-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path21-response-patterns.Rmd
433 lines (322 loc) · 13.2 KB
/
21-response-patterns.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
---
title: "Observed Response Patterns in Latent Class Analysis"
author: "Norwegian University of Science and Technology - A Course in `MplusAutomation`"
subtitle: '*Adam Garber*'
date: "`r format(Sys.time(), '%B %d, %Y')`"
output:
pdf_document: default
html_document: default
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, eval = TRUE, message = FALSE, warning = FALSE)
library(here);library(glue);library(linguisticsdown)
```
***
## Lab preparation
***
## Data source: Longitudinal Study of American Youth, **Science Attitudes**
[$\color{blue}{\text{See documentation about the LSAY here.}}$](https://www.lsay.org/)
***
Load packages
```{r, eval=TRUE}
library(tidyverse)
library(glue)
library(MplusAutomation)
library(here)
library(janitor)
library(gt)
library(DT)
library(plotly)
library(gg3D)
library(gganimate)
library(viridis)
library(hrbrthemes)
```
***
## Exploring observed response patterns
***
Load data
```{r, eval=TRUE}
lsay_data <- read_csv("https://garberadamc.github.io/project-site/data/lca_lsay_sci.csv",
na = c("9999", "9999.00")) %>%
clean_names() %>%
dplyr::select(1:5, Enjoy = ab39m, Useful = ab39t,
Logical = ab39u, Job = ab39w, Adult = ab39x)
```
Use {`DT::datatable()`} to take a look at the data
```{r, eval=TRUE}
datatable(lsay_data, rownames = FALSE, filter="top",
options = list(pageLength = 5, scrollX=T) )
```
```{r, echo=FALSE, eval=FALSE, out.width = "65%", out.height= "65%", fig.pos="h"}
include_graphics2("https://garberadamc.github.io/project-site/figures/LCA_Diagram_SEMLAB8.png")
```
*Figure*. Path diagram of science attitude indicators.
***
Save response frequencies for the 4 class model with `response is _____.dat`.
```{r, eval=FALSE}
patterns <- mplusObject(
TITLE = "C4 LCA - Save response patterns",
VARIABLE =
"categorical = Enjoy-Adult;
usevar = Enjoy-Adult;
classes = c(4);",
ANALYSIS =
"estimator = mlr;
type = mixture;
starts = 500 100;",
SAVEDATA =
"File=3step_savedata.dat;
Save=cprob;
Missflag= 999;
!!!!!!!! Code to save response frequency data !!!!!!!!
response is resp_patterns.dat;
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!",
OUTPUT = "sampstat residual patterns tech10 tech11 tech14",
PLOT =
"type = plot3;
series = Enjoy-Adult(*);",
usevariables = colnames(lsay_data),
rdata = lsay_data)
patterns_fit <- mplusModeler(patterns,
dataout=here("21-response-patterns", "resp_pattrn", "LSAY.dat"),
modelout=here("21-response-patterns", "resp_pattrn", "patterns.inp") ,
check=TRUE, run = TRUE, hashfilename = FALSE)
```
Read in observed respnse pattern data
```{r}
patterns <- read_table2(here("21-response-patterns", "resp_pattrn", "resp_patterns.dat"),
col_names=FALSE, na = "*")
colnames(patterns) <- c("Frequency", "ENJOY", "USEFUL", "LOGICAL", "JOB", "ADULT",
"CPROB1", "CPROB2", "CPROB3", "CPROB4", "C_MODAL")
```
Order responses by highest frequency
```{r,eval=TRUE}
order_highest <- patterns %>%
arrange(desc(Frequency))
```
```{r,eval=TRUE}
loop_cond <- lapply(1:4, function(k) {
order_cond <- patterns %>%
filter(C_MODAL == k) %>%
arrange(desc(Frequency)) %>%
head(5)
})
table_data1 <- bind_rows(loop_cond) %>%
as.data.frame()
table_data2 <- rbind(order_highest[1:5,], table_data1)
```
Use `{gt}` to make a nicely formatted table
```{r,eval=TRUE}
table_data2 %>%
gt() %>%
tab_header(
title = md("**Observed response patterns, estimated frequencies, estimated posterior
class probabilities, and modal class assignment.**"),
subtitle = md(" ")) %>%
tab_source_note(
source_note = md("Data Source: **Longitudinal Study of American Youth.**")) %>%
cols_label(
ENJOY = "Enjoy",
USEFUL = "Useful",
LOGICAL = "Logical",
JOB = "Job",
ADULT = "Adult",
CPROB1 = html("P<sub>k=1"),
CPROB2 = html("P<sub>k=2"),
CPROB3 = html("P<sub>k=3"),
CPROB4 = html("P<sub>k=4"),
C_MODAL = md("*k*")) %>%
tab_row_group(
group = "Unconditional response patterns ordered by highest frequency",
rows = 1:5) %>%
tab_row_group(
group = "k=1 conditional response pattern ordered by highest frequency",
rows = 6:10) %>%
tab_row_group(
group = "k=2 conditional response pattern ordered by highest frequency",
rows = 11:15) %>%
tab_row_group(
group = "k=3 conditional response pattern ordered by highest frequency",
rows = 16:20) %>%
tab_row_group(
group = "k=4 conditional response pattern ordered by highest frequency",
rows = 21:25) %>%
row_group_order(
groups = c("Unconditional response patterns ordered by highest frequency",
"k=1 conditional response pattern ordered by highest frequency",
"k=2 conditional response pattern ordered by highest frequency",
"k=3 conditional response pattern ordered by highest frequency",
"k=4 conditional response pattern ordered by highest frequency")) %>%
tab_options(column_labels.font.weight = "bold")
```
***
## Visualizing observed response patterns
***
Order rows by modal assignment (*K*)
```{r, eval=TRUE}
order_modal <- patterns %>%
arrange(desc(C_MODAL)) %>%
rownames_to_column() %>%
rename('pat_num' = "rowname") %>%
drop_na(ENJOY:ADULT)
```
Prepare plot data
```{r, eval=TRUE}
p1_long <- order_modal %>%
dplyr::select(pat_num:ADULT, C_MODAL) %>%
pivot_longer(`ENJOY`:`ADULT`, # The columns I'm gathering together
names_to = "var", # new column name for existing names
values_to = "value") %>% # new column name to store values
mutate(obs = rep(1:32, each =5)) %>%
mutate(Class = factor(C_MODAL)) %>%
mutate(var = ordered(var,
levels = c("ENJOY","USEFUL","LOGICAL","JOB","ADULT"))) %>%
select(-pat_num, -C_MODAL)
# must first run LCA enumeration (code is out of sequential order)
out_c4 <- readModels(here("21-response-patterns", "resp_pattrn"), filefilter = "patterns", quiet = TRUE)
# extract posterior probabilities
probs_c4 <- as.data.frame(
out_c4[["gh5"]][["means_and_variances_data"]]
[["estimated_probs"]][["values"]]
[seq(2, 10, 2),])
rownames(probs_c4) <- c("ENJOY","USEFUL","LOGICAL","JOB","ADULT")
long_c4 <- probs_c4 %>% rownames_to_column() %>%
rename('var' = "rowname") %>%
pivot_longer(`V1`:`V4`, # The columns I'm gathering together
names_to = "c", # new column name for existing names
values_to = "value") %>% # new column name to store values
mutate(Class = rep(1:4,5)) %>%
arrange(Class) %>%
mutate(obs = rep(33:36,each=5)) %>%
mutate(Frequency = rep(c(829,782,619,833),each=5)) %>%
mutate(var = ordered(var,
levels = c("ENJOY","USEFUL","LOGICAL","JOB","ADULT"))) %>%
select(6,1,3,5,4)
p2_long <- rbind(p1_long, long_c4) %>%
mutate(Class = as.numeric(Class))
```
Visualize observed response patterns with {`plotly`}
```{r, eval=TRUE}
gg <- ggplot(p2_long, aes(x=var, y=value, color = Class, size=Frequency)) +
geom_line(aes(as.numeric(var), frame = obs)) +
scale_color_viridis() + labs(x="Indicator", y= "Probability")
ggplotly(gg) %>% animation_opts(frame = 1000, transition = 0) %>%
animation_slider(currentvalue =
list(prefix = "Pattern ", font = list(color="red")))
```
Make a 3D plot with packages {`ggplot2`}, {`gg3D`}, and {`gganimate`}.
```{r, eval=FALSE}
theta= 170 # change perspective (tilt)
phi=40 # change perspective (rotation)
resp3d <- ggplot(p1_long, aes(x=as.numeric(var),
y=as.numeric(value),
z = as.numeric(obs)),
alpha = .8) +
axes_3D(theta=theta, phi=phi) +
stat_3D(theta=theta, phi=phi, geom="path",
aes(colour = Class, size = Frequency), alpha = .8) +
scale_color_manual(values=c("#FDE725FF", "#DE7065FF", "#238A8DFF", "#482677FF")) +
theme_void() +
annotate("text", x = -.3, y = 0.05, label = "Indicators ") +
annotate("text", x = .35, y = -.4, label = "Probability") +
annotate("text", x = .25, y = .42, label = "Pattern") +
annotate("text", x = .2, y = 0, label = "0.0") +
annotate("text", x = .34, y = -.33, label = "1.0") +
annotate("text", x = -.05, y = 0, angle = 6,
label = "Enjoy - Useful - Logical - Job - Adult") +
transition_states(obs, transition_length=1, state_length=5) +
shadow_mark(alpha = .1,) +
labs(title = "Observed response pattern = {closest_state}")
animate(resp3d, fps = 2)
```
```{r, eval=FALSE}
anim_save(here("21-response-patterns", "figures", "responses_3d_anim.gif"), height = 6, width = 8, dpi = "retina")
```
______________________________________________
## Comparing model fit
Learning objective: Generate a comprehensive model fit summary table.
**Information criteria: model is endorsed by lowest value**:
- `BIC`: $$ =-2*LL+Npar*LN(N) $$
- `aBIC`: $$-2*LL+Npar*LN((N+2)/24)$$
- `CIAC`: $$-2*LL+Npar*(LN(N)+1))$$
- `AWE`: $$ -2*LL+2*Npar*(LN(N)+1.5) $$
______________________________________________
Run a quick enumeration
```{r, eval=FALSE}
lca_k1_6 <- lapply(1:6, function(k) {
lca_enum <- mplusObject(
TITLE = glue("Class {k}"),
VARIABLE = glue(
"categorical = Enjoy-Adult;
usevar = Enjoy-Adult;
classes = c({k}); "),
ANALYSIS =
"estimator = mlr;
type = mixture;
starts = 200 50;
processors = 10;",
OUTPUT = "sampstat residual tech11 tech14;",
PLOT =
"type = plot3;
series = Enjoy-Adult(*);",
usevariables = colnames(lsay_data),
rdata = lsay_data)
lca_enum_fit <- mplusModeler(lca_enum,
dataout=glue(here("21-response-patterns", "enum_mplus", "lsay.dat")),
modelout=glue(here("21-response-patterns", "enum_mplus", "c{k}_lca.inp")) ,
check=TRUE, run = TRUE, hashfilename = FALSE)
})
```
______________________________________________
## Create model fit summary table
______________________________________________
Extract data and calculate indices derived from the Log Likelihood
```{r}
all_output <- readModels(here("21-response-patterns", "enum_mplus"), quiet = TRUE)
n_size <- all_output[["c1_lca.out"]][["summaries"]][["Observations"]]
enum_extract <- LatexSummaryTable(all_output,
keepCols=c("Title","Parameters", "LL", "BIC",
"aBIC", "BLRT_PValue", "T11_VLMR_PValue"),
sortBy = "Title")
all_fit <- enum_extract %>%
mutate(aBIC = -2*LL+Parameters*log((n_size+2)/24)) %>%
mutate(CIAC = -2*LL+Parameters*(log(n_size)+1)) %>%
mutate(AWE = -2*LL+2*Parameters*(log(n_size)+1.5)) %>%
mutate(SIC = -.5*BIC) %>%
mutate(expSIC = exp(SIC - max(SIC))) %>%
mutate(expSUM = sum(expSIC)) %>%
mutate(BF = exp(SIC-lead(SIC))) %>%
mutate(cmPk = expSIC/expSUM) %>%
select(1:5,8:9,7,6,13,14)
```
Format table with package {`gt`}
```{r,eval=TRUE}
all_fit %>%
gt() %>%
tab_header(
title = md("**Model Fit Summary Table**"), subtitle = md(" ")) %>%
tab_source_note(
source_note = md("Data Source: **Longitudinal Study of American Youth.**")) %>%
cols_label(
Title = "Classes",
Parameters = md("*NPar*"),
LL = md("*LL*"),
T11_VLMR_PValue = html("VLMR"),
BLRT_PValue = html("BLRT"),
BF = html("Bayes<br>Factor"),
cmPk = html("cmP<sub>k")) %>%
tab_options(column_labels.font.weight = "bold") %>%
fmt_number(10:11,decimals = 2,
drop_trailing_zeros=TRUE,
suffixing = TRUE) %>%
fmt_number(2:9,decimals = 2)
```
## References
Drew A. Linzer, Jeffrey B. Lewis (2011). poLCA: An R Package for Polytomous Variable Latent Class Analysis. Journal of Statistical Software, 42(10), 1-29. URL http://www.jstatsoft.org/v42/i10/.
Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural equation modeling: a multidisciplinary journal, 25(4), 621-638.
Miller, J. D., Hoffer, T., Suchner, R., Brown, K., & Nelson, C. (1992). LSAY codebook. Northern Illinois University.
Muthén, B. O., Muthén, L. K., & Asparouhov, T. (2017). Regression and mediation analysis using Mplus. Los Angeles, CA: Muthén & Muthén.
Muthén, L.K. and Muthén, B.O. (1998-2017). Mplus User’s Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén
R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686