-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAskModule.py
91 lines (74 loc) · 2.9 KB
/
AskModule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from scipy import exp
import os
import WindowScalingInfo as WS
reload(WS)
import SloppyScaling
reload(SloppyScaling)
import Utils
reload(Utils)
name = 'A_s' # This is the name used in the files
Xname = 's'
XscaledName = 'Ss'
Xscaled = "s*(1.0*k/L)**(sigma_k*(1.+zeta))"
XscaledTeX = r'$s (k/L)^{(1+\zeta) \sigma_k}$'
Yname = 'Ask' # This must be the name of the module !!!!!!!!!
Ytheory = " Ss**(2.-tau) * (1./s) * exp(-Ss**ns*Ixs)"
Yscaled = "Ss **(tau-2.) * s * Ask"
YscaledTeX = \
r'$(s (k/L)^{\sigma_k (1+\zeta)})^{-(2-\tau)} s {\cal{A}}_{s}$'
title = 'A(s,k,L): Area covered by avalanches of size s'
scalingTitle = 'A(s,k,L) scaling function'
#
# Include corrections
#
Ytheory_corrections = "exp(Ah1/s+Ah2/s**2)"
#*exp(Uh1*(h*k**(zeta*sigma_k)) + Uh2/(h*k**(zeta*sigma_k)))"
parameterNames = "tau,sigma_k,zeta,Ixs,ns"
parameterNames_corrections = "Ah1,Ah2"
initialParameterValues = (1.2,0.4,0.6,1.0,1.4)
initialParameterValues_corrections = (0.,0.,)
# Correct if spaces are included in the parameters names
parameterNames = parameterNames.replace(" ","")
parameterNames_corrections = parameterNames_corrections.replace(" ","")
if WS.corrections_to_scaling:
Ytheory = Ytheory + "*" + Ytheory_corrections
parameterNames = parameterNames + "," + parameterNames_corrections
initialParameterValues = initialParameterValues + initialParameterValues_corrections
# If single independent parameter, must have comma after it -- makes it a tuple
theory = SloppyScaling.ScalingTheory(Ytheory, parameterNames, \
initialParameterValues, WS.independentNames, \
scalingX = Xscaled, scalingY = Yscaled, \
scalingXTeX = XscaledTeX, \
scalingYTeX = YscaledTeX, \
title = title, \
scalingTitle = scalingTitle, \
Xname=Xname, XscaledName=XscaledName, \
Yname=Yname, \
normalization = WS.normalization)
data = SloppyScaling.Data()
loaded = 0
for independent in WS.independentValues:
L, k = independent
ext = "_" + WS.simulType + ".bnd"
if os.getlogin() == 'yj':
k_string = "_k"
else:
k_string = "_k="
fileName = "".join([WS.dataDirectory,name,\
k_string,str(k), "_System_Size=",str(2*L), "x", str(L), ext])
success = data.InstallCurve(independent, fileName, \
pointSymbol=WS.Symbol[independent], \
pointColor=WS.Color[independent], \
initialSkip = WS.rows_to_skip)
loaded += success
nFiles = len(WS.independentValues)
if loaded == nFiles:
print "Loaded %2d/%2d files (%s)" % (loaded, nFiles, name)
else:
print "====================="
print "Attention! %2d/%2d files are missing (%s)" % (nFiles-loaded, nFiles, name)
print "====================="
f = __file__
f = f.split("/")[-1]
thisModule = f.split('Module.py')[0]
exec(thisModule + "= SloppyScaling.Model(theory, data, name, WS.sortedValues)")