-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMRP_quad_30x30.m
258 lines (237 loc) · 6.42 KB
/
MRP_quad_30x30.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
% MRP_quad_7x7: Construct a minimum rigidifying link pattern for 30x30 quad
% kirigami by hierarchical construction
%
% Reference:
% S. Chen, G. P. T. Choi, L. Mahadevan,
% ``Deterministic and stochastic control of kirigami topology.''
% Proceedings of the National Academy of Sciences, 117(9), 4511-4517, 2020.
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Step 1: Prepare the basic link patterns for 2x2, 3x3, 5x5 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% MRP for 2x2
L = 2;
linkpairs2 = [];
% Boundary links
for i=1:L-1
linkpairs2=[linkpairs2;4*i-2,4*(i+1)-3];
end
for i=L^2-L+1:L^2-1
linkpairs2=[linkpairs2;4*i-1,4*(i+1)];
end
for i=1:L:L^2-L
linkpairs2=[linkpairs2;4*i,4*(i+L)-3];
end
for i=L:L:L^2-L
linkpairs2=[linkpairs2;4*i-1,4*(i+L)-2];
end
% inner links
linkpairs2=[linkpairs2;
4*1-1, 4*2;
];
if length(linkpairs2) ~= ceil((3*L^2-3)/2)
error('Incorrect number of link pairs!');
end
% vertex coordinates for the 3x3 quads
v2 = zeros(4*L^2,2);
f2 = [];
for i = 0:L-1
for j = 0:L-1
n = L*i + j + 1;
v2(4*n-3,:) = [2*j,2*i];
v2(4*n-2,:) = [2*j+1,2*i];
v2(4*n-1,:) = [2*j+1,2*i+1];
v2(4*n,:) = [2*j,2*i+1];
f2 = [f2; 4*n-3 4*n-2 4*n-1 4*n];
end
end
%% MRP for 3x3
L = 3;
linkpairs3 = [];
% Boundary links
for i=1:L-1
linkpairs3=[linkpairs3;4*i-2,4*(i+1)-3];
end
for i=L^2-L+1:L^2-1
linkpairs3=[linkpairs3;4*i-1,4*(i+1)];
end
for i=1:L:L^2-L
linkpairs3=[linkpairs3;4*i,4*(i+L)-3];
end
for i=L:L:L^2-L
linkpairs3=[linkpairs3;4*i-1,4*(i+L)-2];
end
% inner links
linkpairs3=[linkpairs3;
4*2, 4*5-3;
4*5-2, 4*6-3;
4*5-1, 4*8-2;
4*4-1, 4*5;
];
if length(linkpairs3) ~= ceil((3*L^2-3)/2)
error('Incorrect number of link pairs!');
end
% vertex coordinates for the 3x3 quads
v3 = zeros(4*L^2,2);
f3 = [];
for i = 0:L-1
for j = 0:L-1
n = L*i + j + 1;
v3(4*n-3,:) = [2*j,2*i];
v3(4*n-2,:) = [2*j+1,2*i];
v3(4*n-1,:) = [2*j+1,2*i+1];
v3(4*n,:) = [2*j,2*i+1];
f3 = [f3; 4*n-3 4*n-2 4*n-1 4*n];
end
end
%% MRP for 5x5
L = 5;
linkpairs5 = [];
% Boundary links
for i=1:L-1
linkpairs5=[linkpairs5;4*i-2,4*(i+1)-3];
end
for i=L^2-L+1:L^2-1
linkpairs5=[linkpairs5;4*i-1,4*(i+1)];
end
for i=1:L:L^2-L
linkpairs5=[linkpairs5;4*i,4*(i+L)-3];
end
for i=L:L:L^2-L
linkpairs5=[linkpairs5;4*i-1,4*(i+L)-2];
end
% inner links
linkpairs5=[linkpairs5;
4*11-2,4*12-3;
4*14-1,4*15;
4*3,4*8-3;
4*8-1,4*13-2;
4*13,4*18-3;
4*18-1,4*23-2;
4*2, 4*7-3;
4*7-2,4*8-3;
4*7-1,4*12-2;
4*12-1,4*17-2;
4*16-2,4*17-3;
4*17-1,4*18;
4*17,4*22-3;
4*4-1,4*9-2;
4*8-2,4*9-3;
4*9-1,4*10;
4*9,4*14-3;
4*14, 4*19-3;
4*18-1,4*19;
4*19-1,4*24-2;
];
if length(linkpairs5) ~= ceil((3*L^2-3)/2)
error('Incorrect number of link pairs!');
end
% vertex coordinates for the 5x5 quads
v5 = zeros(4*L^2,2);
f5 = [];
for i = 0:L-1
for j = 0:L-1
n = L*i + j + 1;
v5(4*n-3,:) = [2*j,2*i];
v5(4*n-2,:) = [2*j+1,2*i];
v5(4*n-1,:) = [2*j+1,2*i+1];
v5(4*n,:) = [2*j,2*i+1];
f5 = [f5; 4*n-3 4*n-2 4*n-1 4*n];
end
end
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Step 2: Construct the link patterns for 30x30 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
L = 30;
nquad = L^2; % Number of quads
nlink = ceil((3*L^2-3)/2);% theoretical lower bound for number of links
v = zeros(4*L^2,2);
f = [];
for i = 0:L-1
for j = 0:L-1
n = L*i + j + 1;
v(4*n-3,:) = [2*j,2*i];
v(4*n-2,:) = [2*j+1,2*i];
v(4*n-1,:) = [2*j+1,2*i+1];
v(4*n,:) = [2*j,2*i+1];
f = [f; 4*n-3 4*n-2 4*n-1 4*n];
end
end
% Construct link pattern from the small patterns
linkpairs=[];
% fill in the 3x3 links
width3 = range(v3(:,1)) + 1;
for i = 0:(L/3-1)
for j = 0:(L/3-1)
% shift v3
v3_shifted = [v3(:,1) + i*width3, v3(:,2) + j*width3];
id3_list = zeros(length(v3),1);
% find corresponding vertices in the 60x60 pattern
for k = 1:length(v3)
id = find(v(:,1) == v3_shifted(k,1) & v(:,2) == v3_shifted(k,2));
id3_list(k) = id;
end
linkpairs=[linkpairs;id3_list(linkpairs3)];
end
end
% fill in the 5x5 links
v5_magnified = zeros(size(v5));
for i = 1:length(v5)
if mod(v5(i,1),2) == 0
v5_magnified(i,1) = width3*(v5(i,1)/2);
else
v5_magnified(i,1) = width3*((v5(i,1)+1)/2)-1;
end
if mod(v5(i,2),2) == 0
v5_magnified(i,2) = width3*(v5(i,2)/2);
else
v5_magnified(i,2) = width3*((v5(i,2)+1)/2)-1;
end
end
width5 = range(v5_magnified(:,1)) + 1;
for i = 0:(L/3/5-1)
for j = 0:(L/3/5-1)
% shift v5 with magnification
v5_shifted = [v5_magnified(:,1) + i*width5, v5_magnified(:,2) + j*width5];
id5_list = zeros(length(v5),1);
% find corresponding vertices in the 60x60 pattern
for k = 1:length(v5)
id = find(v(:,1) == v5_shifted(k,1) & v(:,2) == v5_shifted(k,2));
id5_list(k) = id;
end
linkpairs=[linkpairs;id5_list(linkpairs5)];
end
end
% fill in the 2x2 links
v2_magnified = zeros(size(v2));
for i = 1:length(v2)
if mod(v2(i,1),2) == 0
v2_magnified(i,1) = width5*(v2(i,1)/2);
else
v2_magnified(i,1) = width5*((v2(i,1)+1)/2)-1;
end
if mod(v2(i,2),2) == 0
v2_magnified(i,2) = width5*(v2(i,2)/2);
else
v2_magnified(i,2) = width5*((v2(i,2)+1)/2)-1;
end
end
id2_list = zeros(length(v2),1);
% find corresponding vertices in the 60x60 pattern
for k = 1:length(v2)
id = find(v(:,1) == v2_magnified(k,1) & v(:,2) == v2_magnified(k,2));
id2_list(k) = id;
end
linkpairs=[linkpairs;id2_list(linkpairs2)];
% Check the total number of links
disp(['Theoretical minimum number of links = ', num2str(nlink)])
disp(['Number of links chosen = ', num2str(length(linkpairs))])
%% generate plot
figure;
patch('Faces',f,'Vertices',v,'FaceColor',[89 197 255]/255,'EdgeColor','k');
axis equal tight off
hold on;
for t = 1:length(linkpairs)
plot([v(linkpairs(t,1),1), v(linkpairs(t,2),1)], [v(linkpairs(t,1),2), v(linkpairs(t,2),2)], 'r-');
end