0]))
mesh.translate((a+b)/2)
mesh.paint_uniform_color(color)
mesh.compute_vertex_normals()
return mesh
def create_tetra(p1, p2, p3, p4, color=(1,1,0)):
vertices = o3d.utility.Vector3dVector([p1, p2, p3, p4])
tetras = o3d.utility.Vector4iVector([[0, 1, 2, 3]])
mesh = o3d.geometry.TetraMesh(vertices, tetras)
mesh.paint_uniform_color(color)
return mesh
def create_grid(p0, p1, p2, p3, ni1, ni2, color=(0,0,0)):
'''
p0, p1, p2, p3 : points defining a quadrilateral
ni1: nb of equidistant intervals on segments p0p1 and p3p2
ni2: nb of equidistant intervals on segments p1p2 and p0p3
'''
p0 = np.array(p0)
p1 = np.array(p1)
p2 = np.array(p2)
p3 = np.array(p3)
vertices = [p0, p1, p2, p3]
lines = [[0,1],[0,3],[1,2],[2,3]]
for i in range(1,ni1):
l = len(vertices)
vertices.append((p0*(ni1-i)+p1*i)/ni1)
vertices.append((p3*(ni1-i)+p2*i)/ni1)
lines.append([l,l+1])
for i in range(1,ni2):
l = len(vertices)
vertices.append((p1*(ni2-i)+p2*i)/ni2)
vertices.append((p0*(ni2-i)+p3*i)/ni2)
lines.append([l,l+1])
vertices = o3d.utility.Vector3dVector(vertices)
lines = o3d.utility.Vector2iVector(lines)
mesh = o3d.geometry.LineSet(vertices, lines)
mesh.paint_uniform_color(color)
return mesh
def create_coord_frame(origin=[0, 0, 0],size=1):
mesh = o3d.geometry.TriangleMesh.create_coordinate_frame(size=size)
mesh.translate(origin)
return mesh
# Visu3d : custom class used to visualize 3d skeleton
class Visu3D:
def __init__(self, bg_color=[0,0,0], zoom=1, segment_radius=1):
self.vis = o3d.visualization.VisualizerWithKeyCallback()
self.vis.create_window()
opt = self.vis.get_render_option()
opt.background_color = np.asarray(bg_color)
# Defining callbacks - Key codes: https://www.glfw.org/docs/latest/group__keys.html
self.vis.register_key_callback(ord("R"), self.start_rotating)
self.vis.register_key_callback(ord("O"), self.start_oscillating)
self.vis.register_key_callback(ord("S"), self.stop_moving)
self.vis.register_key_callback(262, self.turn_view_right) # Right arrow
self.vis.register_key_callback(263, self.turn_view_left) # Left arrow
self.vis.register_key_callback(265, self.incr_rot_speed) # Up arrow
self.vis.register_key_callback(264, self.decr_rot_speed) # Down arrow
self.view_control = self.vis.get_view_control()
self.zoom = zoom
self.segment_radius = segment_radius
self.move = "oscillate"
self.angle = 0
self.direction = 1
self.oscillate_angle = 200
self.geometries = []
def set_view(self):
if self.angle_view % 4 == 0:
ax = 0
elif self.angle_view <= 3:
ax = 1
else:
ax = -1
if self.angle_view == 2 or self.angle_view == 6:
az = 0
elif 3 <= self.angle_view <= 5:
az = 1
else:
az = -1
self.view_control.set_front(np.array([ax,0,az]))
self.view_control.set_up(np.array([0,-1,0]))
def init_view(self):
self.angle_view = 0
self.rot_speed = 2
self.set_view()
self.view_control.set_zoom(self.zoom)
def create_grid(self, p0, p1, p2, p3, ni1, ni2, color=(1,1,1)):
'''
p0, p1, p2, p3 : points defining a quadrilateral
ni1: nb of equidistant intervals on segments p0p1 and p3p2
ni2: nb of equidistant intervals on segments p1p2 and p0p3
'''
grid = create_grid(p0, p1, p2, p3, ni1, ni2, color)
self.vis.add_geometry(grid)
self.geometries.append(grid)
def create_camera(self):
cam = o3d.geometry.TriangleMesh.create_arrow(cylinder_radius=0.02, cone_radius=0.03, cylinder_height=0.1, cone_height=0.08)
cam.paint_uniform_color([0.2,0.7,1])
cam.compute_vertex_normals()
self.geometries.append(cam)
def add_geometries(self):
for geo in self.geometries:
self.vis.add_geometry(geo, reset_bounding_box=False)
def add_segment(self, p1, p2, radius=None, color=[1,1,1]):
radius = self.segment_radius if radius is None else radius
line = create_segment(p1, p2, radius=radius, color=color)
if line: self.vis.add_geometry(line, reset_bounding_box=False)
def clear(self):
self.vis.clear_geometries()
# Callback
def incr_rot_speed(self, vis):
if self.move == "rotate":
if self.rot_speed * self.direction == -1:
self.direction = 1
else:
self.rot_speed += self.direction
else:
self.rot_speed += 1
# Callback
def decr_rot_speed(self, vis):
if self.move == "rotate":
if self.rot_speed * self.direction == 1:
self.direction = -1
else:
self.rot_speed -= self.direction
else:
self.rot_speed = max (1, self.rot_speed-1)
# Callback
def turn_view_right(self, vis):
self.angle_view = (self.angle_view + 1) %8
self.set_view()
self.move = None
# Callback
def turn_view_left(self, vis):
self.angle_view = (self.angle_view - 1) %8
self.set_view()
self.move = None
# Callback
def start_rotating(self, vis):
self.move = "rotate"
# Callback
def start_oscillating(self, vis):
self.move = "oscillate"
self.angle = 0
# Callback
def stop_moving(self, vis):
self.move = None
def try_move(self):
if self.move == "rotate":
self.view_control.rotate(self.rot_speed * self.direction,0)
elif self.move == "oscillate":
self.view_control.rotate(self.rot_speed * self.direction,0)
self.angle += self.rot_speed * self.direction
if abs(self.angle) >= self.oscillate_angle:
self.direction = - self.direction
def render(self):
self.vis.poll_events()
self.vis.update_renderer()
if __name__ == "__main__":
line = create_segment([0, 0, 0], [1, 0, 0], color=(1,0,0))
line2 = create_segment([1, 0, 0], [1, 1, 0], color=(0,1,0))
line3 = create_segment([1, 1, 0], [0, 0, 0], radius=0.1)
grid = create_grid([0,0,0],[0,0,1],[0,1,1],[0,1,0], 3, 2)
frame =create_coord_frame()
print(grid)
# Draw everything
o3d.visualization.draw_geometries([line, line2, line3, grid, frame])