forked from gcucurull/visual-compatibility
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
298 lines (243 loc) · 11.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import argparse
import time
import logging
import tensorflow as tf
import numpy as np
import scipy.sparse as sp
import json
import os
import shutil
from utils import sparse_to_tuple, get_degree_supports, normalize_nonsym_adj
from model.CompatibilityGAE import CompatibilityGAE
from utils import construct_feed_dict, write_log, support_dropout
from dataloaders import DataLoaderPolyvore, DataLoaderFashionGen, DataLoaderAmazon
logging.basicConfig(level=logging.INFO)
# Set random seed
seed = int(time.time()) # 12342
np.random.seed(seed)
tf.set_random_seed(seed)
# Settings
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--dataset", type=str, default="polyvore",
choices=['fashiongen', 'polyvore', 'amazon'],
help="Dataset string.")
ap.add_argument("-lr", "--learning_rate", type=float, default=0.001,
help="Learning rate")
ap.add_argument("-wd", "--weight_decay", type=float, default=0.,
help="Learning rate")
ap.add_argument("-e", "--epochs", type=int, default=4000,
help="Number training epochs")
ap.add_argument("-hi", "--hidden", type=int, nargs='+', default=[350, 350, 350],
help="Number hidden units in the GCN layers.")
ap.add_argument("-do", "--dropout", type=float, default=0.5,
help="Dropout fraction")
ap.add_argument("-deg", "--degree", type=int, default=1,
help="Degree of the convolution (Number of supports)")
ap.add_argument("-sdir", "--summaries_dir", type=str, default="logs/",
help="Directory for saving tensorflow summaries.")
ap.add_argument("-sup_do", "--support_dropout", type=float, default=0.15,
help="Use dropout on the support matrices, dropping all the connections from some nodes")
ap.add_argument('-ws', '--write_summary', dest='write_summary', default=False,
help="Option to turn on summary writing", action='store_true')
fp = ap.add_mutually_exclusive_group(required=False)
fp.add_argument('-bn', '--batch_norm', dest='batch_norm',
help="Option to turn on batchnorm in GCN layers", action='store_true')
fp.add_argument('-no_bn', '--no_batch_norm', dest='batch_norm',
help="Option to turn off batchnorm", action='store_false')
ap.set_defaults(batch_norm=True)
ap.add_argument("-amzd", "--amz_data", type=str, default="Men_bought_together",
choices=['Men_also_bought', 'Women_also_bought', 'Women_bought_together', 'Men_bought_together'],
help="Dataset string.")
args = vars(ap.parse_args())
logging.info('Settings:')
logging.info("args : {}".format(args))
# Define parameters
DATASET = args['dataset']
NB_EPOCH = args['epochs']
DO = args['dropout']
HIDDEN = args['hidden']
LR = args['learning_rate']
WRITESUMMARY = args['write_summary']
SUMMARIESDIR = args['summaries_dir']
FEATURES = "img"
NUMCLASSES = 2
DEGREE = args['degree']
BATCH_NORM = args['batch_norm']
BN_AS_TRAIN = False
SUP_DO = args['support_dropout']
ADJ_SELF_CONNECTIONS = True
VERBOSE = True
# prepare data_loader
if DATASET in ['fashiongen', 'polyvore']:
if DATASET == 'fashiongen':
dl = DataLoaderFashionGen()
elif DATASET == 'polyvore':
dl = DataLoaderPolyvore()
train_features, adj_train, train_labels, train_r_indices, train_c_indices = dl.get_phase('train')
val_features, adj_val, val_labels, val_r_indices, val_c_indices = dl.get_phase('valid')
test_features, adj_test, test_labels, test_r_indices, test_c_indices = dl.get_phase('test')
adj_q, q_r_indices, q_c_indices, q_labels, q_ids, q_valid = dl.get_test_questions()
if DATASET == 'polyvore':
res_adj_q, res_q_r_indices, res_q_c_indices, res_q_labels, res_q_ids, res_q_valid = dl.get_test_questions(resampled=True) # resampled
train_features, mean, std = dl.normalize_features(train_features, get_moments=True)
val_features = dl.normalize_features(val_features, mean=mean, std=std)
test_features = dl.normalize_features(test_features, mean=mean, std=std)
elif DATASET == 'amazon':
cat_rel = args['amz_data']
dl = DataLoaderAmazon(cat_rel=cat_rel)
train_features, adj_train, train_labels, train_r_indices, train_c_indices = dl.get_phase('train')
_, adj_val, val_labels, val_r_indices, val_c_indices = dl.get_phase('valid')
_, adj_test, test_labels, test_r_indices, test_c_indices = dl.get_phase('test')
train_features, mean, std = dl.normalize_features(train_features, get_moments=True)
else:
raise NotImplementedError('A data loader for dataset {} does not exist'.format(DATASET))
if not os.path.exists(SUMMARIESDIR):
os.makedirs(SUMMARIESDIR)
if SUMMARIESDIR == 'logs/':
SUMMARIESDIR += str(len(os.listdir(SUMMARIESDIR)))
log_file = SUMMARIESDIR + '/log.json'
log_data = {
'val':{'loss':[], 'acc':[]},
'train':{'loss':[], 'acc':[]},
'questions':{
'loss':[], 'acc':[],
'task_acc': [], 'task_acc_cf': [], 'res_task_acc': [],
},
}
if not os.path.exists(SUMMARIESDIR):
os.makedirs(SUMMARIESDIR)
train_support = get_degree_supports(adj_train, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS)
val_support = get_degree_supports(adj_val, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS)
test_support = get_degree_supports(adj_test, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS)
if DATASET != 'amazon':
q_support = get_degree_supports(adj_q, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS)
if DATASET == 'polyvore':
res_q_support = get_degree_supports(res_adj_q, DEGREE, adj_self_con=ADJ_SELF_CONNECTIONS)
for i in range(1, len(train_support)):
train_support[i] = normalize_nonsym_adj(train_support[i])
val_support[i] = normalize_nonsym_adj(val_support[i])
test_support[i] = normalize_nonsym_adj(test_support[i])
if DATASET != 'amazon':
q_support[i] = normalize_nonsym_adj(q_support[i])
if DATASET == 'polyvore':
res_q_support[i] = normalize_nonsym_adj(res_q_support[i])
num_support = len(train_support)
placeholders = {
'row_indices': tf.placeholder(tf.int32, shape=(None,)),
'col_indices': tf.placeholder(tf.int32, shape=(None,)),
'dropout': tf.placeholder_with_default(0., shape=()),
'weight_decay': tf.placeholder_with_default(0., shape=()),
'is_train': tf.placeholder_with_default(True, shape=()),
'support': [tf.sparse_placeholder(tf.float32, shape=(None, None)) for sup in range(num_support)],
'node_features': tf.placeholder(tf.float32, shape=(None, None)),
'labels': tf.placeholder(tf.float32, shape=(None,))
}
model = CompatibilityGAE(placeholders,
input_dim=train_features.shape[1],
num_classes=NUMCLASSES,
num_support=num_support,
hidden=HIDDEN,
learning_rate=LR,
logging=True,
batch_norm=BATCH_NORM,
wd=args['weight_decay'])
# Feed_dicts for validation and test set stay constant over different update steps
train_feed_dict = construct_feed_dict(placeholders, train_features, train_support,
train_labels, train_r_indices, train_c_indices, DO)
if DATASET != 'amazon':
val_feed_dict = construct_feed_dict(placeholders, val_features, val_support,
val_labels, val_r_indices, val_c_indices, 0., is_train=BN_AS_TRAIN)
test_feed_dict = construct_feed_dict(placeholders, test_features, test_support,
test_labels, test_r_indices, test_c_indices, 0., is_train=BN_AS_TRAIN)
q_feed_dict = construct_feed_dict(placeholders, test_features, q_support,
q_labels, q_r_indices, q_c_indices, 0., is_train=BN_AS_TRAIN)
else:
val_feed_dict = construct_feed_dict(placeholders, train_features, val_support,
val_labels, val_r_indices, val_c_indices, 0., is_train=BN_AS_TRAIN)
test_feed_dict = construct_feed_dict(placeholders, train_features, test_support,
test_labels, test_r_indices, test_c_indices, 0., is_train=BN_AS_TRAIN)
# Collect all variables to be logged into summary
merged_summary = tf.summary.merge_all()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
if WRITESUMMARY:
train_summary_writer = tf.summary.FileWriter(SUMMARIESDIR + '/train', sess.graph)
val_summary_writer = tf.summary.FileWriter(SUMMARIESDIR + '/val')
else:
train_summary_writer = None
val_summary_writer = None
best_val_score = 0
best_train_score = 0
best_epoch_train_score = 0
best_val_loss = np.inf
best_epoch = 0
wait = 0
logging.info('Training...')
for epoch in range(NB_EPOCH):
t = time.time()
# modify train_feed_dict with support dropout if needed
if SUP_DO:
# do not modify the first support, the self-connections one
for i in range(1, len(train_support)):
modified = support_dropout(train_support[i].copy(), SUP_DO, edge_drop=True)
modified.data[...] = 1 # make it binary to normalize
modified = normalize_nonsym_adj(modified)
modified = sparse_to_tuple(modified)
train_feed_dict.update({placeholders['support'][i]: modified})
# run one iteration
outs = sess.run([model.opt_op, model.loss, model.accuracy, model.confmat], feed_dict=train_feed_dict)
train_avg_loss = outs[1]
train_acc = outs[2]
val_avg_loss, val_acc, conf = sess.run([model.loss, model.accuracy, model.confmat], feed_dict=val_feed_dict)
if VERBOSE:
tup = ("[*] Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(train_avg_loss),
"train_acc=", "{:.5f}".format(train_acc),
"val_loss=", "{:.5f}".format(val_avg_loss),
"val_acc=", "{:.5f}".format(val_acc),
"time=", "{:.5f}".format(time.time() - t))
logging.info("{}".format(tup))
log_data['train']['loss'].append(float(train_avg_loss))
log_data['train']['acc'].append(float(train_acc))
log_data['val']['loss'].append(float(val_avg_loss))
log_data['val']['acc'].append(float(val_acc))
write_log(log_data, log_file)
if val_acc > best_val_score:
best_val_score = val_acc
best_epoch = epoch
best_epoch_train_score = train_acc
saver = tf.train.Saver()
save_path = saver.save(sess, "%s/best_epoch.ckpt" % (SUMMARIESDIR))
if train_acc > best_train_score:
best_train_score = train_acc
if epoch % 50 == 0 and WRITESUMMARY:
# Train set summary
summary = sess.run(merged_summary, feed_dict=train_feed_dict)
train_summary_writer.add_summary(summary, epoch)
train_summary_writer.flush()
# Validation set summary
summary = sess.run(merged_summary, feed_dict=val_feed_dict)
val_summary_writer.add_summary(summary, epoch)
val_summary_writer.flush()
# store model
saver = tf.train.Saver()
save_path = saver.save(sess, "%s/%s.ckpt" % (SUMMARIESDIR, model.name), global_step=model.global_step)
if VERBOSE:
logging.info("\nOptimization Finished!")
scores_tup = ('best validation score =', best_val_score, 'at iteration {}, with a train_score of {}'.format(best_epoch, best_epoch_train_score))
logging.info("{}".format(scores_tup))
logging.info('\nSETTINGS:\n')
for key, val in sorted(vars(ap.parse_args()).items()):
logging.info("{}, {}".format(key, val))
logging.info('global seed = {}'.format(seed))
# For parsing results from file
results = vars(ap.parse_args()).copy()
results.update({'best_val_score': float(best_val_score), 'best_epoch': best_epoch})
results.update({'best_epoch_train_score': float(best_epoch_train_score)})
results.update({'best_train_score': float(best_train_score)})
results.update({'best_epoch': best_epoch})
results.update({'seed':seed})
logging.info(json.dumps(results))
json_outfile = SUMMARIESDIR + '/' + 'results.json'
with open(json_outfile, 'w') as outfile:
json.dump(results, outfile)
sess.close()