-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProgram.cs
189 lines (157 loc) · 9.19 KB
/
Program.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
using System;
using System.Collections.Generic;
using Classifier.DataCollecting;
using Classifier.TextPreprocessing;
using Classifier.ClassifierModel;
using Accord.MachineLearning.VectorMachines.Learning;
using System.IO;
using KBCsv;
using System.Text;
namespace Classifier
{
class Program
{
static void Main(string[] args)
{
if (args != null && args.Length > 0)
{
VkParser.ParseInformation(args[0], args[1]);
Console.ReadKey();
}
string[] documents = FileParser.GetDocuments();
// Параметры экспериментов
int[] featuresCount = new int[] { 1500, 3000, 4500, 6000, 7500, 9000 };
float[] complexity = new float[] { 0.1f, 0.5f, 1, 2, 5 };
Loss[] loss = new Loss[] { Loss.L1, Loss.L2 };
Dictionary<string, int[]> traits = new Dictionary<string, int[]>(9);
//traits.Add("Denial", FileParser.GetDenial());
traits.Add("Repression", FileParser.GetRepression());
//traits.Add("Regression", FileParser.GetRegression());
//traits.Add("Compensation", FileParser.GetCompensation());
//traits.Add("Projection", FileParser.GetProjection());
//traits.Add("Displacement", FileParser.GetDisplacement());
//traits.Add("Rationalization", FileParser.GetRationalization());
//traits.Add("Reaction Formation", FileParser.GetReactionFormation());
//traits.Add("Overall Level", FileParser.GetOverallLevel());
foreach (var item in traits)
{
Console.WriteLine(item.Key);
using (var sw = new StreamWriter("results_" + item.Key + ".csv", false, Encoding.UTF8))
using (var writer = new CsvWriter(sw))
{
writer.ForceDelimit = false;
writer.ValueSeparator = ';';
writer.ValueDelimiter = '\'';
string[] columns = {
"trait", "N", "features", "C", "loss",
"ovrAcc", "avgAcc",
"microAvgPre", "macroAvgPre",
"microAvgRec", "macroAvgRec",
"microAvgF1", "macroAvgF1",
"time"
};
writer.WriteRecord(columns);
for (bool unigrams = true; ; unigrams = false)
{
foreach (int features in featuresCount)
{
Console.WriteLine("Calculating TF-IDF...");
double[][] inputs = TFIDF.Transform(documents, extractUnigrams: unigrams, featuresAmount: features);
inputs = TFIDF.Normalize(inputs);
Console.WriteLine("Training...");
foreach (float c in complexity)
foreach (var l in loss)
{
Console.WriteLine(string.Format("N = {0}, features = {1}, C = {2}, loss = {3} ",
unigrams ? 1 : 2, features, c, l == Loss.L1 ? "L1" : "L2"));
double overallAccuracy = 0, averageAccuracy = 0;
double microAveragedPrecision = 0, macroAveragedPrecision = 0;
double microAveragedRecall = 0, macroAveragedRecall = 0;
double microAveragedF1Score = 0, macroAveragedF1Score = 0;
double time = 0;
for (int iter = 0; iter < 10; iter++)
{
double overallAccuracyCur, averageAccuracyCur;
double microAveragedPrecisionCur, macroAveragedPrecisionCur;
double microAveragedRecallCur, macroAveragedRecallCur;
double microAveragedF1ScoreCur, macroAveragedF1ScoreCur;
DateTime start = DateTime.Now;
SVM svm = new SVM(inputs, item.Value, c, l);
svm.Train();
DateTime finish = DateTime.Now;
time += (finish - start).TotalSeconds;
svm.GetPerformance(out overallAccuracyCur,
out averageAccuracyCur,
out microAveragedPrecisionCur,
out macroAveragedPrecisionCur,
out microAveragedRecallCur,
out macroAveragedRecallCur,
out microAveragedF1ScoreCur,
out macroAveragedF1ScoreCur);
overallAccuracy += overallAccuracyCur;
averageAccuracy += averageAccuracyCur;
microAveragedPrecision += microAveragedPrecisionCur;
macroAveragedPrecision += macroAveragedPrecisionCur;
microAveragedRecall += microAveragedRecallCur;
macroAveragedRecall += macroAveragedRecallCur;
microAveragedF1Score += microAveragedF1ScoreCur;
macroAveragedF1Score += macroAveragedF1ScoreCur;
}
overallAccuracy /= 10;
averageAccuracy /= 10;
microAveragedPrecision /= 10;
macroAveragedPrecision /= 10;
microAveragedRecall /= 10;
macroAveragedRecall /= 10;
microAveragedF1Score /= 10;
macroAveragedF1Score /= 10;
time /= 10;
var outputRecord = new string[columns.Length];
// "trait", "N", "features", "C", "loss",
// "overallAccuracy", "averageAccuracy",
// "microAveragedPrecision", "macroAveragedPrecision",
// "microAveragedRecall", "macroAveragedRecall",
// "microAveragedF1Score", "macroAveragedF1Score"
outputRecord[0] = item.Key;
outputRecord[1] = unigrams ? "1" : "2";
outputRecord[2] = Convert.ToString(features);
outputRecord[3] = Convert.ToString(c);
outputRecord[4] = l == Loss.L1 ? "L1" : "L2";
outputRecord[5] = Convert.ToString(overallAccuracy);
outputRecord[6] = Convert.ToString(averageAccuracy);
outputRecord[7] = Convert.ToString(microAveragedPrecision);
outputRecord[8] = Convert.ToString(macroAveragedPrecision);
outputRecord[9] = Convert.ToString(microAveragedRecall);
outputRecord[10] = Convert.ToString(macroAveragedRecall);
outputRecord[11] = Convert.ToString(microAveragedF1Score);
outputRecord[12] = Convert.ToString(macroAveragedF1Score);
outputRecord[13] = Convert.ToString(time);
writer.WriteRecord(outputRecord);
}
}
}
}
}
Console.ReadKey();
}
private static void OutputLog
(string name, int iteration, double time, double crossEntropyLoss, double zeroOneLoss, double[,] matrix)
{
Console.WriteLine(string.Format
("\n{0}, iteration {1} - elapsed time: {2:0.00}s, cross entropy loss: {3:0.000}, zero-one loss: {4:0.000}",
name, iteration, time, crossEntropyLoss, zeroOneLoss));
OutputConfusionMatrix(matrix);
}
private static void OutputConfusionMatrix(double[,] matrix)
{
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
Console.Write(string.Format("{0:0.00}\t", matrix[i, j]));
}
Console.WriteLine();
}
}
}
}